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Abstract: This paper deals with an open shop scheduling problem in which sequence-dependent
setup times are present. In open shops there are no restrictions on the processing route of each
job, so the decision regards not only the sequencing of jobs on each machine, but also the
sequencing of operations (machines) for each job. These type of problems typically arise in
application contexts where the order in which the operations are executed is irrelevant. In
this work a novel heuristic approach based on mathematical programming, i.e., a matheuristic,
is developed and its performance is assessed through a computational study on open shop
benchmark instances.
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1. INTRODUCTION

Open shop, flow shop, job shop, and mixed shop problems
are scheduling problems in multi-machine environments,
which are widely used for modeling industrial production
processes. The most studied layouts in the literature are
flow shops and job shops; here, instead, we deal with the
open shop layout, which does not have a pre-determined
routing for jobs (Pinedo, 2012). Each job is characterized
by a set of operations, each operation must be performed
by a given machine, but the processing route can be any.
Hence, in the pure open shop scheduling problem, two
decisions must be taken: (1) the processing route for each
job (i.e., the sequence of operations/machines) and (2) the
sequence of jobs on each machine.

Open shop problems typically arise in contexts where the
order in which operations must be performed is immate-
rial, but there is the restriction that only one operation at
a time can be performed by each machine and on each job.
Examples can be found in testing or maintenance/repair
environments, quality control facilities, teacher-class as-
signments, examination and class scheduling in univer-
sities, and medical tests in health care facilities. In all
these applications, the operations (repair operations, aca-
demic activities, medical tests, quality controls, etc.) that
each job (students, patients, aircrafts, or machines to be
maintained/repaired/tested, etc.) has to complete, can be
performed in any order. The only restriction is to avoid
overlapping for the same job (e.g., a student cannot take
two exams at the same time), and for the same machine
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(e.g., two exams cannot be held in the same room at
the same time). Open shop problems are generally NP-
hard, because the lack of precedence relations among job
operations leads to a larger solution space and a looser
solution space structure. Furthermore, despite their prac-
tical relevance, open shop problems have received far less
attention in the literature, with respect to flow shop, job
shop and single machine problems. In the literature on
open shop problems, the most common used performance
measure is the makespan minimization, and various spe-
cific versions of the problem have been considered. Just
to cite a few examples, widely studied problems are with
two or three machines (Dong et al., 2013; Koulamas and
Kyparisis, 2015; Liaw, 2003, e.g.), multi-processor (Matta
and Elmaghraby, 2010; Abdelmaguid, 2020, e.g.), and with
special processing time characteristics (Chen et al., 2020,
e.g.). Moreover, for the most complex cases, heuristic algo-
rithms are adopted to address the problem (Abreu et al.,
2020; Goldansaz et al., 2013; Mej́ıa and Yuraszeck, 2020,
e.g.).

Regardless of the characteristics of the problem, in prac-
tical settings, a crucial role is played by setup times, i.e.,
the time needed to switch from the processing of a job
to the processing of another (e.g., time to prepare the
machine, preheating time, time to change the tool, etc.).
Setup times can be sequence-dependent or independent.
In the first case, the time spent to prepare the machine to
process a job depends both on the job to be processed and
on the job immediately preceding it, while in the second
it depends only on the job to be processed. Sequence-
dependent setups need to be explicitly considered, as the
time used for setups changes with different job sequences.
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routing for jobs (Pinedo, 2012). Each job is characterized
by a set of operations, each operation must be performed
by a given machine, but the processing route can be any.
Hence, in the pure open shop scheduling problem, two
decisions must be taken: (1) the processing route for each
job (i.e., the sequence of operations/machines) and (2) the
sequence of jobs on each machine.

Open shop problems typically arise in contexts where the
order in which operations must be performed is immate-
rial, but there is the restriction that only one operation at
a time can be performed by each machine and on each job.
Examples can be found in testing or maintenance/repair
environments, quality control facilities, teacher-class as-
signments, examination and class scheduling in univer-
sities, and medical tests in health care facilities. In all
these applications, the operations (repair operations, aca-
demic activities, medical tests, quality controls, etc.) that
each job (students, patients, aircrafts, or machines to be
maintained/repaired/tested, etc.) has to complete, can be
performed in any order. The only restriction is to avoid
overlapping for the same job (e.g., a student cannot take
two exams at the same time), and for the same machine
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(Efficient Algorithms for HArnessing Networked Data).

(e.g., two exams cannot be held in the same room at
the same time). Open shop problems are generally NP-
hard, because the lack of precedence relations among job
operations leads to a larger solution space and a looser
solution space structure. Furthermore, despite their prac-
tical relevance, open shop problems have received far less
attention in the literature, with respect to flow shop, job
shop and single machine problems. In the literature on
open shop problems, the most common used performance
measure is the makespan minimization, and various spe-
cific versions of the problem have been considered. Just
to cite a few examples, widely studied problems are with
two or three machines (Dong et al., 2013; Koulamas and
Kyparisis, 2015; Liaw, 2003, e.g.), multi-processor (Matta
and Elmaghraby, 2010; Abdelmaguid, 2020, e.g.), and with
special processing time characteristics (Chen et al., 2020,
e.g.). Moreover, for the most complex cases, heuristic algo-
rithms are adopted to address the problem (Abreu et al.,
2020; Goldansaz et al., 2013; Mej́ıa and Yuraszeck, 2020,
e.g.).

