
24 February 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Array-specific dataflow caches for high-level synthesis of memory-intensive algorithms on FPGAs / Brignone, Giovanni;
Jamal, Muhammad Usman; Lazarescu, Mihai T.; Lavagno, Luciano. - In: IEEE ACCESS. - ISSN 2169-3536. -
ELETTRONICO. - 10:(2022), pp. 118858-118877. [10.1109/ACCESS.2022.3219868]

Original

Array-specific dataflow caches for high-level synthesis of memory-intensive algorithms on FPGAs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ACCESS.2022.3219868

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2973073.6 since: 2022-11-18T08:23:09Z

IEEE

Digital Object Identifier

Array-specific dataflow caches for
high-level synthesis of memory-intensive
algorithms on FPGAs
GIOVANNI BRIGNONE1, (Graduate Student Member, IEEE), M. USMAN JAMAL1, (Graduate
Student Member, IEEE), MIHAI T. LAZARESCU1, (Member, IEEE), and LUCIANO LAVAGNO1,
(Senior Member, IEEE)
1Department of Electronics and Telecommunications, Politecnico di Torino, I-10129 Torino, Italy

Corresponding author: Giovanni Brignone (e-mail: giovanni.brignone@polito.it)

ABSTRACT Designs implemented on field-programmable gate arrays (FPGAs) via high-level synthesis
(HLS) suffer from off-chip memory latency and bandwidth bottlenecks. FPGAs can access both large but
slow off-chip memories (DRAM), and fast but small on-chip memories (block RAMs and registers). HLS
tools allow exploiting the memory hierarchy in a scratchpad-like fashion, requring a significant manual
effort. We propose an automation of the FPGA memory management in Xilinx Vitis HLS through a fully-
configurable C++ source-level cache. Each DRAM-mapped array can be associated with a private level
2 (L2) cache with one or more ports, and each port can optionally provide a level 1 cache. The L2 cache
runs in a separate dataflow task with respect to the application accessing it. This solution isolates off-chip
memory accesses and data buffering into dedicated dataflow tasks, resembling the load, compute, store
design paradigm, but without the drawback of manual algorithm refactoring. Experimental results collected
from an FPGA board show that our cache speeds up the execution of a variety of benchmarks by up to 60
times compared to the out-of-the-box solution provided by HLS, requiring very limited optimization effort.
Our caches are not meant to compete with manually optimized implementations quality of results (QoR),
but rather to significantly save design effort, in exchange for some QoR, to make the HLS flow a bit more
software-like, allowing the designer to focus on algorithmic optimizations, rather than on explicit memory
management. Moreover, caching could be the only feasible memory optimization for algorithms with data-
dependent or irregular memory access patterns, but with good data locality.

INDEX TERMS High-level synthesis,FPGA,cache,memory management

I. INTRODUCTION

IN the Post-Moore Era, simultaneous performance and
energy improvements can be obtained only from special-

ized hardware (HW) architectures [1]–[3]. While specialized
HW is efficient, it also increases the design effort and the
deployment cost. However, high-level synthesis (HLS) can
significantly reduce the design effort, enabling convenient
software (SW)-like tools and development flows. At the same
time, field-programmable gate arrays (FPGAs) can reduce
deployment cost allowing the designer to implement special-
purpose HW modules on general-purpose reconfigurable ar-
chitectures. Our work focuses on applications where time to
market, application lifetime, requirements to frequently update
the implementation and so on, make FPGAs the best solution

at hand, and we strive to bring the development of FPGA-
accelerated applications a bit closer to the SW development
experience.

An HLS open issue is the off-chip memory latency and
bandwidth bottleneck, which limits performance, and is es-
pecially critical for memory-bound algorithms. The FPGA
memory system is composed of two main kinds of resources:
fast small on-chip memories, i.e., registers and block RAMs
(BRAMs), and slow large off-chip memories, i.e., dynamic
RAMs (DRAMs), interfaced through DDR4 or HBM pro-
tocols (the latter characterized by even larger latency [4]).
Current HLS tools, in particular those from the leading vendor
Xilinx, allow the designer to exploit this memory hierarchy
only manually, in a scratchpad-like way, which often requires

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Compute

Cache

CPU

DRAM
controller

DRAM

Programmable LogicProcessing System

HLS kernel

System-on-Chip

AXI bus

AXI
AXI

FIGURE 1: Our cache embedded in a HW setup.

significant design and verification effort. This makes the de-
ployment of accelerated applications using FPGAs for a large
number of applications harder to achieve. Our work aims
directly at filling this gap, thus making HLS design a bit more
SW-like for use cases in which ultimate performance need not
be achieved, but design time and effort are paramount.

According to the best design practice from Xilinx [5],
efficient HLS kernels should comply with the load, compute,
store (LCS) paradigm to mitigate the off-chip memory bot-
tleneck, i.e., access external DRAM only by load and store
dataflow tasks, which are then responsible for buffering on
the on-chip memory the data consumed and produced by the
compute task(s). The main drawback of the LCS approach is
the significant design effort needed for converting a generic
algorithm into LCS form, which often requires full rewriting
and redesigning of the source code.

The aim of our work is to automate efficient off-chip memory
accesses through an easy to use and fully customizable cache
system 1 for HLS, which works as an interface with the off-chip
DRAM, accessible through an advanced extensible interface
(AXI) bus, and stores its data to on-chip BRAMs and registers.
Figure 1 shows the resulting system when our cache is used
to accelerate an HLS kernel. Our cache is placed within the
HLS kernel. The computation logic of the kernel accesses the
cache, rather than the AXI bus directly.

A cache is in general helpful to implement well-performing
designs in a short time. Moreover, techniques such as man-
ual buffering or polyhedral transformations [6], [7] cannot
be applied to programs with irregular or input-dependent
memory access patterns, and are only partially implemented
in commercial design tools such as Vitis HLS. Therefore, a
cache could be the only solution for quickly optimizing the
performance of such designs using commercial tool flows.

From a high-level point of view, the cache has the objective
of isolating the off-chip memory accesses into a dataflow task,
in accordance with the LCS pattern.

From a low-level point of view, the cache has the dual
purpose of (a) reducing the number of DRAM accesses, i.e.,
the data stored in the cache is reused as long as it hits, and
only the misses need to access the DRAM, and (b) optimizing
DRAM accesses, i.e., the DRAM is accessed in lines (aligned

1Our work is available as open source at https://github.com/brigio345/hls_
cache.

groups of consecutive words), which allows taking advantage
of AXI bursts and interface widening, even with hard to
analyze or totally irregular access patterns.

HLS allows assigning each array to a different AXI master
adapter. This enables implementing array-specific caches,
each using its dedicated AXI adapter. Array-specific caches
can be easily tuned to achieve high hit ratios, since the access
patterns of a single array are typically characterized by good
locality, and there is no interference with the accesses to other
arrays, unlike when all arrays share a single cache.

To adhere to the HLS high-productivity philosophy, we
paid a special attention to the HLS user-friendliness in terms
of (a) configurability (the cache characteristics can be set
through parameters), (b) ease of use (the cache can be inserted
into existing designs with just a few lines of boilerplate code),
(c) observability (cache information critical for parameter
tuning, e.g., hit ratio, can be profiled during SW simulation).

This cache architecture can be implemented as a standard
dataflow design in case of write-only accesses because the
request (the address and the data to be written) flows from
the application accessing the memory and the cache module.
Read accesses include instead both the address request from
the application to the cache and the data response moving
in the opposite direction. This requires a feedback channel
between dataflow tasks, making the dataflow graph cyclic.
Cyclic dataflow is not natively supported by current HLS
tools, and might impose severe functional and performance
limitations. Therefore, we designed a throughput-oriented
Cyclic dataflow protocol for Vitis HLS.

Since we do not have access to the Vitis HLS back-end,
we implemented the cache module at the C++ source level
to make the HLS tool aware of the cache instead of, e.g.,
a register-transfer level (RTL) module to be inserted during
system integration, so that the HLS tool can apply its optimiza-
tions accordingly. This required us to almost mimic a low-level
RTL design style in the C++ code to maximize the throughput
(e.g., set explicitly the delay between the inter-tasks commu-
nication operations), and to minimize the resources (e.g., set
explicitly the bitwidth of the cache data structures).

To summarize, we (i) designed and implemented a high-
-throughput Cyclic dataflow protocol (Section III-A) to sup-
port designs with multiple dataflow tasks with feedback in
HLS. We then exploited the protocol to (ii) design and im-
plement a fully configurable two-level and multi-port Cache
module for HLS (Sections III to V). We finally (iii) evaluated
the power, performance, area (PPA) impact of the Cache mod-
ule on different algorithms, comparing them with the vanilla
designs generated by the HLS tool, with designs optimized
with an RTL cache module, and with the designs manually
optimized according to the LCS pattern (Section VI). The
cache provides the best effectiveness either (1) when applied
to algorithms with unpredictable access patterns, but good
temporal and spatial locality properties, or (2) when used with
a tool, like Vitis HLS, which only partially exploits powerful
memory access optimization capabilities (e.g., state-of-the-art
polyhedral analysis).

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/brigio345/hls_cache
https://github.com/brigio345/hls_cache

The implemented module is designed to be used with Xilinx
Vitis HLS, and was tested specifically with the version 2021.2.

II. PREVIOUS WORK
The need for automated memory management for FPGAs is
attested by the multiple works on this topic.

Matthews et al. [8] and Choi et al. [9] designed FPGA-
based caches. These works differ from ours as they are aimed
to accelerate specific soft-processors implementations instead
of generic HLS designs.

Jo et al. [10] developed an OpenCL framework whose mem-
ory subsystem inserts direct-mapped, single-level, and single-
port caches in between the kernel accessing the memory, and
the external memory. They implemented at RTL both the ker-
nels (which consist of a predefined set of intellectual property
blocks) and the cache. Our work therefore differs both in
terms of cache architecture complexity (our caches provide
set associativity, two levels, and multiple ports), and in terms
of technology (our cache is compatible with any HLS design).

Several works focused on optimizing the memory accesses
through RTL cache modules inserted between the kernel
accessing the off-chip memory and the off-chip memory
interface. These modules can be either inserted manually or
through a dedicated framework, such as the one proposed
by Adler et al. [11] which virtualizes the FPGA memory
hierarchy and includes some caching capabilities. Winterstein
et al. [12] improved this framework specifically for HLS by
allocating the unused BRAMs to maximize the cache sizes.
However, an RTL cache module fails to provide significant
speedup when coupled with an HLS kernel. For example, the
Vitis HLS scheduler, unaware of the external cache module,
inserts a minimum latency between a memory request opera-
tion and its corresponding response based on the architecture
of the memory adapter, thus preventing the exploitation of the
cache acceleration. Our cache is instead implemented at the
source level, and it is specifically designed to avoid scheduling
based on the worst case (cache miss). This allows the HLS
tool to optimize the circuit accordingly.

We ran some experiments adding an RTL cache module
(specifically the Xilinx System Cache [13]) to the interface of
an HLS kernel. The results show that the RTL cache did not
provide any advantage. It simply introduced an overhead, as
discussed in Section VI.

Cong et al. [6] and Pouchet et al. [7] designed a work-
flow for improving data locality of HLS programs through
compiler-level loop transformations, taking advantage of the
polyhedral representation. Moreover, they exploited this lo-
cality by automatically inserting on-chip buffers. These tech-
niques are limited to programs with affine loop bounds and
memory accesses, while a cache can be used with any program,
including those with irregular or data-dependent memory ac-
cesses. A cache could benefit from their improved locality by
achieving higher hit ratios with simpler cache configurations.

The Intel HLS [14] tool provides load-store units (LSUs)
that can cache DRAM data in BRAM in case of read-only
(RO) memories. Our experiments described in Section VI

suggest that the tool fails to determine the optimal cache
configuration and the user has limited control to improve it.

