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Abstract. Test-Time Augmentation (TTA) is a popular technique that
aims to improve the accuracy of Convolutional Neural Networks (Con-
vNets) at inference-time. TTA addresses a limitation inherent to any
deep learning pipeline, that is, training datasets cover only a tiny portion
of the possible inputs. For this reason, when ported to real-life scenarios,
ConvNets may suffer from substantial accuracy loss due to unseen in-
put patterns received under unpredictable external conditions that can
mislead the model. TTA tackles this problem directly on the field, first
running multiple inferences on a set of altered versions of the same in-
put sample and then computing the final outcome through a consensus
of the aggregated predictions. TTA has been conceived to run on cloud
systems powered with high-performance GPUs, where the altered inputs
get processed in parallel with no (or negligible) performance overhead.
Unfortunately, when shifted on embedded CPUs, TTA introduces la-
tency penalties that limit its adoption for edge applications. For a more
efficient resource usage, we can rely on an adaptive implementation of
TTA, AdapTTA, that adjusts the number of inferences dynamically, de-
pending on the input complexity. In this work, we assess the figures of
merit of the AdapTTA framework, exploring different configurations of
its basic blocks, i.e., the augmentation policy, the predictions aggregation
function, and the model confidence score estimator, suitable for the inte-
gration with the proposed adaptive system. We conducted an extensive
experimental evaluation, considering state-of-the-art ConvNets for image
classification, MobileNets and EfficientNets, deployed onto a commercial
embedded device, the ARM Cortex-A CPU. The collected results reveal
that thanks to optimal design choices, AdapTTA ensures substantial ac-
celeration compared to a static TTA, with up to 2.21× faster processing
preserving the same accuracy level. This comprehensive analysis helps
designers identify the most efficient AdapTTA configuration for custom
inference engines running on the edge.

Keywords: Test-Time Augmentation, Deep Learning, Embedded Sys-
tems



2 L. Mocerino et al.

1 Introduction

1.1 Context

Convolutional Neural Networks (ConvNets) are the backbone of many computer
vision applications, thanks to their ability to recognize complex data structures
with good generalization capability. However, state-of-the-art ConvNets are far
from the robustness of the human vision systems, which can deal with abstract
changes in structure and style and are rarely misled by spatial changes in im-
ages or forms of corruption such as blur, snow, noise, and a combination of
them. Achieving this level of generalization is an essential target for intelligent
systems, especially in safety-critical applications. Still, current ConvNets suffer
from accuracy drop when ported to real-life scenarios and operated on input
patterns that differ substantially from those used at training time, which often
represents only a limited subset of all the possible patterns. This issue gets crit-
ical in high-dimensional problems like image classification, for which covering
the large variability across different data samples is unfeasible. For example, the
most common sources of misprediction are the discrepancy in size and orienta-
tion of the objects caught in the image [1], as well as different light conditions
or contrast.

The first actions to address this problem can be taken at training time.
Among the possible options, data augmentation is one of the most common tech-
niques, thanks to its straightforward integration in standard training pipelines.
It consists of applying random transformations on the input data to increase
the diversity of the training samples, with the final goal of improving the gener-
alization capability. The most simple implementations used in computer vision
problems rely on a set of geometric and graphical transformations, often hand-
tuned by domain experts to match the conditions of real-life scenarios [2,3]. More
advanced strategies aim to automate the design of the augmentation policy, for
instance, through a grid search [4], reinforcement learning [5], or gradient-based
optimization [6]. Some of these strategies have been successfully integrated with
the training of state-of-the-art ConvNets [7].

Despite these efforts, ConvNets may still fail to handle unpredictable changes
in the data distribution [8, 9] in real-life scenarios. For a more robust general-
ization, recent works proposed complementary strategies operating at inference
time [10, 11]. Among them, Test-Time Augmentation (TTA) is a valuable op-
tion for ConvNets hosted in the cloud and operated for visual tasks like image
classification [2, 12, 13]. It is a simple yet efficient strategy that leverages mul-
tiple predictions to increase the model’s confidence. Specifically, it involves the
aggregation of partial predictions over a set of transformed versions of the same
input image. In practice, the transformations applied are inspired by the data
augmentation techniques typically adopted during training.

Different implementations of TTA exist, yet all of them have been validated
only on high-performance platforms for cloud applications. In this work, we focus
instead on the portability of TTA to inference engines running on embedded
systems integrating low-power CPUs. This shift raises several challenges due to
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Table 1: Inference latency (ms) of state-of-the-art ConvNets measured at differ-
ent batch sizes (1, 5, and 10) on a cloud GPU (NVIDIA Titan Xp with 3840
CUDA cores) and an embedded CPU (ARM Cortex-A53 with 4 cores).