Regardless of the characteristics of the problem, in prac-
tical settings, a crucial role is played by setup times, i.e.,
the time needed to switch from the processing of a job
to the processing of another (e.g., time to prepare the
machine, preheating time, time to change the tool, etc.).
Setup times can be sequence-dependent or independent.
In the first case, the time spent to prepare the machine to
process a job depends both on the job to be processed and
on the job immediately preceding it, while in the second
it depends only on the job to be processed. Sequence-
dependent setups need to be explicitly considered, as the
time used for setups changes with different job sequences.
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1. INTRODUCTION

Open shop, flow shop, job shop, and mixed shop problems
are scheduling problems in multi-machine environments,
which are widely used for modeling industrial production
processes. The most studied layouts in the literature are
flow shops and job shops; here, instead, we deal with the
open shop layout, which does not have a pre-determined
routing for jobs (Pinedo, 2012). Each job is characterized
by a set of operations, each operation must be performed
by a given machine, but the processing route can be any.
Hence, in the pure open shop scheduling problem, two
decisions must be taken: (1) the processing route for each
job (i.e., the sequence of operations/machines) and (2) the
sequence of jobs on each machine.

Open shop problems typically arise in contexts where the
order in which operations must be performed is immate-
rial, but there is the restriction that only one operation at
a time can be performed by each machine and on each job.
Examples can be found in testing or maintenance/repair
environments, quality control facilities, teacher-class as-
signments, examination and class scheduling in univer-
sities, and medical tests in health care facilities. In all
these applications, the operations (repair operations, aca-
demic activities, medical tests, quality controls, etc.) that
each job (students, patients, aircrafts, or machines to be
maintained/repaired/tested, etc.) has to complete, can be
performed in any order. The only restriction is to avoid
overlapping for the same job (e.g., a student cannot take
two exams at the same time), and for the same machine
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(e.g., two exams cannot be held in the same room at
the same time). Open shop problems are generally NP-
hard, because the lack of precedence relations among job
operations leads to a larger solution space and a looser
solution space structure. Furthermore, despite their prac-
tical relevance, open shop problems have received far less
attention in the literature, with respect to flow shop, job
shop and single machine problems. In the literature on
open shop problems, the most common used performance
measure is the makespan minimization, and various spe-
cific versions of the problem have been considered. Just
to cite a few examples, widely studied problems are with
two or three machines (Dong et al., 2013; Koulamas and
Kyparisis, 2015; Liaw, 2003, e.g.), multi-processor (Matta
and Elmaghraby, 2010; Abdelmaguid, 2020, e.g.), and with
special processing time characteristics (Chen et al., 2020,
e.g.). Moreover, for the most complex cases, heuristic algo-
rithms are adopted to address the problem (Abreu et al.,
2020; Goldansaz et al., 2013; Mej́ıa and Yuraszeck, 2020,
e.g.).

Regardless of the characteristics of the problem, in prac-
tical settings, a crucial role is played by setup times, i.e.,
the time needed to switch from the processing of a job
to the processing of another (e.g., time to prepare the
machine, preheating time, time to change the tool, etc.).
Setup times can be sequence-dependent or independent.
In the first case, the time spent to prepare the machine to
process a job depends both on the job to be processed and
on the job immediately preceding it, while in the second
it depends only on the job to be processed. Sequence-
dependent setups need to be explicitly considered, as the
time used for setups changes with different job sequences.
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This heavily impacts on machine capacities and then on
all the performance measures. Sequence-dependent setup
times are mainly (but not exclusively) found in chemical
and food sectors, where cleaning operations might depend
on both the job to be processed and on the previous one
(the more different the jobs, in terms of flavor or chemical
composition, the more accurate must be the cleaning).

In this paper, an open shop problem with an arbitrary
number of machines and jobs is considered. Sequence-
dependent setup times are present, and the total comple-
tion time has to be minimized. Although, from a practical
point of view, the total completion time is a very relevant
performance measure, most of the literature focuses on
makespan minimization (Abreu and Nagano, 2022; Bai
et al., 2016; Goldansaz et al., 2013; Koulamas and Ky-
parisis, 2015; Naderi et al., 2010; Sedeño-Noda et al.,
2009, e.g.). Usually, the total completion time minimiza-
tion is addressed through weighted solution approaches
(Bai et al., 2017, e.g.) or special cases in terms of pro-
cessing time (Brucker et al., 1993, e.g.), or focus on ba-
sic cases to show asymptotic behavior of some standard
rules such as the Shortest Processing Time rule (SPT)
(Bräsel et al., 2008; Liaw et al., 2002; Tang and Bai,
2010, e.g.). Although sequence-dependent setup times have
been largely addressed in the literature in the context of
different scheduling problems (Agnetis et al., 2004; Alfieri
and Nicosia, 2014; Engehausen and Lödding, 2022; Shen
et al., 2018, e.g.), very few papers explicitly consider them
for open shops (Abreu and Nagano, 2022; Naderi et al.,
2011; Roshanaei et al., 2010, e.g.). The problem addressed
in this paper is the same as in Naderi et al. (2011), for
which an electromagnetism-like meta-heuristic, improved
by a simulated annealing algorithm, is proposed. The
complexity of the problem calls for a heuristic algorithm,
as only very small instances can be solved to optimality;
however, differently from Naderi et al. (2011), and from
most of the heuristic approaches found in the literature,
in this paper, a matheuristic rather than a meta-heuristic
algorithm is proposed. Matheuristics are optimization al-
gorithms that alternate exact solution phases, mainly dealt
with mathematical programming-based techniques, with
heuristic phases. In many applications, the heuristic phase
is the relaxation of some model constraints, or some in-
teger variable relaxation and/or fixing. In these cases, the
mathematical model of the problem is very important and,
hence, matheuristics are also called model-based heuris-
tics.

