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Abstract: The electrocardiogram (ECG) signal describes the heart’s electrical activity, allowing
it to detect several health conditions, including cardiac system abnormalities and dysfunctions.
Nowadays, most patient medical records are still paper-based, especially those made in past decades.
The importance of collecting digitized ECGs is twofold: firstly, all medical applications can be easily
implemented with an engineering approach if the ECGs are treated as signals; secondly, paper ECGs
can deteriorate over time, therefore a correct evaluation of the patient’s clinical evolution is not
always guaranteed. The goal of this paper is the realization of an automatic conversion algorithm
from paper-based ECGs (images) to digital ECG signals. The algorithm involves a digitization
process tested on an image set of 16 subjects, also with pathologies. The quantitative analysis of the
digitization method is carried out by evaluating the repeatability and reproducibility of the algorithm.
The digitization accuracy is evaluated both on the entire signal and on six ECG time parameters
(R-R peak distance, QRS complex duration, QT interval, PQ interval, P-wave duration, and heart
rate). Results demonstrate the algorithm efficiency has an average Pearson correlation coefficient
of 0.94 and measurement errors of the ECG time parameters are always less than 1 mm. Due to
the promising experimental results, the algorithm could be embedded into a graphical interface,
becoming a measurement and collection tool for cardiologists.

Keywords: digitization; electrocardiogram; ECG; heart pathologies; Pearson’s coefficient measure-
ment; signals similarity

1. Introduction

The digitization process is an essential process for the analysis and processing of
signals. In recent decades, the in-depth study of medical signals has been made possible
thanks to its digital nature.

The fundamental advantages of digital signals are known in terms of security, storage,
and the absence of information corruption due to paper deterioration. Furthermore, saving
the patient’s history guarantees the ease of knowing his clinical evolution. Finally, knowing
the entire time series of each signal, it is possible to implement some algorithms for the
automatic detection of pathologies [1–3].

The ECG signal is an electrical signal that describes cardiac activity. The graph
represents the trend of the heart potential over time. Nowadays, using the latest generation
of electrocardiographs, digital signals can be collected and stored in the cloud. However, to
know the patient’s medical history in depth and build automatic algorithms, it is essential
to know the ECG signals of the past, which, in most cases, are paper-based. In this way, this
tool, integrated into modern electrocardiographs, can be used to carry out a retrospective
analysis of patients to deepen the ECG characteristics for making timely diagnoses [4],
even in the case of rare diseases/syndromes, e.g., Short-QT [5,6]. In this sense, in order to
preserve the patient history, it is essential to use a digitization method, i.e., a conversion
of a paper image to digital data, for extracting the ECG signals. In [7], an entropy-based
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methodology is proposed. It relies on bit plane slicing (EBPS) where pre-processing is
performed using dominant color detection and local bit plane slicing. The adaptive bit plane
selection based on maximum entropy is applied to the pre-processed image. Discontinuous
ECG correction (DECGC) is then performed to produce a continuous ECG signal. The
algorithm is tested on 836 different degraded paper ECG records obtained from various
diagnostic centers. After analysis, the RMS error and the correlation between the extracted
digitized signal and the ground truth for 101 cases were 0.040 and 99.89%, respectively.

To increase the accuracy of the digitizing process, it is necessary to reduce noise with
image-processing algorithms (often characterized by annotation to include some characters,
for example, the kind of pathology) [8]. Asymmetry and noise are common mistakes in
image scanning and should be avoided to capture better results. In [9], scanned images
were enhanced by applying a skew correction operation using the Hough transformation,
and noise removal was done using a median filter. Next, the grid was removed from the
ECG images using color segmentation.

In this paper, a Matlab-based tool, the ECG-dig, for digitizing paper-based ECGs is
presented. The conversion technique is validated by carrying out a similarity study based
on the Pearson coefficient between the true digital signal and the digitized one, and by
evaluating the algorithm in terms of its repeatability and reproducibility.

