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Abstract: Powertrain electrification is bound to pave the way for the decarbonization process and
pollutant emission reduction of the automotive sector, and strong attention should hence be devoted
to the electrical energy storage system. Within such a framework, the lithium-ion battery plays a key
role in the energy scenario, and the reduction of lifetime due to the cell degradation during its usage
is bound to be a topical challenge. The aim of this work is to estimate the state of health (SOH) of
lithium-ion battery cells with satisfactory accuracy and low computational cost. This would allow
the battery management system (BMS) to guarantee optimal operation and extended cell lifetime.
Artificial intelligence (AI) algorithms proved to be a promising data-driven modelling technique for
the cell SOH prediction due to their great suitability and low computational demand. An accurate
on-board SOH estimation is achieved through the identification of an optimal SOC window within
the cell charging process. Several Bi-LSTM networks have been trained through a random-search
algorithm exploiting constant current constant voltage (CCCV) test protocol data. Different analyses
have been performed and evaluated as a trade-off between prediction performance (in terms of RMSE
and customized accuracy) and computational burden (in terms of memory usage and elapsing time).
Results reveal that the battery state of health can be predicted by a single-layer Bi-LSTM network with
an error of 0.4% while just monitoring 40% of the entire charging process related to 60–100% SOC
window, corresponding to the constant-voltage (CV) phase. Finally, results show that the amount of
memory used for data logging and processing time has been cut by a factor of approximately 2.3.

Keywords: lithium-ion battery; SOH estimation; artificial intelligence; lifetime prediction; neural
networks; supervised learning; LSTM; data mining; battery aging

1. Introduction

The necessity of reducing pollutant emissions caused by internal combustion en-
gines of road vehicles and to increase the efficiency of the energy use in vehicles has led
researchers to find new propulsion solutions. Electric motors have been used for road
vehicle-propulsion systems for a long time (‘La Jamais Contente’ in 1899 was the first
car in history that went beyond 100 km/h, and it was electric [1]; however, it was never
used in production because of the difficulties in storing a large quantity of electric energy
on vehicles). Recent technological advancements in Li-ion batteries partially fixed this
problem and allowed electric motors to be employed for automotive traction. As a matter
of fact, in contrast to many other electrical storage systems such as lead-acid batteries,
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Li-ion batteries have quite high energy and power density, a low level of self-discharge, a
low need for maintenance, and good load characteristics, and they can be partially charged
and discharged without being damaged [2–4]. If appropriately managed by a battery
management system (BMS), Li-ion batteries can ensure an acceptable level of safety and
valid lifespan, as essential requirements for automotive applications.

On the other hand, the Li-ion battery package is definitely the most critical and frag-
ile component of the electric vehicle. In order to preserve battery health, it is extremely
important to monitor and oversee its status while in operation. This is done by the BMS,
which ensures that the battery pack works within its safe range and optimal conditions [5].
Cells must always operate within a specific range of temperature and voltage, and they
cannot deliver excessively high currents. These conditions change from cell to cell de-
pending on many factors, such as chemistry type. For instance, when batteries operate
at excessively high temperatures, they may bloat with gas, causing leakage or explosion,
or a thermal runaway may even occur [6,7]. As a result, the BMS must guarantee vehicle
safety. Thermal management of cells is another key issue: at high temperatures, the battery
degrades faster, leading to degradation of performance over time [8–10], while at low
temperatures, the efficiency is lower due to the higher internal resistance of the cell [11].
Overvoltage and undervoltage conditions can also damage the battery chemistry [12,13].
In general, the more the batteries work far from their optimal temperature range which is
commonly between −20 °C and 60 °C, the faster they degrade. According to the literature,
although safe conditions are respected, batteries degrade at varying rates depending on the
stress cycles. This is referred to as cyclic aging [14].

The BMS is critical to safeguard as much of the health and efficiency of the battery
as possible, but it is also very important to know the battery health condition at any
given time. When the battery degrades, its capacity reduces, producing a decrease in
vehicle range, and its internal resistance increases. Specifically, the decrease in capacity
impacts the amount of energy a battery can store, although the rise in internal resistance
restricts the amount of power that can be generated [15]. For this reason, when battery
capacity reaches 80% of its initial value or internal resistence reached 200% of the initial
value, they are ordinarily not used any longer for automotive applications, and this is
considered the conventional battery’s end of life (EOL). They can then be used for a variety
of stationary applications, such as grid energy distribution, thus giving them a second life
before recycling [16]. The health condition can be described by the state-of-health (SOH)
parameter. In some applications where the power capacity is more significant than the
energy amount, the internal resistance is generally regarded a SOH metric, and the SOH is
therefore defined by the ratio between EOL and real internal resistance and EOL and fresh
state internal resistance. In contrast, the SOH is defined as the ratio between the actual
battery capacity and the capacity at the beginning of its life for applications wherein the
available energy plays a significant role [17].