1.1 Our Contribution

In this paper, as already mentioned, a matheuristic al-
gorithm based on a Mixed Integer Linear Programming
(MILP) model of the problem is used. Specifically, in the
proposed solution approach, the continuous relaxation of
a set of variables (the so-called sequence variables) and
their further rounding is alternated to computing the exact
solution of the relaxed/fixed model. Computational tests
on a set of benchmark instances from Taillard (1993) show
that the proposed matheuristic becomes more and more
effective when the number of jobs and machines increases if
compared to a pure mathematical programming approach.

The reminder of the paper is organized as follows. Sec-
tion 2 formally describes the problem and presents the

mathematical programming model. Section 3 illustrates
in details the proposed matheuristic approach. Numerical
results are presented and discussed in Section 4, while
some conclusions are drawn in Section 5.

2. PROBLEM DESCRIPTION

The classical open shop scheduling problem can be defined
as follows. A set of n jobs must be processed by a set of m
machines such that each job visits all the machines exactly
once. Differently from other shop scheduling problems,
such as flow shop or job shop problems, there are no
predetermined routes for the jobs on the machines; so, the
processing path (route) of each job must be determined
during the scheduling. The open shop problem can then be
considered as a generalization of both the flow shop and
the job shop. Therefore, in all the open shop problems,
two levels of decision must be undertaken, namely the
processing route of each job and the sequence of jobs
on each machine. Other assumptions, common to most
shop scheduling problems, also apply to the open shop
scheduling.

Rigorously, the addressed open shop problem with sequence-
dependent setup times and total completion time mini-
mization can be defined as follows. 1

We are given:

• a set M = {M1,M2, . . . ,Mm} of m machines;
• a set J = {J1, J2, . . . , Jn} of n jobs;
• for each job Jj ∈ J a set of m operations O(j) =

{Oj,1, Oj,2, . . . , Oj,m}, one for each machine, where
operation Oj,i has to be processed by machine Mi for
pj,i time units;

• for each machine Mi ∈ M and for each pair of jobs Jj
and Jk a setup time sjk,i, which is the time needed for
set-up operations that have to be spent on machine
Mi when switching from the execution of job Jj to
that of job Jk.

We assume, as in most job shop problems, that a feasible
schedule is such that (i) at any time each machine can
process at most one operation; (ii) the operations of
the same job are totally ordered since each job can be
processed by at most one machine at a time; (iii) no
preemption is allowed. Assuming that all jobs are available
at time 0, we want to find job orders (orders of operations
belonging to the same job) and machine orders (orders of
operations to be processed on the same machine) so that
the total completion time is minimized.

According to Graham’s three field notation (Graham et al.,
1979), the open shop scheduling problem with sequence-
dependent setup times in which the objective is the min-
imization of the total completion time can be denoted as
O|STsd|

∑
j Cj .

In the following, a mixed integer linear programming
formulation (which is an adaptation of the one in Naderi
et al. (2011)) is presented. The decision variables are the
following:

1 Note that, to help readability, job and machine indices used in
variables and parameters subscripts are separated by a comma, e.g.,
subscript jk, i refers to jobs Jj and Jk and machine Mi.

• Cj,i, Cj ∈ R+, representing the completion times
of operation Oj,i and of job Jj , respectively, with
i = 1, 2, . . . ,m and j = 1, 2, . . . n;

• xj,il ∈ {0, 1}, encoding whether operation Oj,i pre-
cedes Oj,l for each job j = 1, 2, . . . n and for each
pair of operations on machines Mi and Ml with
i, l = 1, 2, . . .m with i ̸= l;

• yi,jk ∈ {0, 1}, indicating whether operation Oj,i im-
mediately precedes Ok,i on machineMi, i = 1, 2, . . .m
for each pair of jobs Jj and Jk in J .

Note that in the following MILP 2 , in order to better
model the precedences between jobs, we consider a dummy
job J0, which has null processing times and that will be
scheduled before all other jobs and we let J̄ = J ∪ {J0}.

min
∑
j∈J

Cj (1)

s.t.
∑
k∈J̄
k ̸=j

yi,kj = 1 ∀i ∈ M,∀j ∈ J (2)

∑
k∈J
k ̸=j

yi,jk ≤ 1 ∀i ∈ M,∀j ∈ J (3)

∑
j∈J

yi,0j = 1 ∀i ∈ M (4)

xj,il + xj,li = 1 ∀i, l ∈ M, j ∈ J (5)

yi,jk + yi,kj ≤ 1 ∀i ∈ M,∀j, k ∈ J (6)

Ck,i ≥ Cj,i + pk,i + sjk,i−
M(1− yi,jk)

∀i ∈ M, j, k ∈ J (7)

Cj,l ≥ Cj,i + pj,l +

n∑
k=0,k ̸=j

skj,lyl,kj

−M(1− xj,il)

∀j ∈ J ,∀i, l ∈ M (8)

Cj,i ≥ Cj,l + pj,i +

n∑
k=0,k ̸=j

skj,iyi,kj

−M · xj,il

∀j ∈ J ,∀i, l ∈ M (9)

Cj ≥ Cj,i ∀j ∈ J , i ∈ M (10)