The work by Ma et al. [15] is closest to ours. They proposed
an open-source array-specific HLS cache module as a set of
C++ classes, compatible with Vivado HLS 2016.2. Different
from our work, the cache logic is inlined in the application.
While this helps keeping the hit latency low in simple cases,
it violates the LCS pattern. Moreover, their architecture in-
creases the pipelining complexity. To mitigate this problem,
they mapped the whole cache data to registers. However, in
the experiments discussed in Section VI, we verified that the
pipelines embedding their cache require higher initiation inter-
vals (IIs), or are not pipelineable at all. Moreover, mapping all
the data to registers limits strongly the cache size scalability
due to HW resources constraints. Instead, our architecture
completely hides the cache logic and the memory interface
from the main computations performed by the kernel. This
allows the HLS to synthesize pipelines with low II while
mapping cache data to cheaper BRAMs. Finally, their cache
automatically handles only one access port thus providing
only one read or write per clock cycle (CC). The only way to
perform multiple accesses per CC is to guarantee that other
accesses, beyond the first one in a given CC, will always be
hits, and make it explicit through the retrieve and modify
functions. This is both difficult and error-prone to analyze
manually in complex cases.

III. DATAFLOW CACHE
The Dataflow cache architecture (Fig. 7a) is isolated into a
dedicated dataflow process. An HLS kernel that is configured
to use the cache for one of its top-level DRAM-mapped arrays
is split into two dataflow tasks: (i) the compute task, which in-
cludes all the application logic except for the external memory
interface, which is replaced with the simpler cache interface,
and (ii) the cache task (or, in general, one cache task per array
that uses the cache), which buffers data and interfaces with
the external DRAM. Thus, the kernel automatically complies
with the LCS architecture without any manual code change.

This architecture is characterized by information flow from
the compute task to the cache (the address to be accessed and
the data to be written), and from the cache to the compute
task (the read data). Therefore, the resulting dataflow graph is
cyclic, which is not officially supported by Vitis HLS. For this
reason, the Dataflow cache is implemented according to our
Cyclic dataflow protocol.

Algorithm 1 describes the Dataflow cache functionality.
The cache task waits for a request and executes the standard
cache operations: it checks if the request is a hit or a miss,
it updates the cache data structures (valid bits, dirty bits, tag
bits, . . .), and it performs the DRAM read or write operation.
For reads, it also sends back the data. The compute task sends
the read or write request to the cache. For reads, it waits for
the response containing the read data.

The Dataflow cache uses the set associative mapping and
the write-back consistency policy. It is configurable in terms
of (a) word size, (b) number of words per line, sets, and

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Algorithm 1 Dataflow cache functionality.
Require: Compute needs to access an array associated with Cache at address addr in

read mode (op = R) or write mode (op = W , data = element to be written).
Ensure: The operation requested by Compute is fulfilled by Cache.

procedure COMPUTE
. . .
Send op to Cache
Send addr to Cache
if op = W then

Send data to Cache
else

Wait for Cache response
Receive data from Cache

end if
. . .

end procedure

procedure CACHE
Wait for Compute request
Receive op from Compute
Receive addr from Compute
if op = W then

Receive data from Compute
end if
line : addr ∈ line
if line ⇒ MISS then

if lineold ⇒ DIRTY then
DRAM (lineold)← BRAM (lineold)

end if
BRAM (line)← DRAM (line)

end if
if op = W then

BRAM (addr)← data
else

data ← BRAM (addr)
Send data to Compute

end if
end procedure

TAG
MSB

SET OFF
LSB

(a) Standard mapping.

SET
MSB

TAG OFF
LSB

(b) Swapped mapping.

FIGURE 2: Configurable address bit mapping.

ways, (c) replacement policy: least recently used or first-in
first-out (FIFO), (d) address bit mapping: standard (Fig. 2a),
or swapped (Fig. 2b, convenient in use cases like the one
discussed in Section VI-B, i.e., a matrix accessed by columns).
It can implement a fully associative policy if the number of
sets is one, or a direct mapped policy if the number of ways is
one.

A. CYCLIC DATAFLOW PROTOCOL
The dataflow optimization is crucial in HLS, since it enables
(a) parallelism, i.e., multiple tasks are executed in parallel,
(b) isolation, i.e., the different tasks are organized in separate
modules and share only the necessary data and synchroniza-
tion, and (c) dynamic behavior, i.e., the tasks execute as soon
as they are ready, and their input data is available, thus they
are not statically bound to the worst case.

The current Vitis HLS tool directly and easily supports
acyclic dataflow graphs only, while a kernel may contain
feedback between tasks, making the dataflow graph cyclic.
Our Dataflow cache is actually an example of cyclic dataflow
graph. Fine Licht et al. [16] and Chi et al. [17] added support
for SW simulation of cyclic dataflow designs by mapping each

. . .

WRQ

RRS

. . .

No
resp.

Resp.

State Action Next state

Write request
(WRQ)

Write a
request to the

Slave

RRS if
response

exists (green
arrow), exit
otherwise

(black arrow)

Read response
(RRS)

Read pending
response from
the Slave, if

any

Exit if
response was

read, RRS
otherwise

FIGURE 3: Finite-state machine summarizing the behavior of
a Master in our Cyclic dataflow protocol.

dataflow task to a separate thread or coroutine during simula-
tion. However, they neglected the functional (deadlocks) and
performance (stalls) penalties, due to the dataflow feedback,
in the generated HW. We instead defined a Master/Slave
communication protocol, compatible with both cyclic and
acyclic dataflow graphs, which (i) adds support to Vitis HLS
for SW simulation of cyclic dataflow designs without the need
for multi-threading or coroutines, which complicate inter-pro-
cess synchronization due to the need for mutexes or other
inter-thread synchronization mechanism, and may increase
the execution time of the simulation, due to the inter-process
communication and context switch overheads. (ii) Moreover,
it allows generating HW circuits that are deadlock-free and
provides a high throughput. I.e., if the tasks are pipelined, the
Master can send one request and receive one response from
the Slave at each CC, with an II of 1CC.

In our protocol, each dataflow task is either a Master or a
Slave. A Slave executes the operations requested by its Master.

The tasks communicate and synchronize through FIFO
queues. The request FIFO, which flows from Master to Slave,
contains the inputs to the Slave operation (e.g., if the operation
is a read access from an off-chip memory, it contains the
address to be read). The response (feedback) FIFO, which
flows from Slave to Master, contains the outputs from the
Slave operation (e.g., if the operation is a read access from
an off-chip memory, it contains the read data). This FIFO
introduces a cycle in the dataflow graph. If the Slave does
not send any response to the Master (e.g., the operation is a
write access to an off-chip memory), the response FIFO is not
allocated and the resulting dataflow graph is acyclic. Thus,
our protocol supports both cyclic and acyclic dataflow graphs.

The Master structure, shown in Fig. 3, is not tightly con-
strained. It can start executing the sub-finite-state machine
controlling its Slave at any point. Conversely, the Slave struc-
ture, shown in Fig. 4, is well-defined. It is implemented as
an infinite loop that performs one iteration upon receiving
an execution request from its Master and stops upon a stop
request. If the Slave is pipelined, it must be flushable to avoid
deadlocks. Once a request enters the pipeline, it must pass
through all the pipeline stages till the completion even if no
new request feeds the previous stages. For this, the Slave must
read the requests using non-blocking stream reads.

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

INIT

RRQ

EX

WRS

No
req.

Exec.
req.

Stop
req.

State Action Next state

Initialize
(INIT) Initialization RRQ

Read request
(RRQ)

Read pending
request from
the Master, if

any

EX if an
execution

request was
read, exit if a
stop request

was read, RRQ
otherwise

Execute (EX)
Execute the
requested
operation

WRS if
response

exists (green
arrow), RRQ

otherwise
(black arrow)

Write
response
(WRS)

Write
response to
the Master

RRQ

FIGURE 4: Finite-state machine summarizing the behavior of
a Slave in our Cyclic dataflow protocol.

The protocol can be generalized in terms of both width (a
single Master can have multiple Slaves or a single Slave can
have multiple Masters), and depth (a Slave can be in turn a
Master of another Slave).

1) Hardware functionality and performance
In the presence of feedback between the Slave and the Master,
the HLS-generated HW circuit would deadlock. Moreover,
we have to carefully specify cycle by cycle the scheduling of
the Slave operations to avoid losing performance or causing
unexpected deadlocks, as discussed next.

Whenever the Master writes a request, WRQ, it must wait
for the Slave latency before being able to read the response,
RRS. However, the HLS scheduler is not aware of that depen-
dency and schedules both the WRQ and RRS into the same
pipeline stage. This leads to a deadlock, because the RRS is
blocked while reading from the empty response FIFO (the
latency of the Slave has not elapsed, thus it cannot contain
the response yet). This blocks the whole stage, including the
WRQ: RRS is therefore waiting for the response to a request
which has never been written.

To avoid the deadlock, the WRQ and RRS must be scheduled
into separate pipeline stages by:

1) Explicitly declaring a dependency between WRQ and
RRS using the write_dep and read_dep FIFO access
functions provided by Vitis HLS to define a partial order-
ing between accesses to different streams.

2) Setting the dependency distance to 1CC by delaying it
with the reg function, also provided by Vitis HLS.

While this solution guarantees the functionality of the
generated HW, it fails to achieve high throughput. In fact,
assuming that both the Master and the Slave are pipelined with
an II of 1CC (i.e., the most performance-critical case) and the
Slave pipeline depth is D > 1, the HLS scheduler schedules
the RRS in the CC following the WRQ because it is unaware
of the latency between WRQ and RRS, as shown in Fig. 5a. At

WRQ RRS

(a) Static schedule.

WRQ0 STALL STALL RRS0

WRQ1 STALL STALL RRS1

WRQ2

(b) Runtime behavior.

FIGURE 5: Stalling cyclic dataflow schedule of Master.

WRQ NOP NOP RRS

(a) Static schedule.

WRQ0 NOP NOP RRS0

WRQ1 NOP NOP RRS1

WRQ2 NOP NOP RRS2

(b) Runtime behavior.

FIGURE 6: Non-stalling cyclic dataflow schedule of Master.

runtime, the RRS0 scheduled in the cycle following the WRQ0

stalls because the Slave takes DCCs before writing its re-
sponse. Consequently, the writing of all the following requests
stalls, i.e., WRQ1 can be executed only when RRS0 completes,
after receiving the response from the Slave (Fig. 5b). Thus,
the Slave never receives requests in consecutive cycles and its
throughput is 1/D, as if it were not pipelined.

However, if we set the dependency distance between WRQ
and RRS to DCCs, the scheduler inserts D−1 pipeline stages
between them, as shown in Fig. 6a. In each CC the Master
writes one request and receives one response, as shown in
Fig. 6b. Therefore, our solution allows optimally exploiting
the pipeline with an II of 1CC, without incurring stalls.

2) Software simulation
The SW simulation natively provided by Vitis HLS consists of
compiling the top function of the kernel with a standard C++
compiler, which ignores the HLS pragmas, and executing it
as SW. Thus, dataflow functions are executed sequentially
and introduce a deadlock if there is feedback between the
Slave and the Master. As discussed above, the Master blocks
waiting for the Slave response, but the Slave cannot start until
the Master has completed, resulting in a deadlock.

Even the SW simulation of an acyclic dataflow graph, which
is officially supported by Vitis HLS, is affected by a severe
limitation. All the requests are pending in the FIFO until the
Master returns and its Slave can finally consume them. The
functionality is preserved, but the memory usage for storing
the pending requests may explode.

We solved the issues by automatically changing the SW
simulation code with respect to what is used by HW synthesis.
Each Slave is mapped to a function whose argument list is
the Master request and whose return value is the response
value. The top function only calls the Master function (which
in turn calls the function of its Slave) whenever it would issue
a request FIFO write in the HW model. This solution both
ensures the absence of deadlocks in case of cyclic dataflow
graphs and avoids the accumulation of pending requests in
case of acyclic dataflow graphs.

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

LISTING 1: Vitis HLS source code implementation of the
Cyclic dataflow protocol.
response_type slave_ex(request_type rq) {

...
}

void slave(hls::stream <request_type > &rq_stream ,
hls::stream <response_type > &rs_stream) {

while (1) {
#pragma HLS pipeline II=1

request_type rq;
RRQ: if (rq_stream.read_nb(rq)) {

if (rq.type == STOP_RQ)
break;

EX: response_type rs = slave_ex(rq);
WRS: rs_stream.write(rs);

}
}

}

void master(hls::stream <request_type > &rq_stream ,
hls::stream <response_type > &rs_stream) {

#pragma HLS pipeline II=1
request_type rq;
response_type rs;
...

