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1.  Introduction
The relative strength of diffusive soil creep and fluvial erosion leads to distinctive spatial arrangements of inter-
locked ridges and valleys (Anand et al., 2020; Birnir et al., 2001; Bonetti et al., 2020; Hancock et al., 2010; 
Howard, 1994; Kirkby, 1971; Luke, 1974; Roering, 2008; Singh et al., 2015; Willgoose et al., 1991). A crucial 
juncture of this balance occurs when erosion is just high enough to overcome the effect of soil creep and starts 
carving the surface, thereby leading to the formation of first-order valleys in the landscape. Historically, the pres-
ence of regularly spaced valleys along mountainous ridges has stimulated efforts to understand the emergence 
of such a deterministic behavior of the channelization onset (Allen, 2005; Gilbert & Dutton, 1880; Hallet, 1990; 
Perron, Kirchner, & Dietrich, 2008; Schumm, 1956; Shaler, 1899; Smith & Bretherton, 1972; Talling et al., 1997).

Results from topographic observations in mountainous landscapes with distinct vegetation cover and climate 
conditions suggest that valleys occur at a typical spatial scale. This characteristic scale is evidenced in the 
power spectrum of the landscape elevation by a well-defined peak and a sharp drop at higher wavenumbers 
(Perron, Dietrich, & Kirchner, 2008; Perron et al., 2009). Even for heavily channelized landscapes, the eleva-
tion power spectrum is characterized by a “typical” wavenumber of the highest energy content followed by a 
power-law scaling for high wavenumbers, which indicates the existence of quasi-periodic valleys superposed on 

Abstract  Incipient valley formation in mountainous landscapes is often associated with their presence 
at a regular spacing under diverse hydroclimatic forcings. Here we provide a formal linear stability 
theory for a landscape evolution model representing the action of tectonic uplift, diffusive soil creep, and 
detachment-limited fluvial erosion. For configurations dominated by only one horizontal length scale, a single 
dimensionless quantity characterizes the overall system dynamics based on model parameters and boundary 
conditions. The stability analysis is conducted for smooth and symmetric hillslopes along a long mountain 
ridge to study the impact of the erosion law form on regular first-order valley formation. The results provide 
the critical condition when smooth landscapes become unstable and give rise to a characteristic length scale for 
incipient valleys, which is related to the scaling exponents that couple fluvial erosion to the specific drainage 
area and the local slope. The valley spacing at first instability is uniquely related to the ratio of the scaling 
exponents and widens with an increase in this ratio. We find compelling evidence of sediment transport by 
diffusive creep and fluvial erosion coupled with the specific drainage area equation as a sufficient mechanism 
for first-order valley formation. We finally show that the predictions of the linear stability analysis conform 
with the results of numerical simulations for different degrees of nonlinearity in the erosion law and agree well 
with topographic data from a natural landscape.

Plain Language Summary  Natural landscapes tend to exhibit equally spaced valleys at the onset 
of channelization, which occurs when the fluvial erosion overcomes the smoothing effect of the diffusive soil 
creep on hillslopes. To theoretically predict the conditions for the first channelization, we study the growth of 
very small disturbances added to a landscape with no channels. The results suggest a minimum erosion limit 
compared to diffusive creep below which no valleys are present. This critical erosion-to-creep limit and the 
emergent valley spacing are determined by the relation between the specific upstream area and the topographic 
slope in the fluvial erosion law. The theoretical predictions are in good agreement with numerical results as 
well as with topographic data from a natural landscape.
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a power-law  scaling at smaller spatial scales (Hooshyar et al., 2021; Porporato, 2022). These observations lead to 
an interesting set of questions regarding the role of nonlinearities of the erosion law in determining the emerging 
channelization mode and the critical erosion-to-creep intensity for the first dissection of the landscape. A compre-
hensive quantitative link between this spectral signature of channelization and the form of the erosion law has not 
yet been fully established. The present work offers a contribution toward this goal.

We focus here on a minimalist landscape evolution model (LEM) representing the action of soil creep, runoff 
erosion, and tectonic uplift (Anand et al., 2020; Bonetti et al., 2020). The model contains the least amount of 
complexity to describe valley initiation and pinpoints the corresponding feedback that induces this phenomenon 
over long time scales. There are comprehensive LEMs (e.g., Attal et al., 2008; Collins et al., 2004; Coulthard 
et al., 2013; Van De Wiel et al., 2007) that include spatiotemporal heterogeneity and extensive parametrizations 
for a wide array of geomorphic processes and serve as a powerful tool to link distinct processes and the resulting 
morphological changes. These complex numerical models, however, are not suitable for conducting a theoretical 
analysis of relevant processes and examining their feedback on the emergence of valleys. Not only such an anal-
ysis would be based on heavy parametrization and closure assumptions typical of semi-empirical formulations, 
but it would also need a large amount of knowledge of initial environmental conditions and distinct biophysical 
properties, making the mathematical framework too complex to support theoretical developments. Using a mini-
malist LEM allows us to perform a theoretical stability analysis that explains the first-order control of leading 
geomorphic processes on the emergence of such ubiquitous landscape patterns.

1.1.  Brief Literature Review

To begin our review of previous investigations of landscape stability, it is useful to orient the reader on the 
extensive literature on LEMs and how various formulations differ in their descriptions of the coupled water 
and sediment dynamics. Regarding the water flow modeling in LEMs, the quasi-steady-state approximation is 
invoked typically by noting that the time scale of the evolving landscape is very long compared to the time 
scale of the water flow adapting to the modified land surface (Chen et  al.,  2014). The more comprehensive 
approaches adopt the full version of the shallow-water equations based on the balance of the inertial, pressure, 
gravitational, and frictional forces on the water flow (Fowler, 2011; Izumi & Parker, 1995; Smith, 2010). The 
diffusion-flow approximation dismisses the inertial effects over long time scales (Leopold & Maddock, 1953; 
Weinmann & Laurenson, 1979). Lastly, the minimalist form of water transport, called the normal-flow approxi-
mation, considers a balance between gravitational and frictional forces such that the water flow direction is paral-
lel to the steepest direction of the land surface. Efforts by Gallant and Hutchinson (2011), Bonetti et al. (2018), 
and Porporato (2022) established that this transport formalism is analogous to the mathematical equation of the 
specific drainage area for the surface flow fed by a constant unitary rainfall rate (see the derivation in Section 2.1).

Regarding the modeling of long-term fluvial erosion, LEMs typically consider either transport-limited (TL) or 
detachment-limited (DL) conditions. Some works have also considered intermediate conditions between these 
two regimes (Davy & Lague, 2009; Pelletier, 2012). Under TL approximation, the fluvial erosion assumes the 
form of the divergence of the sediment flux which, in turn, is related to the shear stress of the surface flow 
(Hergarten, 2020; G. E. Tucker & Bras, 1998; Willgoose et al., 1991). In DL approximation, the erosion flux 
is directly related to the shear stress by flowing water, assuming that the surface resistance to incision is the 
restricting factor for the erosion rate rather than the hauling capacity of the flow to transport the eroded material 
(Ahnert, 1987; Howard, 1994). Hence, the mathematical form of DL fluvial erosion becomes a sink term in the 
LEM, typically expressed as a power-law function of the specific drainage area and local slope.

Within this context, the pioneering work by Smith and Bretherton (1972) presented the first stability analysis of 
symmetric hillslopes to small lateral perturbations employing a continuous model for water under the normal-flow 
assumption and TL erosion conditions. This study showed that concave-up portions of a hillslope are unstable to 
lateral perturbations. Nevertheless, the analysis did not predict a characteristic wavelength for the channel instabil-
ity but rather an unbound increase in the growth rate for high-frequency perturbations. While  this shortcoming has 
been attributed to the use of normal-flow approximation for the water continuity equation (Izumi & Parker, 1995; 
Loewenherz-Lawrence, 1994; Smith, 2010), Fowler (2011) suggested that the lack of wavelength selection in the 
analysis of Smith and Bretherton (1972) could be related to the simplifying assumption of constant coefficients 
in the governing equations for perturbations. The findings of our work, which keeps the spatial dependency of the 
coefficients in the governing Equation 13 for perturbations, support the viewpoint of Fowler (2011).
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Izumi and Parker (1995, 2000) conducted a stability analysis for DL fluvial erosion with a threshold value and 
quasi-steady surface water flow under the effect of inertial, gravitational, pressure, and frictional forces. In 
particular, Izumi and Parker (1995) described upstream-driven channelization with the channels initiating as the 
water flux reached a critical value for the DL erosion to occur. They employed an infinitely long flat and tilted 
hillslope downstream of a drainage divide as the base state for obtaining the solutions. Izumi and Parker (2000) 
focused on the downstream-driven channelization for a steady concave-down hillslope bounded at the end by a 
cliff, with the upstream flow state being Froude-subcritical and exactly Froude-critical at the lower boundary. The 
stability analysis under such special flow conditions and synthetic hillslopes showed the emergence of channel 
instability for the specified range of model parameters. Finally, Smith (2010) presented a comprehensive math-
ematical framework for characterizing the channel formation in the TL and DL erosion environments and the 
quasi-steady surface flow model adaptable to different formulations of normal-flow or diffusion-flow approx-
imations. The initial hillslope was assumed here to be a steady planar profile with a constant slope over which 
small perturbations could evolve over time.

All the previous theoretical contributions just described considered perturbations on simple but somewhat artifi-
cial surfaces. The simple hillslope forms used in these studies facilitated analytical tractability to determine the 
appearance of well-defined channels, but—not being steady-state solutions of LEMs—had only limited bearing 
on natural landscape morphologies. In this regard, a more realistic starting point to investigate the conditions of 
valley formation was pursued by Perron, Dietrich, and Kirchner (2008) and Perron et al. (2009). They described 
the evenly spaced valley formation for numerical solutions of LEM under DL fluvial erosion conditions. These 
works did not carry out a formal stability analysis, but using numerical simulations they showed that the relative 
timescale of fluvial erosion to soil creep controls the scale of valley spacing. Employing unchannelized solutions 
of LEMs with specific boundary conditions as a base solution for a formal linear stability formulation would 
help to formulate precise criteria for the channelization onset. A preliminary analysis along these lines was 
conducted by Bonetti et al. (2020) using a minimalist DL-LEM for the special case of unitary exponents of the 
specific drainage area and topographic slope in the DL erosion law. However, a more complete stability analysis 
that includes the effect of the nonlinear scaling exponents in the erosion law on the incipient valley formation for 
base-state solutions of the minimalist LEM is still missing and motivates the work here.

1.2.  Goal of This Contribution

Within the context outlined above, we focus here on a minimalist LEM in DL erosion conditions and employ the 
specific drainage area as an approximation for the water discharge, assuming the water flow along the direction 
of steepest descent of the land surface (i.e., normal-flow hypothesis). We conduct a linear stability analysis of 
the unchannelized solutions of the governing equations to identify the critical condition under which an initially 
smooth surface assumes a morphology similar to observed regularly spaced first-order drainage basins. The DL 
erosion condition is adopted based on the arguments that the bed erosion for the first channelization over the 
hillslope and low-order valleys is controlled by the erosive power/shear stress of the overland flow rather than the 
flow capacity to transport the eroded sediments (Howard, 1994; Izumi & Parker, 1995, 2000). We consider two 
symmetric hillslopes along a linear ridgeline as an idealization of a long mountain ridge in a natural landscape 
to derive unchannelized base-state solutions of the governing equations. Differently from previous contributions, 
the mathematical forms of the unchannelized solutions are obtained by applying the boundary conditions of water 
and sediment fluxes in the governing equations and solving for the steady-state (the so-called base-state profile) 
rather than assuming an arbitrary initial form of the erodible surface.

The stability problem is solved by means of a spectral technique based on the Galerkin projection with numer-
ical quadrature (Canuto et al., 2006), which has been shown to be particularly performant and well suited for 
morphological problems (Camporeale, 2015; Camporeale & Ridolfi, 2012; Camporeale et al., 2012). Employing 
this strategy, the impact of nonlinearities present in the erosion law on the hillslope stability and the incipient 
channelization is discussed as erosion gets intensified with respect to soil creep. The predictions of the stability 
analysis are compared with numerical simulations in a long rectangular domain and also with the topographic 
data of a natural landscape. The obtained results show that regularly spaced valleys emerge at a certain propor-
tion of fluvial erosion and soil creep. From the water-flow modeling perspective, our results also show that the 
minimalist normal-flow hypothesis leads to a spatial wavelength preference on the channelization onset under the 
action of DL erosion and soil creep.
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The article is structured as follows. In Section 2, we present the governing equations of the LEM, along with 
domain geometry and boundary conditions employed in this study. From the dimensional analysis of the presented 
LEM, we obtain a single dimensionless quantity that characterizes overall model dynamics. We derive the line-
arized perturbed equations that are recast in terms of a third-order differential eigenvalue problem. Results from 
the linear stability analysis are discussed in Section 3. We show the control of the power-law exponents in the DL 
erosion on the erosion-to-creep threshold for first surface instability and incipient valley spacing. A comparison 
between stability analysis predictions and results from numerical simulations is carried out. The findings of the 
stability analysis are also evaluated against topographic data from a natural landscape. In Section 4, we provide 
the limitations and assumptions in our model and further show how these theoretical results can validate the accu-
racy of numerical solvers for LEMs. Conclusions and future research directions are finally discussed in Section 5.

