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Abstract: Periodic and non-periodic components of electrophysiological signals are modelled in
terms of syncronized sequences of closed loops of firing neurons correlated according to a Markov
chain. Single closed loops of firing neurons reproduce fundamental and harmonic components,
appearing as lines in the power spectra at frequencies ranging from 0.5 Hz to 100 Hz. Further
interesting features of the brainwave signals emerge by considering multiple syncronized sequences
of closed loops. In particular, we show that fluctuations in the number of syncronized loops lead
to the onset of a broadband power spectral component. By the effects of these fluctuations and the
emergence of a broadband component, a highly distorted waveform and nonstationarity of the signal
are observed, consistent with empirical EEG and MEG signals. The amplitudes of the periodic and
aperiodic components are evaluated by using typical firing neuron pulse amplitudes and durations.

Keywords: brainwaves power spectra; Markov-chain models; stochastic point processes

1. Introduction

Periodic components of brain signals and their frequency bands (delta (1–3 Hz), theta
(4–8 Hz), alpha (9–12 Hz), beta (12–30 Hz), gamma (>30 Hz)) are central to neuroscience
basic research and clinical protocols [1–3]. Aperiodic components, initially disregarded
in comparison to periodic ones as considered to be just background noise, represent a
significant part of signals. They manifest with power spectral densities varying approx-
imately as 1/ f β and have been related to brain critical states [4,5]. Recent studies have
suggested that simultaneous changes in aperiodic and periodic brainwave components can
underpin changes in functional and behavioural features, with broadband components
modulated by task performance and correlated with neuronal spiking activity. Synchroniza-
tion between different neuronal groups may also manifest within arrhythmic brain activity
with no apparent periodicity [6–13]. To keep pace with these findings, algorithms are
being developed with the purpose of breaking complex electrophysiological signals down
and transferring scientific findings into clinical practices [14,15]. The issue of separating
periodic and aperiodic components has also become increasingly relevant to the develop-
ment of brain–machine interfaces [16]. Despite remarkable advances in the interpretation
and quantification of neurological signals, several problems still remain unsolved, mainly
related to the dynamics of brain at various scales [17].

In this work, a unified framework to quantify periodic and aperiodic power spectral
components of electro- and magneto-encephalograms is developed based on a Markov-chain
description. The power spectral density is estimated in terms of time sequences according
to a statistical approach originally pioneered in the communication and information-theory
context [18–24]. Line spectral components are generated by Markov matrices corresponding
to closed-loop sequences of firing neurons characterized by a set of heterogeneous states.
The oscillatory frequencies, observed in the EEG and MEG from 0.5 Hz to 100 Hz, can be
reproduced by closed loops involving a few hundred neurons down to a few neurons with
firing intervals of the order of a few milliseconds. The closed loop operates as an electric
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circuit where the neuron behaves as a rectifying diode, producing unidirectional currents;
the synapses act as dissipative elements and the ionic currents as current generators. The
formation of closed loops dissipates the excess energy (heat) accumulated in an active
region of the brain by the local increase in circulating blood. A realistic description of the
neurological signals requires bunches of synchronized sequences of closed loops of firing
neurons spontaneously formed in regions of high density, where neurons are connected to
thousands of other neurons nearby, that, if in a critical state, may be simultaneously fired.

The impulse generated by the bunch of syncronized sequence is represented by a
Gaussian time function. The width of the Gaussian is related to the duration of the impulse
emitted by the bunch and, in turn, to the characteristic cut-off filtering out the harmonic
components of the power spectrum at high frequency. The amplitude of the Gaussian
depends on the number of syncronized loops Ni. By taking into account the fluctuations
in Ni in the Markov-chain model, a mixed power spectrum is obtained where lines and
continuous spectral components co-exist. It is shown that the broadband component
causes the line amplitude to change (while its frequency remains unchanged, being only
dependent on the reciprocal duration of the loops) and the distortion of the signal is
consistent with what is observed in the empirical EEG and MEG records. This distortion
affects the lowest rather than the highest frequency components: thus, delta waves with
harmonics at frequencies lower than the cut-off are more distorted than gamma waves. In
general, the waves reported in electrophysiological graphs are at least distorted by second
harmonic components, resulting in asymmetric triangular forms of the wave.