#ifdef __SYNTHESIS__
WRQ:bool dep = rq_stream.write_dep(rq, false);

dep = delay <D>(dep);
RRS:rs_stream.read_dep(rs, dep);
#else

rs = slave_ex(rq);
#endif /* __SYNTHESIS__ */

...
}

void top (...) {
#pragma HLS dataflow

hls::stream <request_type > rq_stream;
hls::stream <response_type > rs_stream;
master(rq_stream , rs_stream);

#ifdef __SYNTHESIS__
slave(rq_stream , rs_stream);

#endif /* __SYNTHESIS__ */
}

3) Protocol implementation
Listing 1 contains our implementation of the protocol, compat-
ible with Vitis HLS. The discrimination of the HLS synthesis
code from the SW simulation code is automatically done by
checking the definition of the __SYNTHESIS__ preprocessor
identifier, which is defined by Vitis HLS during synthesis.

The request and response FIFOs are implemented as
hls::streams. The Master finite-state machine is contained
in the master function. The Slave finite-state machine is im-
plemented by the slave function, and its EX state is isolated in
the slave_ex function. The whole system is integrated within
the top function. During the HLS synthesis, it instantiates the
Master and Slave dataflow tasks, while for SW simulation it
calls the master function, which calls the slave function.

Note that with our caches all this code is hidden from
the designer, who only needs to instantiate the cache class
discussed before.

B. DATAFLOW CACHE IMPLEMENTATION
The Dataflow cache is implemented as a C++ class, compat-
ible with Vitis HLS. All the configurable parameters are set
using class template arguments.

It complies with our Cyclic dataflow protocol: the cache
task is a Slave, whose Master is the compute task. The
Master operations are hidden behind the cache application
programming interfaces, therefore end users of our cache are
not required to be aware of the underlying protocol.

The cache task provides high throughput in steady state
(it serves a hitting request in one CC), since it is optimally
pipelined with II = 1CC.

1) Cache pipeline
The most critical factor that may increase the cache II, and
hence reduce performance, is the external DRAM access at a
generic address (generally, the compute task can access any
array element, in any order), which introduce long-distance
data and structural dependencies.

Considering that the external DRAM is accessed only in
case of a miss, and that we want to optimize the hitting
accesses, we extracted the AXI interface, in charge of access-
ing the DRAM, into the Memory interface Slave task. The
associated Master is the Core task, which includes all the
remaining cache logic (Fig. 7a). This solution removes the
AXI interface dependencies from the cache hit logic, which
is fully contained in the Core task. For misses, the Core task
sends the DRAM access request to the Memory interface task,
and it dynamically stalls until it receives the response.

To avoid both data and structural dependencies, cache
helper data (e.g., tag, valid, dirty, . . .) are stored in com-
pletely partitioned arrays, bound to registers since they are
typically much smaller than the cache data.

To limit the register usage and to enable cache size scaling,
the cache data memory is bound to BRAM. However, the
BRAM read after write (RAW) latency of 1CC makes the
Core task RAW dependency on data memory (which exists
because a newly loaded line may hit in the following access)
to have a distance of 2CCs. This would require the Core task
to be pipelined with an II of 2CCs.

To lower the II to 1CC, we removed the dependency using
a small auxiliary cache (RAW cache). It is a two-line fully
associative cache, implemented with registers, providing the
functions get_line (for hits, it reads the RAW cache line; for
misses, it reads the Dataflow cache line), and set_line (it
writes both the Dataflow cache line and the RAW cache line,
according to the FIFO replacement policy).

The data memory of the cache is always accessed through
the RAW cache, thus ensuring that the dependency with a
distance 2CCs is false. This is because the set_line function
is at most called once per pipeline iteration: if a cache line is
written, it will not be read in the next two iterations (which
would be the origin of the distance 2CCs dependency), since
the RAW cache would hit and return its data directly.

2) AXI interface
The Memory interface task accesses the AXI bus at every re-
quest from the Core task. To save resources, it is not pipelined.
Pipelining would rarely help, because a well-configured cache

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

compute

core

mem_if

DRAM

cache

HLS kernel

FPGA

rq rs

rq rs

AXI

(a) Dataflow cache.

compute
l1

core

mem_if

DRAM

l2

HLS kernel

FPGA

rq rs

rq rs

AXI

(b) Multi-level cache.

compute
l1[0] l1[1]

core

mem_if

DRAM

l2

HLS kernel

FPGA

rq[0] rs[0]
rq[1] rs[1]

rq rs

AXI

(c) Multi-port cache.

FIGURE 7: Baseline Dataflow cache architecture, and its extensions.

should never get multiple sequential misses, especially consid-
ering that there is one dedicated cache per source code array.

All DRAM accesses handle whole cache lines, which are
sequential and aligned to the line size. To enable the HLS
tool to infer that accesses are aligned, we explicitly zeroed the
least significant bits of the address. This enables automated
port widening and burst inference. If the line size is at most
the maximum AXI interface width, it is accessed in a single
request, else (more commonly) it is accessed in a burst request.

By default, Vitis HLS assumes AXI latency 64CCs. This
is useful to send pipelined requests on the AXI interface.
However, our Memory interface is not pipelined. Thus, we set
the AXI latency to zero, which makes the Memory interface
stall after issuing an AXI request and resume right after the
response, saving resources without losing performance.

3) Cache interface
To interface with the cache, we exposed the user-callable
application programming interfaces for managing requests
and responses between the compute task and the cache.
• The get function accepts as input the address to read

from cache and returns the read data. Internally it sends a
read request (writing the address to the request FIFO), it
waits for the request-response latency (discussed later) in
case of hit, or for longer in case of miss, and it reads the
data from the response FIFO, and returns the received
data.

• The set function accepts as input the address and the
data to write to the cache. Internally, it sends a write
request (writing the address and the data to the request
FIFO).

To simplify the use in legacy code, we overloaded the
operator[], like Ma et al. [15], to allow using a cache object
as if it were a traditional array, e.g., val = arr_cache[i] is
compiled to val = arr_cache.get(i), and arr_cache[i]
= val is compiled to arr_cache.set(i, val).

LISTING 2: Source code modifications for accelerating the
compute function with our cache.
+#include "cache.h"
+
+typedef cache <DATA_TYPE , RD_ENABLED , WR_ENABLED ,
+ MAIN_SIZE , N_SETS , N_WAYS , N_WORDS_PER_LINE , LRU ,
+ SWAP_TAG_SET , LATENCY > cache_type;

template <typename T>
void compute(T &a) {

for (auto i = 0; i < (N - 1); i++) {
#pragma HLS pipeline

a[i] = a[i + 1];
}

}

+void compute_wrapper(cache_type &a_cache) {
+ a_cache.init ();
+ compute(a_cache);
+ a_cache.stop ();
+}
+
extern "C" void top(DATA_TYPE *a) {
#pragma HLS interface m_axi port=a bundle=gmem0

- compute(a);
+#pragma HLS dataflow
+ cache_type a_cache;
+ a_cache.run(a);
+ compute_wrapper(a_cache);
}

Listing 2 highlights the modifications needed for accel-
erating the compute function with our cache. It is worth
noting that the additional code is simple boilerplate, and the
compute function is unchanged. Users need to (1) set the
cache parameters through the cache class template arguments,
(2) wrap the compute function into a non-inlined function,
that initializes the cache, runs compute, and stops the cache,
and (3) call the wrapper function in a dataflow region, instead
of directly calling compute. Complete examples can be found
in our open source git repository.

As discussed in Section III-A1, the request-response dis-
tance should match the cache latency. However, cache latency

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

varies at runtime, as hits and misses (which have different
latencies) are interleaved, depending on the access pattern
and the cache configuration. Moreover, we need to distinguish
between the different memory access types.
• For RO caches, the optimal distance value is typically

around the average memory access latency computed
according to Eq. (1).

lat = latcache · hit ratio + latDRAM ·miss ratio (1)

The latcache varies from 3CCs to 5CCs, depending on
the cache configuration and timing constraints, while
latDRAM depends on the target FPGA board, and
hit ratio and miss ratio depend on the application and
cache configuration.

• Read-write (RW) caches are affected by data dependen-
cies with distances corresponding to the request-response
distance. The latter should therefore balance cache per-
formance and computation task performance (task II de-
pends on the dependency distance). Experimental results
(Section VI-D1) show that a 2CCs distance typically
gives the best overall performance.

• For write-only caches, the request-response distance has
no meaning because there is no response.

A template parameter is available to the users willing to
fine-tune the distance of the caches in their designs.

IV. MULTI-LEVEL CACHE
The Multi-level cache extends the memory hierarchy of the
cache by adding a level 1 (L1) cache on top of the Dataflow
cache, i.e., the level 2 (L2) cache, as shown in Fig. 7b. This
architecture is aimed at reducing the latency between a read
access request and the corresponding response.

We are not interested in further accelerating the writes.
Write latency has a negligible impact on performance, con-
sidering that they never stall the compute task (there is no
response from the cache to the main computation), provided
that the request FIFO is deep enough to accommodate all
the pending writes. Moreover, write accesses are usually less
frequent than reads.

Finally, the Multi-level cache is the starting point for en-
abling multiple concurrent accesses in the Multi-port cache
described in Section V.

Similarly to the cache by Ma et al. [15], the L1 cache is
inlined in the compute logic. This reduces the latency of the
memory accesses by avoiding the inter-task communication.
Even if the L1 cache is inlined, the compute task pipeline
II is preserved, unlike the cache by Ma et al. [15]. This is
because (i) in case of miss the L1 cache interacts with the
L2 cache instead of with the external DRAM. Furthermore,
(ii) the L1 cache complies with the write-through policy (the
L1 cache aims at accelerating only the reads), introducing
fewer dependencies compared with the write-back policy.

To implement the Multi-level cache architecture, we ex-
tended the Dataflow cache source code. In the Dataflow cache,

the response flows from the L2 to the compute task and
contains a single word. In the Multi-level cache architecture,
the response flows from the L2 to the L1 cache, and holds a
whole cache line.

The Dataflow cache application programming interfaces
were updated to support the L1 cache by adding the get_line
function. Moreover, we upgraded the implementation of the
get and set functions, while keeping their signature un-
changed.
• The get_line function receives as input the address to

read from cache and returns the line to which the address
belongs. In particular, if the address hits the L1 cache,
the line is read from the L1 cache. Otherwise, the request
is issued to the L2 cache, as with the get function of the
Dataflow cache.

• The get function calls the get_line function and returns
the requested word only.

• The set function marks the L1 cache line as dirty, if it
hits, according to the write-through policy. Additionally
it forwards the write request to the L2 cache as with the
Dataflow cache.

The L1 cache supports the set-associative mapping policy.
The number of sets and ways of the L1 cache are configurable
through template parameters. Note that when the L1 cache
parameters are set to zero, the resulting architecture is equiva-
lent to the Dataflow cache.

Similarly to the L2 cache, the L1 cache memory is bound
to BRAMs and the helper data is bound to registers. Both
the L1 and the L2 caches use the same memory technologies,
therefore the L1 cache could have comparable or even bigger
size than the L2 cache.

According to our experimental results (Section VI-B3),
when an L1 cache is included on top of the L2 cache a
convenient default value for the L2 request-response distance
is 3CCs for RO accesses, and 2CCs for RW accesses. Note
that the default RW distance is lower than the RO one because
higher distance values would make the RAW dependencies
distance longer and reduce the overall performance, as dis-
cussed in Section III-B3.

V. MULTI-PORT CACHE
The Dataflow and Multi-level cache architectures provide a
maximum throughput of one access per CC. This is efficient
for pipelined algorithms, which access each cached array at
most a single time per iteration. To efficiently implement
algorithms which access the same array multiple times per
iteration (either due to the user code or after a loop unrolling),
we designed the Multi-port cache that enables multiple con-
current read accesses to the same array.

With the Multi-port cache architecture, a shared L2 cache
exposes an arbitrary number of ports, each with a private L1
cache, as shown in Fig. 7c. The private L1 caches enable
scheduling multiple memory accesses at the same time, with-
out increasing the II of the compute task.