2.  Linear Stability Analysis
This section begins with a description of the governing equations of the LEM under the DL fluvial erosion 
approximation. We then explain the landscape geometry and boundary conditions used to obtain the base-state 
solutions (smooth landscape) with two opposite and symmetric hillslopes along a long drainage divide in the 
middle. The stability problem is posed by considering small arbitrary sediment redistribution or weak perturba-
tions over the initially smooth landscapes. All perturbations are assumed to have very small amplitude compared 
to the initial landscape profiles; hence, the governing equations for perturbations are written in the linearized 
form. Using dimensional analysis, a non-dimensional parameter, 𝐴𝐴  , is obtained that describes the overall control 
of erosion, creep, and uplift on the model solutions and perturbations growth. A single differential eigenvalue 
problem is derived for perturbation dynamics, where the non-dimensional form depends only on 𝐴𝐴  for given 
erosion law exponents.

2.1.  Governing Equations

The coupled dynamics of the landscape elevation and surface water fields can be written in general as

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑈𝑈 − ∇ ⋅ 𝐟𝐟𝐜𝐜 − ∇ ⋅ 𝐟𝐟𝐞𝐞,� (1)

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑅𝑅 − ∇ ⋅ (𝑞𝑞𝐧𝐧) .� (2)

Equation 1 expresses the temporal evolution of the elevation field z under the action of tectonic uplift U, sedi-
ment flux due to soil creep fc, and the flux transported by fluvial erosion, fe. Soil creep is used to represent a 
combined effect of various biophysical processes that result in the slow movement of soil over the hillslope. 
Surface and subsurface processes inducing this motion include animal burrowing, falling trees, wetting/drying 
of the upper soil layer, and freezing/thawing cycles of the pore water in the subsurface (Carson & Kirkby, 1972; 
Gabet et al., 2003). The combined effect of these movements smooths the topography so that the flux is written 
in an average sense as a diffusion term, fc = −Dc∇z, where Dc is a coefficient based on the combined efficiency 
of different soil creep processes (Culling, 1963). In the DL condition, the amount of erosion flux is assumed 
proportional to the shear stress by the flowing runoff over the surface such that the erosion term is approximated 
as a sink term 𝐴𝐴 ∇ ⋅ 𝐟𝐟𝐞𝐞 ≈ 𝐾𝐾

′

𝑒𝑒𝑞𝑞
𝑚𝑚|∇𝑧𝑧|𝑛𝑛 , where 𝐴𝐴 𝐴𝐴

′

𝑒𝑒 is an erosion coefficient, q is the specific runoff or the surface flow 
rate, and m and n are positive exponents (Howard, 1994; Whipple & Tucker, 1999).

In Equation 2, R represents a runoff-producing rainfall rate, that is, the amount of precipitated water contributing 
to runoff production q in the direction of n. Under the observation that the changes in surface water height h occur 
immediately compared to the time scale of the evolving landscape, a quasi-steady-state approximation (∂h/∂t = 0) 
is considered here. Assuming the water flow in the direction of steepest descent of the surface (n = −∇z/|∇z|) and 
a time-averaged runoff-producing rainfall rate R0, the water discharge q is proportional to the specific drainage 
area 𝐴𝐴 𝐴𝐴 (= 𝑞𝑞∕𝑅𝑅0) . As a result, Equation 2 becomes the governing equation for the specific drainage area (Bonetti 
et al., 2020; Porporato, 2022). Employing this proportionality between q and a, the sink term for DL erosion can 
be written as Kea m|∇z| n, where 𝐴𝐴 𝐴𝐴𝑒𝑒 = 𝐾𝐾

′

𝑒𝑒𝑅𝑅
𝑚𝑚

0
 .

The above conditions lead to the final form of the governing equations as
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𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝐷𝐷𝑐𝑐∇

2
𝑧𝑧 −𝐾𝐾𝑒𝑒𝑎𝑎

𝑚𝑚|∇𝑧𝑧|𝑛𝑛 + 𝑈𝑈𝑈� (3)

−∇ ⋅

(

𝑎𝑎
∇𝑧𝑧

|∇𝑧𝑧|

)

= 1.� (4)

Through the coupling between a and z, this minimalist LEM captures the essential long-term dynamics of land-
scape evolution. Fluvial erosion acts as a sink term, while soil creep acts as a diffusion term in Equation 3. 
Erosion excavates sediments at locations where the accumulation of the specific drainage area is high. This yields 
a higher surface gradient at those locations with a further increase in a, thus enforcing the increased erosion and 
flow accumulation again. This feedback loop between the emerging topography and the accumulated specific 
drainage area tends to carve a preferential path over time, if the surface smoothing effect by the diffusive creep is 
not sufficient, with the progression toward the dissected landscape.

2.2.  Boundary Conditions and 1D Smooth Morphology

The smooth landscape geometry considered here is the steady state solution of the previous model in conditions of 
no channels (i.e., no y dependence), consisting of a long mountain ridge of width lx with the drainage divide in the 
middle and two symmetric hillslopes on either side, as shown in Figure 1a. The x–axis points along the hillslope 
and the y–axis denotes the direction of the ridgeline/drainage divide. The surface has the highest elevation at 
the divide with a monotonic drop along either hillslope depending only on x. We consider the hillslope bases at 
the same fixed elevation level (taken as zero for reference) and no water or sediment flux movement across the 
drainage divide in the middle. These boundary conditions are consistent with those adopted in earlier studies on 
the analysis of 1D hillslope morphology (Bonetti et al., 2019; Loewenherz, 1991; Smith & Bretherton, 1972).

Figure 1.  Schematic diagram showing the domain geometry and imposed boundary conditions to compute the unchannelized 
base-state solutions. A linear ridge of width lx with the divide in the middle and two opposite hillslopes of equal length on 
either side. (a) A representative 3D steady-state profile is shown, where x–axis points in the direction along the hillslope and 
y–axis denotes the ridgeline direction normal to the hillslope. The presence of a ridgeline/drainage divide in the center of the 
domain ensures zero water and sediment flux boundary conditions at x = 0. The hillslope baseline is taken fixed at x = ±lx/2 
with zero elevation as the reference level. The green curve shows the unchannelized cross-section profile. (b) The horizontal 
projection of the landscape is shown with streamlines (in blue) perpendicular to the projected contour lines (in brown).
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Such unchannelized solutions at steady-state can be obtained by using dz/dx = a = 0 at x = 0 and z = 0 at x = lx/2 
in Equations 3 and 4 for the 1D transect. With elevation declining monotonically on either side of the divide, the 
steady-state solution for specific drainage area is simply the relation a0 = x with x ∈ [0, lx/2]. Namely, it increases 
linearly with the distance from the ridgeline, as shown in Figure 1b. The subscript 0 is used here to represent 
the base state. The steady-state solution for the smooth elevation field z(x) depends on the value of exponents 
m and n. This solution can be obtained analytically only for m = n = 1, where it takes the form of a generalized 
hypergeometric function (Anand et al., 2020; Bonetti et al., 2019, 2020), while it has to be obtained numerically 
for generic exponents m and n, as discussed in Section 3. We refer to this solution as z0(x) in the stability analysis 
formulation.

2.3.  Linearized Perturbed Governing Equations

Having established the base-state solutions, we can analyze the conditions of DL erosion, creep, and uplift for 
which an unchannelized landscape like the one portrayed in Figure 1 loses its stability to small perturbations and 
give rise to the patterns of periodically spaced valleys. For a smooth landscape that has attained a steady state, a 
very small and arbitrary spatial redistribution of sediments would slightly modify the smooth topography. If the 
landscape evolution under the governing geomorphological processes dampens any arbitrary disturbance over 
time, the topography reverts to its earlier state. Physically, one would speculate that, as the extent of the erosion 
increases relative to the smoothening effects of soil creep, there should be a point when the smooth surface 
becomes unstable to these infinitesimal perturbations. The perturbation that grows fastest at the instability onset 
would alter the state of the unchannelized landscape to the one with valleys spaced at a typical spatial scale corre-
sponding to the wavelength of the fastest-growing perturbation.

A normal-mode linear stability analysis provides a formal way to systematically detect the inception of the 
surface instability on the base-state solutions for every possible spatial perturbation that leads to the formation 
of first-order valleys at a specific length scale. In this methodology, such infinitesimal arbitrary perturbations 
are resolved into normal modes (e.g., sines and cosines). Since each spatial mode satisfies the linearized system 
individually, their superposition can describe the growth or decay of weak perturbations over the base-state solu-
tions (Drazin & Reid, 2004). We refer to the following references for an extensive description of this approach 
and its applications in various other physical systems (Chandrasekhar, 2013; Cross & Hohenberg, 1993; Koch & 
Meinhardt, 1994; Vlase et al., 2019).

With infinitesimal arbitrary perturbations in the base-state solutions, the modified elevation and specific drainage 
area fields can be written as 𝐴𝐴 𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝑧𝑧0(𝑥𝑥) + 𝑧̃𝑧(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) and 𝐴𝐴 𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝑎𝑎0(𝑥𝑥) + 𝑎̃𝑎(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) . Here z0(x) and a0(x) are 
the unchannelized 1D solutions at steady-state discussed in Section 2.2. 𝐴𝐴 𝐴𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) and 𝐴𝐴 𝐴𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) denote the weak 
perturbations over the unchannelized solutions. We assume here homogeneous boundary conditions for the weak 
perturbations, namely 𝐴𝐴 𝐴𝐴𝐴 = 0 at x = lx/2 and 𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴∕𝜕𝜕𝜕𝜕 = 𝑎̃𝑎 = 0 at x = 0. The mathematical expressions for 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐴 
are written as

𝑧̃𝑧 = 𝜓𝜓(𝑥𝑥) exp (𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜎𝜎𝜎𝜎) + c.c.,� (5)

𝑎̃𝑎 = 𝜙𝜙(𝑥𝑥) exp (𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜎𝜎𝜎𝜎) + c.c.,� (6)

where ψ(x) and ϕ(x) represent perturbation amplitudes varying along the hillslope with angular wavenumber k 
in the y-direction and initial growth rate σ (c.c. refers to complex conjugation). Depending on σ being higher or 
lower than zero, the perturbation of a particular wavenumber k respectively grows or decays over time.

An illustration of the modified elevation field with the weak perturbation form taken in Equations 5 and 6 is 
shown in Figure 2. The perturbed state and the initial smooth topography can be easily distinguished based on 
the horizontally projected streamlines and contour lines in Figures 1b and 2b. For the smooth landscape, contour 
lines run parallel to the hillslope base, and the streamlines initiate from the divide in the middle and run side by 
side till the hillslope base (Figure 1b). In the perturbed state shown in Figure 2b, contour lines have the perio-
dicity set by the spatial wavelength of the perturbation, which results in the periodic convergence and divergence 
of  streamlines starting from the divide in the middle. The fastest growing perturbation of given wavenumber 
k reaching the critical balance of erosion to creep for channelization would result in the emergence of equally 
spaced valleys at a distance 2π/k in the landscape.
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As shown in Appendix A, substituting the forms of perturbations from Equations 5 and 6 for the modified z and 
a fields in governing Equations 3 and 4 and linearizing, the coupled governing equations for perturbations ψ(x) 
and ϕ(x) become

𝜎𝜎𝜎𝜎 = 𝐷𝐷𝑐𝑐

𝑑𝑑
2
𝜓𝜓

𝑑𝑑𝑑𝑑2
−𝐷𝐷𝑐𝑐𝑘𝑘

2
𝜓𝜓 − 𝑚𝑚𝑚𝑚𝑒𝑒𝑆𝑆

𝑛𝑛

0
𝑥𝑥
𝑚𝑚−1

𝜙𝜙 + 𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆
𝑛𝑛−1

0
𝑥𝑥
𝑚𝑚
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
,� (7)

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −

𝑘𝑘
2
𝑥𝑥

𝑆𝑆0

𝜓𝜓𝜓� (8)

where 𝐴𝐴 𝐴𝐴0(𝑥𝑥) =
|
|
|
𝑑𝑑𝑑𝑑0

𝑑𝑑𝑑𝑑

|
|
|
 is the steady-state unchannelized topographic slope. The solutions to these coupled equations 

for perturbations provide the growth rates σ for weak perturbations of different values of wavenumber k under the 
distinct balance of the governing processes.