Tha manuscript is organized as follows. In Section 2, the general expression of the
power spectral density of a sequence of Markov correlated events is recalled. The conditions
required for the onset of open or closed loops in the framework of the Markov-chain
description are also provided. Then, the approach is extended to an arbitrary number of
synchronized closed loops, whose fluctuations cause the emergence of a broadband noise
component. In Section 3, the proposed mathematical framework is used as the background
to reproduce brainwaves signal features in relation to the mixed power spectrum. In
Section 4, the model results are discussed. Conclusions and suggestions for future directions
of the work are also provided.

2. Mathematical Framework

In this section, the mathematical background for the calculation of the power spectral
density of a sequence of events correlated according to a Markov chain and the conditions
to yield a closed loop are recalled. The amplitude of the periodic and aperiodic components
are derived for a single loop in Section 2.1 and for an arbitrary number of synchronized
closed loops in the Section 2.2.

Consider a neuron, in a state labelled α1, making a firing to a neuron, in a state labelled
α2, in a sequence α1, α2, . . . , αN of N states. Let n1, n2, . . . , nN indicate the numbers of
neurons, respectively, in the states α1, α2 . . . αN . The firings of n1 synchronized neurons
result in the subsequent firing of n2 neurons, yielding a total of n1 · n2 synchronized neurons,
and so on. Hence, the number of synchronized neurons may reach a value of the order
of several thousands in a relatively short time. For the sake of the example, if each of
the n1, n2, . . . produces a pair of simultaneously firing neurons with a firing characteristic
time of 5 ms, a total number Ni of about 107 synchronized neurons would be produced in
only 0.1 s. The same process occurs on the neurons in the sequence α2, α3, . . . , αN of the N
connected states. Thus, a bunch of N groups of Ni synchronized neurons for each state α of
the sequence could be expected.

The neuron firing pulses can be described in terms of functions Fαi (t), where t is
the time and αi is one of the N states which completely characterizes the firing. The
superposition of individual firing Fαi (t− ti), where ti is the time origin arbitrarily chosen
for each Fαi (t) defines the relevant neurological signal as I(t) = ∑∞

i=−∞ Fαi (t− ti). The time
interval between subsequent events Fαi (t) and Fαi+1(t) is indicated by the variable ui, which
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depends on the states α through the distribution function qαi ,αi+1(ui), accounting for the
correlation between the time intervals ui.

The α states are represented by an homogeneous Markov chain characterised by the
N × N matrix m with entries defined as the conditional probability that if the event i is in a
state α, the event i + 1 will be in the state α′, where α and α′ are a pair of N states:

mαi ,αi+1 = P(αi+1 = α′|αi = α) (1)

Then, the matrix M(u) can be built with entries:

M
α,α′ (u) = m

α,α′ qα,α′ (u), (2)

where α and α′ are the states of a pair of successive events of the sequence and qα,α′(u)
the distribution function of the time interval between the pair. The Fourier transform of
M

α,α′ (u) is defined as:
M

α,α′ (ω) = m
α,α′Qα,α′ (ω), (3)

where:
Q

α,α′ (ω) =
∫ ∞

0
q

α,α′ (u) exp(iωu)du, (4)

M
α,α′ (ω) defines the entries of the correlation matrix M(ω) of the Markov process.