Hence, unlike Ma et al. [15], the L1 cache does not use di-
rectly the single DRAM interface, but goes through the shared

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

L2 cache. Thus, we do not require users to manually mark ex-
plicitly some accesses as “always hit” (through the retrieve
and modify functions), which would require extensive manual
analysis and code changes and may lead to incorrect behavior.

To keep the cache logic simple and to avoid negatively
affecting the compute task II, we did not implement any co-
herency mechanism. To guarantee the correct functionality, the
Multi-port cache only supports read accesses. The extension
to concurrent write or RW accesses is left to future work.

The Multi-port cache is implemented as an extension of the
Multi-level cache. The number of ports P can be configured
through a template parameter. When it is set to one, the
architecture is equivalent to the Multi-level cache.

The Core task of the L2 cache was updated to cycle over
each port, i.e., it sequentially serves the requests from the first
to the last port, before restarting from the first one. Any port
that did not send any request is skipped. This code pattern
(hidden from the user behind the cache operator[]) can be
optimized by the HLS tool to statically schedule P array
accesses with II = 1CC in most cases.

For each port, we allocate a private L1 cache, and the related
pair of request and response FIFOs (to communicate with the
shared L2 cache).

The access port can be selected either automatically or
manually, when the user-friendly automatic port selection
does not lead to the desired II for the algorithm pipeline.
• With the automatic selection, each call to get_line

(which is in turn called by get) is automatically associ-
ated to a specific port by means of a member variable
holding the port index, which is updated after each
access. This is implemented directly in the get function,
that keeps track of the last accessed port and uses this
information to bind a specific request to a specific port.

• The manual port selection allows one to explicitly inform
the tool that each access uses different address and data
streams, and that the dependencies are false. It is imple-
mented by adding the port parameter (which identifies
the number of the port to be accessed) to the get function
(in this case the operator[] cannot be used).

In addition to the performance advantage, our Multi-port
cache allows overcoming the Vitis HLS limitation of a single
reader per AXI interface. Indeed, each L2 cache (associated
with a single AXI interface) can expose multiple ports in
the form of pairs of request/response FIFOs. These ports
can connect the L2 cache to one or more compute dataflow
tasks. Since the L2 cache ignores the ports with no pending
requests, the compute tasks can seamlessly issue requests to
the L2 cache at different rates. Figure 8 shows the dataflow
graph of a kernel with a DRAM-mapped array that is read
from two compute dataflow tasks, through a single L2 cache.
Additionally, each compute task has its own private L1 cache.
In Vitis HLS, if designers need to access the same DRAM array
from different dataflow tasks, they must instantiate multiple
AXI bundles, associated to the same underlying buffer in
DRAM. Note that, due to the loose synchronization between
dataflow tasks in Vitis HLS, both a dual-ported cache and a

compute0 compute1
l1[0] l1[1]

l2
cache

DRAM

HLS kernel

rq[0]

rs[0]
rq[1]

rs[1]

AXI

(a) Dataflow graph.

void compute0 (c a c h e _ t y p e &c , . . .) {
. . .
c . g e t (addr , 0) ;
. . .

}

void compute1 (c a c h e _ t y p e &c , . . .) {
. . .
c . g e t (addr , 1) ;
. . .

}

void t o p (d a t a _ t y p e * a r r , . . .) {
#pragma HLS i n t e r f a c e m_axi p o r t = a r r
#pragma HLS d a t a f l o w

c a c h e _ t y p e c ;
c . run (a r r) ;
compute0 (c , . . .) ;
compute1 (c , . . .) ;

}

(b) Source code.

FIGURE 8: Multiple-reader DRAM-mapped array, associated
with our cache.

Processing
system

S_AXI_0

S_AXI_1

S_AXI_2

M_AXI_0

pl_rstn_0

pl_clk_0

HLS
kernel

S_AXI_CTRL

ap_rstn

ap_clk

M_AXI_A

M_AXI_B

M_AXI_C

FIGURE 9: Block design with three DRAM arrays.

pair of bundles can be used meaningfully only for read-only
arrays. Otherwise enforcing cache coherency or preserving
data dependencies in a shared array between two processes
would be very difficult.

VI. EVALUATION
To evaluate the impact of the proposed cache architecture in
terms of PPA, we used the cache in some memory-intensive
benchmarks with very different access patterns. We selected
two “classical”, frequently used algorithms (matrix multipli-
cation and convolution), since they are widely known and pro-
vide good and easy to understand examples. In practice, our
caches should be used either (i) for seldom used algorithms,
for which a manual optimization effort would not be justified,
or (ii) for those that do not exhibit regular access patterns,
such as bitonic sorting, which is our third benchmark.

We synthesized the benchmarks as Vitis HLS kernels and
deployed them on a physical FPGA board to measure the
resulting PPA. The experimental workflow consists of: (1)
SW simulation, (2) HLS synthesis, (3) logic synthesis, place
and route, and bitstream generation, and (4) execution and
measurements.

Steps (1) and (2) were performed in Vitis HLS 2021.2 (using
Vitis flow defaults), and step (3) in Vivado 2021.2 [18] (using
Vivado defaults for synthesis and implementation). All steps
targeted the Avnet Ultra96v1 [19] board, hosting a Xilinx
Zynq UltraScale+ FPGA. Figure 9 shows the block design
for implementing an HLS kernel with three DRAM-mapped
arrays (such as the matrix multiplication and convolution test
cases). Given an algorithm (which determines the number of

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

inputs and outputs, and by consequence of the AXI interfaces),
the HLS kernel exposes the same interface, even when it is
optimized with our cache, since the cache is fully implemented
with HLS inside the kernel itself.

The board runs the PYNQ Linux 2.7.0 [20] operating system,
whose PYNQ library is exploited in step (4).

We collected the data from different sources:
• SW simulation reports

– Hit ratio: ratio between the number of requests that
hit data in cache and the number of all requests for a
specific cache memory.

• Post place and route reports
– Area: number of lookup tables (LUTs), flip-flops (FFs),

BRAMs and digital signal processing units (DSPs)
required to implement the whole design. 2

– Maximum clock frequency: the maximum frequency
at which timing was met by the implementation flow,
achieved by gradually increasing the clock frequency
constraint. The frequency higher bound is 333MHz,
that is the maximum supported frequency for the
AXI adapter (330MHz in practice, due to the clock
generation logic limited precision).

• Runtime measurements
– Performance (tex): execution time, measured between

the assertions of the start and the end signals of the
kernel.

– Power (P): average power, measured by the sensor on
the system power rail during kernel execution. Note
that the selected board does not allow measuring the
power of the FPGA only, therefore P is the power
consumed by the whole board, including the CPU.

The measured quantities are not fully deterministic. The
timer measuring tex may not be stopped at the exact time
when the kernel asserts its end signal, since it checks
this condition through polling and the CPU might be
busy running other tasks of the operating system. Also,
power consumption is affected by different factors, such
as the CPU load or the temperature. Thus, each runtime
measurement was taken five times and is collected as
the average and the standard deviation of these measure-
ments. The energy consumption (E) is computed as the
average energy, E := P tex.

To limit the design space, in all the cache configurations we
used a default L2 cache request-response latency. For single-
level RO configurations, we computed the default distance
value as 7CCs, according to Eq. (1), where the latcache was
set to the worst-case, i.e., 5CCs, latDRAM was set to 40CCs

2It is virtually impossible to accurately report only the resource usage of our
caches, because our caches are not separate RTL modules which interface with
the kernel to be accelerated, but they are synthesized together with the kernel,
and are not separable from the kernel logic. To get a rough approximation of
the cache resource overhead, we can only subtract the resource usage of the
kernel without any cache (later referred as Baseline) from that of the kernel
with our caches. In case of multiple ports, even this approximation cannot
be applied, since the loop unrolling enabled by the cache increases both the
resource usage and the performance of the application itself.

according to the measurements by Marjanovic [21] of the
read latency of the high-performance coherent ports of the
target board, and hit ratio was assumed to be 95% (these
values were only used to set the cache parameters, while the
runtime results reflect the real latencies and hit ratios). The
experiments show that these approximations achieve good
pipeline performance. A significant performance degradation
is observed only if one assumes very low (1CC), or very
high (more than latDRAM) distance values. We used a default
distance of 3CCs for multi-level, and 2CCs for RW cache
configurations. Write-only cache configurations are unaffected
by the distance parameter.

In order to compare directly the cycle count performance
of the various designs, we constrained the clock frequency to
100MHz in all experiments, except for those that are related
to the timing impact of the cache (Sections VI-B2, VI-C1
and VI-D2).

We manually chose the cache parameters, such as the line
size, number of lines, and so on, based on the array access
patterns. However, there are multiple methods to automate the
selection of these parameters, as attested by a large amount
of past work, for example those analyzed by Upadhyay et al.
[22]. Integration of those approaches with our cache is left to
future work.

A. REFERENCE DESIGNS
We compared the collected results with:

1) Baseline: the kernel generated by default by the HLS tool,
whose computational core directly accesses the external
DRAM through the AXI interface.

2) RTLCache: the Baseline HLS kernel, with the Xilinx
System Cache RTL module inserted in between the HLS
kernel and the AXI DRAM interface (when the cache
module configurability allows a setup with non-zero hit
ratios).

3) Manual: the kernel manually optimized for buffering
the data using the on-chip memories (when the memory
access patterns allow it).

1) Ma et al. cache reference
Ma et al. [15] reported results collected from unreliable
sources. They collected the area figures from post-HLS-
synthesis reports, which are estimations known to be affected
by significant errors. Moreover, they estimated performance
and power data using RTL simulation, which is based on
simplified models (especially for the AXI model, the DRAM
controller, and the DRAM itself), which are crucial in this con-
text. Additionally, due to the long execution time of the RTL
simulations, their input sizes were limited to small values.

Nevertheless, since their code is open source, we tried to
generate results comparable to ours by applying our imple-
mentation flow to their cache. We first adapted their cache,
(designed for Vivado HLS) to Vitis HLS. The changes involved
only their application programming interfaces, not the HW.
However, using Vitis HLS for the kernels embedding their
cache generates very poorly performing HW, e.g., the matrix

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Algorithm 2 Standard Matrix Multiplication
Require: A ∈ RN×M , B ∈ RM×P , C ∈ RN×P

Ensure: C = A× B
procedure STDMATMULT(A,B,C)

LOOP_I: for (i← 0; i < N ; i← i + 1) do
for (j ← 0; j < P ; j ← j + 1) do

acc← 0
LOOP_K: for (k ← 0; k < M ; k ← k + 1) do

acc← acc + A[i][k] · B[k][j]
end for
C[i][j]← acc

end for
end for

end procedure

multiplication innermost loop achieved II = 141CC instead
of 1CC in their tests using Vivado HLS, and the bitonic sorting
loop was not pipelined at all in Vitis HLS. Therefore, we
stopped the implementation flow at the HLS synthesis step,
since their cache would perform even worse than the Baseline
that achieves better pipelining, and we avoided any further
comparison.

2) Intel cache reference

To evaluate the caching capabilities of the Intel LSUs [23], we
used the Intel DevCloud environment, which provides the Intel
HLS tool and enables remote access to an Intel programmable
acceleration card hosting an Arria 10 GX FPGA. The tool
automatically allocates an LSU for each off-chip array, and
each RO LSU can include a cache. The cache characteristics
(number of words per line, number of sets, number of ways,
. . .) are determined automatically and are not reported to the
user, who can optionally control only the total cache size.

We analyzed the PPA impact of the LSUs by running some
experiments using a standard matrix multiplication (Algo-
rithm 2). The tested configurations include (a) the automatic
test case, in which we did not set the cache sizes, (b) the
lower-bound test case, in which we set all the cache sizes to 0,
and (c) the upper-bound test case, in which we set the caches
to fit the whole matrices. Compared with the lower-bound test
case, the automatic case is 8% faster and the upper-bound
is 80% faster. The automatic cache parameters selection is
therefore suboptimal. Most probably because one matrix is
accessed by columns, hence with limited locality. Moreover,
the performance advantages are quite limited even in the upper-
bound case, when the matrices are entirely stored to cache.
This is because the Intel Arria 10 has a low off-chip memory
latency, from 3CCs to 23CCs [24]. We did not have access to
an Intel FPGA with a higher off-chip memory latency, which
would make the cache impact more significant. Thus, the low-
latency of off-chip memory coupled with the limited control
over the LSU cache parameters prevented us from performing
a more thorough comparison with our cache.

