
28 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Acceleration control strategy for Battery Electric Vehicle based on Deep Reinforcement Learning in V2V driving /
Acquarone, Matteo; Borneo, Angelo; Misul, Daniela Anna. - ELETTRONICO. - (2022), pp. 202-207. (Intervento
presentato al convegno 2022 IEEE Transportation Electrification Conference and Expo, ITEC 2022 tenutosi a Anaheim,
CA, USA nel 15-17 June 2022) [10.1109/ITEC53557.2022.9813785].

Original

Acceleration control strategy for Battery Electric Vehicle based on Deep Reinforcement Learning in V2V
driving

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ITEC53557.2022.9813785

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2972990 since: 2023-04-06T21:25:48Z

Institute of Electrical and Electronics Engineers Inc.

Acceleration control strategy for Battery Electric

Vehicle based on Deep Reinforcement Learning in

V2V driving
Matteo Acquarone

 Department of Energetic (DENERG),

Politecnico di Torino

Center for Automotive Research and

Sustainable mobility (CARS), Politecnico di

Torino

Torino, IT

matteo.acquarone@polito.it

Angelo Borneo

Department of Energetic (DENERG),

Politecnico di Torino

MCA Engineering s.r.l., Torino

Torino, IT

angelo.borneo@polito.it

Daniela Anna Misul

Department of Energetic (DENERG),

Politecnico di Torino

Center for Automotive Research and

Sustainable mobility (CARS), Politecnico di

Torino

Torino, IT

daniela.misul@polito.it

Abstract— The transportation sector is seeing the flourishing

of one of the most interesting technologies, autonomous driving

(AD). In particular, Cooperative Adaptive Cruise Control

(CACC) systems ensure higher levels both of safety and comfort,

enhancing at the same time the reduction of energy consumption.

In this framework a real-time velocity planner for a Battery

Electric Vehicle, based on a Deep Reinforcement Learning

algorithm called Deep Deterministic Policy Gradient (DDPG), has

been developed, aiming at maximizing energy savings, and

improving comfort, thanks to the exchange of information on

distance, speed and acceleration through the exploitation of

vehicle-to-vehicle technology (V2V). The aforementioned DDPG

algorithm relies on a multi-objective reward function that is

adaptive to different driving cycles. The simulation results show

how the agent can obtain good results on standard cycles, such as

WLTP, UDDS and AUDC, and on real-world driving cycles.

Moreover, it displays great adaptability to driving cycles different

from the training one.

Keywords— Cooperative Adaptive Cruise Control, V2V, Deep

Reinforcement Learning, DDPG, Battery Electric Vehicle

I. INTRODUCTION

Advanced driver assistance systems (ADASs) are promising
technologies to meet the crucial need of increasing safety,
comfort and, potentially, energy savings. Among ADASs
technologies [1], cooperative adaptive cruise control (CACC)[2]
enables the Ego vehicle to maintain a certain speed and to satisfy
other constraints such as the appropriate distance between
vehicles. This feature is empowered by communication between
the vehicle and the environment (V2X). Among the presented
systems, the vehicle-to-vehicle (V2V) interaction considers the
Ego vehicle in a car-following scenario, receiving information
in terms of speed and acceleration from the vehicle ahead. The
benefits that can be achieved by exploiting the aforementioned
information for the control strategy of the Ego, are significant
for both comfort and energy saving. Although several works are
focused on guaranteeing comfort and keeping a safe inter-
vehicle distance (IVD) [3], relatively few of them concentrated
their attention on the promising energy-saving potential for

connected vehicles [4]. There are a variety of algorithms that can
be applied to the problem to obtain optimal results with CACC.
Firstly, global optimization could be achieved through dynamic
programming (DP) [5] which is generally used as a benchmark
for energy management strategies, although is not applicable
online. To achieve a real-time control strategy, one of the most
effective methods is the Equivalent Consumption Minimization
Strategy (ECMS)[6]. Moreover, in several works Model
Predictive Control (MPC) [7] [8]has been suggested as one of
the most promising solutions to CACC problems. In the last
years, the innovations made in the field of Reinforcement
Learning (RL) have allowed researchers to achieve surprising
results in energy management problems [9]. Recently, Deep RL
algorithms have been applied to this field to surpass the curse of
dimensionality typical of Q-learning and DP due to the
discretization of large and continuous state and action spaces
[10] [11]. The main goal of this paper is to show the efficacy of
the DDPG, a Deep RL algorithm, for optimal acceleration
control of an Ego electric vehicle (EV), not only to enhance
comfort conditions as in previous work [12], but also to achieve
energy savings objective in both standard and real-world driving
cycles.

