
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Reconfigurable Depth-Wise Convolution Module for Heterogeneously Quantized DNNs / Urbinati, Luca; Casu, Mario
R.. - ELETTRONICO. - (2022), pp. 128-132. (Intervento presentato al convegno 2022 IEEE International Symposium on
Circuits and Systems (ISCAS) tenutosi a Austin, Texas, USA nel 27 May 2022 - 01 June 2022)
[10.1109/ISCAS48785.2022.9937753].

Original

A Reconfigurable Depth-Wise Convolution Module for Heterogeneously Quantized DNNs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ISCAS48785.2022.9937753

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2973053 since: 2022-11-14T10:00:51Z

IEEE

A Reconfigurable Depth-Wise Convolution Module
for Heterogeneously Quantized DNNs

Luca Urbinati and Mario R. Casu
Department of Electronics and Telecommunications

Politecnico di Torino, 10129 Turin, Italy
{luca.urbinati, mario.casu}@polito.it

Abstract—In Deep Neural Networks (DNN), the depth-wise sep-
arable convolution has often replaced the standard 2D convolution
having much fewer parameters and operations. Another common
technique to squeeze DNNs is heterogeneous quantization, which
uses a different bitwidth for each layer. In this context we propose
for the first time a novel Reconfigurable Depth-wise convolution
Module (RDM), which uses multipliers that can be reconfigured to
support 1, 2 or 4 operations at the same time at increasingly lower
precision of the operands. We leveraged High Level Synthesis to
produce five RDM variants with different channels parallelism
to cover a wide range of DNNs. The comparisons with a non-
configurable Standard Depth-wise convolution module (SDM) on a
CMOS FDSOI 28-nm technology show a significant latency reduc-
tion for a given silicon area for the low-precision configurations.

Index Terms—Deep Neural Networks, Reconfigurable Hard-
ware, Mixed-Precision Quantization, Depth-wise Convolution.

I. INTRODUCTION

To reduce computing and memory requirements of Deep
Neural Networks (DNNs) on edge devices, an effective tech-
nique is mixed-precision quantization, which aims to quantize
DNN layers with different precision. In fact, [1] showed that
input and weight statistics differ greatly among layers and
[2] proved that each layer requires a different precision. An-
other solution to compress DNNs is the Depth-wise Separable
Convolution (DSC), introduced in [3], become popular with
MobileNet-V1 [4] and found in many lightweight models [5]–
[9]. DSC reduces the number of parameters and operations
by replacing the standard 2D convolution with two subsequent
blocks, depth-wise and point-wise, at a small accuracy penalty.

In this context, we propose for the first time a novel
Reconfigurable Depth-wise convolution Module (RDM) that
uses multipliers with a Sum Together (ST) mode [10] in
its Multiply-and-Accumulate (MAC) units. This mode allows
packing N low-precision (activations, weights) pairs as the
multiplier inputs, and computing their dot-products at reduced
precision in one shot. Therefore, this saves the additional N−1
MAC operations that a non-configurable MAC unit would
require. In particular, our RDM supports packing N (activation,
weight) pairs at precision between 1 and 16/N bits, where N
= 1, 2 or 4, resulting in 1×(1-16 bits), 2×(1-8 bits) or 4×(1-4
bits). We define these supported configurations as 16x, 8x and
4x, respectively.

We leveraged High Level Synthesis (HLS) to quickly pro-
duce five RDM variants that can compute 1, 2, 4, 8, or 16
channels in parallel. We performed a Design-Space Exploration

(DSE) to find the Pareto frontier in the Latency vs. Area and
Energy vs. Area spaces. We compared our designs with a non-
configurable Standard Depth-wise convolution module (SDM)
explained in Sec. IV in more detail. Results obtained on an
FDSOI 28-nm technology show a significant latency reduction
for a given silicon area at a small energy cost.

II. RELATED WORK

In the first era of DNN accelerators the inference compu-
tation was mainly executed by constant-precision operators:
DaDianNao [11], EIE [12], and Eyeriss v1 [13] use 16-bit fixed-
point operators, while Minerva [14] tries to quantize with lower
precision. Today, with advanced strategies we can reduce the
bitwidth of both weights and activations as low as 2-bit [15]
preserving accuracy. Hence, a new generation of accelerators
started to exploit reduced data types. For example, Bit Fusion
[16] composes and decomposes 2-bit multipliers to support 8-
bit/2-bit, 4-bit/4-bit, 2-bit/8-bit and 8-bit/8-bit configurations
for inputs/weights. Thinker [17] adopts a bit-width adaptive
computing unit, which can be configured to execute two 8 × 16-
bit multiplications in parallel or one 16 × 16-bit multiplication.
Zhou et al. [18] deploys two types of Processing Elements
(PEs) on a FPGA accelerator to separately process full (16-bit)
and low (8-bit) precision operations. DNPU [19] uses look-
up table-based reconfigurable multipliers that support 4-/8-/16-
bit multiplications, while UNPU [20] uses serial multipliers to
implement lookup table-based PEs to enable precisions from 1
to 16 bits. BISMO [21] uses a bit-serial dot product unit for
FPGAs that can be utilized for a range of different precisions.
ENVISION [22] is an ASIC that proposes a MAC unit with
multipliers that support the same precisions of our design , but
work in Sum Separate (SS) mode [10].