B. MATRIX MULTIPLICATION
The Matrix Multiplication (MatMult) standard implementa-
tion (StdMatMult) is shown in Algorithm 2. It accesses each
matrix according to a specific pattern:

00 00 0
01 00 0
10 00 0
11 00 0
00 00 1
01 00 1
10 00 1
11 00 1

TAG SET OFF
MISS
MISS
MISS
MISS
MISS
MISS
MISS
MISS

(a) Standard address bit map.

00 00 0
01 00 0
10 00 0
11 00 0
00 00 1
01 00 1
10 00 1
11 00 1

SET TAG OFF
MISS
MISS
MISS
MISS
HIT
HIT
HIT
HIT

(b) Swapped address bit map.

FIGURE 10: MatMult: sequence of addresses of B accessed
during the first 8 iterations, where B ∈ R4×8 has a 4-set
direct-mapped cache.

Algorithm 3 Block Matrix Multiplication
Require: A ∈ RN×M , B ∈ RM×P , C ∈ RN×P ,BLK ∈ N
Ensure: C = A× B

procedure BLKMATMULT(A,B,C)
for (jj ← 0; jj < P ; jj ← jj + BLK) do

for (kk ← 0; kk < M ; kk ← kk + BLK) do
LOOP_I: for (i← 0; i < N ; i← i + 1) do

for (j ← jj; j < jj + BLK ; j ← j + 1) do
acc← 0
LOOP_K: for (k ← kk; k < kk + BLK ; k ← k + 1) do

acc← acc + A[i][k] · B[k][j]
end for
C[i][j]← C[i][j] + acc

end for
end for

end for
end for

end procedure

• A is accessed by rows, and each row is accessed P times,
for a total of N ×M × P memory accesses. Its cache
should fit a matrix row at a time.

• B is accessed by columns, and each column is accessed
P times, for a total of N ×M × P memory accesses.
Since the matrix is stored in row-major order, the spatial
locality is very poor. To get a non-zero hit ratio, we need
either an expensive M -way fully associative cache, or a
more efficient M -set direct-mapped cache exploiting the
swapped address bit mapping (Fig. 2b).
With an M -set direct-mapped cache, the standard address
bit mapping (Fig. 10a) results in subsequent accesses
to the same set with new tags leading to continuous
cache line overwriting and misses. Our custom address
bit mapping (Fig. 10b) enables instead subsequent reads
to access distinct sets with the same tag and yields a high
hit ratio.

• C is accessed sequentially, once. A single-line n-word
cache provides n−1 hits every n accesses, making write
burst inference easier.

The StdMatMult algorithm requires the B cache to have M
lines. While this is feasible with relatively small matrices, it
cannot scale up with matrix sizes.

To make the cache configuration independent of M , and
ensure scalability, we also implemented a blocked matrix
multiplication (BlkMatMult) algorithm (Algorithm 3). It is a
commonly used efficient implementation of MatMult, which

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

PT0

PT1

PT2

PT3

IT0 IT1

(a) Horizontal unrolling.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

PT0

PT1

PT2

PT3

IT0 IT1 IT2

(b) Tiled unrolling.

FIGURE 11: MatMult: content of L1 caches of A during the
first iterations, where A ∈ R4×8 is associated with a four-
port single-line cache with eight words. PTn identifies the n-
th port. The green boxes represent elements that read during
execution, red boxes are elements loaded in cache but never
accessed. The numbers inside the boxes are the addresses
of the elements of the A matrix. ITi highlight the elements
accessed in parallel at the i-th iteration.

accesses all matrices by blocks, instead of columns, to im-
prove the spatial locality of accesses to the B matrix:
• A is accessed by sub-rows, within a block. Each sub-row,

of BLK elements, is accessed BLK times. Therefore,
the A cache should fit a block row at a time.

• B is accessed by sub-columns, within blocks. Each block
is accessed N times, therefore its cache should fit one
block at a time.

• C has the same access pattern as A, but its cache requires
up to BLK ways to provide non-zero hit ratio when
the partial unrolling (discussed later) is applied to the
innermost loop.

In all implementations, the algorithm innermost loop (LOOP_K)
was pipelined with II = 1. The implementation was further
optimized through loop unrolling by a factor UF .

For StdMatMult, we considered two kinds of unrolling:
• Horizontal: unrolls the innermost loop (LOOP_K). To keep
II = 1 for LOOP_K, each iteration of the unrolled loop is
assigned to one of the UF A and B cache ports.
Figure 11a highlights a fundamental limitation of this un-
rolling approach when combined with multi-port caches.
The data is replicated in each cache, but only one every
UF elements is actually used, thus leading to significant
resource and performance waste.

• Tiled: divides the LOOP_I iteration count by UF and
adds a fully unrolled inner loop [25]. All iterations of
that new loop use the same element of B and a different
one of A. Therefore, the B cache is single-port, while
the A cache has UF ports. With this approach, each
A port contains different data (Fig. 11b). The hit ratio
is preserved as the unrolling factor scales up and no
resources are wasted. All the elements loaded into the
cache are actually used, allowing the algorithm to run at
full speed for as many iterations as the words per cache
line, significantly improving the performance with the
same resource usage as Horizontal.

In BlkMatMult we exploited the Tiled unrolling only, for

similar reasons to Tiled StdMatMult. To maximize the perfor-
mance, we doubled UF until we used all the resources of our
(small) FPGA.

All the MatMult tests use the same matrix sizes, N = P =
1024, M = 128, and data type of 32-bit integers.

Table 1 shows the cache configurations tested with StdMat-
Mult, while Table 2 summarizes the BlkMatMult ones. We
tested block sizes of 16, 32, and 64.

As a reference, we implemented the Baseline test case. The
unrolling, applied to the Baseline test case, would be detri-
mental, since the II of LOOP_K would dramatically increase
due to structural dependencies on the AXI interface (which
exposes one port only), resulting in performance degradation.
Therefore, our cache enabled us to conveniently unroll the
algorithm loop, without any change to the algorithm itself.

The Manual test case optimizes the design according to
the LCS pattern. All the off-chip memory accesses use the
maximum AXI interface bitwidth of the board (128 bits, or
four 32-bit elements per transaction). The B load task reads
the B matrix once, four columns at a time. The A load task
reads the A matrix multiple times, in bursts. The compute task
computes 16 multiply-acccumulate operations per CC. The
store task stores four elements of C at a time.

Figure 12 compares the dataflow architecture generated
with our caches with the LCS one. The similarity between
the two architectures is very strong: the only major difference
is the absence of the request FIFO from the compute to the
load tasks, in case of the LCS architecture. This is because
the input data address computation must be factored out of
the compute task and moved into the load and store tasks to
implement the LCS paradigm. This refactoring is the major
design cost that our cache alleviates.

For the RTLcache, due to the limited configuration options
of the Xilinx System Cache (it provides only two or four ways,
and it does not support our custom address bit mapping), the
best performing configuration in that case is the BlkMatMult
algorithm, with block size equal to four.

TABLE 1: StdMatMult: tested cache configurations.

L2 L2 L1 L1Implementation Array Words sets ways sets ways

A M/2 2 1 0 0

32 M 1 0 0
B

64 M 1 0 0

32 1 1 0 0

Single-level
(L2)

C
64 1 1 0 0

A M/2 1 1 2 1

32 1 1 M/UF 1
B

64 1 1 M/UF 1

32 1 1 0 0

Horizontal
(L1)

C
64 1 1 0 0

A M/2 1 1 2 1

32 1 1 M 1
B

64 1 1 M 1

32 1 UF 0 0

Tiled
(L1tld)

C
64 1 UF 0 0

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

compute

A
cache

B
cache

C
cache

rq

rs rq

rs

rq

kernel

AXI AXI

AXI

(a) Our cache.

compute

A
load

B
load

C
store

kernel

AXI AXI

AXI

(b) LCS.

FIGURE 12: MatMult: tested dataflow architectures.

0 10 20 30 40 50 60
Area cost

0

10

20

30

40

50

60

Pe
rf

or
m

an
ce

ga
in

1
1

2
42

4

2

1

2

4

8
16

1

2

4

8

16

1

2

Baseline
L2:32
L2:64
L2blk:16
L2blk:32
L1:32
L1:64
L1tld:32
L1tld:64
L1blk:16
L1blk:32
L1blk:64

FIGURE 13: MatMult: performance gain (tex relative to Base-
line) with respect to area cost (average of LUTs, FFs, BRAMs,
and DSPs usage relative to Baseline). StdMatMult Single-
level is labelled L2:WORDS, Horizontal is L1:WORDS, and
Tiled is L1tld:WORDS (WORDS are the number of words per
line of B and C caches). BlkMatMult Single-level is labelled
L2blk:BLK, and Multi-level is L1blk:BLK (BLK are the block
sizes). The numbers over the markers are the unrolling factors.

The cache configurations selected for the test cases
reach high hit ratios, above 96% for StdMatMult and
99% for BlkMatMult. Figure 13 shows the perfor-
mance gain, i.e., tex,Baseline/tex, with respect to the
area cost, i.e., (LUT/LUTBaseline + FF/FFBaseline +

TABLE 2: BlkMatMult: tested cache configurations.

L2 L2 L1 L1Implementation Array Words sets ways sets ways

A BLK 1 1 0 0
B BLK 1 BLK 0 0

Single-level
(L2blk)

C BLK 1 BLK 0 0

A BLK 1 1 1 1
B BLK 1 1 1 BLK

Multi-level
(L1blk)

C BLK 1 BLK 0 0

BRAM/BRAMBaseline + DSP/DSPBaseline)/4, of the test
cases embedding our caches. Most of the points are in the
“green” area, where tex speedup is larger than the resource
overhead.

Figure 14 shows the detailed data for some significant test
cases, including (a) the reference test cases, i.e., Baseline and
Manual, (b) the least resource-demanding cache configuration
with the StdMatMult algorithm, i.e., L2:32, (c) the most
convenient cache configuration in terms of performance gain
and area cost ratio, i.e., L1blk:32 (8 ports), and (d) the fastest
cache configuration, i.e., L1blk:32 (16 ports). Compared with
the test cases with caches, the Manual design provides better
overall quality of results. However, the aim of our work is not
to achieve better PPA than manual optimizations, but rather to
get significantly better quality of results (with respect to the
Baseline), while greatly reducing the design effort.

Note that increasing the number of ports of the caches,
and hence their resources, uniformly increases performance.
Figure 15 shows the results of using regression to predict
the resource usage to achieve a given execution time with
our cache. According to this model, to achieve performance
on par with the Manual reference design, our caches would
require 4 times the available BRAMs, while the other kinds
of resources would be sufficient.

1) Matrix Multiplication RTLcache test case
The Xilinx System Cache supports only two or four ways.
Therefore, the theoretically most performant setup is with
BlkMatMult with block size four (which is still too small to
provide large performance gains). The caches associated with
A and C should be single-line, while the cache associated with
B should provide four ways, each of four words. However,
the Xilinx System Cache minimum size is 32 kB, with at
least two ways and 64B per line, therefore the caches of
the RTLcache test case are dramatically oversized. On the
contrary, the test case with our cache (L2blk:4), thanks to its
fine-grained configurability, was set up to allocate only the
resources that are actually needed. Figure 16 summarizes the
results of these tests. For reference, besides the usual Baseline
(Std) test case, that implements an unoptimized version of
StdMatMult algorithm, we also included the Baseline (Blk)
test case, which implements the unoptimized BlkMatMult
algorithm with block size four. We included it to quantify the
impact of the Xilinx System Cache on the very same kernel,
directly connected to the AXI interface.