II. VEHICLE MODEL AND DDPG ALGORITHM

A. Vehicle model

The vehicle model, considered for this study, refers to a
Battery Electric Vehicle (BEV) [6], whose data are found in the
literature [13] and is developed in Python. The vehicle’s
behaviour is represented through a quasi-static approach. The
vehicle is represented through the exploitation of the
information regarding instantaneous speed and acceleration to
compute the power needed by the battery at each timestep.
Higher-order dynamics are neglected. Considering the single-
speed transmission of the model, the torque 𝑇𝐸𝑀, required at the
electric machine to overcome the resistive load of the road and
accelerate the vehicle, is obtained as:

 𝑇𝐸𝑀 =
𝑇𝑂𝑈𝑇

𝜂𝑡𝑟𝑎𝑛𝑠𝑚
𝑠𝑖𝑔𝑛(𝑇𝑂𝑈𝑇)

/𝜏𝑓𝑖𝑛 ()

where 𝜏𝑓𝑖𝑛 is the final drive ratio of the vehicle, 𝜂𝑡𝑟𝑎𝑛𝑠𝑚 is

the transmission efficiency and 𝑇𝑂𝑈𝑇 is the sum of the inertial
torque, road slope and road load torque, which is the overall
requested torque at the transmission’s outlet:

 𝑇𝑂𝑈𝑇 = 𝑚 ∙ 𝑔 ∙ 𝑠𝑖𝑛⁡(𝛼) ∙ 𝑟𝑤 +𝑚 ∙ 𝑎 ∙ 𝑟𝑤 + 𝑇𝑅𝐿 ()

 𝑇𝑅𝐿 = (𝑅𝐿𝐴 + 𝑅𝐿𝐵 ∙ 𝑣 + 𝑅𝐿𝐶 ⁡ ∙ 𝑣
2) ∙ 𝑟𝑤 ()

where 𝑅𝐿𝐴, 𝑅𝐿𝐵 , 𝑅𝐿𝐶 are the three road load coefficients
which model the road resistance; 𝑟𝑤 is the wheel radius; 𝛼 is the
road inclination; 𝑔 is the gravity acceleration; ⁡𝑚, 𝑣 and 𝑎 are
the mass, velocity and acceleration of the vehicle. When the
torque requested to the electric machine is known, the battery
power request can be computed as the aforementioned torque
times the angular velocity of the electric machine. Its power
losses and the power required by the auxiliaries are also
included. Finally, the following equations have been used to
represent the behaviour of the battery. The Rint model allows to
calculate the current flow through the battery and the

instantaneous change in the State Of Charge (𝑆𝑂̇𝐶):

 𝐼𝑏𝑎𝑡𝑡 =
𝑉𝑏𝑎𝑡𝑡−√𝑉𝑏𝑎𝑡𝑡

2 −4𝑅𝑏𝑎𝑡𝑡𝑃𝑏𝑎𝑡𝑡

2𝑅𝑏𝑎𝑡𝑡
 ()

 𝑆𝑂̇𝐶 =
𝐼𝑏𝑎𝑡𝑡

𝑄𝑏𝑎𝑡𝑡∙∆𝑡
 ()

Where 𝐼𝑏𝑎𝑡𝑡 is the current flowing in the battery, 𝑉𝑏𝑎𝑡𝑡 and
𝑅𝑏𝑎𝑡𝑡 are its open-circuit voltage and internal resistance, 𝑄𝑏𝑎𝑡𝑡
and Δt are the battery maximum capacity in ampere-seconds and
the timestep.