In the area of microcontrollers, XPulpNN [23] integrates a
multiple-precision dot-product unit in RISC-V, featuring SIMD
vectors of 16- down to 2-bit precision elements. Since it is
followed by an adder tree that sums up the partial products, it
computes in SS mode.

Commercial products already incorporate mixed-precision
accelerators, like Apple A12 Bionic chip [24], NVIDIA Turing
GPU [25], and Socionext Inc. NPU [26].

When it comes to DSC, there are just few examples of
accelerators that support it, such as: [27] and [21] for FPGA;
[28]–[30] for ASIC, but only [21] supports multi-precision
DSC. Finally, if we did not overlook some previous work, none
of these leverage the flexibility of HLS for a quick DSE.

Fig. 1: RDM MAC Unit array with reconfigurable multipliers

Fig. 2: Overview of the RDM.

III. HARDWARE ARCHITECTURE

The RDM contains the MAC Units array shown in Fig. 1.
MAX CHAN (MC) corresponds to the number of ST re-
configurable multipliers instantiated in the MAC Units array
and this number corresponds to the number of channels the
RDM can process in parallel. Each unit takes the two 16-bit
operands and unpacks them to feed the ST multiplier according
to the configuration represented by the CONFIG signal. The
table inside Fig. 1 reports the three different operations done
by an ST reconfigurable multiplier. An accumulator takes the
ST multiplier output and accumulates it until the number of
iterations for a convolution between a kernel and a feature map
receptive field is completed. After that, the result is cast to a
32-bit number and stored in an output buffer for subsequent
computations.

An overview of the RDM architecture can be seen in

Fig. 2. It includes a memory architecture with double buffers,
an addressing logic, a packing logic and the reconfigurable
MAC Units array. The memory architecture for the input
feature-map and weight tensors consists of four 4-bit mem-
ories, each with shape (MAX W×MAX H×MAX CHAN)
and (MAX K SIZE×MAX K SIZE×MAX CHAN), respec-
tively. Later, we refer to the feature map 4-bit blocks as AF ,
BF , CF and DF , and to the weight 4-bit blocks as AW , BW ,
CW and DW . Instead the output memory is a single 32-bit
memory with shape (MAX W×MAX H×MAX CHAN).

Since the size of DSC feature map tensors and weight tensors
can exceed the size of the memory of the RDM in one or
multiple dimensions, it is necessary to iterate over several tiles
to complete a depth-wise convolution. The number of iterations
depends on the value of its design-time configuration parame-
ters: MAX W (= MAX H) and MAX K SIZE. To derive the
values of MAX W and MAX K SIZE, we analyzed not only
the most cited DNNs for classification and object detection,
but also their presence in some public Model Zoos for edge
devices, such as Google Coral, TensorFlow Hub, Intel, Xilinx
VitisAI and Nvidia. We finally selected EfficientNet-B0 [7],
MobileNetV1 [4], MobileNetV2 [5] and the SSD and SSD-
Lite versions of those two last networks. From our analysis we
found that setting MAX W = 22 was a reasonable trade-off to
keep the area overhead of the memories around two times the
area of the logic and to limit the number of RDM iterations.
Regarding MAX K SIZE, since the most common kernel sizes
were 3x3 and 5x5, we decided to use MAX K SIZE = 5. As
for the MAX CHAN design-time parameter, we performed the
DSE described in Sec. IV.

Since our accelerator will be part of an SoC for edge
applications, an embedded processor or a DMA engine will
fill those memories as follows. For simplicity, consider only
one channel of the input feature-map tensor. In the 16x case,
the values are extended to 16-bit (if needed), then split into four
4-bit chunks, and stored in order from most to least significant
into AF -DF . The procedure is repeated for all the channels and
it holds for the weight buffer as well. In the 8x case, the values
are extended to 8-bit (if needed), split into two 4-bit chunks,
and stored in CF -DF . Finally, in the 4x case each element is
extended to 4-bit and stored in DF .

