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Abstract— The transportation sector is seeing the flourishing 

of one of the most interesting technologies, autonomous driving 

(AD). In particular, Cooperative Adaptive Cruise Control 

(CACC) systems ensure higher levels both of safety and comfort, 

enhancing at the same time the reduction of energy consumption. 

In this framework a real-time velocity planner for a Battery 

Electric Vehicle, based on a Deep Reinforcement Learning 

algorithm called Deep Deterministic Policy Gradient (DDPG), has 

been developed, aiming at maximizing energy savings, and 

improving comfort, thanks to the exchange of information on 

distance, speed and acceleration through the exploitation of 

vehicle-to-vehicle technology (V2V). The aforementioned DDPG 

algorithm relies on a multi-objective reward function that is 

adaptive to different driving cycles. The simulation results show 

how the agent can obtain good results on standard cycles, such as 

WLTP, UDDS and AUDC, and on real-world driving cycles. 

Moreover, it displays great adaptability to driving cycles different 

from the training one. 

 

Keywords— Cooperative Adaptive Cruise Control, V2V, Deep 

Reinforcement Learning, DDPG, Battery Electric Vehicle 

I. INTRODUCTION  

Advanced driver assistance systems (ADASs) are promising 
technologies to meet the crucial need of increasing safety, 
comfort and, potentially, energy savings. Among ADASs 
technologies [1], cooperative adaptive cruise control (CACC)[2] 
enables the Ego vehicle to maintain a certain speed and to satisfy 
other constraints such as the appropriate distance between 
vehicles. This feature is empowered by communication between 
the vehicle and the environment (V2X). Among the presented 
systems, the vehicle-to-vehicle (V2V) interaction considers the 
Ego vehicle in a car-following scenario, receiving information 
in terms of speed and acceleration from the vehicle ahead. The 
benefits that can be achieved by exploiting the aforementioned 
information for the control strategy of the Ego, are significant 
for both comfort and energy saving. Although several works are 
focused on guaranteeing comfort and keeping a safe inter-
vehicle distance (IVD) [3],  relatively few of them concentrated 
their attention on the promising energy-saving potential for 

connected vehicles [4]. There are a variety of algorithms that can 
be applied to the problem to obtain optimal results with CACC. 
Firstly, global optimization could be achieved through dynamic 
programming (DP) [5] which is generally used as a benchmark 
for energy management strategies, although is not applicable 
online. To achieve a real-time control strategy, one of the most 
effective methods is the Equivalent Consumption Minimization 
Strategy (ECMS)[6]. Moreover, in several works Model 
Predictive Control (MPC) [7] [8]has been suggested as one of 
the most promising solutions to CACC problems. In the last 
years, the innovations made in the field of Reinforcement 
Learning (RL) have allowed researchers to achieve surprising 
results in energy management problems [9]. Recently, Deep RL 
algorithms have been applied to this field to surpass the curse of 
dimensionality typical of Q-learning and DP due to the 
discretization of large and continuous state and action spaces 
[10] [11]. The main goal of this paper is to show the efficacy of 
the DDPG, a Deep RL algorithm, for optimal acceleration 
control of an Ego electric vehicle (EV), not only to enhance 
comfort conditions as in previous work [12], but also to achieve 
energy savings objective in both standard and real-world driving 
cycles. 

II. VEHICLE MODEL AND DDPG ALGORITHM 

A. Vehicle model 

The vehicle model, considered for this study, refers to a 
Battery Electric Vehicle (BEV) [6], whose data are found in the 
literature [13] and is developed in Python. The vehicle’s 
behaviour is represented through a quasi-static approach. The 
vehicle is represented through the exploitation of the 
information regarding instantaneous speed and acceleration to 
compute the power needed by the battery at each timestep. 
Higher-order dynamics are neglected. Considering the single-
speed transmission of the model, the torque 𝑇𝐸𝑀, required at the 
electric machine to overcome the resistive load of the road and 
accelerate the vehicle, is obtained as: 