The rest of the paper is organized as follows. Section 2 describes the data acquisition
system with signals of different cardiac conditions; it defines the methodology of the
proposed algorithm for the ECG signal digitization and explains the algorithm validation
technique based on similarity, repeatability, and reproducibility. Section 3 details the
experimental results with a comparative analysis between the true digital signal and the
digitized one. Section 4 discusses the used technique and its possible applications, followed
by a conclusion in Section 5.

2. Materials and Methods

The proposed data acquisition system is shown in Figure 1. Two medical instruments
were used in cascade to build the database for our study: the Fluke ProSim 4 Vital Signs
Simulator [10] and the GE MAC 2000 electrocardiograph [11]. The ProSim 4 patient sim-
ulator allows the simulation of several cardiac conditions, while the GE MAC 2000 is an
electrocardiograph that, in addition to allowing the display of the simulated conditions
through the monitor, guarantees the acquisition of 12 signals (leads) simultaneously, both
in digital format (*.xml file and PDF file) and by printing the ECG on graph paper [12] at
25 mm/s and 10 mm/mV. The *.xml file is automatically provided by the GE electrocar-
diograph; it contains the ECG digital signals as vectors of amplitudes over time, one per
each ECG lead, together with the recording metadata (e.g., the sampling frequency) and
the ECG parameters (e.g., HR), computed per each lead. Since the sampling frequency is
500 Hz, a 5 s signal has 2500 data points. The graph paper is thermal paper, printed about
one hour before the scan. The ECG tracings resist fading for roughly 5 years [13].
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Figure 1. Data acquisition system. The scanning process is done by the Kyocera TASKalfa
5053ci scanner.

The simulated electrocardiographic conditions are as follows:
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• Normal sinus rhythm: the rhythm of a healthy heart. It means the electrical impulse
from the sinus node is properly transmitted [14].

• Bradycardia: the presence of a slow or irregular heartbeat, less than 60 beats per
minute [15].

• Tachycardia: the increase in the number of heartbeats per minute (heart rate) under
resting conditions (more than 100 beats per minute) [16].

• Acute Pericarditis: the inflammation of the pericardium characterized by an accumula-
tion of fluids in the pericardial space [17].

• Atrial Fibrillation: rapid and disorganized atrial activation leading to an impaired atrial
function [18].

• Atrial Flutter: heart failure when the electrical activity in the atria is coordinated. The
atria contract at a much-increased rate (more than 240 beats per minute) [19].

• Muscle tremor artifact: a type of movement artifact. It usually happens because the
patient is trembling.

• Breath artifact: a typical artifact caused by patient breathing [20].
• Premature Atrial Contractions (PACs): a common cardiac dysrhythmia characterized by

premature heartbeats in the atria [21].
• Premature Ventricular Contractions (PVCs): single ventricular impulses caused by abnor-

mal automatism of the ventricular cells or by the presence of re-entry circuits in the
ventricle [22].

• Supra Ventricular Tachycardia: the high-rate heart rhythm originating above the ventri-
cle [23].

• Ventricular Tachycardia: the hyperkinetic arrhythmia characterized by a high ventricular
rate [24].

Table 1 summarizes the database artificially created with the Fluke ProSim4 simulator;
16 records have been simulated and the printed portion of each signal is 5 s long (see
Figure 2).

Table 1. Simulated patient description: heart rate (HR), clinical condition, ECG amplitude, and
elevation of the ST segment.