Therefore, depending on the application, capacity or internal resistance should be
measured. Several techniques are proposed in the literature concerning the battery SOH
estimation on board electric vehicles [18–20]. The battery aging state can be theoretically
evaluated by knowing the history of the battery. A semi-empirical formula for the SOH
identification has been exploited in [21,22], taking inspiration from the Arrenius equation
for ideal gases’ behaviour and considering as the main aging agent the lithium-ion loss.
This describes the dependency of the battery capacity loss on the number of cycles, tem-
perature, charge, and discharge rate and depth of discharge. This formula may be useful
both for estimating battery lifetime and for on-board applications. The equivalent circuit
models (ECMs) are well-known model-based strategies that exhibit simplicity and good
accuracy [23]. This method parameterizes the model variables in relation to the battery
SOH by using experimental data [24]. For the battery aging status analysis, these models
take into account the internal resistance increase. This can be accurately measured by using
the electrochemical impedance spectroscopy (EIS) technology [25–27]. The EIS is a precise
and reliable technique; however, nowadays it is rarely exploited for online applications.
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The high cost of the instruments required does not allow a large-scale use. Therefore,
the internal resistence needs to be estimated on board with a different method. Many
empirical data-driven models were developed to this end [28,29]. Among these, autore-
gressive models [30,31] and state observer models coupled with the extended Kalman
filter [32,33] provided good results. A large number of different algorithms can be found,
such as the particle swarm support vector machine algorithm (PSO-SVM) [34], a particle
filter method [35], or even statistical methods [36]. Moreover, neural networks (NNs) seem
to be a promising solution in giving accurate results [37–41]. In these studies, it is demon-
strated that NNs continue to be research hotspots, exhibiting great potential in estimating
SOH under complex aging conditions, particularly when the data are sufficiently abun-
dant, owing to the advantages of approximation and learning speed. Briefly, ML-based
SOH estimation approaches are research focuses and will have a significant impact on the
future of transportation electrification. In particular, the feed-forward neural networks
(FNNs), the convolutional neural networks (CNNs), and the recurrent long short-term
memory (LSTM) are the best-performing NNs according to the literature. A comparison
between them is given by Sungwoo Jo et al. (2021) [42] which shows the best performance
belonging to LSTM compared with the others two types. However, LSTMs may require
high computational cost and memory use due to the dimension of the memory cell and its
complex structure.

The BMS handles the battery SOH identification task, as well as numerous other
functions, including safety control, failure avoidance, and energy consumption optimiza-
tion. Typically, automotive boards are supplied with ARM processors embedding a 32-bit
architecture (multi-core), which can provide adequate processing power [43,44]. However,
it is expected that more and more data and tasks will need to be stored and fulfilled as a
consequence of technological advancements [43]. Performing some tasks by using external
cloud devices could be a solution for this issue, yet it requires effective and reliable internet
communication [45]. In [46], an LSTM for remaning useful life (RUL) estimation by using
multichannel full charge profiles is presented, with considerable improvements over the
baseline LSTM and a significant reduction in the amount of the parameters considered for
the model. However, entire charge cycle data is employed, resulting in a large amount of
memory and processing space. As a result, [47] develops an RNN-LSTM to estimate the
RUL based on partial charge data in the voltage domain range, setting boundary limits.
However, the complete SOC domain is not explored, and it is unclear how much memory
and computational cost may be saved by varying the different SOC window lengths during
charge for SOH estimation. Hence, the computational and memory use reduction for SOH
estimation through a data-driven model is a current research gap.

To help fill the highlighted research gap, the main contribution of this study relates to
the estimation of the battery SOH from partial charging data and varying the SOC window
length through a bidirectional LSTM (Bi-LSTM) in order to reduce the on-board compu-
tational cost and memory use while maintaining a high degree of precision, consistent
with other research studies in the literature that use the full charge data [48]. In particular,
sensitivity analyses are performed to determine the minimum amount of data required
in a battery charge process to ensure a good SOH estimation. Furthermore, the charge
phase (in terms of SOC range) which is most reliable for the SOH estimation is assessed.
This is done by training several Bi-LSTM NNs with data of charging made up of different
lengths and considering different SOC windows. The Bi-LSTM neural network (NN) is a
wide temporal prediction technique used for SOH estimation, and its predictive powers
are derived from learning the forward and backward temporal correlation information
in the input data [49,50]. As part of the learning process, many model parameters are
automatically tuned based on the user-defined hyperparameters selected from a large
pool of solutions. The best hyperparameter training combination has been determined
separately for each experiment with a random-search algorithm. The final aim is to provide
a light methodology from the computational and memory use points of view for the on-
board estimation of the battery SOH, exploiting a data-logged time series that is as short as
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possible. Final results presented in the last part of this activity highlight that the method of
partial charging data can be taken into account for the SOH on-board estimation to have a
reduction of the computational demand at the control unit level with a saving of memory
usage thanks to shorter data logging.