 𝑇𝐸𝑀 =
𝑇𝑂𝑈𝑇

𝜂𝑡𝑟𝑎𝑛𝑠𝑚
𝑠𝑖𝑔𝑛(𝑇𝑂𝑈𝑇)

/𝜏𝑓𝑖𝑛 () 



where 𝜏𝑓𝑖𝑛 is the final drive ratio of the vehicle, 𝜂𝑡𝑟𝑎𝑛𝑠𝑚 is 

the transmission efficiency and 𝑇𝑂𝑈𝑇  is the sum of the inertial 
torque, road slope and road load torque, which is the overall 
requested torque at the transmission’s outlet: 

 𝑇𝑂𝑈𝑇 = 𝑚 ∙ 𝑔 ∙ 𝑠𝑖𝑛⁡(𝛼) ∙ 𝑟𝑤 +𝑚 ∙ 𝑎 ∙ 𝑟𝑤 + 𝑇𝑅𝐿  () 

 𝑇𝑅𝐿 = (𝑅𝐿𝐴 + 𝑅𝐿𝐵 ∙ 𝑣 + 𝑅𝐿𝐶 ⁡ ∙ 𝑣
2) ∙ 𝑟𝑤  () 

where 𝑅𝐿𝐴, 𝑅𝐿𝐵 , 𝑅𝐿𝐶  are the three road load coefficients 
which model the road resistance; 𝑟𝑤 is the wheel radius; 𝛼 is the 
road inclination; 𝑔 is the gravity acceleration; ⁡𝑚, 𝑣 and 𝑎 are 
the mass, velocity and acceleration of the vehicle. When the 
torque requested to the electric machine is known, the battery 
power request can be computed as the aforementioned torque 
times the angular velocity of the electric machine. Its power 
losses and the power required by the auxiliaries are also 
included. Finally, the following equations have been used to 
represent the behaviour of the battery. The Rint model allows to 
calculate the current flow through the battery and the 

instantaneous change in the State Of Charge (𝑆𝑂̇𝐶): 

 𝐼𝑏𝑎𝑡𝑡 =
𝑉𝑏𝑎𝑡𝑡−√𝑉𝑏𝑎𝑡𝑡

2 −4𝑅𝑏𝑎𝑡𝑡𝑃𝑏𝑎𝑡𝑡

2𝑅𝑏𝑎𝑡𝑡
 () 

 𝑆𝑂̇𝐶 =
𝐼𝑏𝑎𝑡𝑡

𝑄𝑏𝑎𝑡𝑡∙∆𝑡
 () 

Where 𝐼𝑏𝑎𝑡𝑡 is the current flowing in the battery, 𝑉𝑏𝑎𝑡𝑡 and 
𝑅𝑏𝑎𝑡𝑡 are its open-circuit voltage and internal resistance, 𝑄𝑏𝑎𝑡𝑡 
and Δt are the battery maximum capacity in ampere-seconds and 
the timestep. 

B. DDPG algorithm 

RL algorithms train the decision-maker, the agent, in order 
to obtain an optimal policy in an external environment through 
a trial and error learning process. At a general time step 𝑡, the 
environment is characterized by an observable state 𝑠: the agent 
takes an action 𝑎 and receives a reward r that tells the agent how 
good the action taken for that particular state 𝑠  is. The main 
objective of RL agents is to maximize the sum of rewards 
obtained during the driving mission. Since the agent learns 
directly from the interaction with the environment, as opposed 
to Supervised Learning, no prior data is required before starting 
the training process which lasts Emax episodes. The latter was set 
to 2000. The DDPG algorithm [14] used in this work is derived 
from the simpler Q-learning. The agent tries to estimate the 
action-value 𝑄(𝑠, 𝑎) of the tuples state-action that is defined by 
the estimate of the discounted sum of rewards, also called 
discounted return. The discount factor 𝛾  is set to 0.99. Some 
Deep Reinforcement Learning (DRL) algorithms, such as 
DDPG, estimate the Q-values through deep neural networks 
(NN), function approximators, solving the problem of 
discretization of variables that affects tabular Q-learning. In 
particular, DDPG is an actor-critic algorithm that allows the use 
of continuous action and state spaces. The agent is made of four 