Cj ≥ 0 ∀j ∈ J (11)

Cj,i ≥ 0 ∀j ∈ J ,∀i ∈ M (12)

xj,il ∈ {0, 1} ∀i, l ∈ M,∀j ∈ J (13)

yi,jk ∈ {0, 1} ∀i ∈ M,∀j, k ∈ J (14)

The first constraint set (2) ensures that every job Jk has to
be scheduled exactly once on each machineMi by imposing
that each operation Ok,i has exactly one operation Oj,i

preceding it for some j = 0, 1, . . . n. Constraints (3)
guarantee that each job has at most one succeeding job
on each machine. Constraints (4) specify that the dummy
job J0 must be the predecessor of exactly one job on each
machine and thus defining the first job to be processed
on each machine. Constraints (5) imply that each job
Ji is either processed on machine Mi first and then on
Ml or vice versa, for any pair of machines. Analogously,
constraints (6) avoid cross precedence among jobs on each
machine Mi, i.e., if job Jj precedes job Jk, then job Jk
cannot precede job Jj on the same machine. Note that, in
order to avoid repetitions, in constraints (5) and (6) we
consider only ordered pairs of machines and of jobs. More

2 With a slight abuse of notation the set M (resp. the set J ) will
denote both the set of machines (resp. jobs) and the set of associated
indices from 1 to m (resp. from 1 to n).

specifically, constraints (5) can be limited to all pairs of
machines Mi, Ml such that i < l, while constraints (6) can
be restricted to pairs of jobs Jj , Jk with j < k. Constraints
(7) impose that operation Ok,i cannot start before the
completion of operation Oj,i and of the necessary setup
if Ok,i is processed immediately after Oj,i (that is, if
yi,jk = 1). Constraint sets (8) and (9) are the disjunctive
constraints relating each pair of operations of each job Jj
(i.e., they state that given a job Jj , either operation Oj,i

on machine Mi precedes operation Oj,l on machine Ml,
or vice versa). Constraints (10) compute the completion
time of each job Jj . Finally, constraints (11)–(14) define
the domain of the decision variables.

3. A HEURISTIC APPROACH

Due to the large number of integer variables and to the
big-M constraints (7)–(9), the MILP model proposed in
the previous section requires too much time to be solved
on large instances. For this reason, we propose a heuristic
approach, namely a matheuristic. It relies on conveniently
rounding some of the y variables values obtained in the
optimal solution of the continuous relaxation of MILP
model (1)-(14) using an iterative scheme. The solution
approach is sketched in Algorithm 1, in which we call a
commercial solver for the solution of different relaxations
and/or special cases of MILP (1)-(14) and we denote as:

• I a subset of indices for the y variables, i.e. I ⊆ M×
J × J ;

• LP the continuous relaxation of the above MILP;
• LP (I) the continuous relaxation of the above MILP
in which all yi,jk variables with indices i, jk ∈ I are
fixed to value 1;

• MILP (I, C) the above MILP in which some addi-
tional constrains contained in the set C are added,
the y variables with indeces in I are fixed to 1,
the remaining y variables are constrained to assume
binary values, while the x variables are continuous in
interval [0, 1].

In Algorithm 1, t1 is the maximum iteration time for the
main loop, t2 the time limit to solve MILP (I, C) at each
iteration in the main loop, and t3 the time limit to compute
the final solution.

The proposed solution procedure starts from an initial
solution ŷ, found as the optimal solution of the continuous
relaxation of the model. At each iteration, a random
percentage of the y variables of the initial solution is
fixed to 1 and the new (partially fixed) mathematical
programming model is solved to optimality. This way,
several distinct solutions may be explored (the algorithm
mimics a multi-start solution approach). At the end of each
iteration of the main loop, the y variables are set again to
assume binary values, while the domain of the x variables
is always kept continuous between 0 and 1. At the end of
all the iterations (i.e., when the time limit t1 is reached),
to compute the final solution, the y values corresponding
to the best solution found are fixed as constraints in the
original MILP model, which is then solved with a time
limit t3. The resulting solution is a heuristic solution of the
original problem. Note that, during the execution of the
algorithm, to ensure that the rounding of the y variables
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• Cj,i, Cj ∈ R+, representing the completion times
of operation Oj,i and of job Jj , respectively, with
i = 1, 2, . . . ,m and j = 1, 2, . . . n;

• xj,il ∈ {0, 1}, encoding whether operation Oj,i pre-
cedes Oj,l for each job j = 1, 2, . . . n and for each
pair of operations on machines Mi and Ml with
i, l = 1, 2, . . .m with i ̸= l;

• yi,jk ∈ {0, 1}, indicating whether operation Oj,i im-
mediately precedes Ok,i on machineMi, i = 1, 2, . . .m
for each pair of jobs Jj and Jk in J .