Feeding all the MAC Units array in parallel requires a
particular memory addressing and concatenating logic. Imagine
a dummy feature-map tensor with shape 5×5×MAX CHAN
and a weight tensor with shape 3×3×MAX CHAN. This
means that the weight filter creates a 3×3 receptive field on
the feature map tensor, as shown in Fig. 3.

1) 16x configuration: The RDM reads MAX CHAN 4-bit
elements along the channel axis from the same position in the
receptive field in all the four input feature memories AF , BF ,
CF and DF , as shown in Fig. 3(a). This is possible because
the four memories are interleaved with factor MAX CHAN
through an HLS directive. The four MAX CHAN long arrays
are then concatenated element-wise to form a single 16-bit array
in the order expressed by the following equation:

conc f [c] = AF [i][c]&BF [i][c]&CF [i][c]&DF [i][c]

Fig. 3: Memory addressing and concatenation of the input
feature-map tensor.

where c is one of the channels in {0, . . . ,MAX CHAN− 1}, i
is the position index inside the receptive field in {0, . . . ,K�−
1}, where K� = K SIZE × K SIZE, and & is the concate-
nation operator. The same procedure is applied to the weights
AW , BW , CW and DW . The result is a MAX CHAN long
16-bit array, called conc w[c].

2) 8x configuration: The RDM reads MAX CHAN 4-bit
elements along the channel axis which correspond to two
consecutive positions in the receptive field of the two memories
CF and DF , as shown in Fig. 3(b) in red. Then the four,
MAX CHAN long arrays are concatenated element-wise to
form a single 16-bit array, but the order of concatenation is
different than the 16x case: two 8-bit operands must be placed
side by side to form a single 16-bit operand to perform the
dot-product as explained in Fig. 1. For the weights, the steps
are the same, but they are applied to CW and DW , and the
concatenation order is reversed:

conc f [c] = CF [i][c]&DF [i][c]&CF [i+1][c]&DF [i+1][c]

conc w[c] = CW [i+1][c]&DW [i+1][c]&CW [i][c]&DW [i][c]

3) 4x configuration: For this case (Fig. 3(c)), we have:

conc f [c] = DF [i][c]&DF [i+1][c]&DF [i+2][c]&DF [i+3][c]

conc w[c] = DW [i+3][c]&DW [i+2][c]&DW [i+1][c]&DW [i][c]

In general, the number of MAC cycles required to get
MAX CHAN output pixels is dK�/Ne, where N = 1, 2 or
4 for the configuration 16x, 8x or 4x, respectively; while the
theoretical speedup achievable by the RDM is K�/dK�/Ne.
The actual speedup is less than the theoretical value due
to control logic overhead and ranges from 1.3 for the 8x
configuration to 1.6 for the 4x one.

IV. EXPERIMENTAL RESULTS

Through our analysis of selected lightweight DNNs
(Sec. III), we found that 16 is the greatest common divisor
of the channels of any depth-wise convolution layer. Thus, we
made a DSE using Catapult HLS by sweeping MAX CHAN

from 1 to 16 in power of 2 values, and the operating clock
frequency fclk from 100 to 1000 MHz in ten steps. We syn-
thesized the RTL netlists generated by Catapult HLS with
Synopys Design Compiler (DC). We compared our RDM with
a non-reconfigurable accelerator (SDM) based on a standard
16-bit multiplier that uses sign extension whenever required
for low-precision operands. The SDM does not perform dot-
products at reduced precisions inside the MAC Units array,
which results in simpler Memory Addressing, Concatenating
logic and MAC Units array, but a higher number of MAC
operations for lower precisions. We analyzed the performance
of RDM and SDM over two significantly different depth-
wise layers of MobileNetV1, operating on (112×112×32) and
(7×7×1024) feature map tensors, respectively, and both with
(3×3) filters1. We realized that the results follow the same
trend, hence we report only those obtained on the last layer.

Fig. 4a, 4c and 4e report Latency vs. Area with the modules
configured to work in 16x, 8x and 4x mode, respectively; in the
same way Fig. 4b, 4d and 4f show Energy vs. Area. The results
take into account the iterations required because the tensor
sizes exceed the maximum size that DRM and SDM support.
The latency is the total number of clock cycles multiplied by
the clock period; the energy is the power estimated by DC
multiplied by the latency to which we add the memory energy
that we estimated using the same model of [31].