different simple feed-forward neural networks: two actors 𝜇 and 
two critics 𝑄 characterized by their respective weights 𝜃𝜇  and 
𝜃𝑄. Each net contains a single hidden layer with 64 neurons. The 
Rectified Linear Unit (ReLU) activation function was used. The 
output of actor networks is the action given the input state, while 
the critic nets allow obtaining the estimates of Q values to a 
particular state and action. It is necessary to use the target actor 
𝜇𝑡  and critic 𝑄𝑡   networks in order to achieve stability of Q-
values that could otherwise diverge. Their weights 𝜃𝜇𝑡  and 𝜃𝑄𝑡 , 
at first initialized equal to 𝜃𝜇 and 𝜃𝑄 respectively, are updated 
every episode using soft target update. The complex problem 
typical of RL algorithms of balancing exploration and 
exploitation is managed by adding Gaussian noise with mean 
and standard deviation respectively of 0 and 0.1. Another 
significant ingredient in the DDPG algorithm is the experience 
replay memory where the data needed to update neural network 
parameters during training are stored. In every time step, the 
replay memory of capacity N receives and stores a tuple (𝑠, 𝑎, 
𝑟, 𝑠′) containing the current state 𝑠, the current action a, the 
presently obtained reward r and the next state 𝑠′  of the 
environment. For every training iteration, a batch of 𝑛 random 
tuples are sampled from the memory and are used to train the 
critic and actor networks through the respective loss functions 
𝐿𝑐 and 𝐿𝑎:  

 𝑦 = (𝑟 + 𝛾𝑄𝑡(𝑠
′, 𝜇𝑡(𝑠

′|𝜃𝜇𝑡)|𝜃𝑄𝑡) () 

 𝐿𝑐 =
1

𝑛
∑ (𝑦 − 𝑄(𝑠, 𝑎|𝜃𝑄))2𝑛
𝑖=1  () 

 𝐿𝑎 =
1

𝑛
∑ 𝑄(𝑠, 𝜇(𝑠))𝑛
𝑖=1  () 

The general framework of the DDPG algorithm is shown in 
TABLE  I. 

TABLE  I. DDPG ALGORITHM FRAMEWORK 

Algorithm 1 DDPG Algorithm 

1: Select the driving cycle of the Lead vehicle 

2: Randomly initialize critic and action network parameters 

3: Initialize experience replay memory  

4: Initialize target networks  

5: for episode =1 to Emax do  

6:     Receive initial state  

7:     for t = 1 to time length of the driving cycle T do 

8:         Output action from the actor network and add a random noise 

for action exploration 

9:         Execute action a and observe reward r, new state s’ from the 

vehicle model 

10:          Store the tuple (s,a,r,s’) in the replay memory  

11:          Sample a random minibatch of n tuples from the replay 

memory 

12:          Update critic networks parameters by minimizing Lc 

13:          Update actor networks parameters by minimizing La 

14:          Update the target networks parameters 

15: end for  

16: end for 



III. CONTROL STRATEGY 

The driving scenario of this work comprehends two vehicles 
travelling in the same direction on a straight road. For simplicity, 
the driving cycles are considered without slope. The follower 
vehicle, called Ego, receives information about the other 
vehicle, called Lead. In this work, we make the strong 
assumption that the information regarding the Lead are acquired 
by the Ego instantaneously and without any error since the main 
focus of the paper is to show the potential of DRL techniques to 
achieve good results in energy savings and comfort. So, the Lead 
velocity, acceleration and inter-vehicle distance are passed to the 
DRL agent together with the information of the Ego. In this 
work, the authors choose the following state variables 
observable from the environment: the velocity of the Ego 
vehicle, the velocity and acceleration of the Lead vehicle and the 
IVD. This amount of input data allows the agent to have every 
important information to achieve the desired objectives. The 
choice of a large number of state variables is possible thanks to 
the use of deep neural networks which can take several inputs. 
The main objectives of the RL agent are to obtain maximum 
energy saving and guarantee comfortable driving conditions for 
the driver, satisfying pre-imposed inter-vehicle distance limits. 
The minimum and maximum acceptable IVD are taken from the 
literature [6] in order to guarantee safety requirements and stable 
wireless V2V communication. Since the tested driving cycles 
are mainly urban the maximum IVD is 100m. In this work, due 
to the high adopted time step of 1 second, the jerk, calculated as 
the difference between the acceleration at the present time step 
and acceleration at the previous time step, would be physically 
far from the derivative of acceleration. For that reason, the root 
mean square of acceleration is chosen as the comfort variable 
that the agent tries to minimize. In order to achieve the 
aforementioned objectives, the following reward function is 
implemented: 