Note that in the following MILP 2 , in order to better
model the precedences between jobs, we consider a dummy
job J0, which has null processing times and that will be
scheduled before all other jobs and we let J̄ = J ∪ {J0}.

min
∑
j∈J

Cj (1)

s.t.
∑
k∈J̄
k ̸=j

yi,kj = 1 ∀i ∈ M,∀j ∈ J (2)

∑
k∈J
k ̸=j

yi,jk ≤ 1 ∀i ∈ M,∀j ∈ J (3)

∑
j∈J

yi,0j = 1 ∀i ∈ M (4)

xj,il + xj,li = 1 ∀i, l ∈ M, j ∈ J (5)

yi,jk + yi,kj ≤ 1 ∀i ∈ M,∀j, k ∈ J (6)

Ck,i ≥ Cj,i + pk,i + sjk,i−
M(1− yi,jk)

∀i ∈ M, j, k ∈ J (7)

Cj,l ≥ Cj,i + pj,l +

n∑
k=0,k ̸=j

skj,lyl,kj

−M(1− xj,il)

∀j ∈ J ,∀i, l ∈ M (8)

Cj,i ≥ Cj,l + pj,i +

n∑
k=0,k ̸=j

skj,iyi,kj

−M · xj,il

∀j ∈ J ,∀i, l ∈ M (9)

Cj ≥ Cj,i ∀j ∈ J , i ∈ M (10)

Cj ≥ 0 ∀j ∈ J (11)

Cj,i ≥ 0 ∀j ∈ J ,∀i ∈ M (12)

xj,il ∈ {0, 1} ∀i, l ∈ M,∀j ∈ J (13)

yi,jk ∈ {0, 1} ∀i ∈ M,∀j, k ∈ J (14)

The first constraint set (2) ensures that every job Jk has to
be scheduled exactly once on each machineMi by imposing
that each operation Ok,i has exactly one operation Oj,i

preceding it for some j = 0, 1, . . . n. Constraints (3)
guarantee that each job has at most one succeeding job
on each machine. Constraints (4) specify that the dummy
job J0 must be the predecessor of exactly one job on each
machine and thus defining the first job to be processed
on each machine. Constraints (5) imply that each job
Ji is either processed on machine Mi first and then on
Ml or vice versa, for any pair of machines. Analogously,
constraints (6) avoid cross precedence among jobs on each
machine Mi, i.e., if job Jj precedes job Jk, then job Jk
cannot precede job Jj on the same machine. Note that, in
order to avoid repetitions, in constraints (5) and (6) we
consider only ordered pairs of machines and of jobs. More

2 With a slight abuse of notation the set M (resp. the set J ) will
denote both the set of machines (resp. jobs) and the set of associated
indices from 1 to m (resp. from 1 to n).

specifically, constraints (5) can be limited to all pairs of
machines Mi, Ml such that i < l, while constraints (6) can
be restricted to pairs of jobs Jj , Jk with j < k. Constraints
(7) impose that operation Ok,i cannot start before the
completion of operation Oj,i and of the necessary setup
if Ok,i is processed immediately after Oj,i (that is, if
yi,jk = 1). Constraint sets (8) and (9) are the disjunctive
constraints relating each pair of operations of each job Jj
(i.e., they state that given a job Jj , either operation Oj,i

on machine Mi precedes operation Oj,l on machine Ml,
or vice versa). Constraints (10) compute the completion
time of each job Jj . Finally, constraints (11)–(14) define
the domain of the decision variables.

3. A HEURISTIC APPROACH

Due to the large number of integer variables and to the
big-M constraints (7)–(9), the MILP model proposed in
the previous section requires too much time to be solved
on large instances. For this reason, we propose a heuristic
approach, namely a matheuristic. It relies on conveniently
rounding some of the y variables values obtained in the
optimal solution of the continuous relaxation of MILP
model (1)-(14) using an iterative scheme. The solution
approach is sketched in Algorithm 1, in which we call a
commercial solver for the solution of different relaxations
and/or special cases of MILP (1)-(14) and we denote as:

• I a subset of indices for the y variables, i.e. I ⊆ M×
J × J ;

• LP the continuous relaxation of the above MILP;
• LP (I) the continuous relaxation of the above MILP
in which all yi,jk variables with indices i, jk ∈ I are
fixed to value 1;

• MILP (I, C) the above MILP in which some addi-
tional constrains contained in the set C are added,
the y variables with indeces in I are fixed to 1,
the remaining y variables are constrained to assume
binary values, while the x variables are continuous in
interval [0, 1].

In Algorithm 1, t1 is the maximum iteration time for the
main loop, t2 the time limit to solve MILP (I, C) at each
iteration in the main loop, and t3 the time limit to compute
the final solution.

The proposed solution procedure starts from an initial
solution ŷ, found as the optimal solution of the continuous
relaxation of the model. At each iteration, a random
percentage of the y variables of the initial solution is
fixed to 1 and the new (partially fixed) mathematical
programming model is solved to optimality. This way,
several distinct solutions may be explored (the algorithm
mimics a multi-start solution approach). At the end of each
iteration of the main loop, the y variables are set again to
assume binary values, while the domain of the x variables
is always kept continuous between 0 and 1. At the end of
all the iterations (i.e., when the time limit t1 is reached),
to compute the final solution, the y values corresponding
to the best solution found are fixed as constraints in the
original MILP model, which is then solved with a time
limit t3. The resulting solution is a heuristic solution of the
original problem. Note that, during the execution of the
algorithm, to ensure that the rounding of the y variables
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will lead to a feasible solution, a feasibility check and a
restoration procedure, called Repair, are performed.