2. Materials and Methods

The current investigation involved estimating the remaining battery life while per-
forming charge–discharge cycles. Several different cycle aging experimental tests have
been performed in the literature [51] considering different cell chemistries. For our pur-
pose, the selected aging dataset was that of Sandia National Laboratories [52]. This study
has focused on the influence of cell operating conditions on long-term degradation of
18,650 nickel–manganese–cobalt (NMC) cells. Several bidirectional LSTM networks were
created to investigate the accuracy in predicting the SOH prediction during partial charging
phases with variable time lengths. The best SOC range for the SOH estimation during a sin-
gle partial charging was finally evaluated. As a result, by knowing the optimal battery SOC
window for SOH prediction, the battery’s health management system may be improved.

In this section, the proposed method composed by sequential steps is discussed and
shown in Figure 1.

Figure 1. The proposed methodology for battery SOH prediction during partial charging processes.

In the data processing phase, the cell signals acquired from cycle aging tests were
analysed, handled, and cleaned. In the second step related to Bi-LSTM networks training
phase, the data were split in training and validation datasets, and then exploited to perform
the learning process of several Bi-LSTM architectures. The random search algorithm was
used as a powerful hyperparameter tuning technique to find the most accurate network
layout. Grid search and random search are often the most prevalent hyperparameter
optimization approaches utilized for this purpose. From a computational cost standpoint,
the latter enables the analysis of a larger number of neural networks to choose the best,
hence lowering the time required to find the optimal hyperparameters [53]. During the
learning process, the created dataset is randomly divided in training, validation, and test
sets in order to train and validate the selected AI logics. Bi-LSTM NNs were used in
this work due to their excellent capability and performance in time-series forecasting and
learning the key paths in cell cycle aging events [54]. The Bi-LSTM is an extendend form of
the baseline LSTM NN, and it is composed of two LSTM networks which process data in
both forward and backward directions. An LSTM-based model contains a “gate” block that
enables storing longer time sequences of data in the memory. Because Bi-LSTM models
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enable additional training by forward and backward data processing, Bi-LSTM-based
modeling gives better performance and prediction with respect to regular LSTM-based
models [55]. As with any AI model, the Bi-LSTM is defined by a set of hyperparameters
that must be specified in order to tailor the model for the specific application. The random
search optimization technique was used here to tune the hyperparameters [56]. In the final
step, the performance of the identified best Bi-LSTM network was evaluated by considering
a test dataset according to two different metrics, i.e., RMSE and a customized accuracy
parameter. The described method was then exploited to find the best partial charging time
length for the accurate and computationally lightweight estimation of the battery SOH.
Finally, the most suitable SOC window for estimating the battery SOH during a vehicle
charging event was assessed.

2.1. Data Preprocessing Phase

In the present work, the cell under examination was of 18,650 type with NMC chem-
istry on the cathode and graphite on the anode. The cycle aging tests have been performed
by using a multi-channel battery testing system. Moreover, the cycle aging protocol is
reported from Sandia National Laboratories [52]. A summary of test equipment and test
operating conditions are, respectively, reported in Tables 1 and 2.

Table 1. Sandia National Laboratories equipment for cycle aging experiments [52].

Cell Type Cathode Anode Capacity (Ah) Test Equipment

18,650 NMC NMC graphite 3.00 High-
precision Arbin

Table 2. Test operating conditions of cycle aging experiments. N° Cycles is the number of charge and
discharge cycles that a cell can process before it reaches its end-of-life condition (20% of capacity loss).

Charge C Rate Discharge Crate SOC Range
Environmental

Temperature
(°C)

N° Cycles

0.50 2.00 0–100 25 661

The cell has been charged through a constant current constant voltage (CCCV) protocol,
with 0.5 C current during CC phase and current taper to 0.05 A on CV. The NMC cell has
been cycled from 2 to 4.2 V during all cycling tests for the whole SOC domain. A portion of
the experimental test acquisition and the exploited CCCV protocol are reported in Figure 2.

The data acquisition system collected the following signals over time:

• Cycle index, number of charge–discharge cycle;
• Cell current [A];
• Cell voltage [V];
• Charge and discharge capacity [Ah];
• Charge and discharge energy [Wh];
• Cell temperature [°C];
• Environmental temperature [°C].

The SOH parameter was computed after the cell residual capacity has been determined
at the end of each ith cycle by using Equation (1),

SOHi =
Qactual,i

Qrated
, (1)

where Qactual,i is the capacity computed at the ith charge–discharge cycle and Qrated is the
cell nominal capacity.
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Figure 2. Example of constant current constant voltage charge profiles measured by Sandia National
Laboratories during the performed experimental cell aging campaign. The cell operating parameters
measured during the tests are (a) cell voltge (V), (b) current (A), (c) charged and discharged capacity
(Ah), and (d) cell and environmental temperature (°C).

Before being used for training the AI algorithms, the acquired data were preprocessed
by checking their robustness and quality. Examples include the identification and removal
of anomalous traces, identified nans, and outliers of output signals. Additionally, the signals
were cut so that the various case studies under consideration could take into account only
the specific data of interest over time in order to accelerate the neural network training
process. Finally, the acquired data were resempled from varying to constant frequency over
time. Specifically, a sample time of 5 s is used to interpolate the considered data. Finally,
the obtained dataset included a number of charging cycles from new cell conditions up to
their EOL. Each cycle comprised of signals over time for cell temperature, voltage, current,
charged capacity, and the corresponding SOH value.