 𝑟 =
𝑤𝑑𝑟𝑑+𝑤𝑆𝑂𝐶𝑟𝑆𝑂𝐶+𝑤𝑎𝑐𝑐𝑟𝑎𝑐𝑐

𝑤𝑑+𝑤𝑆𝑂𝐶+𝑤𝑎𝑐𝑐
 () 

The three terms of the reward are useful to meet different 
tasks and all have a value between -1 and 1: 𝑟𝑑 is necessary to 
control the inter-vehicle distance, which has to be maintained 
between the chosen limits; 𝑟𝑆𝑂𝐶  is useful to reduce the energy 
consumption of the battery; 𝑟𝑎𝑐𝑐  is introduced to guarantee 
comfortable driving conditions. Their respective weight 
coefficients 𝑤𝑑 , ⁡𝑤𝑆𝑂𝐶 , 𝑤𝑎𝑐𝑐 allow choosing which objective is 
privileged. These weights are initially set to 1, future analysis 
should consider their tuning in order to obtain a weighted 
average rather than the arithmetical one. 𝑟𝑑 is shaped as a simple 
linear function giving a lower reward when the distance is closer 
to distance limits. Moreover, if the distance between the two 
vehicles goes beyond the chosen limits, the simulation is 
stopped and the agent receives a negative reward equal to -100. 
Such a penalty is given in order to make the agent understand to 
completely avoid those conditions. After such an event a new 
episode is restarted from the same starting conditions of the 
chosen driving cycle. Regarding the shape of the three terms of 
the reward function, the most interesting ones are 𝑟𝑎𝑐𝑐 and 𝑟𝑆𝑂𝐶 :  
𝑟𝑎𝑐𝑐 is shaped as a quadratic function of the acceleration of Ego 
(𝑎𝑐𝑐𝐸𝑔𝑜 ) with proper weight 𝑏  and 𝑐  (in this paper 𝑏=1 and 

𝑐=2) since the objective is the minimization of the rms of 
acceleration, whereas 𝑟𝑆𝑂𝐶  has the innovative concept of using 
the variable 𝑧, a function of SOC:  

 𝑧 =
𝑆𝑂𝐶𝐸𝑔𝑜−𝑆𝑂𝐶𝐿𝑒𝑎𝑑

𝑆𝑂𝐶𝑖𝑛−𝑆𝑂𝐶𝐿𝑒𝑎𝑑
 () 

 𝑟𝑆𝑂𝐶 =
𝑧

𝑎
 () 

 𝑟𝑎𝑐𝑐 = 𝑏 − 𝑐 ∙
𝑎𝑐𝑐𝐸𝑔𝑜

2

max⁡(𝑎𝑐𝑐𝐸𝑔𝑜
2 )