Algorithm 1: Matheuristic for O|STsd|
∑

j Cj

/* Initialization */
LB∗ ← +∞, best solution y∗ ← ∅, and constraint set
C ← ∅;

Solve LP and let ŷ be the solution values for the y
variables;
Let I be the set of indices of ŷ variables having value
larger than threshold s;
/* Main step: Exploration of candidate

solutions */
while time limit t1 is not reached do

Randomly pick a probability value p;
Each variable index in I is assigned to index set
I ′ ⊆ I with probability p;

Solve LP (I ′) and let y̌ be the solution values
obtained for the y variables;
Round up to 1 all y̌ variables having value larger
than threshold s and add the corresponding
indices to I ′;
if y̌ is not feasible for job routing on machines
then

Apply Repair procedure updating index set
I ′ and constraint set C;

end
Solve MILP (I ′, C) with a time limit of t2 and let
LB be the lower bound obtained after time limit
is reached corresponding to the best solution
found;
if LB < LB∗ then

Update best solution y∗ and best lower bound
LB∗;

end
end
/* Final solution computation */
Solve the original MILP model with a time limit of t3
and with the constraints that all y variables having
integer values in y∗ are fixed;

A more detailed description of the matheuristic approach
sketched in Algorithm 1 is given hereafter.

Initialization. To get an initial solution in terms of y values,
the continuous relaxation LP of the original problem
(obtained by letting the binary variables y and x assume
any value in the interval [0, 1]) is solved. The y values found
as solution (ŷ) of the continuous relaxation are used as
initial values for the algorithm. As ŷ values are continuous,
some of them are rounded up to an integer value according
to the following: if ŷi,jk > s then ŷi,jk = 1. We denote as I
the set of indices of ŷ variables having value larger than the
threshold s (in our experiments, s has been set to 0.98).

Exploration of candidate solutions. A time limit t1 is set,
and until it is not reached, new solutions in terms of
y values are explored iteratively. At each iteration, first
a random probability value p is selected and then, the
continuous relaxation is solved again, by adding some
constraints to fix several y values. Specifically, if in the
initial solution ŷi,jk = 1 (i.e. if the index of the y
variable is in I), then with probability p the constraint

yi,jk = 1 is added to the model. The new LP, with
these constraints, is called LP (I ′) (where I ′ ⊆ I is the
subset of randomly selected indices). The y variables in
the solution of LP (I ′) are rounded up to 1 according
to the threshold s, and the corresponding solution is
called y̌. This solution has no guarantee to be feasible.
Indeed, since some continuous variables in problems LP
and LP (I ′) are rounded up to 1, sometimes loops can
appear when creating the job sequences for each machine.
As an example, consider machine M1 and three jobs. It
may happen that the following variables are set to 1 after
the rounding: y̌1,13 = 1, y̌1,32 = 1 and y̌1,21 = 1. This
means that job J1 precedes J3, job J3 precedes J2 and job
J1 follows job J2, thus the sequence of jobs on machine
M1 would be J1 → J3 → J2 → J1. Such sequence is
clearly not feasible for the original MILP model. Thus,
before using y̌ values in the integer model, its feasibility
is restored through a Repair procedure, which eliminates
all the loops in each machine sequence. In the illustrative
case, the Repair procedure will assure that the loop is
broken by removing the constraints that impose that y̌1,13
and y̌1,21 are equal to 1 (i.e., by removing the indices from
I ′), and by adding to the current mathematical model (i.e.,
to the set C) the constraint y1,13 + y1,21 ≤ 1. In general,
the feasibility check is performed by creating all the job
sequences for each machine starting from the solution y̌.
For all such sequences, it checks if any loop is present.
If this is the case, the Repair procedure removes all the
loops as follows. For each detected loop, a job is selected
(J1 in the above example) and the corresponding y̌ values
containing such job as index (in the example, y̌1,13 and
y̌1,21) are removed from the list of variables that have value
fixed to 1, so the index set I ′ is updated by removing two
indices. A constraint is created and added to the set C to
force the sum of these variables to be less than or equal to
1 to avoid that the loop is created again (and thus reducing
the solution space).
Lastly, the model MILP (I ′, C) is solved within a very
short time limit t2. In MILP (I ′, C) we have all the
original constraints of the problem, i.e., constraints (2)–
(12), plus: (i) all the variables y that correspond to y̌
variables equal to 1, i.e., those in the set I ′, have their
value fixed to 1; (ii) the constraints in C, which are the
output of the Repair procedure to avoid loops; (iii) the
remaining y variables constrained to assume binary values;
(iv) the x variables constrained to assume continuous
values in interval [0, 1]. The solution of the MILP (I ′, C)
model allows to get the best lower bound found by the
MILP solver (namely, LB). LB is used as a proxy of the
quality of the y solution; indeed, it is the best overall
solution that could be achieved with y variables with index
in I ′ fixed to 1. In case LB is the best value found so far,
the corresponding solution, namely y∗, is stored.

Final solution. After reaching the time limit t1, the final
solution is computed by solving the original MILP model
in which y values are fixed to the best solution found in
the iterations (i.e., the solution with the best LB). A time
limit t3 is set, variables y and x are set to binary, and
variables y are fixed to y∗. Obviously, as some y values
have been fixed during the solution process, there is no
guarantee that the final solution found is optimal for the
original MILP problem.

4. EXPERIMENTS

The solution procedure has been tested on various in-
stances to evaluate its efficiency and effectiveness when
some characteristics of the input are varied.
The tested instances are based on Taillard open shop
benchmarks (Taillard, 1993). Thus, the following combi-
nations of number of jobs and machines values are tested:
(n,m) ∈ {(4, 4), (5, 5), (7, 7), (10, 10), (15, 15), (20, 20)}.
For each combination, 10 instances are available. Since
Taillard instances do not include setup times, they are
generated as follows. For each (n,m), setup times are
generated from U(1, 499) for the first five instances (iden-
tified as low setup time), and from U(500, 999) for the
last five instances (high setup time). For each instance, the
solution procedure is run 5 times, and the average results
are considered. All in all, 300 instances are generated.