HR (bpm) Clinical Condition Amplitude (mV) ST Elevation (mV)

30 Bradycardia 1 0
45 Bradycardia 1 0
60 Normal sinus rhythm 0.5 0
60 Normal sinus rhythm 1 1
60 Normal sinus rhythm 1 0.5
80 Acute Pericarditis 1 0.2
100 Normal sinus rhythm 1 1
120 Sinus Tachycardia 1 1
76 Atrial Fibrillation 1 1
82 Atrial Flutter 1 1
60 Breath artifact 1 1
60 Muscle artifact 1 1
75 Premature Atrial Contractions (PACs) 1 1
78 Premature Ventricular Contractions (PVCs) 1 1
200 Supra Ventricular Tachycardia 1 1
152 Ventricular Fibrillation 1 1

The images printed with the electrocardiograph GE MAC 2000 were scanned with the
Kyocera TASKalfa 5053ci scanner, with a scanning speed of 220 ipm and a scan resolution
of 600 dpi × 600 dpi, with 256 levels of gray per color. Finally, to make the image more
suitable, the contrast and sharpness were increased by 70% using the scanner software.

The purpose of the digitization algorithm is to transform the signal printed on graph
paper into a digital signal that respects the measurements of millivolts (ordinate axis)
and milliseconds (abscissa axis). However, in addition to the conversion error due to the
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digitization process, there is the error due to the electrocardiograph printing process of the
signal on graph paper. In this study, the two errors are not analyzed individually, but as a
combination of both.
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Figure 2. ECG of normal sinus rhythm (60 bpm); the green rectangle represents the printed portion
of each lead (duration of 5 s). The sensitivity/gain is 10 mm/mV and the paper speed is 25 mm/s.

2.1. The Digitization Algorithm

To extract signal data from the image, a novel algorithm was developed using the
MATLAB® platform. The algorithm is able to digitize the image and separate the signals
from the background while respecting the time and voltage proportions of the ECGs. It is
based on step-by-step automatic processing which involves the operations summarized in
Figure 3.
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Figure 3. Automatic algorithm pipeline.

A. Image crops. To obtain the signals of all the ECG leads, 12 crops (one for each
lead) are made on the image by framing the image patch of the corresponding lead. For
each lead, the user manually makes the crops by clicking and dropping a rectangle on the
portion of interest, using the “imcrop” MATLAB function (see Figure 4). Since the purpose
of the proposed algorithm is to reconstruct the ECG signal respecting its morphology,
independently from the number of samples, each crop does not need to have strictly the
same size.
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B. Binary mask. The extraction of the binary masks has been inspired by the MathWorks
Community [25]. Firstly, the image is converted from RGB to HSV. Then, in order to extract
the signal from the rest of the image, three ranges of color (from 0 to 1) were chosen for
each HSV channel: 0.000 ≤ pH ≤ 0.997; 0.000 ≤ pS ≤ 0.659; and 0.647 ≤ pV ≤ 1.000, where
pH , pS, and pV are the values for each channel of the HSV space, within which, the pixels
are considered to be part of the signal. The result is a black and white image (one per crop),
as shown in Figure 5.
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Figure 5. Binary mask of the cropped image (normal sinus rhythm, 60 bpm, II lead).

After, the signal is thinned (see Figure 6) using the MATLAB function “bwmorph”
with the operation “shrink”, which replaces groups of neighboring pixels with a single
pixel. Experimentally, it was observed that, in order to reduce noise, the best result was
obtained with its parameter set to 2.5, i.e., the number of times the “shrink” operation
is performed.
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C. Scale Factor (SF) calculation. The standard ECG leads are printed on graph paper
(see Figure 7).
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Figure 7. ECG leads printed on graph paper (normal sinus rhythm, 60 bpm).

When the image is scanned, the correspondence between pixels and millimeters is
not always the same and it depends on some factors, e.g., the printer resolution and the
available type of image (scanned or PDF). Since the ECG is printed on graph paper, the
grid size is fixed and known a priori. Therefore, in order to find out how much a pixel is
worth in each image, a specific function was created, starting from the twelve crops, to
isolate the grid and derive the scale factor.
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Each crop, which is an RGB image, is transformed into a grayscale image, using the
“im2gray” MATLAB function, and the signal is extracted, as in the previous paragraph, and
removed from the image. For this purpose, two thresholds have been chosen quite close to
the grayscale extremes in order to isolate the grid. Nevertheless, it is not certain that the
remaining black points and white backgrounds have a shade of gray exactly corresponding
to the extremes. Therefore, the thresholds have been chosen to be not too high (220 out
of 255 for white) or low (100 out of 255 for black); in this way, black points and the white
background and signal are excluded.