2.4.  Dimensional Analysis

To quantify the overall control of creep, erosion, and uplift on the model solutions and the corresponding growth 
of the weak perturbations (Equations 7 and 8), we non-dimensionalize the system before proceeding toward the 
solution. There are three primary dimensions in the present problem, namely horizontal directions, vertical direc-
tion, and time. The width of the ridge lx is taken as the horizontal length scale 𝐴𝐴  . The vertical scale 𝐴𝐴  is taken as 

𝐴𝐴
𝑈𝑈𝑈𝑈𝑥𝑥

2

𝐷𝐷𝑐𝑐

 and time scale 𝐴𝐴   is defined as 𝐴𝐴
𝑙𝑙𝑥𝑥

2

𝐷𝐷𝑐𝑐

 . Using these scales 𝐴𝐴  , 𝐴𝐴  , and 𝐴𝐴   , the following non-dimensional quantities 

are obtained: 𝐴𝐴 𝐴𝐴𝐴 =
𝑧𝑧


 , 𝐴𝐴 𝐴𝐴𝐴 =

𝑎𝑎


 , 𝐴𝐴 𝐴𝐴𝐴 =

𝑥𝑥


 , 𝐴𝐴 𝐴𝐴𝐴 =

𝑦𝑦


 , and 𝐴𝐴 𝑡𝑡 =

𝑡𝑡


 . Based on these quantities, the non-dimensionalized forms 

of governing Equations 3 and 4 read

Figure 2.  Schematic diagram presenting the perturbed state of the landscape used in the normal-mode analysis and 
the homogeneous boundary conditions. The weak perturbation 𝐴𝐴 𝐴𝐴𝐴 has been exaggerated for better visualization. (a) A 
representative 3D surface z is displayed, where x–axis/y–axis denotes the direction along the hillslope/ridgeline. The 
perturbation with wavenumber k corresponds to the spatial wavelength 𝐴𝐴 𝐴𝐴 (= 2𝜋𝜋∕𝑘𝑘) . (b) The horizontal projection of the 
surface is shown with streamlines (in blue) perpendicular to the projected contour lines (in brown). The projected streamlines 
converge at the emerging equally spaced valleys and diverge at the corresponding interlocked ridges.
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��̂
��̂

= ∇̂2�̂ −  �̂�|∇̂�̂|� + 1, −∇̂ ⋅
(

�̂ ∇̂�̂
|∇̂�̂|

)

= 1,� (9)

where

 =
𝐾𝐾𝑒𝑒𝑙𝑙

𝑚𝑚+𝑛𝑛

𝑥𝑥

𝐷𝐷
𝑛𝑛

𝑐𝑐𝑈𝑈
1−𝑛𝑛

.� (10)

This analysis demonstrates that a single non-dimensional quantity 𝐴𝐴  controls the overall system dynamics based 
on global parameters (Ke, Dc, and U) and boundary conditions (width of the ridge, lx) for given exponents m and n 
in the erosion term. 𝐴𝐴  provides a measure of dynamic similitude, which means that if two distinct model config-
urations have the same 𝐴𝐴  value for prescribed m and n, they are dynamically equivalent (Anand et al., 2022).

Physically speaking, 𝐴𝐴  represents the relative proportion of DL fluvial erosion and diffusive soil creep to trans-
port the sediment inflow in the landscape by uplift rate. This index is similar to the global Reynolds number Re 
that expresses the balance of inertial to viscous forces in fluid flows with one characteristic length scale (Kundu 
et al., 2015; Madlener et al., 2009). An increase in 𝐴𝐴  describes the transitions in the landscape topography from 
an unchannelized surface to first-order non-branched valleys to complex patterns of ridges and valleys with a 
cascade of branching (Anand et al., 2020; Bonetti et al., 2020). The growth of surface instabilities with finer and 
finer branching in landscapes with rising 𝐴𝐴  values is reminiscent of an increase in flow instabilities and the shift 
from laminar to turbulent flow conditions as Re increases (Anand et al., 2022; Porporato, 2022).

From Equation 10, we can infer the overall impact of changes in model parameters and boundary conditions on 
the obtained topographies. For example, either an increased magnitude of Ke (diminished surface resistance to 
fluvial erosion and/or improved runoff-producing rainfall rate) or a decreased value of Dc would raise the 𝐴𝐴  
value, showing an enhanced tendency of the LEM topography to branch due to relatively higher erosion compo-
nent. Similarly, an increase in lx with unchanged model parameters, that is, a larger topography with identical 
geomorphic process rates has a higher tendency to become unstable. Interestingly, the differences in the uplift rate 
do not influence the balance of erosion and soil creep for n = 1 (i.e., invariant 𝐴𝐴  value); however, an increased 
uplift augments the erosion component for n > 1, while it enhances the diffusive creep component of the LEM 
for n < 1.

The shift in the impact of uplift rate U on 𝐴𝐴  based on the value of n compared to unity has a physical under-
pinning. The uplift rate is the only source term for surface elevation in the LEM and primarily sets the vertical 
scale 𝐴𝐴  of the LEM solutions. Diffusive creep and DL fluvial erosion merely transport the sediment across and 
outside the landscape. For example, with the boundary conditions considered here, the steady-state landscape 
would be a flat surface if the uplift rate were zero, as there is no sediment influx to counterbalance the losses. 
Analyzing the scaling of diffusive creep and erosion sink terms with the vertical scale, one notices that the creep 
term scales linearly with vertical scale 𝐴𝐴  and the erosion sink term scales as 𝐴𝐴 

𝑛𝑛 (see Equation B1 in Appendix B). 
For an increase in U, the response of the diffusion term is always linear, while the erosion term responds either 
sub-linearly for n < 1 or super-linearly for n > 1. Hence, the global balance of creep and erosion intensity with 
a boosted uplift rate shifts toward either process depending on the value of exponent n being smaller or greater 
than unity, as encapsulated in the definition of 𝐴𝐴  in Equation 10. A more detailed discussion of changes in 𝐴𝐴  , 
m, and n on the LEM solutions is presented in Appendix B, with corroboration of numerical simulation results.

For the above-defined scales 𝐴𝐴  , 𝐴𝐴  , and 𝐴𝐴   , we introduce the following dimensionless quantities: 𝐴𝐴 𝐴𝐴𝐴 = 𝜎𝜎  , 𝐴𝐴 𝐴𝐴𝐴 =
𝜓𝜓


 , 

𝐴𝐴 𝜙̂𝜙 =
𝜙𝜙


 , 𝐴𝐴 𝑘̂𝑘 = 𝑘𝑘 , and 𝐴𝐴 𝑆𝑆0 =

𝑆𝑆0


 . Using these quantities, the governing Equations 7 and 8 for weak perturbations read

𝜎̂𝜎 𝜎𝜎𝜎 =
𝑑𝑑
2
𝜓̂𝜓

𝑑𝑑 𝑑𝑑𝑑2
− 𝑘̂𝑘

2
𝜓̂𝜓 − 𝑚𝑚𝑆̂𝑆

𝑛𝑛

0
𝑥̂𝑥
𝑚𝑚−1

𝜙̂𝜙 + 𝑛𝑛𝑆̂𝑆
𝑛𝑛−1

0
𝑥̂𝑥
𝑚𝑚
𝑑𝑑 𝑑𝑑𝑑

𝑑𝑑 𝑑𝑑𝑑
,� (11)

𝑑𝑑𝜙̂𝜙

𝑑𝑑 𝑑𝑑𝑑
= −

𝑘̂𝑘
2
𝑥̂𝑥

𝑆̂𝑆0

𝜓̂𝜓 𝜓� (12)
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The coefficients in the above equations contain spatial dependencies (𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝑆𝑆0 ), which restrict the applicability 
of analytical treatment to estimate growth rates for weak perturbations. Here we employ the spectral technique to 
compute the solutions to this stability problem, as described in the following section.

2.5.  The Eigenvalue Problem

To obtain the solutions for the evolution of the perturbations using the spectral technique, we recast the reference 
system from 𝐴𝐴 𝐴𝐴𝐴 to 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 (= 4𝑥̂𝑥 − 1) and keep the solution domain between −1 and 1, so that the Legendre polynomials 
could be used as the basis functions in the spectral solver. By applying this reference change and substituting the 
value of 𝐴𝐴 𝐴𝐴𝐴 from Equation 12 in Equation 11, a single differential equation in terms of 𝐴𝐴 𝜙̂𝜙 can be obtained as

�1(�̂)
�3�̂
��̂3

+ �2(�̂)
�2�̂
��̂2

+ �3(�̂)
��̂
��̂

+ �4(�̂) �̂ = �̂�5(�̂)
��̂
��̂

.� (13)

The homogeneous boundary conditions for perturbations can be re-written as 
�̂(�̂ = −1) = �̂′′(�̂ = −1) = �̂′(�̂ = 1) = 0 . We refer to Appendix C for the derivation of the above equation as 
well as boundary conditions in terms of 𝐴𝐴 𝜙̂𝜙 (𝑠̂𝑠) . The expressions for all coefficients are provided in Table  C1 
(Appendix C).

Equation 13 with the imposed boundary conditions forms an eigenvalue problem, where non-zero solutions 𝐴𝐴 𝜙̂𝜙 (𝑠̂𝑠) 
exist for unique (eigen)values of the growth rate 𝐴𝐴 𝐴𝐴𝐴 . This system can be solved to compute the growth rate 𝐴𝐴 𝐴𝐴𝐴 for 
perturbation 𝐴𝐴 𝜙̂𝜙 (𝑠̂𝑠) of wavenumber 𝐴𝐴 𝑘̂𝑘 with increasing 𝐴𝐴  values, or say, increased erosion component of the LEM 
compared to diffusive creep. By gradually increasing 𝐴𝐴  , a critical value of this dimensionless global quantity, 

𝐴𝐴  𝑐𝑐𝑐𝑐 , can be found for which at least one of many possible perturbations starts growing with a positive rate 𝐴𝐴 𝐴𝐴𝐴 . 𝐴𝐴  𝑐𝑐𝑐𝑐 
marks the crucial balance of erosion to creep beyond which the smooth landscape is unstable to small perturba-
tions. By tracking the wavenumber kcr with the highest positive growth rate at 𝐴𝐴  𝑐𝑐𝑐𝑐 , the spacing between emerged 
first-order valleys λcr = 2π/kcr can be computed. Hence, the required proportion of fluvial erosion and diffusive 
creep 𝐴𝐴 ( 𝑐𝑐𝑐𝑐) , as well as the incipient valley spacing (λcr), can be obtained by replicating this approach for different 
degrees of nonlinearities in exponents m and n.

To proceed toward a solution, we converted the differential problem of Equation 13 into an integral form. This is 
usually referred to as a weak formulation of the problem due to a reduction in the differentiability constraint of the 
solution. The weak formulation was then solved by utilizing a spectral technique based on the Galerkin projection 
with numerical quadrature (Canuto et al., 2006). We employed the algorithm proposed by Swarztrauber (2003) 
to compute quadrature points and weights for the numerical quadrature. To guarantee an acceptable spectral 
accuracy, we used 200 points between −1 and 1 for the present results. A detailed explanation of the developed 
methodology and the spectral solver is provided in Appendix D.

3.  The Emergence of First-Order Valleys
The unchannelized slope �̂0(�̂) as well as its first and second derivatives for different values of 𝐴𝐴  are needed to 
finalize the form of non-constant coefficients and solve the eigenvalue problem posed in Equation 13; see also 
Table C1. These expressions are analytically attainable only for the case of unitary exponents m and n, where the 
unchannelized slope and its derivatives take the form of Dawson functions (see Equation 15 below). For any other 
values of m and n, these derivatives have to be obtained numerically. 𝐴𝐴 𝑆𝑆0 𝐴𝐴 (= |𝑑𝑑 𝑑𝑑𝑑0∕𝑑𝑑 𝑑𝑑𝑑|) can be computed by first 
recasting the 1D form of Equation 9 in terms of 𝐴𝐴 𝑆𝑆0 at steady-state as

𝑑𝑑𝑆𝑆0

𝑑𝑑 𝑑𝑑𝑑
=

1

16

[

1 − 4
𝑛𝑛−𝑚𝑚

(𝑠̂𝑠 + 1)
𝑚𝑚
𝑆𝑆0

𝑛𝑛
]

,� (14)

which then can be integrated numerically with appropriate boundary conditions for any m and n values.

We solved here the differential Equation 14 with initial value �̂0(�̂ = −1) = 0 . Once the numerical solution of 
𝐴𝐴 𝑆𝑆0 was obtained, the form of 𝐴𝐴 𝑆𝑆0

′

 was computed by using Equation 14 at the discrete quadrature points. 𝐴𝐴 𝑆𝑆0

′′

 was 
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then obtained by using the second-order accurate central difference of 𝐴𝐴 𝑆𝑆0

′

 at the interior quadrature points and 
first-order accurate finite difference at the boundary points.