From the plots in Fig. 4 we can conclude:
• As expected, the standard solutions outperform the recon-

figurable ones in the 16x case because of their lower area
overhead of the memory addressing and concatenating
logic and of the MAC Units array (Fig. 4a). In fact, the
SDM has a simpler memory addressing, does not reorder
the operands, and uses non-reconfigurable multipliers.

• Reconfigurable Pareto solutions in configuration 8x and 4x
have indeed a lower latency for a given area than standard
ones with the same MAX CHAN.

• The lower latency is paid with a slightly higher energy
because the RDM Pareto points in the Latency vs Area
space (see the reddish colors in Fig. 4c vs. 4d and in Fig. 4e
vs. 4f) have higher clock frequencies than the SDM ones.
Notice, however, that the scale of the y-axis is linear for
energy and logarithmic for latency. Thus, the compromise
is acceptable.

• For latency in 8x and 4x, 30% and 50% of the reconfig-
urable points are on the Pareto frontier, respectively.

V. CONCLUSION

We presented a Reconfigurable Depth-Wise Convolution
Module for Heterogeneously Quantized DNNs and compared it
with a standard non-reconfigurable module. The results of the
design-space exploration show a trade-off between latency and
area in favor of the reconfigurable solutions especially when
low-precision quantization is used. This latency advantage is
paid with a slight energy penalty. We plan to complete our
accelerator by adding a point-wise convolution module that will
use the same reconfigurable MAC units.

1All MobileNetV1 depthwise layers use the same kernel size.

 100

 1000

 10000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
lo

c
k

 f
re

q
u

e
n

c
y

 (
G

H
z
)

L
a

te
n

c
y

 (
µ

s
)

Area (mm
2
)

16x Multiplications

Standard
Reconfigurable

Pareto front
1,2,4,8,16: #Channels

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(a)

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
lo

c
k

 f
re

q
u

e
n

c
y

 (
G

H
z
)

E
n

e
rg

y
 (

µ
J

)

Area (mm
2
)

16x Multiplications

Standard
Reconfigurable

Pareto front
1,2,4,8,16: #Channels

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8
1
6

1

2

4

8

1
6

1

2

4

8
1
6

1

2
4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4
8

1
6

1

2

4

8

1
6

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(b)

 100

 1000

 10000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
lo

c
k

 f
re

q
u

e
n

c
y

 (
G

H
z
)

L
a

te
n

c
y

 (
µ

s
)

Area (mm
2
)

8x Multiplications

Standard
Reconfigurable

Pareto front
1,2,4,8,16: #Channels

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(c)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
lo

c
k

 f
re

q
u

e
n

c
y

 (
G

H
z
)

E
n

e
rg

y
 (

µ
J

)

Area (mm
2
)

8x Multiplications

Standard
Reconfigurable

Pareto front
1,2,4,8,16: #Channels

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8
1
6

1

2

4

8

1
6

1

2

4

8
1
6

1

2
4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4
8

1
6

1

2

4

8

1
6

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(d)

 100

 1000

 10000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
lo

c
k

 f
re

q
u

e
n

c
y

 (
G

H
z
)

L
a

te
n

c
y

 (
µ

s
)

Area (mm
2
)

4x Multiplications

Standard
Reconfigurable

Pareto front
1,2,4,8,16: #Channels

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(e)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
lo

c
k

 f
re

q
u

e
n

c
y

 (
G

H
z
)

E
n

e
rg

y
 (

µ
J

)

Area (mm
2
)

4x Multiplications

Standard
Reconfigurable

Pareto front
1,2,4,8,16: #Channels

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8
1
6

1

2

4

8

1
6

1

2

4

8
1
6

1

2
4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4
8

1
6

1

2

4

8

1
6

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(f)

Fig. 4: Latency vs. Area and Energy vs. Area DSEs for the last layer of MobileNetV1.

REFERENCES

[1] B. Moons, B. De Brabandere, L. Van Gool, and M. Verhelst, “Energy-
efficient convnets through approximate computing,” in 2016 IEEE Winter
Conference on Applications of Computer Vision (WACV), 2016, pp. 1–8.

[2] S. Anwar, K. Hwang, and W. Sung, “Fixed point optimization of deep
convolutional neural networks for object recognition,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2015, pp. 1131–1135.

[3] V. Vanhoucke, “Learning visual representations at scale,” ICLR invited
talk, 2014.

[4] A. G. Howard et al., “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017. [Online]. Available: http://arxiv.org/abs/1704.04861

[5] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[6] A. Howard et al., “Searching for mobilenetv3,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), Octo-
ber 2019.

[7] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for con-
volutional neural networks,” in Proceedings of the 36th International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR,
09–15 Jun 2019, pp. 6105–6114.