The power spectrum of random processes correlated according to a Markov chain is
given by:

Φ(ω) = ν|Sα(ω)|2 + 2ν Re ∑
αα
′
S∗α(ω)S

α
′ (ω)pαK(ω)

αα
′ , (5)

where ν is the average number of events per unit time, Sα(ω) is the Fourier transform of
Fα(t), with the overline indicating the average over all the pulses in the sequence. S∗

α
′ (ω) is

the conjugate of the Fourier transform of F
α
′ (t) for the state α

′
. The quantity pα indicates the

fraction of states α in the sequence. Re means the real part. The matrix K(ω) is defined as:

K(ω) = M(ω) · (I −M(ω))−1 (6)

with M(ω) the correlation matrix of the Markov process with entries defined by Equation (3)
and I the identity matrix.

2.1. Line Power Spectral Density

In this subsection, we will show how to derive the power spectral density of a single
closed loop of Markov-chain correlated pulses. When the Markov matrix m in Equation (1)
describes random events organized in closed loop sequences, the correlation matrix M
yields physically sound line spectra as those observed in brain waves. The lines in the
power spectrum correspond to singularities of Equation (6) when det(I −M(ω)) = 0.
The singularities occur for q

α,α′ (u) = δ(u− u
α,α′ ) where u

α,α′ is the time interval between

consecutive events characterized by the states α, α
′
. Then:

Q
α,α′ (ω) = exp

(
iωu

α,α′
)

(7)

and Equation (3) takes the form:

M
α,α′ (ω) = m

α,α′ exp
(

iωu
α,α′
)

. (8)

A closed loop involving N states α can be expressed by a N × N matrix M(ω) where
all the rows are made up of zeroes except one entry equal to 1 (with m

α,α′ = 0 except if
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αi+1 = α′ and αi = α m
α,α′ = 1). The condition mN−1,N = mN,1 = 1 ensures the closeness

of the loops. With the above choices, the relationship det(I −M(ω)) = 0 becomes:

1− exp[iω(u1,2 + u2,3 + . . . + uN,1)] = 0 (9)

with solutions:
ω = ωn = nωo =

2π

∑N
i=1 ui,i+1

(10)

Equation (10) yields the fundamental frequency ωo and the harmonics of the periodic
component. n is an integer. ωo decreases as N and ui,i+1 increase. The amplitude of the
spectral lines at ω = ωn is given by:

An =
2πν2

N2 Re ∑
αα
′
S∗α(ωn)Sα

′ (ωn)Cαα
′ (ωn) (11)

where ν and S∗α(ω)S
α
′ (ω) have been defined after Equation (5) and C

αα
′ are the entries of

the adjoint matrix: C(ωn) = adj(I −M(ωn)). The amplitude given by Equation (11) holds
only at the singular frequency values ω = ωn, when the determinant is zero. At frequencies
ω different from the singularities ωn, the amplitude is equal to zero as expected for strictly
periodic functions. Thus, the power spectral density of the periodic components is:

Φ`(ω) =
∞

∑
n=−∞

An δ(ω−ωn) (12)

The amplitude An has been estimated for different values of the parameters ν, N and
Fourier transform of the single pulse Sα in [23].

The power spectral density of an arbitrary Markov-correlated pulse sequence Equation (5)
was worked out by averaging over time from −∞ to ∞, by assuming stationarity. In the
case of a single closed-loop sequence, the power spectrum of a perfectly periodic signal
is obtained, i.e., a line power spectrum taking discrete positive values at n ω0 and zero at
any other frequency, and no broadband noise is generated. The expression within square
brackets in Equation (5) corresponds to the real part of the sum of N elements of the
principal diagonal of the matrix K(ω) multiplied by Sα(ω)Sα(ω)∗ and by pα, while the
off-diagonal elements do not contribute. The real parts of the diagonal elements are equal
to −1/2, multiplied by pα = 1/N and by 2, and give −|S(ω)|2, which summed to the first
term |S(ω)|2 of the same equation, cancel each other. The term −|S(ω)|2 is the average
over all the N states α of the square modulus of the product of the complex conjugate
transforms of a couple of identical impulses symmetric with respect to zero within the
sequence extending from −∞ to ∞, while similar products within square brackets in the
same equation refer to couples of different impulses relative to the same state α along the
sequence. When each state α remains identical along the sequence from −∞ to ∞ and
only their position along the sequence changes according to the conditional probability
expressed by the Markov matrix m, averaging over the statistical ensemble does not change
the above conclusions. The line spectrum, generated by a periodic function, remains
unchanged by averaging along the sequence.