3.1.  Verification of the Spectral Solver

We first performed a code verification to ensure that the spectral solver (using the numerical form of slope and 
its derivatives) correctly solves the stability problem without any programming error during the solver develop-
ment (Oberkampf & Roy, 2010; Roache, 1998). For that, the results using numerical integration of 𝐴𝐴 𝑆𝑆0 (and its 
derivatives) were compared with the linear stability results employing the analytical solution for 𝐴𝐴 𝑆𝑆0 for the case 
of m = n = 1, which is

𝑆𝑆0 = 

(
(𝑠̂𝑠 + 1)

√


4

√
2

)

∕

(

2

√
2

)

,� (15)

where 𝐴𝐴  (⋅) is the Dawson function (Anand et al., 2020; Bonetti et al., 2019, 2020).

Results from the linear stability analysis are shown for ridge width lx = 100 m in Figure 3 using numerical inte-
gration of Equation 14 for the base-state solutions. In panel a, each curve corresponds to a particular value of 𝐴𝐴  
and depicts the growth rate σ for lateral perturbations of different wavenumbers. For low values of 𝐴𝐴  , all spatial 
perturbations have a negative growth rate, which indicates that the diffusive creep is strong enough compared to 
the fluvial erosion component in these conditions to fill the emerging surface instability of varying wavenumbers. 
As the relative importance of erosion grows in the model solutions, a critical proportion of erosion to creep is 
observed, for which the fastest growth rate becomes slightly greater than zero for an intermediate wavenumber. 
The red curve indicates this critical balance, 𝐴𝐴  𝑐𝑐𝑐𝑐 ≈ 37 , where the maximum of the curve designates the charac-
teristic valley spacing λcr ≈ 41 m. Any weak perturbation of lower or higher wavenumber decays at this juncture, 
which signifies an underlying tendency in the minimalist LEM for scale selection of the emerging valleys. The 
LEM presents here the type I linear instability characterized in Cross and Hohenberg (1993), similar to the Orr–
Sommerfeld stability problem for the plane Poiseuille flow. The instability prediction using numerical solutions 

Figure 3.  Results of the linear stability analysis using the spectral solver for exponents m = n = 1 and domain width 
lx = 100 m. (a) Growth rate σ for different values of wavenumber k as a function of 𝐴𝐴  . The black dotted line marks zero 
growth rate σ. The red curve corresponds to 𝐴𝐴  𝑐𝑐𝑐𝑐 ≈ 37 with the fastest growing wavenumber kcr ≈ 0.153 m −1 at the instability 
onset, which is equivalent to a characteristic incipient valley spacing λcr ≈ 41 m. (b) The marginal stability curve (the solid 
black curve) characterizes the instability of the smooth base-state solutions to the lateral perturbations for 𝐴𝐴  ≥  𝑐𝑐𝑐𝑐 . The red 
region designates a band of unstable wavenumbers (σ > 0) beyond the critical balance of erosion to creep 𝐴𝐴 ( 𝑐𝑐𝑐𝑐) , while the 
gray region expresses stable wavenumbers for distinct 𝐴𝐴  values. The dashed line in the red region depicts an increase in the 
fastest growing wavenumber with growing 𝐴𝐴  values. This result shows the prediction of narrowly spaced valleys as erosion 
grows concerning creep; the shift in the peak of growth rate curves toward the right in panel a as 𝐴𝐴  advances beyond its 
critical value for first instability.
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agrees well with the results of 𝐴𝐴  𝑐𝑐𝑐𝑐 ≈ 37 and the characteristic valley spacing λcr around 42 m obtained with the 
linear stability analysis employing solution 15 in Bonetti et al. (2020).

For 𝐴𝐴  >  𝑐𝑐𝑐𝑐 , there is a band of wavenumbers with a positive growth rate, showing the unstable state of the 
smooth landscape. In this regime, the peak of growth rate curves shifts toward the right, revealing the emergence 
of narrower valleys with an increase in 𝐴𝐴  beyond 𝐴𝐴  𝑐𝑐𝑐𝑐 . This result agrees well with the observation of reduced 
spacing between first-order valleys with a relative increase in DL erosion compared to diffusive creep in the 
numerical simulations performed by Perron, Dietrich, and Kirchner (2008) in a rectangular domain.

The marginal/neutral stability (black) curve is shown in Figure 3b to demonstrate the transition of an unchan-
nelized hillslope from a stable to unstable state as the critical value of 𝐴𝐴  is reached and the unstable wavenumbers 
(the red region) appear beyond 𝐴𝐴  𝑐𝑐𝑐𝑐 . The vertical red dotted line marks the fastest-growing wavenumber kcr at the 
channelization threshold 𝐴𝐴  𝑐𝑐𝑐𝑐 , which is indicated by the horizontal dotted line. The dashed red line in the unstable 
regime shows a reduction in the valley spacing with the growing value of 𝐴𝐴  .

After verifying the spectral solver for the special case of exponents m = n = 1, we studied the effect of non-unitary 
exponent values on the characteristic valley spacing λcr at the first instability 𝐴𝐴  𝑐𝑐𝑐𝑐 , as discussed in the following 
sections. Comparison of the linear stability predictions with the numerical simulations of the complete LEM is 
done for the ridge width lx = 100 m.

3.2.  The Influence of Different m Values

Values of exponents m and n describe the coupling of the specific drainage area and local slope in the fluvial 
erosion mechanism of the LEM. In modeling studies of landscape evolution, the value of n is typically assumed 
to be unity with a range taken between 0.67 and 1.67 (Perron et  al.,  2009; Seidl et  al.,  1992). The value of 
ratio m/n is reported between 0.35 and 0.8 in the context of equilibrium stream profiles under DL erosion and 
uniform uplift from digital elevation models, field and map studies (Bonetti et al., 2019; Slingerland et al., 1998; 
Snyder et al., 2000; Tarboton et al., 1991; G. Tucker & Whipple, 2002). The ratio m/n equal to 0.5 is generally 
used as the base case of the Optimal Channel Network (OCN) theory due to its close resemblance with scaling 
laws obtained in fluvial landscapes with negligible diffusive soil creep, that is, 𝐴𝐴  → ∞ (Banavar et al., 1997; 
Hooshyar et al., 2020; Rinaldo et al., 2014; Rodriguez-Iturbe & Rinaldo, 2001). Whipple and Tucker (1999) and 
Lague (2014) provide a comprehensive review of this power-law relationship and the typical values of m and n 
derived from either shear stress or unit stream power law along bedrock channels, along with the evidence from 
field studies from tectonically active regions.

We discuss here the role of the exponent m on the emergence of first-order valleys for n = 1, while the non-unity 
values of n are examined further in Section 3.3. Figure 4a displays the marginal stability curves obtained for 
eight values of m between 0.125 (red) and 1 (blue), where the corresponding horizontal lines represent the chan-
nelization threshold 𝐴𝐴  𝑐𝑐𝑐𝑐 and the vertical lines mark the fastest-growing wavenumber kcr at this critical juncture. 
Figures 4b and 4c displays the dependency of the channelization threshold and emerging valley spacing on the 
value of m. Specifically, as m decreases, an increase in the critical 𝐴𝐴  value, 𝐴𝐴  𝑐𝑐𝑐𝑐 , is observed together with the 
formation of narrower incipient valleys.

From the definition of 𝐴𝐴  provided in Equation 10, it can be seen that the overall system's behavior is governed 
primarily by the ratio of the erosion coefficient (Ke) to the soil creep coefficient (Dc) for a mountain ridge of fixed 
width lx and exponent n = 1. The inset of panel b displays the above result in terms of the critical ratio of Ke to Dc, 

𝐴𝐴 𝐴𝐴𝑒𝑒∕𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐

(
=  𝑐𝑐𝑐𝑐∕𝑙𝑙

𝑚𝑚+1

𝑥𝑥

)
 , required to initiate the valley formation in natural landscapes under unchanged boundary 

conditions. 𝐴𝐴 𝐴𝐴𝑒𝑒∕𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐
 grows by a factor of almost 100 as m reduces by a factor of 8 from 1.0 to 0.125. This required 

increase in the critical erosion-to-creep intensity for initiating valley formation as m approaches zero reveals the 
significance of non-local feedback conveyed by specific drainage area in the erosion mechanism and the ensuing 
self-organization of the fluvial landscape.

3.3.  Numerical Simulations for Generic m and n

We compared the predictions of the linear stability analysis with the instance of the first channelization by using 
the numerical algorithm introduced in Anand et al. (2020) for simulating the complete LEM. This efficient algo-
rithm provides a linear order of traversing nodes in the discrete domain so that the erosion term can be computed 
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implicitly as a triangular matrix system, with the time complexity of the algorithm varying linearly with the 
number of nodes in the domain. The solutions obtained using this algorithm were verified and tested carefully 
against analytical predictions in Anand et al. (2020).

Figure 5 compares the first channelization instance obtained using the numerical simulations with results from 
the linear stability theory. The symbols indicate the values obtained using simulations and the curves demonstrate 
the trends predicted by linear stability analysis. 𝐴𝐴  𝑐𝑐𝑐𝑐 grows with the lowering of the exponent m at a given value 
of the exponent n, as shown in Figure 5a. This behavior is an extension of the trend observed for the case of 
varying m for n = 1 in Section 3.2. On the contrary, 𝐴𝐴  𝑐𝑐𝑐𝑐 rises with an increase in n at a fixed value of m. A good 
agreement between the stability predictions and the numerical simulations of the model is observed for different 
values of m and n explored here. These results can be further employed to express the required changes in the 
model parameters to achieve the critical balance of erosion to diffusive creep based on the property of dynamic 
similitude at the same 𝐴𝐴  . Fixing the soil creep coefficient De, uplift rate U, and exponent n for the landscape of 
given ridge width lx, Equation 10 reveals that a higher value of the erosion coefficient Ke with decreasing values 
of exponent m is always needed in this scenario as 𝐴𝐴  𝑐𝑐𝑐𝑐 scales as 𝐴𝐴 𝐴𝐴𝑒𝑒𝑐𝑐𝑐𝑐 × 𝑙𝑙

𝑚𝑚

𝑥𝑥  .

The effect of varying exponents in the DL erosion law on the scale of the first dissection over a smooth landscape 
is shown in Figure 5b. A decreasing value of m for a fixed n value shows the formation of narrower valleys at 
the first instability. The exponent n has little bearing on the preferential channelization scale at a given m. Inter-
estingly, the variation of λcr as a function of m for distinct n values appears to be a shifted version of the same 
curve. Re-scaling these results based on the ratio m/n reveals a remarkable collapse of the plots in Figure 5b as a 
single logarithmic function of the ratio of two exponents m/n for the explored parameter range in Figure 5c. This 
result provides quantitative evidence of the first ridge/valley wavelength selection based on the ratio of exponents 
coupling DL fluvial erosion with specific drainage area (m) and local slope (n), corroborated by the results of 
numerical simulations.

Figures 6a–6c displays examples of steady-state simulated landscapes at the first instability of valley appearance 
for m = 0.625, m = 0.375, and m = 0.125 at fixed n = 1. The plot of specific drainage area a in these cases is 
displayed for the same color scale, which reveals how an increase in the exponent m results in the formation of 
wider valleys accumulating larger flow at the first instability of these solutions. The same influence is also visible 
from the 3D hillslope morphologies displayed in Figures 6d–6f.

Figure 4.  The effect of the drainage area exponent m on the critical ratio of detachment-limited erosion to soil creep for 
the incipient valley formation. (a) Marginal stability curves for exponent m varying from 0.125 to 1, keeping n = 1 and 
lx = 100 m. Each stability curve of a distinct color designates a particular value of m with the same-colored horizontal line 
indicating 𝐴𝐴  𝑐𝑐𝑐𝑐 for the first instability of valley formation and the corresponding vertical line denoting the most unstable 
wavenumber kcr. (b) Plot of 𝐴𝐴  𝑐𝑐𝑐𝑐 versus exponent m. The inset displays the relation between 𝐴𝐴 𝐴𝐴𝑒𝑒∕𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐

 and m for the fixed value 
of the ridge width lx = 100 m. (c) Variation of the incipient valley spacing λcr as a function of m.
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Predictions from the stability analysis agree fairly well with the occurrence of first channelization and incipient 
valley spacing obtained in the steady-state solutions from numerical modeling (Figure  5). The slight differ-
ence in 𝐴𝐴  𝑐𝑐𝑐𝑐 and λcr values for the numerical model and the stability analysis hints at the nonlinear interactions 
(higher-order terms in the governing equations of the perturbations) disregarded in the linear stability formu-
lation that, despite being small, are present in the numerical simulations of the nonlinear LEM. Furthermore, 
the finite resolution of the discrete domain and the underlying grid orientation affect the simulation results of 
pattern-forming systems like the minimalist LEM. These factors result in a small distortion of the solution geom-
etry mapped onto the discrete domain geometry. Unit grid spacing used here for the simulations on the rectan-
gular grid could also lead to dissimilarities in the estimation of valley spacing compared to the linear stability 
predictions.