B. DDPG algorithm

RL algorithms train the decision-maker, the agent, in order
to obtain an optimal policy in an external environment through
a trial and error learning process. At a general time step 𝑡, the
environment is characterized by an observable state 𝑠: the agent
takes an action 𝑎 and receives a reward r that tells the agent how
good the action taken for that particular state 𝑠 is. The main
objective of RL agents is to maximize the sum of rewards
obtained during the driving mission. Since the agent learns
directly from the interaction with the environment, as opposed
to Supervised Learning, no prior data is required before starting
the training process which lasts Emax episodes. The latter was set
to 2000. The DDPG algorithm [14] used in this work is derived
from the simpler Q-learning. The agent tries to estimate the
action-value 𝑄(𝑠, 𝑎) of the tuples state-action that is defined by
the estimate of the discounted sum of rewards, also called
discounted return. The discount factor 𝛾 is set to 0.99. Some
Deep Reinforcement Learning (DRL) algorithms, such as
DDPG, estimate the Q-values through deep neural networks
(NN), function approximators, solving the problem of
discretization of variables that affects tabular Q-learning. In
particular, DDPG is an actor-critic algorithm that allows the use
of continuous action and state spaces. The agent is made of four

different simple feed-forward neural networks: two actors 𝜇 and
two critics 𝑄 characterized by their respective weights 𝜃𝜇 and
𝜃𝑄. Each net contains a single hidden layer with 64 neurons. The
Rectified Linear Unit (ReLU) activation function was used. The
output of actor networks is the action given the input state, while
the critic nets allow obtaining the estimates of Q values to a
particular state and action. It is necessary to use the target actor
𝜇𝑡 and critic 𝑄𝑡 networks in order to achieve stability of Q-
values that could otherwise diverge. Their weights 𝜃𝜇𝑡 and 𝜃𝑄𝑡 ,
at first initialized equal to 𝜃𝜇 and 𝜃𝑄 respectively, are updated
every episode using soft target update. The complex problem
typical of RL algorithms of balancing exploration and
exploitation is managed by adding Gaussian noise with mean
and standard deviation respectively of 0 and 0.1. Another
significant ingredient in the DDPG algorithm is the experience
replay memory where the data needed to update neural network
parameters during training are stored. In every time step, the
replay memory of capacity N receives and stores a tuple (𝑠, 𝑎,
𝑟, 𝑠′) containing the current state 𝑠, the current action a, the
presently obtained reward r and the next state 𝑠′ of the
environment. For every training iteration, a batch of 𝑛 random
tuples are sampled from the memory and are used to train the
critic and actor networks through the respective loss functions
𝐿𝑐 and 𝐿𝑎:

 𝑦 = (𝑟 + 𝛾𝑄𝑡(𝑠
′, 𝜇𝑡(𝑠

′|𝜃𝜇𝑡)|𝜃𝑄𝑡) ()

 𝐿𝑐 =
1

𝑛
∑ (𝑦 − 𝑄(𝑠, 𝑎|𝜃𝑄))2𝑛
𝑖=1 ()

 𝐿𝑎 =
1

𝑛
∑ 𝑄(𝑠, 𝜇(𝑠))𝑛
𝑖=1 ()

The general framework of the DDPG algorithm is shown in
TABLE I.