 () 

where 𝑆𝑂𝐶𝐸𝑔𝑜 is the state of charge of the Ego vehicle at the 

current time step, 𝑆𝑂𝐶𝑖𝑛 is the SOC of Ego before starting the 
driving mission, while 𝑆𝑂𝐶𝐿𝑒𝑎𝑑  is a fictitious variable equal to 
the SOC that the Ego vehicle would have if it maintained the 
same velocity as the Lead vehicle for the whole driving cycle. 
The term 𝑧  represents the percentage of energy savings 
achieved; 𝑎 is a constant representing the percentage of energy 
savings desired and its value was set to 5%. Further analysis is 
required in order to understand the influence of this parameter 
on final results. The reward  𝑟𝑆𝑂𝐶  is then clipped between -1 and 
1 in order to achieve agent stability. This form of reward allows 
to achieve an adaptive control which autonomously adapts to the 
driving cycle. If we had used a more intuitive function such as 
𝑟𝑆𝑂𝐶 = 1 − 2 ∙ ∆𝑆𝑂𝐶/∆𝑆𝑂𝐶𝑚𝑎𝑥, function of the change of 𝑆𝑂𝐶 
in a single time interval (∆𝑆𝑂𝐶)  we should have carefully 
changed ∆𝑆𝑂𝐶𝑚𝑎𝑥  to achieve optimal energy savings in 
different cycles.  

IV. RESULTS 

In order to  test the adaptive capability of the algorithm, the 
agent has been trained on different standard driving cycles: 
Artemis Urban Driving Cycle (AUDC), Urban Dynamometer 
Driving Schedule (UDDS) and the first 388 seconds of 

Fig.  1 Real -world driving cycles 



Worldwide Harmonized Light Vehicles Test Procedure 
(WLTP). DDPG is also trained on two different real-world 
driving cycles as Cycle 1 (RC1) and Cycle 2 (RC2), that Fig.1 
shows. The chosen driving cycles are mainly urban because it 
has been proved in previous works that more significant energy 
savings can be achieved in urban driving cycles with the 
hypothesis of neglecting the air drag effect. In this study, 
different simulations have been carried out: in each simulation, 
the Lead vehicle follows a chosen driving cycle and the agent 
learns the optimal acceleration policy of the Ego vehicle through 
the training process. As previously mentioned, the agent tries 
and evaluates new actions thanks to the exploration noise added 
to the action. 

For Deep RL algorithms the discounted return and the 
training loss of the neural networks are two of the most 
important indicators to analyse how effective the training phase 
was. Fig.2 clearly shows how the agent correctly learns to 
achieve higher discounted return as the training progresses for 
the UDDS cycle. It is interesting to notice that the discounted 
return at the beginning of the first 200 episodes is very close to 
-100. This is due to the fact that in this first phase of training the 
agent is not able to maintain the Ego vehicle between the 
imposed distance limits and the episode concludes with the 
penalty reward of -100. Moreover, as shown in the second 
subplot of Fig.2, the training loss of the critic neural network 
correctly decreases, demonstrating a progressively more 
accurate estimate of the Q-values. Therefore, as the training 
progresses, the agent improves the learned policy.  This result is 
demonstrated also by the energy savings and acceleration rms 
reduction of the Ego with respect to the Lead, expressed as 
percentage values, as shown in Fig.3. As the energy savings 
increases alongside the number of episodes, the reduction of rms 
of acceleration correctly presents a similar trend. For the sake of 
clarity, in this representation, the episodes stopped before the 
end of the cycle are not represented at all. It’s interesting to 
notice that, since the UDDS cycle is characterized by a wider 
range of velocity and is longer than the other driving cycles, the 
number of excluded episodes is close to 900 and higher than 
other simulations.  For simpler driving cycles, the distance-

related limits are indeed easier to be satisfied and therefore the 
number of not completed episodes is lower.  

As a final result, at the end of the training the agent is tested 
on the same driving cycle with pure exploitation by removing 
the exploration noise.  The agent proves to achieve significant 
energy savings for different driving missions, enhancing 
comfort conditions and guaranteeing that the IVD is maintained 
between the chosen limits. Fig.4 shows the velocity profiles of 
the Ego and Lead vehicles generated after the training of the 
agent on UDDS. Since stop-and-go waves deeply affect the fuel 
economy [15], the agent correctly tries to minimize the number 
of times the Ego vehicle stops.  