The presented analysis on the effect of the DL erosion exponents on the incipient valley formation in a long 
rectangular domain agrees well with the observations regarding the emerging first-order valleys in a square 
domain using numerical simulations in Bonetti et al. (2020). For example, the simulated landscapes in Figure 3 
of Bonetti et al. (2020) show channelization and subsequent branching at higher 𝐴𝐴  values as n increases (0.7, 1.0, 
and 1.3) at fixed m = 0.5. Similarly, the appearance of narrower primary valleys has been noted in the study for 
lower m values at a given exponent n.

3.4.  Comparison With Regular Valley Spacing in a Natural Landscape

We compared predictions from the linear stability analysis with observations of first-order valley formation in 
a natural landscape dominated by diffusive creep and fluvial erosion. The landscape examined here is a portion 
of Gabilan Mesa in California characterized by a Mediterranean climate and oak-savanna (lightly forested grass-
land) vegetation cover and was previously investigated in Perron, Kirchner, and Dietrich (2008); Perron, Dietrich, 
and Kirchner (2008); Perron et al. (2009).

Figure 5.  Comparison of the predictions from linear stability analysis with the numerical simulation results in a rectangular 
domain (width = lx = 100 m, length = 500 m, and 1 m grid spacing) for varying values of 𝐴𝐴 𝐴𝐴 ∈ [0.125, 1.0] with n = 0.75 
(aqua), n = 1.0 (blue), and n = 1.25 (red). Dashed curves represent linear stability predictions for a given value of n, while 
symbols show the results obtained from numerical simulations. (a) Plot of the channelization threshold 𝐴𝐴  𝑐𝑐𝑐𝑐 with varying 
values of m at a given n. A good agreement between the predictions from the stability formulation and the model simulations 
is observed across different exponent values. (b) Variation of the λcr as a function of m for three different n values. The 
curves appear as a shifted version of each other in this plot. (c) λcr as a function of m/n results in a distinctive collapse of the 
characteristic valley spacing at 𝐴𝐴  𝑐𝑐𝑐𝑐 for different m and n on a logarithmic curve 𝐴𝐴 𝐴𝐴𝑥𝑥 ×

(

0.1989 log
10

(
𝑚𝑚

𝑛𝑛

)

+ 0.4054

)

 . This 
shows that the selection of first channel instability depends only on the ratio of exponents m and n for the investigated range.
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The displayed terrain has NE–SW trending channels (green) and evenly spaced intervening hillslopes along the 
ridges (brown) as shown in Figures 7a and 7b, with the distance between the two principal channels setting the 
width of the long ridge to be roughly 550 m and the valley spacing along the ridges around 163 ± 11 m noted in 
Perron, Kirchner, and Dietrich (2008); Perron et al. (2009). The spacing values were measured using 2D Fourier 
spectra for the landscape elevation after removing the spatial trend, which assumes the mean and variance of the 
provided signal to be roughly constant (Beamish & Priestley, 1981; Perron, Kirchner, & Dietrich, 2008). The 
external geometrical constraints for a long ridge surrounded by two main channels at roughly 550 m spacing 
resembles the domain geometry of a long ridge with a constant width lx employed in the stability formulation. In 
addition, the presence of two parallel flowing channels at the base of the ridge also agrees well with fixed eleva-
tion boundary conditions at the hillslope base used in the stability analysis here.

Assuming exponent n = 1, the values of Dc/Ke = 124 ± 3 and m = 0.35 ± 0.003 were computed by using the 
shapes of hilltops and stream profiles for the given topography in Perron et al. (2009). Employing these values 
of the parameters and ridge width lx = 550 m with relative uncertainties lx and n assumed to be 2.5%, we esti-
mated the value of 𝐴𝐴  to be 40.4 ± 7.3. We conducted the linear stability analysis for m = 0.35 ± 0.003 and 
n = 1.0 ± 0.025 and tracked the first channelization instance along with the dominant valley spacing in the 
calculated 𝐴𝐴  range. The stability analysis results predict the value of 𝐴𝐴  𝑐𝑐𝑐𝑐 ≈ 44 ± 3.5 , which falls in the estimated 

𝐴𝐴  range for the landscape. The dominant valley spacing is computed to be 𝐴𝐴 175
+6

−38
  m, which is also in line with 

the measured spacing around 163 ± 11 m in Perron et al. (2009). Figure 7c shows the stability analysis result for 
average values of the parameters m = 0.35, n = 1, and lx = 550 m.

The satisfactory agreement between the first-order valley spacing obtained from the stability analysis with those 
acquired by the topographic measurements of the landscape suggests that the linear stability formulation of the 
minimalist LEM captures well the feedback between the competing diffusive creep and fluvial erosion for the 

Figure 6.  Incipient valley formation obtained in numerical simulations over a rectangular domain (width = 100 m, 
length = 500 m, and 1 m grid spacing) with fixed n = 1. Plots of specific drainage area (a) field are shown for the middle 
300 m (i.e., neglecting the last 100 m of the domain on both sides) for (a) m = 0.625 at 𝐴𝐴  = 32 , (b) m = 0.375 at 𝐴𝐴  = 38 , 
and (c) m = 0.125 at 𝐴𝐴  = 74 . The color scale to display the a field is kept the same for the presented cases to highlight the 
effect of an increase in the value of m with wider and larger flow accumulating in incipient first-order valleys. Red arrows 
in each plot indicate typical valley spacing observed in the solutions. (d–f) 3D steady-state surface profiles for the solutions 
shown in panels a, b, and c, respectively.



Journal of Geophysical Research: Earth Surface

ANAND ET AL.

10.1029/2022JF006716

15 of 27

first-order valley formation. This is an encouraging result as the constant average values assumed for the parame-
ters and landscape geometry and the nonlinear interactions neglected in the stability analysis are approximations 
of the heterogeneous and noisy reality.

4.  Discussion
Previous theoretical studies on landscape stability analysis and the onset of first-order drainage basins employed 
simplified forms of base-state surfaces in the perturbation equations. The shapes of such surfaces were selected 
to maintain analytical tractability but had no direct linkage with the actual LEM equations. For this reason, not 
only a proper validation of the LEM solutions was unfeasible, but it also remained unclear whether the regular 
valley formation observed in the numerical simulations of the LEM was due to the artificial diffusion induced 
by grid discretization. As we now discuss in detail, results from the present work fill this gap and serve as a vali-
dation benchmark for numerical LEM solvers. Before doing that, it is important to assess the assumptions and 
limitations of our modeling framework.

4.1.  Limitations of the Present Analysis

In the minimalist LEM used here the normal-flow approximation, utilizing the specific drainage area field a, 
assumes that flow lines coincide with the streamlines of the topographic field. If inertial and diffusion effects 
also influence the water discharge, streamlines of the underlying topography and water flow lines do not coincide. 
Hence, a clear distinction between the two is required in those conditions.

The specific drainage area a (and total drainage area A employed in spatially discrete LEM formulations 
(Howard, 1994; G. E. Tucker & Hancock, 2010)) is a morphometric variable that serves as a proxy for surface 
water flow and performs well to represent the effects of erosion on landscape evolution over geological time scales. 
Theoretically, a is described at a point while A is defined for a finite width of the contour line (Anand et al., 2022; 
Bonetti et  al.,  2018; Gallant & Hutchinson, 2011). Evidently, any LEM based only on the drainage area field 
cannot differentiate between channelized and overland flow as there is no underlying physical mechanism for 

Figure 7.  Comparison of the linear stability analysis results with the topographic data of a natural landscape. (a) 2D 
color-plot (top view) of the landscape covering approximately 3.25 km 2 in Gabilan Mesa (California), where evenly 
spaced valleys (green) appear along the mountain ridge (brown). (b) Plot of the elevation field along the cross-section AB 
highlighted in panel a, which displays the periodicity of valleys along the long ridge. The topographic data was obtained from 
the National Center for Airborne Laser Mapping. (c) Result of the linear stability analysis using the spectral solver for the 
exponents m = 0.35, n = 1, and lx = 550 m.
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river dynamics. Ridges and valleys are also defined based on the convergence and divergence of streamlines in the 
landscape geometry, with valleys characterizing the domain locations of negative plan (or contour) curvature and 
ridges as the areas of flow divergence, represented by positive plan curvature (Figure 2). It is crucial to bear in mind 
these points when analyzing the results in comparison with natural landscapes as well as for application purposes.

The present analysis is limited to long rectangular domains with fixed elevation boundary conditions. This was 
chosen to have base-state solutions that are relatively simple while being an exact solution for the specific drain-
age area a and the surface elevation z. The idealization of the domain geometry enabled us to disentangle the 
complex interactions of the internal physics of the model from the external constraints posed by more realistic 
boundary conditions. Extensions to other regular domains are possible, such as a smooth topography on a circular 
geometry, for which the analytical expression of a is r/2 (r being the radius of the domain). The imposed bound-
ary conditions and the trial functions in the spectral solver need to be modified accordingly to approximate the 
linearized perturbations and predict the emerging modes of periodic valleys in respective regular domains.

The linear stability theory shows here the first-order periodic valley emergence under the varying proportion of 
creep, DL erosion, and uplift under small sediment redistribution in a smooth landscape. Although comparison 
with data from a natural landscape is very promising, we emphasize that these predictions are theoretically accu-
rate only before the nonlinear interactions become prominent with further expansion in the erosion component, 
that is, the finite size of the emerged valleys becomes dominant in the overall dynamics of pattern formation. Any 
extension of these results beyond this regime is purely based on empirical evidence. This is an important point to 
consider when the present analysis is utilized for further applications in natural landscapes, which have estimated 

𝐴𝐴  value far beyond the critical threshold 𝐴𝐴  𝑐𝑐𝑐𝑐 . To this aim, an extension of the presented formulation to a fully 
nonlinear stability analysis could greatly improve our understanding of these finite-sized nonlinear interactions 
and their role in the perturbations growth and the preference for dominant valley spacing.

4.2.  Testing LEM Numerical Solvers

Modeling studies simulating landscape evolution under the varying balance of DL fluvial erosion and diffusive 
creep showed the presence of first-order valleys at roughly uniform spacing (Anand et al., 2020; Perron, Dietrich, 
& Kirchner, 2008; Perron et al., 2009). However, these studies were based on numerical simulations, which are 
necessarily approximated. Our work based on linear stability theory provides compelling evidence of first-order 
valley emergence with a good agreement between simulation results and stability predictions at small 𝐴𝐴  values. 
The stability analysis demonstrates that the shift from a smooth topography to a channelized one occurs in the 
LEM at a critical proportion of DL erosion to creep transport and that, at this juncture, the solutions exhibit a 
preference for the spatial scale of the first dissection in the linear regime. Such a length scale strongly depends on 
the ratio of exponents m and n in the DL erosion law.

Results from the linear stability analysis can serve as benchmarks for testing the accuracy of the numerical 
solvers for landscape evolution simulations. Before the first instability occurs, the mean elevation profile of 
the steady-state simulation for a long rectangular domain should conform with the unchannelized 1D elevation 
profile. In particular, Equation 14 here provides the variation of the slope along the smooth 1D transect as a func-
tion of 𝐴𝐴  , a result that can be readily obtained for the given value of the exponents m and n. The accuracy of a 
numerical solver can be assessed by checking the 𝐴𝐴  value at which the simulation solution starts deviating from 
the 1D solution due to channelization and comparing it with the 𝐴𝐴  𝑐𝑐𝑐𝑐 value obtained from the stability analysis.

As an example, we compared the theoretical expression of unchannelized 1D slope with the slope of the mean 
elevation profile obtained from the numerical simulations for different 𝐴𝐴  values. To this purpose, we numerically 
integrated Equation 14 for m = n = 1 and calculated the slope at the hillslope base 𝐴𝐴

(
𝑆𝑆0 (𝑠̂𝑠 = 1)

)
 . Following Anand 

et al. (2020), a was numerically approximated as A/Δx, where Δx is the grid resolution. We used D∞ and D8 
flow-direction methods for computing A (O’Callaghan & Mark, 1984; Tarboton, 1997). The LEM simulations 
were performed on a long rectangular domain (width = 100 m and length = 500 m, same as in Section 3.3) using 
these two flow-direction methods and fixed elevation boundary conditions. We compared the boundary slope of 
the mean elevation profile along the length (ignoring the last 100 m of the domain) from the simulations with the 
solution given by Equation 14 for increasing values of 𝐴𝐴  .