TABLE I. DDPG ALGORITHM FRAMEWORK

Algorithm 1 DDPG Algorithm

1: Select the driving cycle of the Lead vehicle

2: Randomly initialize critic and action network parameters

3: Initialize experience replay memory

4: Initialize target networks

5: for episode =1 to Emax do

6: Receive initial state

7: for t = 1 to time length of the driving cycle T do

8: Output action from the actor network and add a random noise

for action exploration

9: Execute action a and observe reward r, new state s’ from the

vehicle model

10: Store the tuple (s,a,r,s’) in the replay memory

11: Sample a random minibatch of n tuples from the replay

memory

12: Update critic networks parameters by minimizing Lc

13: Update actor networks parameters by minimizing La

14: Update the target networks parameters

15: end for

16: end for

III. CONTROL STRATEGY

The driving scenario of this work comprehends two vehicles
travelling in the same direction on a straight road. For simplicity,
the driving cycles are considered without slope. The follower
vehicle, called Ego, receives information about the other
vehicle, called Lead. In this work, we make the strong
assumption that the information regarding the Lead are acquired
by the Ego instantaneously and without any error since the main
focus of the paper is to show the potential of DRL techniques to
achieve good results in energy savings and comfort. So, the Lead
velocity, acceleration and inter-vehicle distance are passed to the
DRL agent together with the information of the Ego. In this
work, the authors choose the following state variables
observable from the environment: the velocity of the Ego
vehicle, the velocity and acceleration of the Lead vehicle and the
IVD. This amount of input data allows the agent to have every
important information to achieve the desired objectives. The
choice of a large number of state variables is possible thanks to
the use of deep neural networks which can take several inputs.
The main objectives of the RL agent are to obtain maximum
energy saving and guarantee comfortable driving conditions for
the driver, satisfying pre-imposed inter-vehicle distance limits.
The minimum and maximum acceptable IVD are taken from the
literature [6] in order to guarantee safety requirements and stable
wireless V2V communication. Since the tested driving cycles
are mainly urban the maximum IVD is 100m. In this work, due
to the high adopted time step of 1 second, the jerk, calculated as
the difference between the acceleration at the present time step
and acceleration at the previous time step, would be physically
far from the derivative of acceleration. For that reason, the root
mean square of acceleration is chosen as the comfort variable
that the agent tries to minimize. In order to achieve the
aforementioned objectives, the following reward function is
implemented:

 𝑟 =
𝑤𝑑𝑟𝑑+𝑤𝑆𝑂𝐶𝑟𝑆𝑂𝐶+𝑤𝑎𝑐𝑐𝑟𝑎𝑐𝑐

𝑤𝑑+𝑤𝑆𝑂𝐶+𝑤𝑎𝑐𝑐
 ()

The three terms of the reward are useful to meet different
tasks and all have a value between -1 and 1: 𝑟𝑑 is necessary to
control the inter-vehicle distance, which has to be maintained
between the chosen limits; 𝑟𝑆𝑂𝐶 is useful to reduce the energy
consumption of the battery; 𝑟𝑎𝑐𝑐 is introduced to guarantee
comfortable driving conditions. Their respective weight
coefficients 𝑤𝑑 , ⁡𝑤𝑆𝑂𝐶 , 𝑤𝑎𝑐𝑐 allow choosing which objective is
privileged. These weights are initially set to 1, future analysis
should consider their tuning in order to obtain a weighted
average rather than the arithmetical one. 𝑟𝑑 is shaped as a simple
linear function giving a lower reward when the distance is closer
to distance limits. Moreover, if the distance between the two
vehicles goes beyond the chosen limits, the simulation is
stopped and the agent receives a negative reward equal to -100.
Such a penalty is given in order to make the agent understand to
completely avoid those conditions. After such an event a new
episode is restarted from the same starting conditions of the
chosen driving cycle. Regarding the shape of the three terms of
the reward function, the most interesting ones are 𝑟𝑎𝑐𝑐 and 𝑟𝑆𝑂𝐶 :
𝑟𝑎𝑐𝑐 is shaped as a quadratic function of the acceleration of Ego
(𝑎𝑐𝑐𝐸𝑔𝑜) with proper weight 𝑏 and 𝑐 (in this paper 𝑏=1 and

𝑐=2) since the objective is the minimization of the rms of
acceleration, whereas 𝑟𝑆𝑂𝐶 has the innovative concept of using
the variable 𝑧, a function of SOC:

 𝑧 =
𝑆𝑂𝐶𝐸𝑔𝑜−𝑆𝑂𝐶𝐿𝑒𝑎𝑑

𝑆𝑂𝐶𝑖𝑛−𝑆𝑂𝐶𝐿𝑒𝑎𝑑
 ()

 𝑟𝑆𝑂𝐶 =
𝑧

𝑎
 ()

 𝑟𝑎𝑐𝑐 = 𝑏 − 𝑐 ∙
𝑎𝑐𝑐𝐸𝑔𝑜

2

max⁡(𝑎𝑐𝑐𝐸𝑔𝑜
2)