[8] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[9] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European Conference on Computer Vision (ECCV), September 2018.

[10] L. Mei et al., “Sub-word parallel precision-scalable mac engines for effi-
cient embedded dnn inference,” in 2019 IEEE International Conference
on Artificial Intelligence Circuits and Systems (AICAS), 2019, pp. 6–10.

[11] Y. Chen et al., “Dadiannao: A machine-learning supercomputer,” in 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture,
2014, pp. 609–622.

[12] S. Han et al., “Eie: Efficient inference engine on compressed deep neural
network,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), 2016, pp. 243–254.

[13] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA), 2016, pp. 367–379.

[14] B. Reagen et al., “Minerva: Enabling low-power, highly-accurate deep
neural network accelerators,” in 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2016, pp. 267–278.

[15] X. Sun et al., “Ultra-low precision 4-bit training of deep neural networks,”
in Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., vol. 33. Curran
Associates, Inc., 2020, pp. 1796–1807.

[16] H. Sharma et al., “Bit fusion: Bit-level dynamically composable archi-
tecture for accelerating deep neural network,” in 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA), 2018,
pp. 764–775.

[17] S. Yin et al., “A high energy efficient reconfigurable hybrid neural
network processor for deep learning applications,” IEEE Journal of Solid-
State Circuits, vol. 53, no. 4, pp. 968–982, 2018.

[18] X. Zhou, L. Zhang, C. Guo, X. Yin, and C. Zhuo, “A convolutional
neural network accelerator architecture with fine-granular mixed precision
configurability,” in 2020 IEEE International Symposium on Circuits and
Systems (ISCAS), 2020, pp. 1–5.

[19] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “14.2 dnpu: An 8.1tops/w recon-
figurable cnn-rnn processor for general-purpose deep neural networks,” in
2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017,
pp. 240–241.

[20] J. Lee et al., “Unpu: An energy-efficient deep neural network accelerator
with fully variable weight bit precision,” IEEE Journal of Solid-State
Circuits, vol. 54, no. 1, pp. 173–185, 2019.

[21] Y. Umuroglu, L. Rasnayake, and M. Själander, “Bismo: A scalable bit-
serial matrix multiplication overlay for reconfigurable computing,” in
2018 28th International Conference on Field Programmable Logic and
Applications (FPL), 2018, pp. 307–3077.

[22] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “14.5 en-
vision: A 0.26-to-10tops/w subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28nm fd-
soi,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC),
2017, pp. 246–247.

[23] A. Garofalo, G. Tagliavini, F. Conti, L. Benini, and D. Rossi, “Xpulpnn:
Enabling energy efficient and flexible inference of quantized neural
networks on risc-v based iot end nodes,” IEEE Transactions on Emerging
Topics in Computing, vol. 9, no. 3, pp. 1489–1505, 2021.

[24] “Apple describes 7nm a12 bionic chips,” EENews,
2018. [Online]. Available: https://www.eenewsanalog.com/news/
apple-describes-7nm-a12-bionic-chip

[25] Nvidia, “Nvidia turing gpu architecture,” 2018.
[Online]. Available: https://images.nvidia.com/aem-dam/en-zz/
Solutions/design-visualization/technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf

[26] T. Isono et al., “A 12.1 tops/w mixed-precision quantized deep convo-
lutional neural network accelerator for low power on edge / endpoint
device,” in 2020 IEEE Asian Solid-State Circuits Conference (A-SSCC),
2020, pp. 1–4.

[27] B. Li et al., “Dynamic dataflow scheduling and computation mapping
techniques for efficient depthwise separable convolution acceleration,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68,
no. 8, pp. 3279–3292, 2021.

[28] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 2, pp. 292–308, 2019.

[29] N. P. Jouppi et al., “A domain-specific supercomputer for training deep
neural networks,” Commun. ACM, vol. 63, no. 7, p. 67–78, Jun. 2020.

[30] K.-W. Chang and T.-S. Chang, “Vwa: Hardware efficient vectorwise
accelerator for convolutional neural network,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 67, no. 1, pp. 145–154,
2020.

[31] G. Santoro, M. R. Casu, V. Peluso, A. Calimera, and M. Alioto, “Design-
space exploration of pareto-optimal architectures for deep learning with
dvfs,” in 2018 IEEE International Symposium on Circuits and Systems
(ISCAS), 2018, pp. 1–5.

http://arxiv.org/abs/1704.04861
https://www.eenewsanalog.com/news/apple-describes-7nm-a12-bionic-chip
https://www.eenewsanalog.com/news/apple-describes-7nm-a12-bionic-chip
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