Figure 8 presents the results of the comparison between theory and numerical simulations, where the black line 
shows the slope at the hillslope base based on Equation 14. For simulations based on the D∞ method (orange 
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symbols), the mean boundary slope starts deviating around 𝐴𝐴  ≈ 32 with the emergence of first channel instability, 
which is close to the linear stability prediction of 𝐴𝐴  𝑐𝑐𝑐𝑐 ≈ 37 (Section 3.1). The boundary slope starts deviating at 

𝐴𝐴  ≈ 90 for the LEM solver using the D8 method (filled violet symbols), which indicates that the transition from 
smooth to dissected landscape is not captured well by the simulations based on the D8 flow-direction method.

5.  Conclusions
The linear stability analysis of the governing equations of a minimalist DL-LEM allowed us to quantify the 
role of DL erosion and diffusive creep on the evenly spaced valley formation. The use of the spectral method 
made it feasible to compute solutions to the posed stability problem in the form of a differential equation where 
non-constant coefficients elude analytical tractability (Camporeale et al., 2012; Canuto et al., 2006). The flexibil-
ity provided by the spectral method can be extended further to quantify the effects of erosion thresholds, spatially 
varying parameterization, etc., on the first channelization.

Results showed that first-order valleys with spacing λcr emerge at a specific proportion of fluvial erosion and soil 
creep given by the critical value of the non-dimensional index 𝐴𝐴  𝑐𝑐𝑐𝑐 . We obtained the dependency of λcr and 𝐴𝐴  𝑐𝑐𝑐𝑐 
on the exponents m and n in the erosion mechanism. In particular, a reduction in m for a fixed value of n increases 
the 𝐴𝐴  𝑐𝑐𝑐𝑐 threshold, indicating that a higher proportion of the fluvial erosion to the diffusive soil creep in the LEM 
is required to carve the hillslope for channelization as the relative importance of the specific drainage area in the 
erosion mechanism diminishes. Conversely, the 𝐴𝐴  𝑐𝑐𝑐𝑐 threshold for the incipient ridge/valley formation rises with 
an increase in the value of n for a particular m value. Only the ratio of exponents m/n influences the selection of 
a characteristic valley spacing λcr with narrower valleys emerging for the declining values of m/n. A close agree-
ment between the linear stability analysis and numerical simulations of the LEM in a long rectangular domain 
was observed for the inception of the regularly spaced valleys at a certain erosion threshold. Predictions from the 
stability analysis were further validated here by using topographic data from a natural landscape.

One of the main results of our linear stability theory is that the counteracting effects of diffusive soil creep and 
DL fluvial erosion coupled with the specific drainage area equation give rise to a minimalist model capable of 
regular first-order valley formation. Obtained solutions to the posed stability problem demonstrate that preserv-
ing the spatial dependency of the base-state solutions and the coefficients of the final eigenvalue problem allows 
a characteristic wavenumber selection based on the erosion law form, providing an explicit connection between 
the nonlinear erosion feedbacks and the spectral signature of channelization in natural landscapes.

Figure 8.  Test for the accuracy of two LEM numerical solvers using D∞ and D8 flow-direction method, respectively, in 
a long rectangular domain (width = 100 m, length = 500 m, and unit grid spacing). Boundary slope of the mean elevation 
profile along the length, while disregarding the last 100 m of the domain for the numerical solutions (simulation results using 
the D∞ method as orange symbols; results using the D8 method as violet symbols) are compared with the smooth 1D solution 
(black curve) given by Equation 14 for increasing values of 𝐴𝐴  and fixed exponents m = n = 1.
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Extension of the current formulation of the linear stability analysis to more complex transport models is feasible. 
A subject of particular interest for future work would be the first-order valley formation under TL erosion, where 
the sink term in Equation 3 is replaced by the divergence term for the sediment transport based on a similar 
power-law relationship to the specific drainage area and local slope. The present work on valley formation by 
fluvial erosion can also be applied to the models describing glacial landscape evolution (Deal & Prasicek, 2021; 
Prasicek et al., 2015, and references therein). A strong parallel between the DL fluvial erosion model and the 
minimalist glacial erosion model (see the similar forms of Equations 3 and 4 in the present work and the govern-
ing Equation 22 in Deal and Prasicek (2021)) offers the potential use of the developed theory for understanding 
the landscape evolution governed by glacial and a mixed glacial-fluvial sediment transport environment.

Appendix A:  Linearized Perturbed Equations and Boundary Conditions
The modified elevation and specific drainage area fields with weak perturbations can be written as

𝑧𝑧(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝑧𝑧0(𝑥𝑥) + 𝑧̃𝑧(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥),� (A1)

𝑎𝑎(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝑎𝑎0(𝑥𝑥) + 𝑎̃𝑎(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥),� (A2)

where z0(x) and a0(x) are the steady-state unchannelized solutions; 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐴 denote perturbation fields.

Using Equation A1, the updated topographic gradient vector becomes

∇𝑧𝑧 =

(

−𝑆𝑆0 +
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𝐣𝐣,� (A3)
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 is the unchannelized local slope, i is the unit vector in x−axis direction, and j is the unit 

vector in the direction of y−axis. Employing this form of the gradient, the linearized expression for the updated 
topographic slope is written as
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Employing Equations A1, A2, and A4, the governing Equation 3 for the elevation field z(x, y, t) can be updated to

𝜕𝜕 𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝐷𝐷𝑐𝑐∇

2
𝑧𝑧0 +𝐷𝐷𝑐𝑐∇

2
̃𝑧𝑧 −𝐾𝐾𝑒𝑒(𝑎𝑎0 + 𝑎̃𝑎)

𝑚𝑚

(

𝑆𝑆0 −
𝜕𝜕 𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)𝑛𝑛

+ 𝑈𝑈𝑈� (A5)

where 𝐴𝐴 (𝑎𝑎0 + 𝑎̃𝑎)
𝑚𝑚
= 𝑎𝑎

𝑚𝑚

0
+ 𝑚𝑚𝑚𝑚

𝑚𝑚−1

0
𝑎̃𝑎 for small perturbation 𝐴𝐴 𝐴𝐴𝐴 . Writing 𝐴𝐴

(

𝑆𝑆0 −
𝜕𝜕 𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)𝑛𝑛

= 𝑆𝑆
𝑛𝑛
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(

1 −
1

𝑆𝑆0

𝜕𝜕 𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)𝑛𝑛

 and performing 

series expansion for small 𝐴𝐴
𝜕𝜕 𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 modifies the term as 𝐴𝐴 𝐴𝐴

𝑛𝑛

0
− 𝑛𝑛𝑛𝑛

𝑛𝑛−1

0

𝜕𝜕 𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 . Using these expressions and a0 = x, the line-

arized equation for 𝐴𝐴 𝐴𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) reads

𝜕𝜕 𝜕𝜕𝜕
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Using Equations A3 and A4, the unit vector in the direction of steepest descent of the updated elevation field is
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The linearized governing equation for 𝐴𝐴 𝐴𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) can be obtained by substituting Equation A7 in Equation 4 as

∇ ⋅ (��) = 1
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We employ the mathematical expressions for 𝐴𝐴 𝐴𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) and 𝐴𝐴 𝐴𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) as

𝑧̃𝑧 = 𝜓𝜓(𝑥𝑥) exp (𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜎𝜎𝜎𝜎) + c.c.,� (A9)

𝑎̃𝑎 = 𝜙𝜙(𝑥𝑥) exp (𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜎𝜎𝜎𝜎) + c.c.,� (A10)

where ψ(x) and ϕ(x) denote perturbation amplitudes varying along the hillslope with angular wavenumber k in the 
y-direction and initial growth rate σ (c.c. refers to the complex conjugation). Substituting these in Equations A6 
and A8, we write the coupled equations for ψ(x) and ϕ(x) as

𝜎𝜎𝜎𝜎 = 𝐷𝐷𝑐𝑐

𝑑𝑑
2
𝜓𝜓

𝑑𝑑𝑑𝑑2
−𝐷𝐷𝑐𝑐𝑘𝑘

2
𝜓𝜓 − 𝑚𝑚𝑚𝑚𝑒𝑒𝑆𝑆

𝑛𝑛

0
𝑥𝑥
𝑚𝑚−1

𝜙𝜙 + 𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆
𝑛𝑛−1

0
𝑥𝑥
𝑚𝑚
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
,� (A11)

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −

𝑘𝑘
2
𝑥𝑥

𝑆𝑆0

𝜓𝜓𝜓� (A12)

In this work, we assume homogeneous boundary conditions for the weak perturbations, namely 𝐴𝐴 𝐴𝐴𝐴 = 0 at x = 0, 
𝐴𝐴 𝐴𝐴𝐴 = 0 at x = lx/2, and 𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴∕𝜕𝜕𝜕𝜕 = 0 at x = 0. These three conditions are re-written in terms of only ϕ(x) to proceed 

toward a solution, as shown below.

Using Equation A10, 𝐴𝐴 𝐴𝐴𝐴 = 0 at x = 0 becomes ϕ(x = 0) = 0. The condition 𝐴𝐴 𝐴𝐴𝐴 = 0 at x = lx/2 gives ψ(x = lx/2) = 0 

by using Equation A9. Substituting this relation in Equation A12 provides dϕ/dx(x = lx/2) = 0. Finally, 𝐴𝐴
𝜕𝜕 𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0 at 

x = 0 gets translated into 𝐴𝐴
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 0 at x = 0. Imposing this requirement in Equation A12 gives 𝐴𝐴

𝑑𝑑

𝑑𝑑𝑑𝑑

(
𝑆𝑆0

𝑥𝑥

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

)|
|
|
|𝑥𝑥=0

= 0 . 

Under the assumption that S0(x) behaves linearly in the limit x → 0, we get the boundary condition 𝐴𝐴
𝑑𝑑
2
𝜙𝜙

𝑑𝑑𝑑𝑑2
(𝑥𝑥 = 0) = 0 .

Appendix B:  Non-Dimensionalization of the LEM
The governing Equations 3 and 4 of the model have three primary dimensions, namely horizontal directions, 
vertical direction, and time. The treatment of vertical and horizontal directions as independent dimensions is 
justified based on the fact that the elevation field is obtained from the sediment budget and it represents volume 
per unit of ground area. It can also be written as the mass per unit area by supposing a constant sediment density 
(Anand et al., 2022; Porporato, 2022). The elevation field in the vertical direction, hence, is physically distin-
guishable from the horizontal directions (corresponding to the so-called directional dimensional analysis) that 
measure the spatial extent of the domain and establish the boundary conditions for the model. Since we consider 
here an infinitely long strip of finite width (ly ≫ lx), one horizontal length scale enters the dimensional analysis of 
the physical law. Representing the horizontal length scale with 𝐴𝐴  , the vertical scale with 𝐴𝐴  , the time scale with 𝐴𝐴   , 
and denoting the non-dimensional forms of the variables by overhat 𝐴𝐴 (⋅̂) , the dimensionless form of the governing 
equations reads



𝑈𝑈

𝜕𝜕 𝜕𝜕𝜕

𝜕𝜕𝑡𝑡
=

𝐷𝐷𝑐𝑐

𝑈𝑈2
∇̂

2
̂𝑧𝑧 −

𝐾𝐾𝑒𝑒
𝑚𝑚−𝑛𝑛


𝑛𝑛

𝑈𝑈
𝑎̂𝑎
𝑚𝑚|∇̂ ̂𝑧𝑧|𝑛𝑛 + 1,� (B1)

−∇̂ ⋅

(

𝑎̂𝑎
∇̂𝑧̂𝑧

|∇̂𝑧̂𝑧|

)

= 1.� (B2)
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We can now determine the form of these scales to reach the non-dimensional controlling parameter that charac-
terizes the overall system behavior. The selection of lx as 𝐴𝐴  is straightforward as lx is the dominant scale for the 
semi-infinite geometry and establishes the boundary condition in the model formulation. Equation B1 discloses 
the linear scaling of the diffusion term with the vertical scale 𝐴𝐴  , and the scaling of the erosion term as 𝐴𝐴 

𝑛𝑛 . Using 
the combination of parameters in the diffusion term, we write 𝐴𝐴  =

𝑈𝑈𝑈𝑈
2
𝑥𝑥

𝐷𝐷𝑐𝑐

 . From the LHS of Equation B1, selecting 
𝐴𝐴   as 𝐴𝐴 ∕𝑈𝑈 would make this term without a non-dimensional parameter. Using these defined scales 𝐴𝐴  , 𝐴𝐴  , and 𝐴𝐴   , 

a dimensionless combination of model parameters and boundary conditions appear in the fluvial erosion term as

𝜕𝜕 𝜕𝜕𝜕

𝜕𝜕𝑡𝑡
= ∇̂

2
̂𝑧𝑧 −  𝑎̂𝑎

𝑚𝑚|∇̂ ̂𝑧𝑧|𝑛𝑛 + 1,� (B3)

−∇̂ ⋅

(

𝑎̂𝑎
∇̂𝑧̂𝑧

|∇̂𝑧̂𝑧|

)

= 1,� (B4)

 =
𝐾𝐾𝑒𝑒𝑙𝑙

𝑚𝑚+𝑛𝑛

𝑥𝑥

𝐷𝐷
𝑛𝑛

𝑐𝑐𝑈𝑈
1−𝑛𝑛

.� (B5)

Using numerical simulations of the complete landscape evolution model (LEM), we verified the validity of the 
presented dimensional analysis for different values of the parameters and exponents m and n in the LEM and 
their effects on the steady-state morphologies. We simulated a very long rectangular domain (lx = 100 m and 
ly = 5 × lx m) with fixed elevation boundary conditions at four sides such that only one typical length scale (lx) 
remains relevant to compute 𝐴𝐴  in Equation B5. The values of model parameters and exponents used for the nine 
cases presented here are reported in Table B1.