 ()

where 𝑆𝑂𝐶𝐸𝑔𝑜 is the state of charge of the Ego vehicle at the

current time step, 𝑆𝑂𝐶𝑖𝑛 is the SOC of Ego before starting the
driving mission, while 𝑆𝑂𝐶𝐿𝑒𝑎𝑑 is a fictitious variable equal to
the SOC that the Ego vehicle would have if it maintained the
same velocity as the Lead vehicle for the whole driving cycle.
The term 𝑧 represents the percentage of energy savings
achieved; 𝑎 is a constant representing the percentage of energy
savings desired and its value was set to 5%. Further analysis is
required in order to understand the influence of this parameter
on final results. The reward 𝑟𝑆𝑂𝐶 is then clipped between -1 and
1 in order to achieve agent stability. This form of reward allows
to achieve an adaptive control which autonomously adapts to the
driving cycle. If we had used a more intuitive function such as
𝑟𝑆𝑂𝐶 = 1 − 2 ∙ ∆𝑆𝑂𝐶/∆𝑆𝑂𝐶𝑚𝑎𝑥, function of the change of 𝑆𝑂𝐶
in a single time interval (∆𝑆𝑂𝐶) we should have carefully
changed ∆𝑆𝑂𝐶𝑚𝑎𝑥 to achieve optimal energy savings in
different cycles.

IV. RESULTS

In order to test the adaptive capability of the algorithm, the
agent has been trained on different standard driving cycles:
Artemis Urban Driving Cycle (AUDC), Urban Dynamometer
Driving Schedule (UDDS) and the first 388 seconds of

Fig. 1 Real -world driving cycles

Worldwide Harmonized Light Vehicles Test Procedure
(WLTP). DDPG is also trained on two different real-world
driving cycles as Cycle 1 (RC1) and Cycle 2 (RC2), that Fig.1
shows. The chosen driving cycles are mainly urban because it
has been proved in previous works that more significant energy
savings can be achieved in urban driving cycles with the
hypothesis of neglecting the air drag effect. In this study,
different simulations have been carried out: in each simulation,
the Lead vehicle follows a chosen driving cycle and the agent
learns the optimal acceleration policy of the Ego vehicle through
the training process. As previously mentioned, the agent tries
and evaluates new actions thanks to the exploration noise added
to the action.

For Deep RL algorithms the discounted return and the
training loss of the neural networks are two of the most
important indicators to analyse how effective the training phase
was. Fig.2 clearly shows how the agent correctly learns to
achieve higher discounted return as the training progresses for
the UDDS cycle. It is interesting to notice that the discounted
return at the beginning of the first 200 episodes is very close to
-100. This is due to the fact that in this first phase of training the
agent is not able to maintain the Ego vehicle between the
imposed distance limits and the episode concludes with the
penalty reward of -100. Moreover, as shown in the second
subplot of Fig.2, the training loss of the critic neural network
correctly decreases, demonstrating a progressively more
accurate estimate of the Q-values. Therefore, as the training
progresses, the agent improves the learned policy. This result is
demonstrated also by the energy savings and acceleration rms
reduction of the Ego with respect to the Lead, expressed as
percentage values, as shown in Fig.3. As the energy savings
increases alongside the number of episodes, the reduction of rms
of acceleration correctly presents a similar trend. For the sake of
clarity, in this representation, the episodes stopped before the
end of the cycle are not represented at all. It’s interesting to
notice that, since the UDDS cycle is characterized by a wider
range of velocity and is longer than the other driving cycles, the
number of excluded episodes is close to 900 and higher than
other simulations. For simpler driving cycles, the distance-

related limits are indeed easier to be satisfied and therefore the
number of not completed episodes is lower.

As a final result, at the end of the training the agent is tested
on the same driving cycle with pure exploitation by removing
the exploration noise. The agent proves to achieve significant
energy savings for different driving missions, enhancing
comfort conditions and guaranteeing that the IVD is maintained
between the chosen limits. Fig.4 shows the velocity profiles of
the Ego and Lead vehicles generated after the training of the
agent on UDDS. Since stop-and-go waves deeply affect the fuel
economy [15], the agent correctly tries to minimize the number
of times the Ego vehicle stops.