Furthermore, in order to demonstrate the adaptability of the 
algorithm to conditions never seen during training, the agent 
previously trained on a particular driving cycle is tested on 
driving cycles different from the one of training. The percentage 

Fig.  2 Rms of acceleration and SOC savings of training episodes for UDDS Fig.  2 Discounted return and training loss of training episodes for UDDS 

Fig.  3 Rms of acceleration savings and SOC savings of training episodes for 

UDDS 

Fig. 4 Velocity of Ego and Lead vehicles for UDDS 



SOC savings and acceleration rms reduction of Ego with respect 
to the Lead for all the simulations are listed in Table I. As shown 
by the numerical results, the agent is able to generalize the 
training and achieve significant energy savings also on driving 
cycles never seen before. As expected, when the agent is trained 
on a complex and long cycle, it efficiently performs on simpler 
driving cycles of test. For instance, Fig.5 displays both SOC and 
comfort advantages for the Ego when the agent is trained on 
UDDS and tested on the WLTP (388s). Moreover, the agent is 
surprisingly able to conclude some test driving cycles that are 
more complex than the training one. For example, the agent 
trained on the WLTP (388s) cycle can conclude the UDDS 
which is characterized by a higher maximum velocity and is 
longer.  However, when the agent is trained on WLTP (388s) 
and tested on the RC1, the Ego can’t reach the end of the cycle 
because of the IVD limits as shown in Fig.6, since the velocity 
of 20m/s of RC1 is never encountered during WLTP (388s). We 
can generally conclude that it’s better to train the DDPG agent 
on complex and long cycles in order to let the agent learn how   
to properly act in front of a wide variety of velocities and 
accelerations of the Lead vehicle. 

TABLE  II.  RESULTS 

Training 

cycle 
Test cycle 

SOC savings 

(%) 

Rms acc 

savings (%) 

WLTP (388s) 

WLTP (388s) 2.3 20 

UDDS 2.3 5 

AUDC 2.8 12 

RC1 - - 

RC2 1.2 20 

UDDS 

WLTP (388s) 2.5 20 

UDDS 3.5 26 

AUDC 4.1 25 

RC1 1.5 2 

RC2 1.8 26 

AUDC 

WLTP (388s) 2.8 18 

UDDS 3.2 22 

AUDC 4.2 25 

RC1 0.5 5 

RC2 1.5 13 

RC1 

WLTP (388s) 1.0 1 

UDDS 2.7 13 

AUDC 2.6 17 

RC1 1.0 18 

RC2 0.5 17 

RC2 

WLTP (388s) 2.3 8 

UDDS 2.1 3 

AUDC 2.5 8 

RC1 1.1 -5 

RC2 1.8 15 

 

V. CONCLUSIONS AND FUTURE WORKS 

In this paper, the authors address the problem of 

acceleration control for an Ego vehicle which is following a 

Lead vehicle on a straight road. The main objective of this work 

is to show the potential of DRL algorithms to achieve significant 

energy savings for the Ego vehicle, enhancing comfort 

conditions. The first main innovative contribution of this work 

is the use of a DDPG agent with the main objective of obtaining 

energy savings, still guaranteeing safe driving conditions. 

Moreover, the use of an adaptive multi-objective reward 

function able to achieve good results on different driving cycles 

without the necessity of tuning parameters is enabled thanks to 

the creation of a fictitious variable, reproducing the SOC that the 

Ego vehicle would have if it had the same velocity profile of the 

Fig.  6 Results of testing the agent, trained on WLTP (388s), on RC1  

Fig.  5  Results of testing the agent, trained on UDDS, on WLTP (338s)  



Lead. The agent is trained and tested on different standard 

driving cycles such as WLTP, UDDS and AUDC and two real-

world driving cycles, achieving good results and showing great 

adaptability also to conditions not seen during training. The 

main limitations of the work are related to the simple driving 

scenario and to the idealistic approximations which were made 

in order to keep the problem simpler. Possible future work might 

be building a high-fidelity simulation model of the vehicle, 

allowing also steering actions and including errors or delays in 

the signals sent in the V2V communication. 
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