In Figure B1, the steady-state solutions are shown for the case of exponents m = 0.5 and n = 1, where the value of 
𝐴𝐴  does not depend on the uplift rate U. The value of U varies by four orders of magnitudes in these three cases, 

which does not alter the balance of creep to erosion component in the model 𝐴𝐴 ( = 50) and the solutions do not 
change with the presence of first-order valleys in all three cases. These steady-state solutions appear as re-scaled 
copies of each other, which is apparent when their non-dimensional forms 𝐴𝐴

(

𝑧̂𝑧 =
𝑧𝑧𝑧𝑧𝑐𝑐

𝑈𝑈𝑈𝑈𝑥𝑥
2

)

 are noted.

Figure B1.  Steady-state topographies obtained from numerical simulations of the complete landscape evolution model in 
a rectangular domain with m = 0.5 and n = 1 and three sets of parameters that preserve the same 𝐴𝐴  value equal to 50 (see 
Table B1). The dimensional form of the elevation field is shown in black-colored labels and the non-dimensional form 𝐴𝐴 𝐴𝐴𝐴 is 
shown in blue-colored labels, indicating that the presented solutions are re-scaled copies of each other. The simulations were 
performed using the numerical algorithm developed in Anand et al. (2020).
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For the exponents m = 0.5 and n = 0.75, three cases are analyzed for different values of U, as shown in Figure B2. 
Decreasing the value of uplift rate U by eight orders of magnitudes from panel a to panel c increases the intensity 
of the fluvial component compared to the diffusive creep in the LEM, which is quantified by the increased value 
of 𝐴𝐴  from 5 to 500 in these cases. The steady-state landscape profile varies from an unchannelized case at 𝐴𝐴  = 5 
before the first instability with first-order valleys and few secondary branching at 𝐴𝐴  = 50 to a complex pattern 
of ridges and valleys at 𝐴𝐴  = 500 .

Figure B3 displays three steady-state solutions for exponents m = 0.5 and n = 1.25, when the erosion term scales 
super-linearly with the vertical scale and increasing value of U results in more channelization. Uplift rate U is 
increased by twelve orders of magnitude in these three cases, which changes the non-dimensional 𝐴𝐴  from 5, 500, 
to 5,000 and explains the obtained channelization cascade in these cases.

Figure B2.  Numerical simulation results in a rectangular domain (width = 100 m, length = 500 m) with m = 0.5 and 
n = 0.75. The value of U decreases from 5 × 10 −1 m yr −1 in panel a to 5 × 10 −5 m yr −1 in panel b to 5 × 10 −9 m yr −1 
in panel c. This change in the uplift rate increases the value of 𝐴𝐴  from 5 (panel a) to 50 (panel b) to 500 (panel c). The 
dimensional/non-dimensional form of the elevation field is shown in black-colored/blue-colored labels. The parameter values 
used in the simulations are reported in Table B1.

Steady-state solution

Ke Dc U m n lx 𝐴𝐴  

(m 1−m yr −1) (m 2 yr −1) (m yr −1) (−) (−) (m) (−)

Figure B1a 2.5 × 10 −4 5 × 10 −3 5 × 10 −1 0.5 1 100 50

Figure B1b 2.5 × 10 −4 5 × 10 −3 5 × 10 −3 0.5 1 100 50

Figure B1c 2.5 × 10 −4 5 × 10 −3 5 × 10 −5 0.5 1 100 50

Figure B2a 2.5 × 10 −4 5 × 10 −3 5 × 10 −1 0.5 0.75 100 5

Figure B2b 2.5 × 10 −4 5 × 10 −3 5 × 10 −5 0.5 0.75 100 50

Figure B2c 2.5 × 10 −4 5 × 10 −3 5 × 10 −9 0.5 0.75 100 500

Figure B3a 2.5 × 10 −4 5 × 10 −3 5 × 10 −9 0.5 1.25 100 5

Figure B3b 2.5 × 10 −4 5 × 10 −3 5 × 10 −1 0.5 1.25 100 500

Figure B3c 2.5 × 10 −4 5 × 10 −3 5 × 10 3 0.5 1.25 100 5,000

Table B1 
Parameter Values Used in the Numerical Simulations of the Landscape Evolution Model in Figures B1, B2, and B3
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Appendix C:  Eigenvalue Problem Formulation

Using 𝐴𝐴  (= lx), 𝐴𝐴  𝐴𝐴

(

=
𝑈𝑈𝑈𝑈𝑥𝑥

2

𝐷𝐷𝑐𝑐

)

 , and 𝐴𝐴   𝐴𝐴

(

=
𝑙𝑙𝑥𝑥

2

𝐷𝐷𝑐𝑐

)

 , the perturbed governing Equations 7 and 8 can be recast in the dimen-
sionless forms as

𝜎̂𝜎 𝜎𝜎𝜎 =
𝑑𝑑
2
𝜓̂𝜓

𝑑𝑑 𝑑𝑑𝑑2
− 𝑘̂𝑘

2
𝜓̂𝜓 − 𝑚𝑚𝑆̂𝑆

𝑛𝑛

0
𝑥̂𝑥
𝑚𝑚−1

𝜙̂𝜙 + 𝑛𝑛𝑆̂𝑆
𝑛𝑛−1

0
𝑥̂𝑥
𝑚𝑚
𝑑𝑑 𝑑𝑑𝑑

𝑑𝑑 𝑑𝑑𝑑
,� (C1)

𝑑𝑑𝜙̂𝜙

𝑑𝑑 𝑑𝑑𝑑
= −

𝑘̂𝑘
2
𝑥̂𝑥

𝑆̂𝑆0

𝜓̂𝜓 𝜓� (C2)

where the overhat notation 𝐴𝐴 (⋅̂) refers to the non-dimensional form of the physical quantities as 𝐴𝐴 𝐴𝐴𝐴 =
𝜎𝜎𝜎𝜎𝑥𝑥

2

𝐷𝐷𝑐𝑐

 , 𝐴𝐴 𝐴𝐴𝐴 =
𝜓𝜓𝜓𝜓𝑐𝑐

𝑈𝑈𝑈𝑈𝑥𝑥
2
 , 

𝐴𝐴 𝜙̂𝜙 =
𝜙𝜙

𝑙𝑙𝑥𝑥

 , 𝐴𝐴 𝑘̂𝑘 = 𝑘𝑘𝑘𝑘𝑥𝑥 , and 𝐴𝐴 𝑆𝑆0 =
𝑆𝑆0𝐷𝐷𝑐𝑐

𝑈𝑈𝑈𝑈𝑥𝑥

 .

Substituting the value of 𝐴𝐴 𝐴𝐴𝐴 from Equation C2 in Equation C1 and changing the reference variable from 𝐴𝐴 𝐴𝐴𝐴 to 𝐴𝐴 𝐴𝐴𝐴 

𝐴𝐴 (= 4𝑥̂𝑥 − 1) , the final form of the perturbed equation in terms of only 𝐴𝐴 𝜙̂𝜙 (𝑠̂𝑠) reads

�1(�̂) �̂′′′ + �2(�̂) �̂′′ + �3(�̂) �̂′ + �4(�̂) �̂ = �̂�5(�̂) �̂′,� (C3)

where the prime (′) refers to the derivative with respect to 𝐴𝐴 𝐴𝐴𝐴 . The expressions for coefficients are specified in 
Table C1

Finally, the boundary conditions for 𝐴𝐴 𝜙̂𝜙 (𝑠̂𝑠) in the changed reference variable 𝐴𝐴 𝐴𝐴𝐴 are

𝜙̂𝜙 = 0 (𝑠̂𝑠 = −1) ,� (C4)

𝜙̂𝜙
′
= 0 (𝑠̂𝑠 = 1) ,� (C5)

𝜙̂𝜙
′′
= 0 (𝑠̂𝑠 = −1) .� (C6)

Figure B3.  Steady-state results obtained from the numerical simulations over a rectangular domain with m = 0.5 
and n = 1.25. 𝐴𝐴  value increases from 5 in panel a to 500 in panel b to 5,000 in panel c, which explains the increased 
channelization in the steady-state landscapes (please refer to Table B1 for the parameter values used in these results). The 
value of U increases by twelve orders of magnitude from panel a to panel c. The dimensional form of the elevation field z is 
shown in black-colored labels and the non-dimensional form 𝐴𝐴 𝐴𝐴𝐴 is marked in blue-colored labels.
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Appendix D:  Weak Formulation and Galerkin Discretization
Equation C3 along with boundary conditions mentioned in Equations C4–C6 constitute a eigenvalue problem, 
which is solved here by transforming the final equation into an integral form (weak formulation). The dependency 
on 𝐴𝐴 𝐴𝐴𝐴 has been omitted hereafter in the expressions for ease of notation.

A weak formulation is obtained by multiplying both sides of Equation C3 by a generic L 2-test function vi (with 
i ∈ 1, N) and integrating over the interval 𝐴𝐴 (−1, 1) as

(
𝛾𝛾1𝜙̂𝜙

′′′
, 𝑣𝑣𝑖𝑖

)
+
(
𝛾𝛾2𝜙̂𝜙

′′
, 𝑣𝑣𝑖𝑖

)
+
(
𝛾𝛾3𝜙̂𝜙

′
, 𝑣𝑣𝑖𝑖

)
+
(
𝛾𝛾4𝜙̂𝜙𝜙𝜙𝜙 𝑖𝑖

)
= 𝜎̂𝜎

(
𝛾𝛾5𝜙̂𝜙

′
, 𝑣𝑣𝑖𝑖

)
,� (D1)

where (�, �)∶= ∫ 1−1 �(�̂
′) �(�̂′) ��̂′ defines the inner product between two functions. The numerical approxima-

tion of inner products in the above equation can be computed by the interpolatory Legendre-Gauss quadrature 
formula, which approximates the integration of a generic function f in the domain [−1, 1] through the use of 
weights wk computed at discrete (Gauss-Lobatto) nodes 𝐴𝐴 𝐴𝐴𝐴𝑘𝑘 as

∫

1

−1
�(�̂) ��̂ ≈

�=�
∑

�=0

�(�̂�)��.� (D2)

In the numerical solver developed for this work, 𝐴𝐴 𝐴𝐴𝐴𝑘𝑘 and wk are computed using the algorithm provided by 
Swarztrauber (2003).

Based on previous works on spectral solutions of eigenvalue problems in shear flows (Shen, 1994), we seek a 
solution of 𝐴𝐴 𝜙̂𝜙 in the form

�̂ = �−1(�̂) �−1 + �0(�̂)�0 +
�
∑

�=1

��(�̂)�� =
�
∑

�=−1

��(�̂)��,� (D3)

where αj are the unknown coefficients of the linear expansion and uj reads

𝑢𝑢−1 (𝑠̂𝑠) =
1 + 𝑠̂𝑠

2
� (D4)

�0(�̂) = − �̂2

4
+ �̂

2
+ 3

4
� (D5)

Name Form of the constant/expression

a1 𝐴𝐴
𝑛𝑛

4𝑚𝑚−𝑛𝑛
 

a2 𝐴𝐴 𝑘̂𝑘
2 

a3 𝐴𝐴
𝑚𝑚 𝑘̂𝑘

2

42+𝑚𝑚−𝑛𝑛
 

�̂0(�̂)  𝐴𝐴 |𝑑𝑑 𝑑𝑑𝑑0∕𝑑𝑑 𝑑𝑑𝑑| 

�1(�̂)  𝐴𝐴 16𝑆𝑆0

2
(𝑠̂𝑠 + 1)

2 

�2(�̂)  𝐴𝐴 − 32𝑆𝑆0

2

(𝑠̂𝑠 + 1) + 32𝑆𝑆0𝑆𝑆0

′

(𝑠̂𝑠 + 1)
2
+ 𝑎𝑎1𝑆𝑆0

𝑛𝑛+1

(𝑠̂𝑠 + 1)
𝑚𝑚+2 

�3(�̂)  𝐴𝐴 16𝑆𝑆0𝑆𝑆0

′′

(𝑠̂𝑠 + 1)
2
− 32𝑆𝑆0𝑆𝑆0

′

(𝑠̂𝑠 + 1) + 32𝑆𝑆0

2

− 𝑎𝑎2𝑆𝑆0

2

(𝑠̂𝑠 + 1)
2
− 𝑎𝑎1𝑆𝑆0

𝑛𝑛+1

(𝑠̂𝑠 + 1)
𝑚𝑚+1 

𝐴𝐴 + 𝑎𝑎1𝑆𝑆0

𝑛𝑛

𝑆𝑆0

′

(𝑠̂𝑠 + 1)
𝑚𝑚+2 

�4(�̂)  𝐴𝐴 𝐴𝐴3𝑆𝑆0

𝑛𝑛+1
(𝑠̂𝑠 + 1)

𝑚𝑚+2 

�5(�̂)  𝐴𝐴 𝑆𝑆0

2
(𝑠̂𝑠 + 1)

2 

Note. The prime (′) refers to the derivative with respect to 𝐴𝐴 𝐴𝐴𝐴

Table C1 
Constants and Expressions for the Coefficients in the Differential Eigenvalue Problem (Equation 13 in the Main Text)
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��(�̂) =
��+2(�̂) − ��(�̂)
√

2(2� + 3)
(� ∈ [1, �]) .� (D6)

In the above expressions, Lj represents the Legendre polynomial of degree j. So, uj(±1)  =  0 for j  ≥  1 with 
u−1(−1) = u0(−1) = 0. The additional functions u−1 and u0 have been added to the basis to accommodate the 
non-vanishing boundary conditions.