2.2. AI Neural Networks Learning Process

The developed AI model, Bi-LSTM architectures, and the hyperparameters involved
are shown in Figure 3.

The Bi-LSTM model had an input layer with the dimension of that input data, a batch
normalization layer, a Bi-LSTM layer for learning long-term dependencies between cell
parameters, and the SOH value to be predicted, a dropout layer to prevent overfitting [58],
a fully connected layer for the SOH output forecasting, and the output layer, i.e., a regres-
sion layer that computed the loss function. As far as the training process is concerned,
the training method reported in the box of Figure 3 was the algorithm used to perform opti-
mization and is by far the most common way to optimize neural networks. An overview of
all optimization technique can be seen in [59]. The learning phase lasts a certain number of
epochs, which specifies how many times the whole dataset has been thoroughly processed.
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Figure 3. AI model graph based on Bi-LSTM network and hyperparameters investigated by the
random-search optimization technique. The input layer normalizes data with the z-score method.
A batch normalization layer normalizes a batch of data across all observations. The Bi-LSTM layer is
defined by the number of hidden units (hidden state, correspondent to the number of information
remembered between time steps), the activation function to update the cell and hidden state, and the
weights initialization. The dropout layer randomly drops out input elements. The fully connected
layer performs output of one dimension. The output layer computes the half-mean-squared-error
loss for the regression task [57].

This study focused on the estimation of SOH based on charge cycles, which are
examples of time sequences. The problem is therefore based on sequence-to-one regression
networks and the loss function is the half-mean-squared-error shown in the Equation (2),

Loss =
1
2

N

∑
i=1

(ŷi − yi)
2

N
, (2)

where N is the number of responses, yi is the target output, and ŷi is the network’s
prediction for response i. Finally, an early stopping tecnhique was applied when the
performance of the validation phase started to degrade in order to avoid overfitting on
training dataset [60].

2.3. Model Performance Evaluation

Each model was evaluated and selected by taking into account different performance
metrics for the SOH prediction results. Together with test data, the performance of all
trained Bi-LSTM architectures was analysed based on:

• the RMSE considering the test dataset,
• the coefficient of determination R2, and
• the customized regression accuracy (CRA) coefficient, which compared the predicted

SOH, ˆSOH, with the corresponding measured value, SOH through an identified
threshold thr.

The specific performance evaluation of the neural networks and the selection of
the best hyperparameter values are widely discussed and analysed in the Results and
Discussion section.

2.4. Variable SOC Windows during Partial Charging Events

The time required to fully or partially charge the battery pack of an electric car is a
crucial issue for most drivers. Depending on the charging power available from the grid,
the battery pack charging process may take up to several hours. As a result, the current
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effort focused on determining the appropriate partial charging length as a trade-off in terms
of accuracy and computational cost for on-board SOH estimation. Moreover, restraints
in memory usage and data storage capacity is a widely known issue in modern on-board
control units for passenger cars. Hence, reducing the data logged on the BMS could solve
this problem. In particular, the shorter the length of partial charging data logged over time,
the smaller the memory required and the computational cost for on-board data processing.
Furthermore, the dataset sampling rate is a relevant aspect in memory use reduction. Due
to the low dynamic range of the signal of interest, the sample rate for this activity has been
set at 0.2 Hz.

The approach described in the previous section was developed in order to estimate
the cell SOH by using only a portion of the data related to the overall battery charging
process. In the first test scenario, before running the train–test split process regarding data,
various lengths of partial charging segments over time were considered in the preprocessing
step. In order to consider fixed portions of the 0–100% SOC window, the time lengths
investigated were determined as a percentage. It should be noted that the more aged a cell
is, the shorter the amount of data logged for a certain percentage of the SOC window due
to capacity fading, as seen in Figure 4.

Figure 4. The acquired (a) current (A) and (b) voltage (V) are plotted as time series for each indepen-
dent charging cycle.

Therefore, different data series of partial charging were expressed as a percentage of
the total SOC domain and the retained SOC intervals were:

• 80%
• 60%
• 40%
• 20%.

The partial charge segments were collected for each single cycle over time considering
a random starting point. The cut point was randomly chosen among a certain area of points
to guarantee that the segments were mathcing the whole length data. If nk is the length of
the kth cycle in terms of samples data over the entire SOC domain, L is the selected length
as partial charging size related to the specific SOC window, the cut space S from which the
segment starting point was randomly selected can be defined in Equation (3):

0 ≤ S ≤ nk − L. (3)

Examples of retained partial charging segments, respectively related to SOC ranges of
80%, 60%, 40%, and 20% with respect to the entire SOC window, are highlighted in Figure 5.
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Figure 5. Operating current and voltage of few partial charging segments. (a,b) are operating current
and voltage of the partial charging length equal to 80%. (c,d) are operating current and voltage of the
partial charging length equal to 60%. (e,f) are operating current and voltage of the partial charging
length equal to 40%. (g,h) are operating current and voltage of the partial charging length equal to
20%. In the graphs, the black lines is the full size of data (equal to 100% of length).