The proposed procedure has been implemented in C++,
and the mathematical programming models are solved by
calling CPLEX solver, version 12.9. Tests were run on a
computer having 3.70 GHz Intel (R) i7 processor with 32
GB RAM. A one-hour total time limit has been set for the
solution procedure, where 10 minutes are devoted to the
iteration phase (i.e., t1 = 600 seconds), while 50 minutes
to the final solution procedure (i.e., t3 = 3000 seconds).
In the iteration phase, the time limit t2 for computing an
integer solution is set to 5 seconds, as it is a sufficient time
for any solver to detect a lower bound.

The preliminary computational results are reported in
Table 1. The proposed matheuristic procedure (column
Matheur) is compared to the solution of the original
problem through CPLEX solver (column MILP), with a
one-hour time limit. In Table 1, each row represents the
average solutions calculated over the five instances and
over the 5 runs for each instance of the algorithms, for
the matheuristic and MILP procedures. Also, the average
percentage gap is shown (column %Gap), which is the
average over runs and replicates of the percentage gap
calculated as: %Gap = Matheur−MILP

MILP . Regarding MILP
results, the solutions followed by ∗ are optimal (i.e.,
CPLEX was able to find the optimal solution in less than
one hour).

Table 1. Main results.

(n,m) Setup time Matheur MILP % Gap

(4, 4) low 4684.6 3759.2* 24.2%
(4, 4) high 14093 12947.4* 15.5%
(5, 5) low 8007.2 5611.4* 42.4%
(5, 5) high 22833.6 19070.2 19.8%
(7, 7) low 16198.6 10552 54.4%
(7, 7) high 52365.4 41526.4 26.1%

(10, 10) low 39159.2 37486.2 5.8%
(10, 10) high 111248.2 124228.6 -10.4%
(15, 15) low 91479 122567.4 -25.3%
(15, 15) high 254821.6 288325.0 -11.6%
(20, 20) low 173571.6 229103.0 -24.2%
(20, 20) high 465308.8 519423.0 -10.4%

The results in Table 1 show that the instances with up to 5
jobs and 5 machines can be solved to optimality by CPLEX
in less than one hour. More specifically, CPLEX needs
less than one second to solve the (4, 4) instances with low
setup times, and up to five seconds with high setup times.

For the (5, 5) instances, high setup times make CPLEX
unable to find the optimal solution in one hour, whereas
for low setup times the optimum is found on average in
270 seconds. This shows the impact of the magnitude of
setup times on the complexity of the solution procedure.
Instead, larger instances cannot be solved to optimality
within the time limit. The proposed matheuristic finds
worse solutions than MILP for small instances. Indeed, the
percentage gap is positive and large for all the instances
up to 7 jobs and 7 machines. For these instances, the
proposed heuristic procedure never reaches the time limit
t3 for the final solution, as the integer problem with
variable rounding takes less than five minutes to find
its final solution (which, however, has no guarantee to
be optimal). Instead, for larger instances, the solution
procedure is able to guarantee negative gaps. Although
the proposed procedure is not always more efficient than
solving the mathematical model with CPLEX, significant
improvements may be noticed when the instances become
larger and larger, and hence also more realistic. For the
instances equal or larger than (10, 10), the final solution
phase of the algorithm reaches the time limit t3, thus the
proposed approach takes in total one hour, as the MILP,
to find the solution.

5. CONCLUSIONS

This paper addressed an open shop scheduling problem
with sequence-dependent setup times, a problem that has
not been widely studied in the literature so far. The objec-
tive is to find the schedule of jobs on machines that mini-
mizes the total completion time. A matheuristic approach
exploiting a mathematical formulation was developed to
solve such problem. The computational results show that
for very small numbers of jobs and machines the problem
can be solved to optimality with a commercial solver in less
than five minutes. When there are more than 7 jobs and 7
machines, instead, the commercial solver is not able to find
the optimal solution in one hour computation time. The
experiments show that the larger is the problem size (i.e.,
the larger the number of jobs and machines), the better
are the solutions found by the proposed heuristic approach
with respect to those found by the solver with the same
computational budget.

Although the results are promising, the proposed ap-
proach still could be improved. At the current state, the
matheuristic randomly fixes part of the initial job se-
quences on each machine. More effective rules can be used
to either generate the initial solution or to fix a part of
it during iterations. Also, no control has been taken on
the variables related to the machine sequences for each
job. Moreover, next research threads could deal with the
exploitation of the disjuctive graph representation of the
problem. In fact, it is possible to represent the problem
solved at each iteration of the proposed algorithm (i.e.,
the one with fixed sequences of jobs on machines) by a
disjunctive graph. Differently from what happens with job
shop problems, instead of determining the orientation of
the disjunctive arcs on the machines, the decision deals
with establishing the sequence of machines for each job.
Also, a generalization of the classical disjunctive graph
as in Agnetis et al. (2011) could be used to address the
problem by means of a combinatorial branch and bound
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nations of number of jobs and machines values are tested:
(n,m) ∈ {(4, 4), (5, 5), (7, 7), (10, 10), (15, 15), (20, 20)}.
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Taillard instances do not include setup times, they are
generated as follows. For each (n,m), setup times are
generated from U(1, 499) for the first five instances (iden-
tified as low setup time), and from U(500, 999) for the
last five instances (high setup time). For each instance, the
solution procedure is run 5 times, and the average results
are considered. All in all, 300 instances are generated.