Furthermore, in order to demonstrate the adaptability of the
algorithm to conditions never seen during training, the agent
previously trained on a particular driving cycle is tested on
driving cycles different from the one of training. The percentage

Fig. 2 Rms of acceleration and SOC savings of training episodes for UDDS Fig. 2 Discounted return and training loss of training episodes for UDDS

Fig. 3 Rms of acceleration savings and SOC savings of training episodes for

UDDS

Fig. 4 Velocity of Ego and Lead vehicles for UDDS

SOC savings and acceleration rms reduction of Ego with respect
to the Lead for all the simulations are listed in Table I. As shown
by the numerical results, the agent is able to generalize the
training and achieve significant energy savings also on driving
cycles never seen before. As expected, when the agent is trained
on a complex and long cycle, it efficiently performs on simpler
driving cycles of test. For instance, Fig.5 displays both SOC and
comfort advantages for the Ego when the agent is trained on
UDDS and tested on the WLTP (388s). Moreover, the agent is
surprisingly able to conclude some test driving cycles that are
more complex than the training one. For example, the agent
trained on the WLTP (388s) cycle can conclude the UDDS
which is characterized by a higher maximum velocity and is
longer. However, when the agent is trained on WLTP (388s)
and tested on the RC1, the Ego can’t reach the end of the cycle
because of the IVD limits as shown in Fig.6, since the velocity
of 20m/s of RC1 is never encountered during WLTP (388s). We
can generally conclude that it’s better to train the DDPG agent
on complex and long cycles in order to let the agent learn how
to properly act in front of a wide variety of velocities and
accelerations of the Lead vehicle.

TABLE II. RESULTS

Training

cycle
Test cycle

SOC savings

(%)

Rms acc

savings (%)

WLTP (388s)

WLTP (388s) 2.3 20

UDDS 2.3 5

AUDC 2.8 12

RC1 - -

RC2 1.2 20

UDDS

WLTP (388s) 2.5 20

UDDS 3.5 26

AUDC 4.1 25

RC1 1.5 2

RC2 1.8 26

AUDC

WLTP (388s) 2.8 18

UDDS 3.2 22

AUDC 4.2 25

RC1 0.5 5

RC2 1.5 13

RC1

WLTP (388s) 1.0 1

UDDS 2.7 13

AUDC 2.6 17

RC1 1.0 18

RC2 0.5 17

RC2

WLTP (388s) 2.3 8

UDDS 2.1 3

AUDC 2.5 8

RC1 1.1 -5

RC2 1.8 15

V. CONCLUSIONS AND FUTURE WORKS

In this paper, the authors address the problem of

acceleration control for an Ego vehicle which is following a

Lead vehicle on a straight road. The main objective of this work

is to show the potential of DRL algorithms to achieve significant

energy savings for the Ego vehicle, enhancing comfort

conditions. The first main innovative contribution of this work

is the use of a DDPG agent with the main objective of obtaining

energy savings, still guaranteeing safe driving conditions.

Moreover, the use of an adaptive multi-objective reward

function able to achieve good results on different driving cycles

without the necessity of tuning parameters is enabled thanks to

the creation of a fictitious variable, reproducing the SOC that the

Ego vehicle would have if it had the same velocity profile of the

Fig. 6 Results of testing the agent, trained on WLTP (388s), on RC1

Fig. 5 Results of testing the agent, trained on UDDS, on WLTP (338s)

Lead. The agent is trained and tested on different standard

driving cycles such as WLTP, UDDS and AUDC and two real-

world driving cycles, achieving good results and showing great

adaptability also to conditions not seen during training. The

main limitations of the work are related to the simple driving

scenario and to the idealistic approximations which were made

in order to keep the problem simpler. Possible future work might

be building a high-fidelity simulation model of the vehicle,

allowing also steering actions and including errors or delays in

the signals sent in the V2V communication.

ACKNOWLEDGEMENT

This research work was developed in the framework of the
activities of the Interdepartmental Center for Automotive
Research and Sustainable mobility (CARS) at Politecnico di
Torino.

REFERENCES

[1] J. van Brummelen, M. O’Brien, D. Gruyer, and H. Najjaran,
“Autonomous vehicle perception: The technology of today and

tomorrow,” Transportation Research Part C: Emerging Technologies,

vol. 89. Elsevier Ltd, pp. 384–406, Apr. 01, 2018. doi:
10.1016/j.trc.2018.02.012.