In the proposed data set, images have two grids (see Figure 8), one less dense (with
larger squares) and one denser. The first one is composed of dots, very close to each other,
which form the perimeter of squares with a 5 mm side. In the second one, dots are further
away and delimit squares with a 1 mm side.
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The algorithm first searches the position of the signal points of the binary mask and
transforms them into white in the original image (see Figure 9a). Then, the function
“imclose” performs a morphological closing on the image in order to join the nearest points
(see Figure 9b). The used structuring element object is obtained by the function “strel” with
the parameters “square” (i.e., the shape of the structuring element) and “16” as the square
width in pixels. To delete the furthest points, the function “regionprops” is used to return
in a “struct” the property researched (“Area”) with the linear indices of the pixels in the
region (“PixelIdxList”). A threshold equal to 1000 pixels was set experimentally, and below
it, the areas were eliminated (see Figure 9c). In this way, we obtained a binary image with a
grid, composed of horizontal and vertical lines that form 5 mm side squares (see Figure 9d).
The square’s area (in pixels) is calculated as the mean of all the squares areas and, taking
the square root, we have the inner side of the mean square. By summing it and the width
of one line, the length L in pixels of the square side is found. Knowing that it should be
5 mm, the scale factor SF is obtained as:

SF = 5/L, (1)

where SF indicates how many millimeters a pixel corresponds to.
Since the shapes of the leads are different when the signal is removed, the grids show

different discontinuities, which can alter the automatic recognition of the squares: in this
case, identifying bigger or smaller areas, SF is not always the same. Therefore, the final SF
is a mean value among the calculated SFs considering the 12 image crops. This one will be
used in the next parts of the algorithm.

D. Final reconstruction of the signal. Once the binary images are obtained, the algorithm
plots the data using the y-positions of the signal pixels as the vector of the amplitudes and
joining the progressive (see Figure 10). Therefore, the amplitudes are converted from pixels
to millimeters by multiplying them by SF.
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Figure 10. Signal reconstruction from pixels to samples (normal sinus rhythm, 60 bpm, II lead).

In order to align the isoelectric line on the abscissa axis (i.e., y = 0), the most frequent
amplitude value of each lead (i.e., the mode of the signal) is calculated and subtracted from
the signal itself. A portion of the reconstructed signal is shown in Figure 10.

E. Amplitude correction. The reconstruction by pixels leads to a pixel reduction. The
result is that the amplitude is sometimes lower than reality. Furthermore, this happens
where more black pixels are concentrated, especially close to R-peaks because leads are gen-
erally narrower here. Thus, the algorithm automatically detects the R-peak locations (using
the “findpeaks” MATLAB function and taking the five points with the highest absolute
value) and measures the peak amplitude, which is an under-estimation of the real R-peak
amplitude because the image was previously processed using the “bwmorph” (shrink)
operation which improves the image quality, but also introduces an error in amplitude
estimation due to pixel removal. Then, it adjusts the amplitude value, adding 1 mm to
those points (when the peak is positive) or subtracting 1 mm (when it is negative). We
chose this quantity experimentally by averaging the differences between the reconstructed
leads and the reference digital signal of some images provided by the scanner and those
obtained by converting the PDF format to JPEG (as the one used in Section 2.2.3). Figure 11
shows the signal before and after the correction.
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Figure 11. A portion of the reconstructed ECG signal (normal sinus rhythm, 60 bpm, II lead) with SF
application; (a) before the amplitude correction; (b) after the amplitude correction.