2.2. Broadband Power Spectral Density

In this subsection, the Markov matrix approach is extended to an arbitrary number Ni
of synchronized closed loops of firing neurons. Under the assumption of fluctuations in
Ni, the expression of the power spectrum containing a broadband component is derived.
The syncronized firing of neurons belonging to the same state α will be described by the
superposition of individual firing functions in terms of Fα(t) = ∑Ni

i=1 Fi,α(t) = Ni〈Fi,α(t)〉,
where the brackets 〈 〉 refer to the average over the ensemble of Ni loops. Owing to the
large number of loops Ni and to the imperfect synchronization of the elementary impulses
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belonging to the same α state, the firing events are described as Gaussian functions; hence,
〈Fi,α(t)〉 can be written as:

〈Fi,α(t)〉 =
〈Aα〉

σα

√
2π

exp
(
− t2

2σ2
α

)
, (13)

with variance σα, amplitude 〈Aα〉 =
∫ ∞
−∞ 〈Fi,α(t)〉dt and the time origin of the impulses

taken at the maximum of the Gaussian function relative to every state α. The Fourier
transform of the function Fα(t) can be written as Sα(ω) = Ni〈Si,α(ω)〉, where:

〈Si,α(ω)〉 = 〈Aα〉 exp
(
−ω2σ2

α

2

)
. (14)

When the fluctuations in the number Ni of synchronized loops are taken into account
in the general expression of the power spectal density, the quantity Sα(ω)∗Sα(ω) is written
as (Ni)

2(< |Si,α(ω)| >)2. The first term in the same equation is (N2
i ) (< |Si,α(ω)| >)2.

Hence, the power spectrum is:

Φ(ω) = ν
(

N2
i − Ni

2
)
〈|Si,α(ω)|〉2 . (15)

The quantity N2
i −Ni

2, yielding the fluctuations in Ni around its average value Ni, can
be estimated by assuming that Ni is a stationary random variable described by a normalized
Gaussian probability function P(Ni):

P(Ni) =
1

σNi

√
2π
· exp

−(Ni − Ni)
2

2σ2
Ni

, (16)

with (Ni)
2 =

(∫ ∞
−∞(Ni · P(Ni))dNi

)2
and (N2

i ) =
∫ ∞
−∞

(
N2

i · P(Ni)
)
dNi = (Ni)

2 + σ2
Ni

and
the variance is σNi . Hence, Equation (15) is:

Φ(ω) = νσ2
Ni
〈|Si,α(ω)|〉2 , (17)

which yields the broadband component of the noise power spectrum, whose intensity has
been estimated for normally distributed fluctuations in the number of syncronized loops.
The amplitude of the broadband component depends on the fluctuations in Ni through the
variance σNi .

The width of the Gaussian σα for each state α in Equation (14) is related to the cut-
off frequency of the power spectrum and, thus, to the cut-off of the highest harmonic
frequencies of the periodic components. If the pulses are Gaussian with Fourier transform
given by Equation (14), the cut-off frequency may be estimated as ωc = 2π fc = 1/σα,
corresponding to a reduction factor of 1/e ≈ 0.36. For instance, σα = 2 · 10−3 s yields a
cut-off frequency ωc = 500 rad s−1 and fc = 79.5 Hz, which, for an alpha wave of 8 Hz,
would allow about 10 harmonics to stand in the power spectrum up to 80 Hz with only
a slight reduction, while for a wave of 20 Hz a reduction in the amplitude would occur
after the 4th harmonic. At frequencies lower than ωc, the number and amplitude of the
harmonics merely depend on the states characterizing the neurons forming the loops.