Both the Baseline (Blk) and the RTLcache designs are
significantly slower than the Baseline (Std). For the Baseline
(Blk), this is because the BlkMatMult is not meant for running
without a cache. For the RTLcache, this is because the RTL
cache module is inserted a posteriori (after HLS), thus the
kernel is synthesized assuming that all the memory references
access the off-chip memory. Therefore, it is scheduled to
wait for the expected latency of the AXI master controller
that is used to access DRAM, which has a minimum latency,
hardcoded into the HLS scheduler, of at least 7CCs. Thus
for cache hits it waits for much longer than needed, while for

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

tex

E

LUT

FF

BRAM

DSP

0.2

0.4

0.6

0.8

L1blk:32 L1blk:32Baseline Manual L2:32 (8 ports) (16 ports)

tex (s) 31.98 0.13 3.72 0.64 0.52
P (W) 4.35 4.83 4.56 4.67 4.68
E (J) 139.3 0.62 16.96 2.99 2.41

LUT 3104 21259 30534 42954 58515
FF 4292 56905 50866 66810 81863

BRAM 1.5 8 22.5 52 211.5
DSP 3 48 3 24 48

Perf. gain 1.0 246.0 8.6 50.0 62.7
Area cost 1.0 10.4 9.4 18.0 48.7

FIGURE 14: MatMult: PPA of some significant test cases. tex and E are relative to the Baseline. The resource usages are relative
to the total resources provided by the target FPGA.

0 1 2 3 4
Execution time (s)

0

100

200

300

400

R
es

ou
rc

e
us

ag
e

(%
)

LUTs
FFs
BRAMs
DSPs

FIGURE 15: BlkMatMult: regression estimating the resource
usage with respect to the execution time of the test cases with
our caches. The dashed vertical line highlights the execution
time of the Manual test case. The dots are the real data, the
lines are the regression predictions.

tex

E

LUT

FF

BRAM

DSP

0.2

0.4

0.6

0.8

1.0

Baseline (Blk)
Baseline (Std)
RTLcache
L2blk:4

FIGURE 16: MatMult: PPA of some test cases related to the
RTLcache case. tex and E are relative to the Baseline (Blk).

misses it waits for shorter than needed (the cache introduces
an additional latency when missing), and then it stalls until the
memory request is fulfilled. On the other hand, our dataflow
protocol hides from the computation process schedule the fact
that it is accessing DRAM, thus allowing it to achieve the best
throughput in case of cache hits.

The result is that the RTL cache is not only unable to
provide any advantage, but it also slightly worsens the per-
formance and the energy consumption. Moreover, it also
introduces a large area overhead, due to the oversized caches.

The L2blk:4 test case is significantly faster than the Baseline
(Blk), proving the effectiveness of our HLS cache implemen-
tation with respect to the System Cache. However, it is not
much faster than the Baseline (Std), since the small block size
limits the performance advantage.

2) Matrix Multiplication timing analysis
To evaluate the impact of our cache on the critical path, we
measured the maximum clock frequency of some test cases.
Table 3 reports the results of the experiments. The Baseline
design is very simple: it consists of a loop that computes
a multiply-acccumulate operation per iteration using a DSP
(which is one of the fastest resources on the FPGA). There-
fore, it is able to achieve the maximum clock frequency of
330MHz. With the StdMatMult, all the instantiated caches
are direct-mapped (including the B one, thanks to our custom

TABLE 3: MatMult: maximum achievable clock frequency
of some test cases. The relative maximum clock frequency is
normalized over the maximum clock frequency of the AXI
adapter (330MHz).

Test case Maximum clock
frequency (MHz)

Relative maximum
clock frequency (%)

Baseline 330 100
Manual 330 100
L2:32 330 100
L1:32 330 100

L2blk:32 260 79
L1blk:32 (1 p) 250 76
L1blk:32 (16 p) 150 45

14 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

1 3 5 7 9 11 13 15 17 19
Distance (CC)

0

2

4

6

8

10

E
xe

cu
tio

n
tim

e
(s

)

L2:32
L2:64

L2blk:16
L2blk:32

(a) Single-level MatMult.

1 3 5 7 9 11 13 15 17 19
Distance (CC)

0

2

4

6

8

10

E
xe

cu
tio

n
tim

e
(s

)

L1:32 (1 p)
L1:64 (1 p)
L1:64 (2 p)
L1blk:16 (1 p)
L1blk:16 (2 p)
L1blk:32 (2 p)

(b) Multi-level MatMult.

FIGURE 17: MatMult: execution time with respect to L2
cache request-response distance.

address bit mapping). The resulting design can still run at
330MHz, even in the Multi-level configuration. The BlkMat-
Mult test cases require 32-way fully-associative caches. The
high number of ways makes these caches inherently more
complex than the direct-mapped ones, therefore they introduce
a critical path which limits the maximum clock frequency.
The Single-level configuration can run at a clock frequency
up to 260MHz. For the Multi-level configurations, the single-
port test case can reach a clock frequency of 250MHz. The
extreme case with 16 ports can only reach a maximum clock
frequency of 150MHz. This is not only due to the more
complex cache architecture, but also because of the algorithm
unrolling, and the high resource utilization.

3) Matrix Multiplication request-response distance

To check the efficiency of the approximations for the default
L2 cache request-response distance of RO cache configura-
tions, we characterized the tex with respect to the distance in
some test cases. For the Single-level configurations, Fig. 17a
shows that in all test cases a distance of 1CC results in a very
high tex since it prevents exploiting the cache pipelining, as
discussed in Section III-A1. The tex significantly decreases
with the distance up to 5CCs to 7CCs. For higher distances,
the tex of the StdMatMult test cases is approximately constant,
while the one for BlkMatMult increases again. These results
suggest that our choice of a default distance of 7CCs is
effective.

For the Multi-level configurations, Fig. 17b shows that
the tex of StdMatMult is roughly constant with the distance,
apart from the distance of 1CC which is slightly slower. The
BlkMatMult tex is instead directly proportional (by a small
factor) to the distance. Any distance value between 1 3CCs
should be a balanced choice. Our default value of 3CCs is
therefore well suited.

C. 2D CONVOLUTION

Algorithm 4 implements the 2D Convolution (Conv2D). Each
matrix is characterized by a specific memory access pattern.

Algorithm 4 2D convolution
Require: A ∈ RN×M , ker ∈ RP×Q

Ensure: B ∈ RN×M : B = A ∗ ker
procedure CONV(ker , A,B)

for (i← 0; i < N ; i← i + 1) do
for (j ← 0; j < M ; j ← j + 1) do

tmp← 0
LOOP_M: for (m← 0;m < P ;m← m + 1) do

LOOP_N: for (n← 0;n < Q;n← n + 1) do
ii← i + m−Q/2
jj ← j + n− P/2
if (ii ≥ 0 & ii < N & jj ≥ 0 & jj < M) then

tmp← tmp + A[ii][jj] · ker [m][n]
end if

end for
end for
B[i][j]← tmp

end for
end for

end procedure

• A is accessed according to a window pattern with size
P ×Q and stride one.
A cache associated with A requires P ways to achieve a
high hit ratio, since all the lines belonging to a window
can be stored in the cache, effectively implementing a
line buffer without source code changes.
Cache lines sizes of n×Q enable prefetching n windows.
To keep in cache windows which are not aligned to the
cache line size, the cache should have two sets.

• ker is accessed N ×M times, by rows. Since its size
is typically small, its cache can be configured to fit the
whole ker in the L1 cache.

• B is sequentially accessed once per element. B has a low
impact on performance, since it is accessed only once
every P ×Q accesses to A and ker . A single-line cache
helps HLS to efficiently infer bursts.

All test cases use the same 8-bit integer data type and matrix
sizes: N = 1080, M = 1920, P = Q = 15. In all imple-
mentations, the innermost loop (LOOP_N) was pipelined with
II = 1CC.

In the tests including our cache, each matrix was associated
with a cache configured according to the previous consider-
ations. Table 4 summarizes the tested cache configurations,
where n is 1, 2, 4, 8, and 16. Since our cache only supports
power-of-2 words, ways, and sets, all the parameters were
rounded to the next power of 2.

With the multi-level test cases, we further improved the
performance exploiting the multi-port feature to enable partial

TABLE 4: Conv2D: tested cache configurations.

L2 L2 L1 L1Implementation Array Words sets ways sets ways

A n ·Q 2 P 0 0

ker Q 1 1 P 1
Single-level

(L2)
B 32 1 1 0 0

A n ·Q 1 1 2 P

ker Q 1 1 P 1Multi-level
(L1)

B 32 1 1 0 0

VOLUME 4, 2016 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

0 10 20 30 40
Area cost

0

10

20

30

40

Pe
rf

or
m

an
ce

ga
in

1

3
5
8

15

1

3

5

8

15

1

3

5

8

15

1

3

5

8

1

3

5

8

Baseline
L2:16
L2:32
L2:64
L2:128
L2:256

L1:16
L1:32
L1:64
L1:128
L1:256

FIGURE 18: Conv2D: performance gain with respect to area
cost. Single-level Cache is labelled as L2:WORDS, and Multi-
level as L1:WORDS. The WORDS suffix stands for the number
of words per line of the A cache.

loop unrolling while keeping the II of LOOP_K at one (by
setting the number of ports of A and ker as the unrolling
factor). We unrolled LOOP_M, instead of the innermost LOOP_N,
for reasons similar to those explained in Section VI-B, and
shown in Fig. 11. We tested unrolling factors of 3, 5, 8, and
15 (complete unroll).

The Manual reference design was implemented by Xilinx
Inc. [26], according to the LCS pattern. It is not possible to
implement a meaningful RTLcache test case, since the Xilinx
System Cache can only provide up to 4 ways, but the A cache
requires at least 15 ways to achieve a sufficiently high hit ratio.

All tested cache configurations had hit ratios higher than
99%. Figure 18 shows the trade-offs between performance
and area, in different test cases. Figure 19 shows the details of
some relevant test cases, including (a) the reference designs,
i.e., Baseline and Manual, (b) the least resource-demanding
cache configuration, i.e., L2:16, (c) a cache configuration
balanced between performance and resources, i.e., L1:64 (5
ports), and (d) the fastest cache configuration, i.e., L1:64, (15
ports).

Our caches introduce multiple trade-offs in the PPA space,
which perform better than the Baseline case, in exchange for
higher resource usage. The Manual design is significantly
faster than all the tested cache configurations, since it is able
to process a whole window per CC (255 multiply-acccumulate
operations per CC), while our cache configurations process at
most one window column per CC (15 multiply-acccumulate
operations). Figure 20 again shows the results of using regres-
sion to predict the resource usage to achieve a given execution
time with our cache. According to the regression prediction,
to achieve performance on par with the Manual reference
design, our caches would require roughly 50% more LUTs
than those available on the target FPGA, while the other kinds

of resources should suffice.
Note that the objective of our cache is not to compete with

manually optimized designs, but rather to introduce new trade-
offs between PPA and design effort. Our caches provided
suboptimal results in terms of PPA, but required very low
design effort, while being much more efficient than the designs
automatically generated by the HLS tool, both in terms of
execution time, reduced by up to 46 times, and in terms of
energy consumption, reduced by up to 44 times, at the cost of
an area overhead up to 12 times.

1) 2D Convolution timing analysis
Table 5 reports the maximum clock frequency achieved by
some test cases. Similarly to the MatMult case, the Baseline
design is very simple: it consists of a loop that computes a
multiply-acccumulate operation per iteration using a DSP.
Therefore, it can run at the higher-bound clock frequency of
330MHz. Even the single-port test cases (L2:16 and L1:16 (1
p)), despite being characterized by a large amount of cache
ways (16), do not introduce any critical path limiting the
frequency below the 100%. Only with the multi-port test
case (L1:64 (15 p)), which also involves an application loop
unrolling by a factor of 15, we face a frequency degradation
of 39%.

D. BITONIC SORTING
Bitonic sorting (BitSort) is a sorting algorithm, whose imple-
mentation is shown in Algorithm 5. From the memory access
point of view, at each inner loop (LOOP_I) iteration: (1) a[pos]
is read, (2) a[pos + step] is read, (3) a[pos] is written, and
(4) a[pos + step] is written. Therefore, the cache associated
with the a array should be set-associative with at least two
sets, so that the interleaved accesses to pos and pos + step do
not overwrite the related cache lines.

In the designs under test, the inner loop was pipelined,
but due to the data dependencies on the a array the pipeline
performance is limited. The pipeline of the Baseline test
case (accessing a directly from DRAM) requires a very high
II = 142CCs because it must guarantee the dependency
on the slow AXI interface. Our cache allows shortening the
dependency distance and building a more performant pipeline,
with an II = 6CCs. All the tests use the same data type (32-
bit integers) and sizes (N = 220). Table 6 shows the tested
cache configurations.