The proposed procedure has been implemented in C++,
and the mathematical programming models are solved by
calling CPLEX solver, version 12.9. Tests were run on a
computer having 3.70 GHz Intel (R) i7 processor with 32
GB RAM. A one-hour total time limit has been set for the
solution procedure, where 10 minutes are devoted to the
iteration phase (i.e., t1 = 600 seconds), while 50 minutes
to the final solution procedure (i.e., t3 = 3000 seconds).
In the iteration phase, the time limit t2 for computing an
integer solution is set to 5 seconds, as it is a sufficient time
for any solver to detect a lower bound.

The preliminary computational results are reported in
Table 1. The proposed matheuristic procedure (column
Matheur) is compared to the solution of the original
problem through CPLEX solver (column MILP), with a
one-hour time limit. In Table 1, each row represents the
average solutions calculated over the five instances and
over the 5 runs for each instance of the algorithms, for
the matheuristic and MILP procedures. Also, the average
percentage gap is shown (column %Gap), which is the
average over runs and replicates of the percentage gap
calculated as: %Gap = Matheur−MILP

MILP . Regarding MILP
results, the solutions followed by ∗ are optimal (i.e.,
CPLEX was able to find the optimal solution in less than
one hour).

Table 1. Main results.

(n,m) Setup time Matheur MILP % Gap

(4, 4) low 4684.6 3759.2* 24.2%
(4, 4) high 14093 12947.4* 15.5%
(5, 5) low 8007.2 5611.4* 42.4%
(5, 5) high 22833.6 19070.2 19.8%
(7, 7) low 16198.6 10552 54.4%
(7, 7) high 52365.4 41526.4 26.1%

(10, 10) low 39159.2 37486.2 5.8%
(10, 10) high 111248.2 124228.6 -10.4%
(15, 15) low 91479 122567.4 -25.3%
(15, 15) high 254821.6 288325.0 -11.6%
(20, 20) low 173571.6 229103.0 -24.2%
(20, 20) high 465308.8 519423.0 -10.4%

The results in Table 1 show that the instances with up to 5
jobs and 5 machines can be solved to optimality by CPLEX
in less than one hour. More specifically, CPLEX needs
less than one second to solve the (4, 4) instances with low
setup times, and up to five seconds with high setup times.

For the (5, 5) instances, high setup times make CPLEX
unable to find the optimal solution in one hour, whereas
for low setup times the optimum is found on average in
270 seconds. This shows the impact of the magnitude of
setup times on the complexity of the solution procedure.
Instead, larger instances cannot be solved to optimality
within the time limit. The proposed matheuristic finds
worse solutions than MILP for small instances. Indeed, the
percentage gap is positive and large for all the instances
up to 7 jobs and 7 machines. For these instances, the
proposed heuristic procedure never reaches the time limit
t3 for the final solution, as the integer problem with
variable rounding takes less than five minutes to find
its final solution (which, however, has no guarantee to
be optimal). Instead, for larger instances, the solution
procedure is able to guarantee negative gaps. Although
the proposed procedure is not always more efficient than
solving the mathematical model with CPLEX, significant
improvements may be noticed when the instances become
larger and larger, and hence also more realistic. For the
instances equal or larger than (10, 10), the final solution
phase of the algorithm reaches the time limit t3, thus the
proposed approach takes in total one hour, as the MILP,
to find the solution.

5. CONCLUSIONS

This paper addressed an open shop scheduling problem
with sequence-dependent setup times, a problem that has
not been widely studied in the literature so far. The objec-
tive is to find the schedule of jobs on machines that mini-
mizes the total completion time. A matheuristic approach
exploiting a mathematical formulation was developed to
solve such problem. The computational results show that
for very small numbers of jobs and machines the problem
can be solved to optimality with a commercial solver in less
than five minutes. When there are more than 7 jobs and 7
machines, instead, the commercial solver is not able to find
the optimal solution in one hour computation time. The
experiments show that the larger is the problem size (i.e.,
the larger the number of jobs and machines), the better
are the solutions found by the proposed heuristic approach
with respect to those found by the solver with the same
computational budget.

Although the results are promising, the proposed ap-
proach still could be improved. At the current state, the
matheuristic randomly fixes part of the initial job se-
quences on each machine. More effective rules can be used
to either generate the initial solution or to fix a part of
it during iterations. Also, no control has been taken on
the variables related to the machine sequences for each
job. Moreover, next research threads could deal with the
exploitation of the disjuctive graph representation of the
problem. In fact, it is possible to represent the problem
solved at each iteration of the proposed algorithm (i.e.,
the one with fixed sequences of jobs on machines) by a
disjunctive graph. Differently from what happens with job
shop problems, instead of determining the orientation of
the disjunctive arcs on the machines, the decision deals
with establishing the sequence of machines for each job.
Also, a generalization of the classical disjunctive graph
as in Agnetis et al. (2011) could be used to address the
problem by means of a combinatorial branch and bound
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procedure. In addition, at the current state, the solution
approach is driven by the exploration of various solutions
in terms of sequence of jobs on machines. Future research
could be devoted also to address the opposite direction:
instead of fixing the sequences of jobs in each machine,
a new perspective could lead to fixing the sequences of
machines for each job. By doing so, the problem with fixed
job sequences would be a job shop scheduling problem,
with sequence-dependent setup times.
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