Finally, from Equation  D6 and using the properties of the Legendre polynomial (Pólya & Szegö,  1972; 
SzegÂš, 1939), one obtains

�′�(�̂) =
√

2� + 3
2

��+1(�̂) .� (D7)

Taking these particular forms of trial functions, the boundary condition ϕ(−1) = 0 gets implicitly imposed in the 
formulation. The remaining two boundary conditions (Equations C5 and C6) have to be applied explicitly in the 
strong form, as described later. Test functions 𝐴𝐴 (𝑣𝑣𝑖𝑖for𝑖𝑖 ∈ [1, 𝑁𝑁]) are chosen by integrating twice each Legendre 
polynomial as

𝑣𝑣𝑖𝑖 =

√

𝑖𝑖 +
3

2

(
𝐿𝐿𝑖𝑖+3 − 𝐿𝐿𝑖𝑖+1

(2𝑖𝑖 + 3)(2𝑖𝑖 + 5)
−

𝐿𝐿𝑖𝑖+1 − 𝐿𝐿𝑖𝑖−1

(2𝑖𝑖 + 1)(2𝑖𝑖 + 3)

)

,� (D8)

𝑣𝑣
′

𝑖𝑖
=

𝐿𝐿𝑖𝑖+2 − 𝐿𝐿𝑖𝑖

√
2(2𝑖𝑖 + 3)

,� (D9)

𝑣𝑣
′′

𝑖𝑖
=

√
2𝑖𝑖 + 3

2
𝐿𝐿𝑖𝑖+1,� (D10)

where these functions satisfy homogeneous boundary conditions as 𝐴𝐴 𝐴𝐴𝑖𝑖(±1) = 𝑣𝑣
′

𝑖𝑖
(±1) = 0 .

Using integration by parts, the third-order term in Equation D1 can be written as
(
𝜙̂𝜙
′′′
𝛾𝛾1, 𝑣𝑣𝑖𝑖

)
= 𝜙̂𝜙

′′
(1)𝛾𝛾1(1)𝑣𝑣𝑖𝑖(1) − 𝜙̂𝜙

′′
(−1)𝛾𝛾1(−1)𝑣𝑣𝑖𝑖(−1)

−𝜙̂𝜙
′
(1)

[
𝛾𝛾
′

1
(1)𝑣𝑣𝑖𝑖(1) + 𝛾𝛾1(1)𝑣𝑣

′

𝑖𝑖
(1)

]
+ 𝜙̂𝜙

′
(−1)

[
𝛾𝛾
′

1
(−1)𝑣𝑣𝑖𝑖(−1) + 𝛾𝛾1(−1)𝑣𝑣

′

𝑖𝑖
(−1)

]

+
(
𝜙̂𝜙
′
, 𝛾𝛾

′′

1
𝑣𝑣𝑖𝑖 + 𝛾𝛾

′

1
𝑣𝑣
′

𝑖𝑖

)
+
(
𝜙̂𝜙
′
, 𝛾𝛾

′

1
𝑣𝑣
′

𝑖𝑖
+ 𝛾𝛾1𝑣𝑣

′′

𝑖𝑖

)
.

� (D11)

The above expression gets simplified using vi(±1) = 0 and 𝐴𝐴 𝐴𝐴
′

𝑖𝑖
(±1) = 0 as

(
𝜙̂𝜙
′′′
𝛾𝛾1, 𝑣𝑣𝑖𝑖

)
=
(
𝜙̂𝜙
′
, 𝛾𝛾

′′

1
𝑣𝑣𝑖𝑖 + 𝛾𝛾

′

1
𝑣𝑣
′

𝑖𝑖

)
+
(
𝜙̂𝜙
′
, 𝛾𝛾

′

1
𝑣𝑣
′

𝑖𝑖
+ 𝛾𝛾1𝑣𝑣

′′

𝑖𝑖

)
.� (D12)

Similarly, the second-order term in Equation D1 is simplified to
(
𝜙̂𝜙
′′
𝛾𝛾2, 𝑣𝑣𝑖𝑖

)
= −

(
𝜙̂𝜙
′
, 𝛾𝛾

′

2
𝑣𝑣𝑖𝑖 + 𝛾𝛾2𝑣𝑣

′

𝑖𝑖

)
.� (D13)

Using Equations D12 and D13 and the property of symmetry for the inner product 𝐴𝐴 ((𝑓𝑓𝑓 𝑓𝑓) = (𝑔𝑔𝑔𝑔𝑔  )) , the weak 
formulation becomes

(
𝛾𝛾
′′

1
𝑣𝑣𝑖𝑖 + 2𝛾𝛾

′

1
𝑣𝑣
′

𝑖𝑖
+ 𝛾𝛾1𝑣𝑣

′′

𝑖𝑖
− 𝛾𝛾

′

2
𝑣𝑣𝑖𝑖 − 𝛾𝛾2𝑣𝑣

′

𝑖𝑖
+ 𝛾𝛾3𝑣𝑣𝑖𝑖, 𝜙̂𝜙

′
)
+
(
𝛾𝛾4𝑣𝑣𝑖𝑖, 𝜙̂𝜙

)
= 𝜎̂𝜎

(
𝛾𝛾5𝑣𝑣𝑖𝑖, 𝜙̂𝜙

′
)
.� (D14)

The final form of the weak formulation in terms of trial (uj) and test functions (vi) is obtained as

∑

𝑗𝑗=−1,𝑁𝑁

(
𝛾𝛾
′′

1
𝑣𝑣𝑖𝑖 + 2𝛾𝛾

′

1
𝑣𝑣
′

𝑖𝑖
+ 𝛾𝛾1𝑣𝑣

′′

𝑖𝑖
− 𝛾𝛾

′

2
𝑣𝑣𝑖𝑖 − 𝛾𝛾2𝑣𝑣

′

𝑖𝑖
+ 𝛾𝛾3𝑣𝑣𝑖𝑖, 𝑢𝑢

′

𝑗𝑗

)
𝛼𝛼𝑗𝑗 + (𝛾𝛾4𝑣𝑣𝑖𝑖, 𝑢𝑢𝑗𝑗) 𝛼𝛼𝑗𝑗 =

𝑗𝑗=𝑁𝑁∑

𝑗𝑗=−1

𝜎̂𝜎
(
𝛾𝛾5𝑣𝑣𝑖𝑖, 𝑢𝑢

′

𝑗𝑗

)
𝛼𝛼𝑗𝑗,� (D15)

for i = 1, N. The system shown by Equation D15 consists of N equations with N + 2 unknowns (αj, j ∈ [−1, N]). 
This can also be represented in matrix notation as 𝐴𝐴 𝐀𝐀𝜶𝜶 = 𝜎̂𝜎𝐁𝐁𝜶𝜶 , where the matrix entries can be written as
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��� =
�
∑

�=0

[((

� ′′1 (�̂�) ��(�̂�) + 2� ′1(�̂�)
′�′�(�̂�) + �1(�̂�) �′′� (�̂�) − � ′2(�̂�) ��(�̂�)

−�2(�̂�) �′�(�̂�) + �3(�̂�) ��(�̂�)
)

�′�(�̂�) + �4(�̂�) ��(�̂�) ��(�̂�)
)

��
]

,
� (D16)

��� =
�
∑

�=0

(

�5(�̂�) ��(�̂�) �′�(�̂�)��
)

.� (D17)

The next two equations are obtained by imposing boundary conditions ϕ″(−1) = 0 and ϕ′(1) = 0 in the strong 
form. Using the trial functions (and 𝐴𝐴 𝐴𝐴

′

0
(1) = 𝑢𝑢

′′

−1
(−1) = 0 ), we can write

𝑢𝑢
′′

0
(−1)𝛼𝛼0 + 𝑢𝑢

′′

1
(−1)𝛼𝛼1 + 𝑢𝑢

′′

2
(−1)𝛼𝛼2 +⋯ = 0,� (D18)

𝑢𝑢
′

−1
(1)𝛼𝛼−1 + 𝑢𝑢

′

1
(1)𝛼𝛼1 + 𝑢𝑢

′

2
(1)𝛼𝛼2 +⋯ = 0.� (D19)

The relationship between the coefficients for the imposed boundary conditions can be obtained as

𝛼𝛼0 = −
𝑢𝑢
′′

1
(−1)

𝑢𝑢
′′

0
(−1)

𝛼𝛼1 −
𝑢𝑢
′′

2
(−1)

𝑢𝑢
′′

0
(−1)

𝛼𝛼2 −⋯ = 𝑝𝑝1𝛼𝛼1 + 𝑝𝑝2𝛼𝛼2 +…� (D20)

𝛼𝛼−1 = −
𝑢𝑢
′

1
(1)

𝑢𝑢
′

−1
(1)

𝛼𝛼1 −
𝑢𝑢
′

2
(1)

𝑢𝑢
′

−1
(1)

𝛼𝛼2 −⋯ = 𝑞𝑞1𝛼𝛼1 + 𝑞𝑞2𝛼𝛼2 +…� (D21)

with 𝐴𝐴 𝐴𝐴𝑗𝑗 = −
𝑢𝑢
′′

𝑗𝑗
(−1)

𝑢𝑢
′′

0
(−1)

= −
𝑢𝑢
′′

𝑗𝑗
(−1)

−1∕2
 and 𝐴𝐴 𝐴𝐴𝑗𝑗 = −

𝑢𝑢
′

𝑗𝑗
(1)

𝑢𝑢
′

−1
(1)

= −
𝑢𝑢
′

𝑗𝑗
(1)

1∕2
 for j = 1, N.

Applying this relation among the coefficients, the modified left-hand and right-hand matrix entries read

𝐴𝐴
′

𝑖𝑖𝑖𝑖𝑖
= 𝐴𝐴𝑖𝑖𝑖0𝑝𝑝𝑗𝑗 + 𝐴𝐴𝑖𝑖𝑖−1𝑞𝑞𝑗𝑗 + 𝐴𝐴𝑖𝑖𝑖𝑖𝑖 , 𝐵𝐵

′

𝑖𝑖𝑖𝑖
= 𝐵𝐵𝑖𝑖𝑖0𝑝𝑝𝑗𝑗 + 𝐵𝐵𝑖𝑖𝑖−1𝑞𝑞𝑗𝑗 + 𝐵𝐵𝑖𝑖𝑖𝑖𝑖 , (𝑖𝑖𝑖 𝑖𝑖 ∈ [1, 𝑁𝑁]) .� (D22)

The algebraic system, 𝐴𝐴 𝐀𝐀′
𝜶𝜶 = 𝜎̂𝜎𝐁𝐁′

𝜶𝜶 , now consists of N equations in N unknowns (αj, j ∈ [1, N]), which can be 

solved as a generalized eigenvalue problem to compute the growth rate 𝐴𝐴 (𝜎̂𝜎) for different values of 𝐴𝐴 𝑘̂𝑘 and 𝐴𝐴  .

Data Availability Statement
The Python code developed for the linear stability analysis is available at https://github.com/ShashankAnand1996/
LEM_Stability_Analysis. The details of the solver used for the numerical simulations is described in Anand 
et al. (2020) and the well-commented Python code is available on GitHub https://github.com/ShashankAnand1996/
LEM (Anand, 2022).
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