F. Image plot. Since 10 mm correspond to 1 mV, the signal amplitude is converted from
millimeters to voltage. Regarding the time scale length, each lead has a sample number
equal to the number of pixels (voltage values). In order to create the visualization of
the time scale, the samples are first converted into millimeters thanks to SF and then in
milliseconds, knowing that the paper speed is 25 mm/s.

Each lead is plotted with a pink grid background which reproduces the graph paper;
the x-axis is time (ms) and the y-axis is voltage (mV). An example is shown in Figure 12.
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Lastly, the algorithm saves the final version of the twelve images individually (one
image for each digitized lead) and as a global image with all the signals. Furthermore, it
saves the voltage data of the 12 leads with the corresponding time samples.

2.2. Algorithm Validation Technique

The algorithm created to digitize and save the ECG signal in the digital format of
each patient must be validated. As the algorithm is intended to be a tool for clinical
support, it must be rigorously tested. To validate the algorithm, it was evaluated in terms
of the similarity of the entire signals, using the Pearson coefficient [26], and in terms of
repeatability and reproducibility, using the mean, standard deviations, range, and absolute
error of the time parameters extracted from the ECG signals. In addition, the digital signal
and the time parameters obtained by the *.xml file were used as references (true value).
The time parameters considered, which are important because they describe the punctual
behavior of the heart, are:

• R-R peak distance [27];
• QRS complex [28];
• QT interval [29];
• PQ interval [30];
• P-wave duration [31];
• Heart rate [32].
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To assess the quality of the algorithm in terms of repeatability and reproducibility,
both the time differences and the corresponding millimeters differences were considered.
The former measures the relative distance from the ground truth, while the latter is more
specific for the digitization process of paper-based signals. In this sense, the acceptable
upper bound is 1 mm, which is the paper grid resolution. Figure 13 shows the algorithm
validation scheme.
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The digitized signal has a different number of samples than the digital one. Thus, to
evaluate similarity, repeatability, and reproducibility in reconstructing the shape of the
signal point by point, a resampling is necessary for the reconstructed leads. Two points
were manually identified in the reconstructed signal (two R-peaks) and the same points
were taken from the digital one. Then, the program calculated the difference between the
point positions in the digital signal; the digitized signal must have the same sample number
between the same two points. Finally, the distances between the points in both the signals
were used as parameters for the “resample” MATLAB function. The algorithm resamples
the whole reconstructed lead proportionally, using an FIR Antialiasing Lowpass Filter. The
resampling rate was 500 Hz as in the digital signal.

Finally, by observing the position of the first considered point and the corresponding
one in the other signal, the two leads were aligned and overlapped. In this way, a fair signal
analysis can be carried out.

2.2.1. Similarity

In this work, similarity indicates how close the result of the measurement of the
digitized signal is to the true value, i.e., the reference samples (digital signal). To assess the
validity of the algorithm in terms of similarity, the Pearson correlation coefficient (r) was
used [33], examining the entire sequence of the digital signal and the entire sequence of the
digitized one. The Pearson’s coefficient measures the statistical relationship between two
continuous variables, using the covariance method [15]. It is defined as follows:

r =
n ∗ ∑n

i=1 yi ∗ ỹi − ∑n
1=1 yi ∑n

1=1 ỹi√
[n ∗ (∑n

1=1 yi
2)]− (∑n

1=1 yi)
2] ∗ [n ∗

(
∑n

1=1 ỹi
2
)
− (∑n

1=1 ỹi)
2]

, (2)

where y is the desired output (target),
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crops were done 10 times on the same image. Since SF is slightly dependent on the crop
made, as explained in Section 2.1.C, SF was collected and compared each of the ten times
with the others. Trying to keep the crop shapes as similar as possible with each repetition,
the variation of the most important time parameter (caused by SF variability) was also
analyzed by calculating the mean, standard deviation, and range of each one.