We were unable to implement a Manual design for an
optimized reference, since the irregular access pattern, makes

TABLE 5: Conv2D: maximum achievable clock frequency of
some test cases.

Test case Maximum clock
frequency (MHz)

Relative maximum
clock frequency (%)

Baseline 330 100
Manual 330 100
L2:16 330 100

L1:16 (1 p) 330 100
L1:64 (15 p) 200 61

16 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

tex

E

LUT

FF

BRAM

DSP

0.2

0.4

0.6

0.8

L1:64 L1:64Baseline Manual L2:16 (5 ports) (15 ports)

tex (s) 32.69 0.03 8.69 1.60 0.71
P (W) 4.59 4.54 4.55 4.64 4.82
E (J) 150.0 0.1 39.5 7.4 3.4

LUT 3766 6082 21602 30880 59828
FF 4962 12670 30068 46458 79717

BRAM 3 13 8 8 8
DSP 1 225 1 5 15

Perf. gain 1.0 1089.7 3.8 20.4 46.0
Area cost 1.0 65.9 3.9 6.3 12.4

FIGURE 19: Conv2D: PPA of some significant test cases.

0 2 4 6 8
Execution time (s)

0

50

100

150

R
es

ou
rc

e
us

ag
e

(%
)

LUTs
FFs
BRAMs
DSPs

FIGURE 20: Conv2D: regression of resource usage with
respect to the execution time of the test cases with our caches.

Algorithm 5 Bitonic sorting
Require: a ∈ RN : N = 2n

Ensure: a[i] ≤ a[j], ∀i ≥ j
procedure SORT(a)

for (b← 1; b < n; b← b + 1) do
for (s← b− 1; s ≥ 0; s← s− 1) do

LOOP_I: for (i← 0; i < N/2; i← i + 1) do
dir ← (i/2b−1)&1
dir ← dir ∧ 1
step ← 2s

pos ← 2i− (i&(s− 1))
a0 ← a[pos]
a1 ← a[pos + step]
if (a0 > a1 6= dir) then

tmp← a0

a0 ← a1

a1 ← tmp
end if
a[pos]← a0

a[pos + step]← a1

end for
end for

end for
end procedure

the on-chip data buffering challenging, especially considering
that the array is accessed both in read and in write mode,
introducing data dependencies. We believe that caching is the
most convenient solution for optimizing this algorithm.

The RTLcache test case inserts the Xilinx System cache
between the HLS kernel and the AXI interface. We set the
total cache size to 32 kB (the minimum possible), with 2 ways,

0 2 4 6 8 10 12 14
Area cost

0

2

4

6

8

10

12

14

Pe
rf

or
m

an
ce

ga
in

Baseline
L2:16
L2:32
L2:64
L1:16
L1:32
L1:64

FIGURE 21: BitSort: performance gain with respect to area
cost. Single-level Cache is labelled as L2:WORDS, and Multi-
level as L1:WORDS. The WORDS suffix stands for the number
of words per line of the a cache.

64 words per line, and, by consequence, 128 sets.
The selected cache configurations achieve high L2 hit ratios,

above 96%. The L1 hit ratios are instead very low, from 8%
to 24%, since our L1 caches use the write-through consistency
policy.

Figure 21 plots the performance gain with respect to the
area overhead of each test case with our cache. All the test
cases provide significantly more performance gains than area

TABLE 6: BitSort: tested cache configurations.

L2 L2 L1 L1Implementation Words sets ways sets ways

16 1 2 0 0
32 1 2 0 0

Single-level
(L2)

64 1 2 0 0

16 1 2 1 1
32 1 2 1 1

Multi-level
(L1)

64 1 2 1 1

VOLUME 4, 2016 17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

tex

E

LUT

FF

BRAM

DSP

0.2

0.4

0.6

0.8
Baseline RTLcache L2:16 L2:32 L1:64

tex (s) 156.6 156.9 18.6 13.8 11.5
P (W) 4.52 4.54 4.39 4.45 4.64
E (J) 707.8 712.3 81.7 61.5 53.3

LUT 2896 4077 11089 19667 38206
FF 3270 4270 13454 22751 51758

BRAM 1 12 4 4 4
DSP 0 0 0 0 0

Perf. gain 1.0 1.0 8.4 11.3 13.6
Area cost 1.0 3.7 3.0 4.4 8.3

FIGURE 22: BitSort: PPA of some significant test cases.

cost. The L1 caches introduce a very limited performance
advantage, because of their low hit ratio.

Figure 22 reports the full information on (a) the reference
designs (Baseline and RTLcache), (b) the least resource-de-
manding cache configuration, i.e., L2:16, (c) the best cache
configuration in terms of performance gain and area cost ratio,
i.e., L2:32, and (d) the fastest cache configuration, i.e., L1:64.

The RTLcache is worse than the Baseline in all dimensions
in the PPA space. This is because the cache module is inserted
after HLS, therefore HLS optimizes the circuit as if all mem-
ory accesses were off-chip. In particular, the loop pipeline is
still characterized by a very high II. This is another example
showing that it is counterproductive to insert an RTL cache
module a posteriori, after HLS. It is only introducing overhead,
not only in terms of area, but also in terms of tex and power.

On the other hand, our cache improves the performance and
the energy consumption by one order of magnitude compared
to the Baseline. The RTLcache, despite having 128 sets instead
of 1, consumes significantly less LUTs and FFs than our
cache. It could be useful to combine the advantages of the
source-level implementation with the resource efficiency of
the RTL description to achieve the best performance at the
lowest area cost. This could be achieved by exploiting the Vitis
HLS capabilities to embed RTL code within HLS source code.

1) Bitonic Sorting request-response distance

To evaluate the performance of the default L2 request-response
distance for RW cache configurations (2CCs), we character-
ized the tex with respect to distance in a couple of test cases.
As Fig. 23 shows, we chose the optimal value that balances the
L2 cache pipeline exploitation (higher distance values better
exploit it) and the algorithm loop II (the distance corresponds
to the RAW dependency distance, and, by consequence, to the
II). The data points of the multi-level configuration approxi-
mately overlap the single-level ones, because the L1 hit ratio is
low. In a test case with high L1 hit ratio, the optimal distance
value would probably be in 1CC, since it would not need to
exploit the L2 cache, and it could minimize the loop II.

0 2 4 6 8 10 12 14 16
Distance (CC)

0

5

10

15

20

25

30

E
xe

cu
tio

n
tim

e
(s

)

L2:32
L1:32

FIGURE 23: BitSort: execution time with respect to L2 cache
request-response distance.

2) Bitonic Sorting timing analysis
The maximum achieved clock frequencies for some test cases
are shown in Table 7. Unlike the previous experiments, we
encounter a slight maximum frequency degradation even with
single-port cache configurations. This is due to the additional
logic required for supporting both read and write operation
within a single cache, differently from the read-only and write-
only caches of MatMult and Conv2D.

VII. CONCLUSION
The experimental results, summarized in Fig. 24 show that our
approach of semi-automatically generating an LCS-like archi-

TABLE 7: BitSort: maximum achievable clock frequency of
some test cases. The relative maximum clock frequency is
normalized over the maximum clock frequency of the AXI
adapter.

Test case Maximum clock
frequency (MHz)

Relative maximum
clock frequency (%)

Baseline 330 100
L2:16 330 100
L1:32 300 91
L1:64 230 70

18 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

MatMult Conv2D BitSort

100

101

102

103
Sp

ee
du

p

1 1 1

0.3

1

63 46

14

246

1089 Baseline
RTLcache
Our cache
Manual

FIGURE 24: Speedup of the tested benchmarks.

tecture through dataflow caches is an effective solution for
significantly improving performance and energy consumption,
without requiring high design effort. Designers simply need to
perform a design space exploration of the cache configurations
instead of extensively changing the algorithm for buffering
data on-chip. Additionally, for algorithms with irregular or
data-dependent memory access patterns, caching would be
the only way to actually improve memory access performance.

To achieve performance comparable with the manually
optimized designs of MatMult and Conv2D, our cache would
require more resources than the ones provided by the small
FPGA used in the tests. For BitSort, caching was the only fea-
sible performance optimization we found, due to the irregular,
but with good data locality, memory access pattern. Adding an
RTL cache module post-HLS fails to provide any advantage,
since the HLS-generated circuit is optimized for high-latency
memory accesses, and cannot achieve any acceleration from
an external cache.

It is worth noting that we collected the results from an
embedded device, which provides a DDR4 memory. Modern
datacenter-level devices are equipped with HBMs. HBMs,
compared with DDR4 memories, are characterized by the
availability of many more ports, thus dramatically increasing
bandwidth, while paying a price in terms of access latency
(roughly 2 times larger, as benchmarked by Wang et al. [4]).
Thanks to these characteristics, a cache potentially provides
even greater advantages than experienced with our setup, since
caches are precisely designed for mitigating the performance
penalties of high-latency memories. Moreover, irregular mem-
ory access patterns require word-sized accesses, since the HLS
tool is unable to optimize the accesses through bursting and
interface widening, underutilizing the HBM ports bitwidth.
On the other hand, caches always access the DRAM in lines,
thus enabling the interface optimizations, resulting in better
exploitation of the large interface bitwidth of HBM. We
leave the evaluation of our caches on HBM-equipped HW, to
quantitatively support these considerations, as future work.

We plan to automate the design space exploration for
optimal cache parameter selection, by extending one of the
state-of-the-art cache parameter optimization methods [22] to
support the configuration space of our cache architecture for

some additional dimensions with respect to standard caches,
such as the request-response distance, the number of ports,
and the address bit mapping.

To further improve performance, we are considering to
implement a prefetching mechanism to anticipate the memory
requests by loading data in advance, before they are needed
by the computation, thus fully emulating the LCS pattern.

References
[1] S. Borkar and A. A. Chien, “The future of micropro-

cessors,” Commun. ACM, vol. 54, no. 5, pp. 67–77,
May 2011, ISSN: 0001-0782. DOI: 10.1145/1941487.
1941507. [Online]. Available: https://doi.org/10.1145/
1941487.1941507.

[2] N. S. Kim, D. Chen, J. Xiong, and W.-m. W. Hwu,
“Heterogeneous computing meets near-memory accel-
eration and high-level synthesis in the post-moore era,”
IEEE Micro, vol. 37, no. 4, pp. 10–18, 2017. DOI: 10.
1109/MM.2017.3211105.

[3] J. S. Vetter, E. P. DeBenedictis, and T. M. Conte, “Archi-
tectures for the post-moore era,” IEEE Micro, vol. 37,
no. 4, pp. 6–8, 2017. DOI: 10.1109/MM.2017.3211127.

[4] Z. Wang, H. Huang, J. Zhang, and G. Alonso, “Shuhai:
Benchmarking high bandwidth memory on fpgas,”
in 2020 IEEE 28th Annual International Sympo-
sium on Field-Programmable Custom Computing Ma-
chines (FCCM), 2020, pp. 111–119. DOI: 10 .1109/
FCCM48280.2020.00024.

[5] Xilinx Inc., Vitis high-level synthesis user guide, Dec.
2021. [Online]. Available: https://www.xilinx.com/
support/documentation/sw_manuals/xilinx2021_2/
ug1399-vitis-hls.pdf.

[6] J. Cong, P. Zhang, and Y. Zou, “Optimizing memory
hierarchy allocation with loop transformations for high-
level synthesis,” in Proceedings of the 49th Annual
Design Automation Conference, ser. DAC ’12, San
Francisco, California: Association for Computing Ma-
chinery, 2012, pp. 1233–1238, ISBN: 9781450311991.
DOI: 10.1145/2228360.2228586. [Online]. Available:
https://doi.org/10.1145/2228360.2228586.

[7] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong,
“Polyhedral-based data reuse optimization for config-
urable computing,” in Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’13, Monterey, California, USA:
Association for Computing Machinery, 2013, pp. 29–
38, ISBN: 9781450318877. DOI: 10 .1145/2435264.
2435273. [Online]. Available: https://doi.org/10.1145/
2435264.2435273.