In order to proceed with the learning process for the Bi-LSTM neural networks,
the dataset of each partial charge segment was randomly subdivided into training, vali-
dation, and test data [61]. Here, an 80–20% split was retained between the training and
validation dataset on one hand, and the test dataset on the other. The features were the cell
operating parameters, such as voltage (V), current (A), charged capacity in time (Ah), and
cell temperature (°C). The target was the SOH values to be predicted by the model.

2.5. Best Partial Charging Length and Optimal SOC Window Identification for SOH Estimation

In this section, Bi-LSTM networks were trained, and the optimal topologies for each
charging length considered were identified. The purpose of the investigation was to
determine the optimal SOC range for estimating the remaining life of a cell during its
charging process. Before analyzing the best SOC window for the SOH estimation, it was
necessary to determine the optimal partial charging length Lopt. Indeed, a trade-off between
prediction accuracy (RMSE, CRA), computational cost and memory use was analysed for
the on-board SOH estimation by control units of Li-ion battery packs.

A sensitivity analysis was conducted over the best 1, 5, and 10 Bi-LSTM networks
considering RMSE and CRA for each charging length. The computational costs for each
considered charging length were investigated, retaining the time required to run the
numerical models for cell SOH estimation. Moreover, the memory storage capacity was
analysed based on the memory used by the models and the data logged. Finally, the trade-
off-based optimal input length was found and employed for the best SOC window analysis.
A complete explanation of sensitivity and trade-off analysis will be described in the Results
and Discussion section.

Once the optimal partial length Lopt was obtained, a new dataset was generated by
cutting data at different starting points among the full size data of cycles. Particularly,
the cut points were defined at each 10% step in the SOC window until reaching the last
point, which guaranteed the contiguous size of data, i.e., while respecting the 0% and 100%
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SOC limits. Hence, the SOC windows SOCwin among the entire domain are shown in
Equation (4) and expressed as a percentage of size data of a single charging cycle:

SOCLopt = [0; Lopt], [10; Lopt + 10], ..., [100− Lopt; 100]. (4)

For instance, if the optimal length Lopt was observed to be 40%, then the SOCLopt is
reported in Equation (5):

SOC40 = [0; 40], [10; 50], [20; 60], [30; 70], [40; 80], [50; 90], [60; 100]. (5)

Considering the example of dataset shown in Figure 5 for Lopt equal to 40%, the related
charging data are illustrated in Figure 6.

In this analysis, once Lopt was determined, the same split of data was preserved
between training, validation, and test. This allowed for a careful analysis of the findings
pertaining to the selection of the threshold value thr utilized in the definition of the CRA,
as stated in the Results and Discussion section.

As far as the learning process of the neural networks is concerned, the top 30 Bi-
LSTM-trained networks from the previous section were used for a new learning process.
However, the regression task, the feature definitions, and the target variable were identical.
Finally, the optimal SOC range for capacity degradation estimation during charging events
was determined.

Figure 6. Fixed SOC window equal to 40% moving over the entire domain, for the generation
of datasets. (a.1,a.2) are, respectively, current and voltage of SOC window [0,40]. (b.1,b.2) are,
respectively, current and voltage of SOC window [10,50]. (c.1,c.2) are, respectively, current and
voltage of SOC window [20,60]. (d.1,d.2) are, respectively, current and voltage of SOC window
[30,70]. (e.1,e.2) are, respectively, current and voltage of SOC window [40,80]. (f.1,f.2) are, respectively,
current and voltage of the SOC window [50,90]. (g.1,g.2) are, respectively, current and voltage of SOC
window [60,100]. In the graph, curves for the entire cycles are plotted in black.

3. Results and Discussion

In this work, an AI-based SOH estimator was developed considering partial charging
of a Li-ion cell to reduce the computational cost and memory occupancy for BMS appli-
cations. As already detailed in the Materials and Methods section, cycle aging tests were
exploited for model developing, and through an optimization technique Bi-LSTM network
architectures were established for their high performance in forcasting task and managing
time-dependent data.
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Before delving further into the numerical findings, a broad view of the performance
metrics retained in analyzing the outcomes must be provided. The performance of the
trained models was assessed by taking into account the estimation capabilities over the
test dataset. In general, the model outputs were studied by comparing them with real
targets in terms of the absolute error shown in Equation (6). The main metrics considered in
order to evaluate the quality of the model predictions were RMSE reported in Equation (7).
The coefficient of determination R2 is reported in Equation (8) along with the customized
regression accuracy (CRA). The CRA parameter can be defined by considering the problem
to be similar with a classification task whereby the result was evaluated as correct if the
value of the absolute error was lower then a specific threshold, as shown in Equation (9).
We have

Ei = xi − x̂i (6)

RMSE =

√
∑n

i=1 Ei
2

n
(7)

R2 = 1− ∑n
i=1 E2

i
∑n

i=1(xi − x̄i)2 (8)

CRA =
∑n

i=1 Ti

n
× 100 with :

{
Ti = 1 i f |Ei| < threshold
Ti = 0 i f |Ei| > threshold

(9)

xi was the target value, x̂i was the model output, x̄i was the mean of the dataset label
considering that each experimental test in the dataset had a number of samples equal to n,
and Ei is the residual between target and predicted values. All the results shown in this
section are derived from the validation of the model on the testing data.