ConvNet
NVIDIA Titan Xp ARM Cortex-A53
1 5 10 1 5 10

MobileNetV1 18.2 18.6 18.7 53.1 290.6 569.9
MobileNetV2 12.1 12.4 12.9 44.2 261.8 513.5
MobileNetV3 19.0 20.1 21.3 46.2 221.3 470.6

EfficientNet-B0 21.3 22.4 22.6 68.5 358.9 682.3
EfficientNet-B1 31.9 33.4 33.9 103.4 536.4 1290.2
EfficientNet-B2 33.2 35.7 38.4 122.6 591.9 1360.4

the limited computational resources of embedded systems, as detailed in the
following sub-section.

1.2 Motivations

Conventional TTA policies have been conceived for high-performance architec-
tures like GPUs, which offer thousands of parallel processing cores. For example,
a commercial device like the NVIDIA Titan XP hosts 3840 CUDA cores. These
architectures enable to process multiple inputs in parallel with a single feed-
forward pass, a procedure commonly called batch inference. When implemented
on cloud GPUs, TTA relies on batch inference to process the augmented im-
ages with negligible performance overhead (see Table 1). The same does not
hold on the edge, where ConvNets are made run on mobile devices powered
by low-power CPUs with limited resources [14–16] (e.g., 4 cores in the ARM
Cortex-A53). On low-power CPUs, a single image is enough to saturate all the
available computing units. Table 1 demonstrates this observation with a quan-
titative comparison, showing that batch inference raises a prohibitive latency
overhead on embedded CPUs, which in turn prevents the portability of TTA.
Specifically, batch inference gets 5.5× (batch size=5) and 11.2× (batch size=10)
slower than a single inference (batch size=1), therefore it is even less efficient
than sequential processing.

In our recent work [17], we introduced AdapTTA, an adaptive implementa-
tion of TTA suited for embedded systems. Unlike static TTA strategies, where
the number of modified samples fed to the ConvNet is fixed, AdapTTA self-
regulates the number of transformations and feed-forward passes dynamically.
The transformed images are generated and processed sequentially till the model
achieves good confidence in the main outcome. In other words, it only runs those
inferences that make the model confident enough about the prediction. Specif-
ically, AdapTTA relies on the fact that different inputs have different intrinsic
complexity and the minimum number of transformations needed to reach an ac-
curate classification changes on a sample basis. This suggests that the number
of feed-forward passes can be adjusted at run-time depending on the confidence
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level accumulated. The processing gets faster for ”easy” images and slower for the
most ”complex” ones. Leveraging the statistics of the input patterns, AdapTTA
allows a substantial average speed-up compared to the original static approach.

1.3 Contributions

Starting from the findings of AdapTTA, we further investigate the design of a
TTA framework for embedded ConvNets, exploring different implementations of
its basic components and quantifying their impact on accuracy gain and perfor-
mance. Specifically, the design and the optimization of AdapTTA involve three
main choices: (i) the augmentation policy, i.e., the set of transformations to apply
to the input image; (ii) the aggregation function, i.e., the method to combine the
partial predictions; (iii) the confidence score estimator, i.e., a proxy to control
the number of transformations needed for each input. For all three blocks, we
consider different options borrowed from the literature, focusing on those con-
figurations that fit the target of our adaptive strategy, i.e., systems with limited
computing resources.

The remainder of this paper is organized as follows. After a brief description
of data augmentation and TTA, we report the most recent advancements in
cloud-based TTA policies (Section 2). We then introduce the architecture of
AdapTTA, discussing the viable options for the implementation of augmentation
policy, aggregation function, and confidence score (Section 3). To assess the
figures of merit of AdapTTA, we considered two families of ConvNets for image
classification, MobileNets and EfficientNets, running on a commercial off-the-
shelf embedded platform powered by an ARM Cortex-A53 CPU (Section 4).
The results collected from the comprehensive analysis of different AdapTTA
configurations guide designers towards the understanding of the best practices
for an efficient porting of AdapTTA to embedded platforms (Section 5). Finally,
a summary of the main achievements concludes the work (Section 6)

2 Background & Related Work

2.1 Data Augmentation for Training

The main bottleneck for training reliable ConvNets lies in imperfections in the
data. The most critical aspects to consider include (i) domain mismatch when
the data used for training differs from that processed on the field, (ii) data bias
when the data is imbalanced towards specific classes or categories, (iii) data
noise when the data is cluttered or corrupted.