2.2.3. Reproducibility

Reproducibility is defined as the agreement between two measurements done under
different circumstances [37–39]. In this case, the test was performed by using an image (the
chosen patient is the same as in repeatability) with two different formats: one is the JPEG
produced by the scanned electrocardiogram (see Figure 7) and the second is the PDF saved
by the GE MAC 2000 and then converted in JPEG, with a different structure of graph paper
where the grid is not composed by points but from solid lines (see Figure 14).
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Figure 14. Graph paper with another format, used for reproducibility (normal sinus rhythm, 60 bpm);
(a) PDF converted to JPEG; (b) structure of the grid.

The two formats have different resolutions, the first one is 7014 × 4160 pixels, while the
second is 1755 × 1240 pixels. After digitizing the two images, SF and the time parameters
were extracted for both and compared one by one with the parameters of the digital signal
by calculating the absolute Error (aE) which measures the difference between the measured
value and the true value, computed as follows:

aE = | X_experimental − X_true |, (3)

where X_experimental is the time parameter from the digitized signal and X_true is the value
of the digital one extracted from the *.xml file.

3. Results
3.1. Similarity

Figure 15 shows the similarity between the signals for the normal sinus 60 bpm case
(in particular for the II lead). Notably, the morphology is respected in comparison to the
digital signal.
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Figure 15. Comparison between the digitized (blue) and digital (red) signal for lead II (Normal sinus
rhythm, 60 bpm).

Table 2 illustrates the Pearson coefficient for each pathology, i.e., each simulated
record of the dataset. If the signals are highly correlated and superimposable, the Pearson
coefficient is close to 1. In the best case (normal sinus rhythm, 60 bpm) the Pearson
coefficient is equal to 0.9821; in the worst case (bradycardia, 30 bpm), the Pearson coefficient
is equal to 0.8798.

Table 2. Pearson coefficient for each condition.

HR (bpm) Condition Amplitude (mV) ST Elevation (mV) Pearson
Coefficient

30 Bradycardia 1 0 0.8798
45 Bradycardia 1 0 0.9448
60 Normal sinus rhythm 0.5 0 0.9255
60 Normal sinus rhythm 1 1 0.9434
60 Normal sinus rhythm 1 0.5 0.9821
80 Acute pericarditis 1 0.2 0.9145

100 Normal sinus rhythm 1 1 0.9147
120 Sinus tachycardia 1 1 0.9459
76 Atrial fibrillation 1 1 0.9245
82 Atrial flutter 1 1 0.9118
60 Breath artifact 1 1 0.9684
60 Muscle artifact 1 1 0.9085
75 Premature Atrial Contractions (PACs) 1 1 0.9300
78 Premature Ventricular Contractions (PVCs) 1 1 0.9134

200 Supra ventricular tachycardia 1 1 0.9236
152 Ventricular fibrillation 1 1 0.9852

3.2. Repeatability

Regarding repeatability, the SF value is equal to 0.043000 ± 0.000524 mm/pixel,
with a maximum variation of 0.0014 mm/pixel. Instead, the values of the time parame-
ters, expressed with mean and standard deviations, are 102.98 ± 7.95 ms (QRS complex);



Sensors 2022, 22, 7138 12 of 15

369.65 ± 11.22 ms (QT interval); 176.38 ± 9.69 ms (PQ interval); 108.75 ± 1.34 ms (P-wave
duration); 1012.18 ± 12.09 ms (R-R peak distance); and 59.30 ± 0.72 bpm (heart rate).

The ranges for each parameter are 17.93 ms (QRS complex); 29.36 ms (QT interval);
24.70 ms (PQ interval); 4.18 ms (P-wave duration); and 1.98 bpm (heart rate). These
variations corresponds to a difference of 0.45 mm (QRS complex); 0.73 mm (QT interval);
0.62 mm (PQ interval); and 0.10 mm (P-wave duration). The highest variation (34.04 ms for
R-R peak distance) corresponds to a difference of 0.85 mm between the two tests.