As seen in Figure 7, the threshold value defines the accuracy of the model prediction.

Figure 7. Sensitivity analysis of the neural network’s accuracy depending on the threshold value as
described in Equation (9).

In order to perform the sensitivity analysis, the best NN was determined for each
charging length by minimizing the RMSE metric. Looking at Figure 7, the charging length
equal to 40% is observed to have the most rapid growth and to be the only one reaching
the 100% accuracy among the partial charging lengths. As far as the sensitivity analysis is
concerned, a threshold of about 1% was chosen. Here, the threshold represents the tolerance
of the estimated cell SOH compared with the related measurements. The 1% tolerance
value appears to be consistent with the literature [62] because it has been demonstrated to
limit the error in the cell SOH estimation within 2.2%. With the selected threshold value
and for a partial length of 40%, the CRA reaches almost 80%. The results in Figure 7 are
based on Analysis #1, where the training dataset for Bi-LSTM processing was created by
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randomly choosing several parts along the SOC domain in order to investigate which
is the lower charging length and which still guarantees acceptable accuracy in cell SOH
estimation. However, the overall accuracy of Analysis #1 is much lower than Analysis #3,
where, in order to analyze which is the best SOC charging window for SOH estimation,
each network was trained, respectively, with data from the same SOC window. Hence, in
the latter analysis, the prediction results are far greater, and the threshold value may be
drastically cut.

3.1. Analysis #1: Variable SOC Windows for Partial Charging

After the definition of the metrics involved in the analysis of the SOH estimation
accuracy, the present section focuses on the study of the influence of each partial charging
length over cell SOH forecasting. The trained model’s prediction results, in terms of CRA
and RMSE are shown (after the training process phase was performed by the random-search
technique) in Figure 8.

Specifically, the top one, five, and 10 trained Bi-LSTM networks are presented for each
percentage of charging length analyzed based on the performance standard deviations.
The overall trend of CRA is directly proportional to the length of the partial charging
considered. Increasing the charging length from 20% to 40%, the test CRA of the five best
networks increases by approximately 7%. From the test RMSE point of view, even if the
boundary cases 20% and 100% are, respectively, the worst and the best options, the trend
of the five best networks changes. Being an AI model based on data, a large number of
observations are required to find and recognize some specific patterns, especially when
random approaches are exploited for generalization purposes. However, the objective of
the study is to understand and investigate whether high accuracy can be attained for the cell
SOH estimation with only partial charging events. For instance, looking at Figure 8, it can
be seen that an accuracy level of roughly 77% can be attained by a network setup by using
an input of 40% of the SOC window during a charge phase. The accuracy definition pertains
to the CRA with a threshold parameter value of 1%. Given the customized nature of this
metric and the randomness associated with the selection of hyperparameters and training
data for the Analysis #1, a CRA value of 77% is not optimal (higher values are reached for
the analysis #3). However, the 40% data length achieves very good RMSE and R2 scores
compared to the literature. Moreover, excluding the 100% length case corresponding to
the full SOC domain, the 40% data length case has the lowest RMSE error. This indicates
that an optimal Bi-LSTM configuration is not found for each charging length case by the
random process approach, although it is theoretically possible that this could occur after
several additional iterations. Finally, the significant result of the analysis shows that the
SOH of a cell can be carefully detected by just monitoring 40% of the whole 0–100% SOC
charge process.

In Figure 9, the regression task results for the best Bi-LSTM network per each input
charging length are represented.
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Figure 8. (a) CRA sensitivity analysis of the best one, five and 10 trained networks according to the
RMSE on testing dataset. (b) RMSE sensitivity analysis of the best one, five and 10 trained neural
networks according to the RMSE on testing dataset. For partial charging lengths, the minimum RMSE
is equal to 0.0068 corresponding to 40% data length.

As summary results, Tables 3 and 4 resepectively report the validation performance
of the developed models and the details of trained Bi-LSTM architectures for each SOC
window length.

Table 3. Analysis #1: Best neural network regression statistics.

Data Length
[% of SOC] 100 80 60 40 20

m 2.67 5.82 9.92 8.81 3.68

q 0.97 0.93 0.88 0.89 0.96

Test RMSE
× 1000 5.65 8.04 7.33 6.80 8.93

Test R2 0.99 0.97 0.96 0.96 0.96

Table 4. Analysis #1: Best neural network training and architecture parameters.