[8] E. Matthews, N. C. Doyle, and L. Shannon, “Design
space exploration of l1 data caches for fpga-based
multiprocessor systems,” ser. FPGA ’15, Monterey, Cal-
ifornia, USA: Association for Computing Machinery,
2015, pp. 156–159, ISBN: 9781450333153. DOI: 10.
1145/2684746.2689083. [Online]. Available: https://
doi.org/10.1145/2684746.2689083.

VOLUME 4, 2016 19

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1145/1941487.1941507
https://doi.org/10.1145/1941487.1941507
https://doi.org/10.1145/1941487.1941507
https://doi.org/10.1145/1941487.1941507
https://doi.org/10.1109/MM.2017.3211105
https://doi.org/10.1109/MM.2017.3211105
https://doi.org/10.1109/MM.2017.3211127
https://doi.org/10.1109/FCCM48280.2020.00024
https://doi.org/10.1109/FCCM48280.2020.00024
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_2/ug1399-vitis-hls.pdf
https://doi.org/10.1145/2228360.2228586
https://doi.org/10.1145/2228360.2228586
https://doi.org/10.1145/2435264.2435273
https://doi.org/10.1145/2435264.2435273
https://doi.org/10.1145/2435264.2435273
https://doi.org/10.1145/2435264.2435273
https://doi.org/10.1145/2684746.2689083
https://doi.org/10.1145/2684746.2689083
https://doi.org/10.1145/2684746.2689083
https://doi.org/10.1145/2684746.2689083

[9] J. Choi, K. Nam, A. Canis, et al., “Impact of cache
architecture and interface on performance and area of
fpga-based processor/parallel-accelerator systems,” in
2012 IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines, 2012,
pp. 17–24. DOI: 10.1109/FCCM.2012.13.

[10] G. Jo, H. Kim, J. Lee, and J. Lee, “Soff: An opencl
high-level synthesis framework for fpgas,” in 2020
ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), 2020, pp. 295–308. DOI:
10.1109/ISCA45697.2020.00034.

[11] M. Adler, K. E. Fleming, A. Parashar, M. Pellauer, and
J. Emer, “Leap scratchpads: Automatic memory and
cache management for reconfigurable logic,” in Pro-
ceedings of the 19th ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays, ser. FPGA
’11, Monterey, CA, USA: Association for Computing
Machinery, 2011, pp. 25–28, ISBN: 9781450305549.
DOI: 10.1145/1950413.1950421.

[12] F. Winterstein, K. Fleming, H.-J. Yang, J. Wicker-
son, and G. Constantinides, “Custom-sized caches in
application-specific memory hierarchies,” in 2015 In-
ternational Conference on Field Programmable Tech-
nology (FPT), 2015, pp. 144–151. DOI: 10.1109/FPT.
2015.7393141.

[13] Xilinx Inc., System cache logicore ip product guide
(pg118)), Nov. 2021. [Online]. Available: https://docs.
xilinx.com/r/en-US/pg118-system-cache.

[14] Intel®, Intel® high level synthesis compiler pro edi-
tion reference manual, Dec. 2021. [Online]. Available:
https: / /www.intel .com/content /www/us/en/docs/
programmable/683349/21-4/pro-edition- reference-
manual.html.

[15] L. Ma, L. Lavagno, M. Lazarescu, and A. Arif, “Ac-
celeration by inline cache for memory-intensive algo-
rithms on fpga via high-level synthesis,” IEEE Access,
vol. PP, pp. 1–1, Sep. 2017. DOI: 10.1109/ACCESS.
2017.2750923.

[16] J. de Fine Licht and T. Hoefler, Hlslib: Software engi-
neering for hardware design, 2019. arXiv: 1910.04436
[cs.AR].

[17] Y. Chi, L. Guo, J. Lau, et al., “Extending high-
level synthesis for task-parallel programs,” in 2021
IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM),
2021, pp. 204–213. DOI: 10.1109/FCCM51124.2021.
00032.

[18] Xilinx Inc., Vivado design suite user guide, Oct. 2021.
[Online]. Available: https://www.xilinx.com/content/
dam / xilinx / support / documentation / sw _ manuals /
xilinx2021_2/ug973- vivado- release- notes- install -
license.pdf.

[19] Avnet Inc., Ultra96 hardware user’s guide, Mar. 2018.
[Online]. Available: https://www.avnet.com/opasdata/
d120001 / medias / docus / 187 / Ultra96 - HW- User -
Guide-rev-1-0-V0_9_preliminary.pdf.

[20] Xilinx Inc., Pynq: Python productivity for xilinx plat-
forms, 2021. [Online]. Available: https : / / pynq .
readthedocs.io/en/v2.7.0/.

[21] J. Marjanovic. “Exploring the ps-pl axi interfaces on
zynq ultrascale+ mpsoc.” (Dec. 2021), [Online]. Avail-
able: https://j-marjanovic.io/exploring-the-ps-pl-axi-
interfaces-on-zynq-ultrascale-mpsoc.html (visited on
04/06/2022).

[22] B. R. Upadhyay and T. S. B. Sudarshan, “Design space
exploration of cache memory — a survey,” in 2016 In-
ternational Conference on Electrical, Electronics, and
Optimization Techniques (ICEEOT), 2016, pp. 2294–
2297. DOI: 10.1109/ICEEOT.2016.7755102.

[23] Intel®, Avalon® memory-mapped host interfaces and
load-store units, Dec. 2021. [Online]. Available: https:
/ / www . intel . com / content / www / us / en / docs /
programmable/683349/22-2/memory-mapped-host-
interfaces-and-load.html.

[24] ——, Arria® 10 emif latency. [Online]. Available:
https: / /www.intel .com/content /www/us/en/docs/
programmable /683841 /17 - 0 / emif - latency - 07619 .
html.

[25] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler,
“Transformations of high-level synthesis codes for high-
performance computing,” IEEE Transactions on Paral-
lel and Distributed Systems, vol. 32, no. 5, pp. 1014–
1029, 2021. DOI: 10.1109/TPDS.2020.3039409.

[26] Xilinx Inc. “Design and analysis of hardware kernel
module for 2-d video convolution filter.” (Nov. 2021),
[Online]. Available: https : / / xilinx . github. io / Vitis -
Tutorials / 2021 - 1 / build / html / docs / Hardware _
Acceleration / Design _ Tutorials / 01 - convolution -
tutorial/lab2_conv_filter_kernel_design.html (visited
on 07/19/2022).

GIOVANNI BRIGNONE (S’22) received the M.S.
degree in Computer Engineering from the Politec-
nico di Torino (Italy) in 2021, where he is currently
pursuing the Ph.D. degree with the Department
of Electronics and Telecommunications under the
supervision of Prof. L. Lavagno. His research inter-
ests focus on high-level synthesis, digital hardware
design, and HW/SW co-design.

20 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1109/FCCM.2012.13
https://doi.org/10.1109/ISCA45697.2020.00034
https://doi.org/10.1145/1950413.1950421
https://doi.org/10.1109/FPT.2015.7393141
https://doi.org/10.1109/FPT.2015.7393141
https://docs.xilinx.com/r/en-US/pg118-system-cache
https://docs.xilinx.com/r/en-US/pg118-system-cache
https://www.intel.com/content/www/us/en/docs/programmable/683349/21-4/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/21-4/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/21-4/pro-edition-reference-manual.html
https://doi.org/10.1109/ACCESS.2017.2750923
https://doi.org/10.1109/ACCESS.2017.2750923
https://arxiv.org/abs/1910.04436
https://arxiv.org/abs/1910.04436
https://doi.org/10.1109/FCCM51124.2021.00032
https://doi.org/10.1109/FCCM51124.2021.00032
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx2021_2/ug973-vivado-release-notes-install-license.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx2021_2/ug973-vivado-release-notes-install-license.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx2021_2/ug973-vivado-release-notes-install-license.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx2021_2/ug973-vivado-release-notes-install-license.pdf
https://www.avnet.com/opasdata/d120001/medias/docus/187/Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf
https://www.avnet.com/opasdata/d120001/medias/docus/187/Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf
https://www.avnet.com/opasdata/d120001/medias/docus/187/Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf
https://pynq.readthedocs.io/en/v2.7.0/
https://pynq.readthedocs.io/en/v2.7.0/
https://j-marjanovic.io/exploring-the-ps-pl-axi-interfaces-on-zynq-ultrascale-mpsoc.html
https://j-marjanovic.io/exploring-the-ps-pl-axi-interfaces-on-zynq-ultrascale-mpsoc.html
https://doi.org/10.1109/ICEEOT.2016.7755102
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-2/memory-mapped-host-interfaces-and-load.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-2/memory-mapped-host-interfaces-and-load.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-2/memory-mapped-host-interfaces-and-load.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-2/memory-mapped-host-interfaces-and-load.html
https://www.intel.com/content/www/us/en/docs/programmable/683841/17-0/emif-latency-07619.html
https://www.intel.com/content/www/us/en/docs/programmable/683841/17-0/emif-latency-07619.html
https://www.intel.com/content/www/us/en/docs/programmable/683841/17-0/emif-latency-07619.html
https://doi.org/10.1109/TPDS.2020.3039409
https://xilinx.github.io/Vitis-Tutorials/2021-1/build/html/docs/Hardware_Acceleration/Design_Tutorials/01-convolution-tutorial/lab2_conv_filter_kernel_design.html
https://xilinx.github.io/Vitis-Tutorials/2021-1/build/html/docs/Hardware_Acceleration/Design_Tutorials/01-convolution-tutorial/lab2_conv_filter_kernel_design.html
https://xilinx.github.io/Vitis-Tutorials/2021-1/build/html/docs/Hardware_Acceleration/Design_Tutorials/01-convolution-tutorial/lab2_conv_filter_kernel_design.html
https://xilinx.github.io/Vitis-Tutorials/2021-1/build/html/docs/Hardware_Acceleration/Design_Tutorials/01-convolution-tutorial/lab2_conv_filter_kernel_design.html

M. USMAN JAMAL (S’22) received the M.S. de-
gree from the Politecnico di Torino, Italy, in 2018,
where he is currently pursuing the Ph.D. degree
with the Department of Electronics and Telecom-
munications under the supervision of Prof. L.
Lavagno. His research interests focus on the high-
level synthesis, the low-power high-performance
computing and machine learning for electronic
design automation.

MIHAI T. LAZARESCU (M’98) received the Ph.D.
degree in Electronics and Communications from
Politecnico di Torino (Italy) in 1998, where he is
now Assistant Professor. He was Senior Engineer at
Cadence Design Systems and founded several star-
tups. He co-authored over 60 scientific publications,
4 books, and international patents. His research in-
terests include design tools for WSN/IoT platforms,
ubiquitous environmental sensing, efficient neural
networks, indoor human localization, edge and leaf

IoT data processing, high-level HW/SW co-design and synthesis.

LUCIANO LAVAGNO (SM’89) received the Ph.D.
degree in electrical engineering and computer sci-
ence from U.C. Berkeley in 1992. He was an Archi-
tect with the POLIS HW/SW co-design tool. From
2003 to 2014, he was an Architect with the Cadence
CtoSilicon high-level synthesis tool. Since 1993,
he has been a Professor with the Politecnico di
Torino, Italy. He co-authored four books and over
200 scientific papers. His research interests include
synthesis of asynchronous circuits, HW/SW co-

design, high-level synthesis, and design tools for wireless sensor networks.

VOLUME 4, 2016 21

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3219868

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	Introduction
	Previous work
	Dataflow cache
	Cyclic dataflow protocol
	Hardware functionality and performance
	Software simulation
	Protocol implementation

	Dataflow cache implementation
	Cache pipeline
	AXI interface
	Cache interface

	Multi-level cache
	Multi-port cache
	Evaluation
	Reference designs
	Ma cache reference
	Intel cache reference

	Matrix Multiplication
	Matrix Multiplication RTLcache test case
	Matrix Multiplication timing analysis
	Matrix Multiplication request-response distance

	2D Convolution
	2D Convolution timing analysis

	Bitonic Sorting
	Bitonic Sorting request-response distance
	Bitonic Sorting timing analysis

	Conclusion
	Giovanni Brignone
	M. Usman Jamal
	Mihai T. Lazarescu
	Luciano Lavagno