[2] Z. Wang, G. Wu, and M. J. Barth, A Review on Cooperative Adaptive

Cruise Control (CACC) Systems: Architectures, Controls, and
Applications; A Review on Cooperative Adaptive Cruise Control

(CACC) Systems: Architectures, Controls, and Applications. 2018.

doi: 10.0/Linux-x86_64.
[3] A. Alam, A. Gattami, K. H. Johansson, and C. J. Tomlin,

“Guaranteeing safety for heavy duty vehicle platooning: Safe set

computations and experimental evaluations,” Control Engineering
Practice, vol. 24, no. 1, pp. 33–41, 2014, doi:

10.1016/j.conengprac.2013.11.003.

[4] A. Vahidi and A. Sciarretta, “Energy saving potentials of connected

and automated vehicles,” Transportation Research Part C: Emerging

Technologies, vol. 95. Elsevier Ltd, pp. 822–843, Oct. 01, 2018. doi:

10.1016/j.trc.2018.09.001.
[5] W. D. Connor, Y. Wang, A. A. Malikopoulos, S. G. Advani, and A.

K. Prasad, “Impact of Connectivity on Energy Consumption and

Battery Life for Electric Vehicles,” IEEE Transactions on Intelligent
Vehicles, vol. 6, no. 1, pp. 14–23, Mar. 2021, doi:

10.1109/TIV.2020.3032642.

[6] M. Spano, P. G. Anselma, A. Musa, D. A. Misul, and G. Belingardi,
“Optimal real-time velocity planner of a battery electric vehicle in

V2V driving,” in 2021 IEEE Transportation Electrification

Conference and Expo, ITEC 2021, Jun. 2021, pp. 194–199. doi:
10.1109/ITEC51675.2021.9490121.

[7] T. Stanger and L. del Re, “A model predictive Cooperative Adaptive

Cruise Control approach,” in Proceedings of the American Control
Conference, 2013, pp. 1374–1379. doi: 10.1109/acc.2013.6580028.

[8] Y. Lin, J. McPhee, and N. L. Azad, “Comparison of Deep

Reinforcement Learning and Model Predictive Control for Adaptive
Cruise Control,” IEEE Transactions on Intelligent Vehicles, vol. 6,

no. 2, pp. 221–231, Jun. 2021, doi: 10.1109/TIV.2020.3012947.

[9] Y. Wu, H. Tan, J. Peng, H. Zhang, and H. He, “Deep reinforcement
learning of energy management with continuous control strategy and

traffic information for a series-parallel plug-in hybrid electric bus,”

Applied Energy, vol. 247, pp. 454–466, Aug. 2019, doi:
10.1016/j.apenergy.2019.04.021.

[10] C. Desjardins and B. Chaib-Draa, “Cooperative adaptive cruise

control: A reinforcement learning approach,” IEEE Transactions on
Intelligent Transportation Systems, vol. 12, no. 4, pp. 1248–1260,

Dec. 2011, doi: 10.1109/TITS.2011.2157145.

[11] M. Li, Z. Cao, and Z. Li, “A Reinforcement Learning-Based Vehicle
Platoon Control Strategy for Reducing Energy Consumption in

Traffic Oscillations,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 32, no. 12, pp. 5309–5322, Dec. 2021, doi:

10.1109/TNNLS.2021.3071959.

[12] M. Zhu, Y. Wang, Z. Pu, J. Hu, X. Wang, and R. Ke, “Safe, Efficient,
and Comfortable Velocity Control based on Reinforcement Learning

for Autonomous Driving,” Jan. 2019, doi:

10.1016/j.trc.2020.102662.
[13] United States Environmental Protection Agency, “Data on Cars used

for Testing Fuel Economy.”

[14] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” Sep. 2015, [Online]. Available:

http://arxiv.org/abs/1509.02971

[15] R. E. Stern et al., “Dissipation of stop-and-go waves via control of

autonomous vehicles: Field experiments,” Transportation Research

Part C: Emerging Technologies, vol. 89, pp. 205–221, Apr. 2018, doi:

10.1016/j.trc.2018.02.005.