Data Length
[% of SOC] 100 80 60 40 20

Hidden
Layers 1 1 1 1 1

Hidden
Neurons 59 30 29 47 52

State
Activation
Function

tanh tanh tanh tanh softsign

DropOut 0.2 0.3 0.2 0.1 0.1

Batch Size 128 32 64 32 64

Learning
Rate 0.0090 0.0089 0.0060 0.0069 0.0044

Optimization
Algorithm sgdm sgdm adam sgdm adam

Training
Epochs 190 84 108 264 186
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Figure 9. Best neural network regression performance. (a) refers to the full charging length equal to
100%, (b) refers to the partial charging length equal to 80%, (c) refers to the partial charging length
equal to 60%, (d) refers to the partial charging length equal to 40%, (e) refers to the partial charging
length equal to 20%. The black points represents the correlation points between predicted and target
values. The green dashed line is the bisector, and the red dashed line is the fitting regression line. The
regression parameters can be observed in Table 3. The predicted SOH points over the entire cycle
aging test are those of test set for perfomance validation.

3.2. Analysis #2: Computational Cost and Memory Occupancy for Best SOC Charging Window
Length Identification

In the on-board implementation of an SOH estimator, the computational power and
memory occupancy are critical issues in current vehicle control units. In the present work,
a profiling analysis was investigated as a performance metric together with CRA and RMSE
in order to identify the best SOC window length for capacity fade monitoring. Hence,
a profiling approach was developed to quantify the benefits of the proposed method
in terms of computational costs and memory usage. In Figure 10, the computational
performance required by the electronic control unit for the processing phase is shown.

The elapsed time in Figure 10 was computed by considering the average time for 10 runs
among the best 30 neural networks for each charging dataset input length. The elapsed time
seems to be almost linear. The computational time was processed through a laptop with
Intel(R) Core (TM) i7-10510U CPU @ 1.80 GHz and 16 GB of RAM. The memory occupancy
of stored data is plotted against input charging length and the figure clearly shows a linear
behaviour. The longer the time series considered for the processing phase, the higher the
space required by the memory. Finally, the memory used for the Bi-LSTM network size was
computed as the required space to store the top 10 neural networks architectures for each
data length. The main memory reduction factor is due to the dataset size reduction, which is
clearly linear. On the other hand, the Bi-LSTM model sizes vary according to the same range
(20 kB to 230 kB) for each input data length. As a consequence, the choice of the suitable
SOC window length does not depend on the model dimension in this case.
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Figure 10. The plotted values are referred to the results shown in Analysis #1. (a) Time consumption
during neural network prediction and depending on SOC window length. (b) Memory occupancy by
logging data and depending on SOC window length. (c) Memory occupancy by Bi-LSTM networks
and depending on SOC window length.

3.3. Analysis #3: Best SOC Window Identification for Optimal SOH Estimation

Considering the results obtained by Analysis #1 and Analysis #2, it can be assumed
that the configuration with the 40% length of input data is the best SOC window length
Lopt in terms of cell SOH estimation capability and computational lightweighting trade-off.
Therefore, the present section is focused on this charging length value.

In this part, we investigated what specific part of the charge process contains more
information about the battery SOH, allowing a better estimation of the battery’s remaining
lifetime. The analysis results for Lopt = 40% are shown in Figure 11.

As shown in Figure 11, higher performance in terms of CRA and RMSE are obtained
due to an accurate reporting of the partial charging start points.

The presented analyses report that the last charging SOC window (with a range
between 60% and 100%) guarantees the highest CRA and the lowest RMSE on the cell
SOH estimation. Hence, this range is considered to be the optimal SOC window for the cell
SOH estimation. Considering the input data representation in Figure 6, the optimal SOC
charge range of 60% to 100% corresponds to the constant voltage (CV) phase of the charging
process. The CCCV tests are widely employed for the cell SOH estimation and assessing the
battery performance while aging [63]. Specifically, the partial CV charging phase is proven
to be the most suitable for SOH estimation holding more information and robustness about
capacity fade [64]. However, instead of considering a single CV trace, the present work
compared and analysed different partial charging lengths over the entire charging process
domain. In fact, concerning the best Bi-LSTM neural network, it is important to highlight
that the other portions of the domain achieve remarkable results with a CRA accuracy that
consistently approaches 90%. Moreover, it is interesting that the RMSE value for the 0–40%
trace is only slightly higher, i.e., 0.0054, than the best value of 0.0012 for the 60–100% trace.
However, it should be noted that evaluating the top 15 or 25 neural network configurations
displays higher differences between the SOC windows. This confirms the prevalence of the
typical aging pattern in a certain SOC range, i.e., 60–100%.
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Figure 11. Sensitivity analysis of the best 15 and 25 neural networks according to the RMSE on the
testing dataset for Lopt = 40%. (a) CRA trend depending on the input SOC window selected. (b) Test
RMSE ×1000 depending on the input SOC window selected.

In Figure 12, the regression results for the best Bi-LSTM network for each SOC charge
range considered were represented, and we can observe that the 60–100% range case has
the smallest deviation in the regression line by bisector, and it has the predicted points
densely packed on the bisector.