Comparing the means with the true values, the worst case is for the P-wave duration,
where the difference is 22.75 ms, which implies a variation of 0.59 mm. This difference
derives from the manual identification of the P, Q, R, S, and T points, which is, of course,
prone to a higher rate of error. For the other time parameters, the differences amount
to: 14.98 ms, i.e., 0.37 mm (QRS complex); 1.65 ms, i.e., 0.04 mm (QT interval); 12.38 ms,
i.e., 0.31 mm (PQ interval); 12.18 ms, i.e., 0.30 mm (R-R peak distance); and 0.70 bpm
(heart rate).

All the time parameters are shown in Table 3.

Table 3. Variation of scale factor and time parameters obtained by cropping the same ECG image
10 times (normal sinus rhythm, 60 bpm). The first 10 rows report the values of the ten tests. The 11th,
12th, and 13th show, respectively, the mean, standard deviation (SD), and range of the 10 tests. The
last row has the values of the ProSim simulator setting (True Value).

SF
(mm/Pixel)

QRS Complex
(ms)

QT Interval
(ms)

PQ Interval
(ms)

P-Wave Duration
(ms)

R-R Peaks
(ms)

Heart Rate
(bpm)

Test 1 0.042829 96.51 360.33 183.21 108.50 1008.62 59.49
Test 2 0.043802 98.70 368.52 187.47 110.96 1031.53 58.17
Test 3 0.042374 110.17 375.72 163.28 106.78 997.49 60.15
Test 4 0.043552 113.82 386.75 167.24 109.75 1025.52 58.52
Test 5 0.042838 97.10 361.55 182.21 108.52 1008.84 59.47
Test 6 0.043690 113.59 387.39 168.35 110.10 1028.46 58.34
Test 7 0.042555 95.89 358.03 182.14 107.81 1002.18 59.87
Test 8 0.042388 110.77 376.41 162.77 106.82 999.78 60.13
Test 9 0.042932 96.74 361.41 183.75 108.76 1011.05 59.34

Test 10 0.042833 96.51 360.35 183.31 108.50 1008.65 59.49

Mean 0.043000 102.98 369.65 176.38 108.75 1012.18 59.30
SD 0.000524 7.95 11.22 9.69 1.34 12.09 0.72

Range 0.014000 17.93 29.36 24.70 4.18 34.04 1.98

True Value - 88 368 164 86 1000 60

3.3. Reproducibility

Regarding reproducibility, SF is 0.042285 mm/pixel for the 1st JPEG and 0.172516 mm/pixel
for the 2nd JPEG. Table 4 reports the comparison of the scale factor and time parameters
obtained by cropping two versions of the same ECG image.

The big variation of SF (0.130231 mm/pixel) is caused by the different image resolu-
tions. Furthermore, for the 1st JPEG, the maximum aE of the parameters is 22.51 ms (in QRS
complex), which corresponds to a difference of 0.56 mm on the graph paper. It is important
to notice that the aE for the R-R peak distance is 4.60 ms (i.e., 0.12 mm), which means an
error in heart rate calculation equal to 0.28 beats. For the other time parameters, the aE
is 7.49 ms (QT interval); 1.62 ms (PQ interval); and 20.56 ms (P-wave duration), which
correspond to a variation of 0.19 mm (QT interval); 0.04 mm (PQ interval); and 0.51 mm
(P-wave duration).

In the 2nd JPEG, the aE is 13.21 ms (QRS complex); 0.04 ms (QT interval); 0.68 ms (PQ
interval); 3.71 ms (P-wave duration); and 17.85 ms (R-R peak distance). This means that the
differences in millimeters are 0.33 mm (QRS complex); 0.001 mm (QT interval); 0.02 mm
(PQ interval); 0.09 mm (P-wave duration); and 0.45 mm (R-R peak distance). Therefore, for
this image, the highest aE is found in the extraction of R-R peak distance, with a heart rate
calculation that differs by 1.05 beats from the true value.
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It is also noteworthy that with the 2nd JPEG, there is a closer agreement with the
true value; this is probably from the fact that, although the resolution is lower, the square
recognition works better since the grid is made with solid lines and not with dots.