In summary, the main effect of the fluctuations in Ni is the onset of a mixed power
spectrum, which includes spectral lines at the angular frequencies n ·ω0 and continuous
broadband noise. Fluctuations in the parameters intrisic to a single loop give rise to
changes in the synchronization with the other loops by changing the number Ni. As
observed in empirical EEG records, amplitude and waveform vary almost at every period
of the detected signal. According to the model proposed in this work, this change may be
due to fluctuations in the number of synchronized loops Ni.
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3. Discussion

In this section, the power spectrum generated by the synchronized closed-loop se-
quences of Markov-chain-correlated firing neurons will be confronted with typical features
observed in EEG and MEG measurements. As discussed in Section 2, the sequences of
electric and magnetic impulses received by the sensors on the scalp at every cycle corre-
spond to N groups of Ni syncronized impulses generated by the firing of a single neuron
in each loop. The average time interval u between subsequent neuron firings along the
loop multiplied by N yields the loop duration, while its reciprocal yields the lowest fre-
quency component of the mixed power spectrum. In principle Ni could be estimated by
considering the intensity of either the elementary electric or the magnetic impulses, which
are almost simultaneously produced by a single firing neuron in each sequence. More
accurate estimates are obtained by using the magnetic component of the impulse, which is
not attenuated by the cerebral matter and the scalp, contrarily to the electrical components
of the signal [25–27]. The magnetic and electric field components ~B and ~E generated by the
firing of a single neuron obey the Maxwell equation∇× ~B = µ0~J + ε0µ0 δ~E/δt, with~J and
µ0ε0 δ~E/δt, respectively, the conduction and displacement current density. The conduction
charges in the axon move at speeds ranging between 0.5 ms−1 and 5.0 ms−1, i.e., much
faster than the charges moving in the outer regions. Therefore, the electric field in the
axon is partly screened by the conductive cerebral matter. The magnetic field generated
by the conduction charge inside the axon can be estimated using the relationship valid for
metallic conductors:

~B(t) =
µ0

4π
I(t)∆`

~uA × ~uD

r2
s

,

with I(t) the current intensity; rs the distance between the midpoint of the axon and the
point where ~B(t) is measured; and ∆` the length of the axon, which, for neurons connected
in the same area of the brain, ranges between 50 µm and 200 µm. The unit vector ~uA and
~uD indicate, respectively, the directions of ∆` and rs. The amplitude of the magnetic field
~B(t) is:

B(t) =
µ0

4π
I(t)∆`

sin θ

r2
s

, (18)

where θ is the angle between ~uA and ~uD. I(t) can be estimated by considering the charge
transferred by the firing process to nearby neurons. When the neuron receives positive
inputs from its dendrites over a short time interval, its resting membrane potential increases
from about −75 mV to a critical value of about −45 mV. At this point, a positive charge Q
enters the soma from the ionic channels making the membrane potential slightly positive.
This process lasts about 1 ms. During a subsequent time interval of approximately the
same duration (1 ms), the excess positive charge Q is ejected through the axon, restoring
the membrane potential to the resting value (−75 mV) after a small over-shut. As a good
approximation, the ejection of this charge corresponds to a variation in the membrane
potential of about 100 mV. By approximating the soma as a sphere of radius R with uniform
inner charge density ρ, the electric field can be written as E(r) = ρ 4

3 πr3/4πε0r2 = ρr/3ε0
at r ≤ R with r the distance from the center of the sphere. The membrane potential Vm is:

Vm =
∫ R

0
E(r)dr =

ρ

3ε0

∫ R

0
rdr =

ρ

6ε0
R2 =

Q
8πε0R

(19)

where Q = ρ 4
3 πR3 is the total charge within the sphere. A membrane potential of about

Vm = 100 mV and a soma radius of about R = 25 µm result in an ejected charge
Q = 8πε0RVm = 5.55 · 10−16 C. If the ejected charge Q crosses the axon in about 1 ms,
the current impulse I(t) can be described by a Gaussian function of time with variance
σ = 1 ms:

I(t) =
Q

σ
√

2π
exp

(
t2

2 σ2

)
(20)
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with the condition
∫ ∞
−∞ I(t)dt = Q. The current I(t) can be introduced in the expression of

the magnetic field (Equation (18)), i.e.,

B(t) =
µ0

4π

Q
σ
√

2π
exp

(
t2

2 σ2

)
∆`

sin(θ)
r2

s
. (21)

The maximum value of the magnetic field amplitude is achieved at t = 0 with sin θ = 1.
This situation, where sin(θ) = 1, occurs when the axon of the firing neuron is tangent to
the surface of the skull in the position of the magnetic sensor. In the cortical area of the
brain, this may happen when the firing neuron is in one of the numerous regions called
gyri [28,29]. By assuming an average value of ∆` = 100 µm and an average value of the
distance of the magnetic sensor detecting the impulse of rs = 2 · 10−2 m, an average peak
intensity B(0) = 0.5 · 10−20 T is obtained. To generate magnetic impulses of the order of
10−13 T, a value generally found in MEG and EEG, about Ni = 107 synchronized firing
neurons would be needed (the value 10−13 T is close to the sensitivity limit of the SQUID
sensors (about 10−15 T)).

While it is generally accepted that the magnetic signal generated by firing neurons
(MEG) is due to the ejected excess charge within the axon, the origin of the electric signal
(EEG) is more controversial. A common assumption is that the signal is generated in
correspondence of the chemical synapses connecting the firing neuron to the dendrites
of numerous postsynaptic ones. The charge emitted from the axon of the firing neuron is
split in hundreds or thousands of fractions which generate ionic currents external to the
synapses, and are then detected by the sensors of the EEG setup. The synchronized firing of
a large population of neurons and the role played by the excitatory and inhibitory synapses
yield a complex situation of small current impulses, where spontaneous oscillations can
be generated under suitable assumptions [30,31]. An alternative interpretation relates the
electric signals to the transient potential impulses radially emitted externally to the soma of
the firing neurons, due to the rapid variations in the external electric field generated by the
charge variations inside the neuron. Within this description, the potential impulse peak
value, detected by an electrode internal to the soma during the firing event, is assumed of
the order of 100 mV, the electrode external to the soma peak value of about 0.1 mV, and the
distance of the second electrode from the membrane of the neuron of the order of 200 µm.
In order to evaluate the intensity of the electric potential impulse, we consider again the
neuron with the spherical soma of radius R = 25 µm and the electric field E(r) at r < R
used above for the calculation of the magnetic impulse. If the conductive medium within
the cranial bone is neglected, the electric field at r > R is given by E(r) = Q/4πε0r2 where
Q is the whole charge within the soma. The electric potential, at distance r > R from the
center of the sphere, is given by V(r) = Q/4πε0r, with V = 0 as r = ∞. The field E(r) in
the presence of conductive liquids, as it is the case for the brain, in stationary condition
would be zero. A charge layer equal to the internal charge but with the opposite sign,
would be attracted and surround the membrane of the soma. This charge with spherical
symmetry cancels out the field for r > R. When a fast transient process occurs to the charge
within the soma, as during the firing of the neuron, and the conductive liquid within the
cranial bone contains positive and negative ions, the screening of the charge inside the
soma is expected to occur only in part, which justifies the impulse [30]. The amplitude of
this impulse, compared to the amplitude expected from Equation (19), allows to evaluate
the effective charge Qe f f at the center of the sphere, and, thus, the amplitude of the impulse
at an arbitrary distance r > R. By assuming a distance r from the center of the sphere of
the order of 200 µm and Q = 5.55 · 10−16 C, Equation (19) gives V = 22.28 mV, exceeding
the typical measured value 0.1mV. This result could imply that the charge internal to the
soma is screened by an external opposite charge which reduces the Q value to Qe f f . A
value of Qe f f of the order of 10−18C, i.e., two orders of magnitude lower than Q, would
yield a potential value of the order of 0.1 mV at a distance of about 200 µm and a potential
value of the order of 10−6 V at a distance of about 10−2 m. It should be also considered
that the electrometer input impedance is close to ∞. The impulse amplitude is expected to
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be reduced by the cranial bone and by the input impedance of the operational amplifiers
connected to the electric sensors of the EEG set up, with a gain inversely proportional to
the input resistance, which must be kept low but large enough to drive the signal recorder.
By taking into account all these effects, a smaller value of the potential could be obtained.