Figure 12. Best neural network regression performance. (a) refers to the SOC window [0,40], (b) refers
to the SOC window [10,50], (c) refers to the SOC window [20,60], (d) refers to the SOC window
[30,70], (e) refers to the SOC window [40,80], (f) refers to the SOC window [50,90], (g) refers to the
SOC window [60,100]. The black points represents the correlation points between predicted and
target values. The green dashed line is the bisector, and the red dashed line is the fitting regression
line. The regression parameters can be observed in Table 5. The predicted SOH points over the entire
cycle aging test are those of test set for perfomance validation.

As summary results, Tables 5 and 6 show, resepectively, the validation performance of
the developed models and the details of the trained Bi-LSTM architectures for each SOC
charge range analysed.
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Table 5. Analysis #3: Best neural network regression statistics.

Charge
Segment
SOC [%]

0–40 10–50 20–60 30–70 40–80 50–90 60–100

m 0.96 0.90 0.96 1.02 0.98 0.98 0.99

q 3.29 7.99 3.82 −1.59 1.34 1.35 0.30

Test
RMSE
×1000

5.45 7.52 5.23 4.09 4.81 3.12 1.27

Test R2 0.98 0.95 0.98 0.99 0.98 0.99 0.99

Table 6. Analysis #3: Best neural network training and architecture parameters.

Charge
Segment
SOC [%]

0–40 10–50 20–60 30–70 40–80 50–90 60–100

Hidden
Layers 1 1 1 1 1 1 1

Hidden
Neurons 15 15 65 54 42 51 51

State
Activation
Function

tanh tanh softsign softsign tanh softsign softsign

DropOut 0.3 0.3 0.3 0.2 0.5 0.5 0.5

Batch Size 16 16 32 64 64 32 32

Learning
Rate 0.0098 0.0098 0.0055 0.0099 0.0086 0.0083 0.0083

Optimization
Algorithm sgdm sgdm rmsprop sgdm sgdm sgdm sgdm

Training
Epochs 92 30 43 155 103 91 62

3.4. Best SOC Window: Training and Validation Information

In this final section, training and validation performance details about the best Bi-
LSTM network for the best SOC window of approimately 60–100% were discussed. As
already explained, the performance in terms of CRA and RMSE of this trained network
with the homogeneous dataset are much more analytically compared with Figures 8 and 9
from Analysis #1. The statistical metrics and Bi-LSTM architecture details are those shown
in Tables 5 and 6. In Figure 13, the training history along the epochs are reported, comparing
the loss function between the training dataset and validation dataset.

The learning process shows a trend that seems to be in line with good fit results, thus
excluding overfitting and underfitting of a training phase. Finally, Figure 14 plots the SOH
predicted points as those composing the test set among all aging cycles.

The results shown in the figure ensure promising performance in SOH estimation
capability reaching 100% CRA and a low residual error for each cycle prediction, i.e., that
the uncertainty of prediction is within 1%. However, because of the strong forecasting
performance, it is feasible to achieve the same accuracy value of 100% in an area of un-
certainty (threshold) decreased to 0.4% by analyzing the punctual error. For the sake of
clarity, the CRA defines the percentage by which a model estimation may fall within a given
uncertainty range of the target. The amplitude of the range is described by the threshold
parameter value.
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Figure 13. Training process along the epochs of Bi-LSTM related to the best SOC range.

Figure 14. Neural network SOH estimation performance on testing dataset. # Aging Cycles is the
number of cycles that one cell has cycled.

4. Conclusions

This study proposed a computationally lightweight methodology for the cell SOH
estimation on board electric vehicles during partial charging processes. Several Bi-LSTM
neural networks were trained, exploiting different datasets made of battery-charging
data time series with varying lengths and random selection of the start point within
the battery SOC domain. The proposed methodology identified the best SOC window
length as a trade-off between the prediction accuracy and the computational cost for on-
board SOH estimation. Moreover, the optimal SOC charge range which allows higher
performance for the cell SOH estimation is identified. The proposed neural network
considers time series made of the cell current, voltage, temperature, and the capacity
charged while the output is the single regression value of the SOH. The case study retains an
18,650 cell with 3 Ah capacity and nickel–manganese–cobalt chemistry whereas the dataset
is part of a collection of cycle aging tests performed by the Sandia Nation Laboratories.
The results are consistent and show that the battery SOH can be predicted with the highest
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error of ±0.4%, monitoring just the last 40% of the SOC window (CV phase) of the total
CCCV charge process by reducing the memory occupancy in the BMS for charge data
logging and the computational time by a factor of about 2.3. Just a single cell operating
condition has been considered in this study, consisting of charging and discharging at
constant current and environmental temperature. In future work, the methodology could
be extended to a wider range of working conditions, including additional temperatures,
charging and discharging operations. Furthermore, the length of the charge segment to be
monitored has been identified through a process that does not allow us to find the globally
optimal solution. Therefore, additional improvements could be obtained by developing
appropriate fine-tuning methodologies. An additional future development concerns the
study of optimization of Bi-LSTM neural network architectures constrained to having
smaller dimensions.
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