Table 4. The comparison of the scale factor and the time parameters obtained by cropping two
versions of the same ECG image (normal sinus rhythm, 60 bpm). The second column shows the
values of the ProSim simulator (Ground Truth). The fourth column reports the absolute errors
between the first image and the true value, while the sixth column shows the absolute errors between
the second image and the true value.

Parameters True Value JPEG Image
(1st Version)

Absolute
Error 1

JPEG Image
(2nd Version)

Absolute
Error 2

SF
(mm/pixel)

- 0.042285 - 0.172516 -

QRS complex
(ms)

88 110.51 22.51 101.21 13.21

QT interval
(ms)

368 375.49 7.49 368.04 0.04

PQ interval
(ms)

164 162.38 1.62 163.32 0.68

P-wave duration
(ms)

86 106.56 20.56 89.71 3.71

R-R peak distance
(ms)

1000 995.40 4.60 1017.85 17.85

Heart Rate
(bpm)

60 60.28 0.28 58.95 1.05

4. Discussion

In the previous paragraphs, the algorithm was validated in terms of similarity, repeata-
bility, and reproducibility.

For similarity, reconstructed signals were compared with the original digital ones by
calculating the Pearson coefficient, which was always close to 1 (the perfect similarity).

Regarding repeatability, the algorithm was applied ten times on the same images
and the most important time parameters (QRS complex, QT interval, PQ interval, P-wave
duration, R-R peak distance, and heart rate) were extracted. In addition, the mean was
close to the ground truth (less than 1 mm) and the relative range was less than 1 mm in the
worst case.

Considering reproducibility, the tool has two digitized versions of the same image
with different resolutions and grid structures. The time parameters extracted from the two
images were compared with the original values by calculating the absolute error, which
was less than 1 mm in all the cases.

In summary, the similarity test shows that the reconstructed signal had a shape very
close to the original one. Repeatability and reproducibility tests showed that there was
always a difference lower than 1 mm. Thus, it is acceptable considering the combination of
the conversion error due to the digitization process and the error due to the electrocardio-
graph printing process of the signal on the graph paper. In addition, the standard paper for
ECG recording presents a distance between thin lines of about 1 mm, so these errors are
close to the paper’s resolution.

Future works will deal with the application of this algorithm to create a training set
for a machine learning prediction system that reveals cardiac pathologies. In addition, this
algorithm will be subjected to an improvement phase to be able to apply it to low-resolution
images and binary images (black/white) where the distinction between signal and grid is
more difficult. Finally, the amplitude correction algorithm is based on a static threshold,
experimentally derived from the dataset, to better generalize this phase. In the future, a
more sophisticated way of performing peak correction will be investigated.
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5. Conclusions

This study presents a novel MATLAB-based tool for digitizing ECG graph paper. The
Fluke ProSim simulator connected to the GE MAC 2000 electrocardiograph was used to
generate 16 images related to different pathologies. They were scanned and then digitized
by the algorithm with an automatic conversion from pixels to millimeters and, thus, to
milliseconds. The proposed approach reconstructs ECGs with high values of correlation
(Pearson coefficient close to 1) with respect to the original digital signal, also presenting
promising results in terms of repeatability and reproducibility (measurement errors of
the main parameters always less than 1 mm). Finally, the correct extraction of temporal
parameters related to the digitized ECG could help doctors in detecting pathology, therefore
ensuring a correct diagnosis.

In light of the carried-out analyses, the presented algorithm can be considered a
good support tool for cardiologists when the ECG paper images are available without the
corresponding digital data.
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