4. Concluding Remarks

A mathematical framework, leading to the unified description of the discrete and
continuous power spectral components of the EEG and MEG signals, was proposed. The
model is based on the assumption that the complex network of interacting neurons sponta-
neously form closed-loops chains of N firing neurons, giving rise to the repetitive emission
of electric and magnetic impulses. By describing the electric and magnetic impulses gener-
ated by the firing of a neuron as Gaussians of a given amplitude and width, the line power
spectrum of this periodic function is obtained. Fundamental and harmonic components are
shown to depend on the distribution of the amplitude and variance in the emitted impulses
and on the distribution of the time intervals between their emission, which are expressions
of the N states α of the sequence. A general matrix equation gives the line power spectrum.

Furthermore, by considering the fluctuations in the number Ni of synchronized firing
neurons belonging to different closed loops, a broadband component emerges of the power
spectrum. The syncronized pulses are represented as Gaussian time functions whose
amplitude and variance depend on the degree of syncronization of the firing of the neurons
belonging to different single loops but in the same state, α.

As discussed in Section 3, the fluctuations in the number of synchronized loops Ni may
change the amplitude of the signal and its waveform, which is determined by the harmonic
components generated by the loops. It is worthy of note that, even if the fluctuations
change the waveform of the signal, the frequency of the wave remains unchanged, as it
depends only on the duration of the loop ∑i ui which is unchanged by the fluctuations in
Ni. An additional effect of the broadband component concerns the onset of a cut off in the
line power spectrum, which is related to the width of the electric impulses represented
by the variance in the Gaussian time functions. A larger variance implies a lower cut-off
frequency and smaller number of harmonic components, thus filtering out a signal closer
and becoming closer to a pure sinusoid.

The main features explained by the proposed model are summarized here, below. The
broad range of discrete frequencies observed in the EEG and MEG signals is obtained by
considering different durations of closed-loops sequences of firing neurons. By assuming
an average firing interval between successive neurons of 5 · 10−3 s, sequences ranging
from a few hundred neurons to only a few neurons cover the range from 0.5 Hz (the
lowest frequency of delta waves) to 50 Hz (the highest frequency of gamma waves). The
presence of several harmonic components of the fundamental sinusoidal wave in the graph
of EEG is also accounted for, particularly at low frequency, as the delta waves, where a
pure sinusoid is never observed. High-frequency waves are less distorted since harmonics
stand at frequencies multiple of the fundamental one, and the cut-off frequency of the
detected power spectrum cuts the harmonics exceeding that frequency. In a few particular
cases, all harmonics are cut off, or strongly reduced, giving a nearly pure sinusoidal wave.
Part of the distortion can be due to the broadband noise created by the fluctuation in the
number of Ni. One of the effects discussed above, and observed in almost all EEG graphs,
is the continuous change in the waveform, practically at every period, of the received
signal produced by the loops. This change, which is associated to a heavy distortion
of the fundamental wave, is due to the presence of several harmonic waves within the
periodic signal. A change in the amplitude or the phase of one or a few of these harmonics
during the fluctuation in Ni is enough to change the waveform over the period. A signal
constituted by a fundamental wave and several harmonics is expected from a sequence of
heterogeneous electric impulses characterized by different states α, as considered in the
present paper.
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