Data augmentation is one of the simplest solutions to deal with these prob-
lems. It consists of adding additional training data through the application of
random transformations on the available training samples. In computer vision
tasks, the most popular augmentation procedures involve a set of geometric
transformations (e.g., translation, rotation, flipping) and color transformations
(e.g., brightness, contrast, saturation) that try to reproduce the conditions of
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Fig. 1: Example of data augmentations for an image classification task.

the application domain [2, 3] (Figure 1). More sophisticated techniques intro-
duce graphical artifacts injecting random noise, masking random regions on the
input (Cutout [18]), or mixing multiple samples in a single image (Mixup [19] and
CutMix [20]). The generated samples help the model learn features that make
the classification more robust to changes in objects’ position, lighting conditions,
and scales.

Common training pipelines combine multiple transformations to further in-
crease the diversity of data. The set of the transformations selected defines the
augmentation policy. At each training iteration, a random subset of these trans-
formations are applied sequentially to the original data. Augmentation policies
can be hand-crafted or built with automatic techniques. For example, the optimal
selection can be driven by a random search engine to adapt the augmentation
policy to different contexts [4]. In general, automatic solutions outperform man-
ual designs, motivating their integration in the training flow of state-of-the-art
ConvNets [7, 21].

Rather than transforming the original input, alternative solutions are pro-
posed to extend the training dataset with synthetic images that preserve the
features of the original data. These solutions rely on generative models, like
Variational Autoencoders [22] or Generative Adversarial Networks [23], that are
trained on the available samples together with the classification model. Despite
the potential benefits, the additional training operations generate a substantial
computational overhead, which hinders the adoption of these methods.
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Fig. 2: Flow diagram of static TTA policy for an image classification task.

2.2 Test-Time Augmentation

Even if trained with complex augmentation policies, ConvNets still remain sus-
ceptible to unpredictable changes in the data distribution due to the shift from
laboratory conditions to real-life scenarios [9]. TTA has emerged as a common
strategy integrated with prediction services hosted in the cloud to increase the
model robustness. In practice, TTA employs the same transformations for data
augmentation to generate altered versions of an input sample. The generated
instances are fed to the ConvNet, and the partial predictions are aggregated
to compute the outcome. The rationale behind this process is that an altered
version of the same input data increases the information contents provided to
the model, improving the decision-making process.

Like data augmentation, most research efforts to optimize TTA focused on
the search for the transformations that maximize the accuracy gains. Early
works in the literature adopted hand-crafted policies based on basic spatial
transformations such as image cropping & flipping and input resolution re-
scaling [2, 12, 13, 24]. More recent studies investigated algorithms for the au-
tomatic design of the TTA policy. For example, the selection of the transforma-
tions can be driven by a greedy exploration [8] or even tailored to each input
sample [25]. However, automatic methods share an import shortcoming, that is,
they require the training of additional modules or the re-training of the entire
ConvNets.

Regardless of the transformations adopted, the major limitation of all the
TTA implementations lies in their static behavior: they apply a predefined num-
ber of transformations to each input data without discriminating their features
and complexity. Figure 2 shows a more detailed view of the execution flow of
a generic TTA strategy. It depicts an image classification problem involving C
classes. First, a set of N augmented versions x′ of the input image x is generated
through the application of a set of transformations included in the augmenta-
tion policy T : x → x′. Second, the generated images are fed to the ConvNet
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in parallel or sequentially (more details in Section 5). Third, the N outputs are
processed by a softmax layer to score the available labels. Finally, the resulting
partial predictions are aggregated through a function A that returns the final
outcome. The parameter N is fixed at design time by the TTA policy, therefore
each prediction encompasses the same number of inferences for each input image.

Existing TTA policies address a single optimization goal that is the accu-
racy gain. They have been conceived and integrated with ConvNets running on
cloud systems, which can process a high number of transformations still without
saturating the available processing units thanks to the extensive parallelism of
GPUs. On the contrary, embedded systems cannot offer comparable levels of
parallelism, and even the inference of a single image requires the full utilization
of resources. Besides accuracy, latency is an important variable to consider for
the efficiency of TTA on low-power devices. This is a less explored problem,
which motivated the design of AdapTTA.

3 Adaptive Test-Time Augmentation

Static TTA policies might be too conservative for most input samples, especially
for specific inputs with well-exposed features that ConvNets can spot with a sin-
gle or few feed-forward passes. Therefore, we conceived AdapTTA with a specific
goal: provide a more flexible TTA mechanism that monitors intermediate pre-
dictions to minimize the number of transformations needed to return a reliable
classification.

The schematic flow of Figure 3 illustrates the working principle of AdapTTA.
The flow is iterative, and the number of iterations changes on a sample basis
depending on the level of confidence of the classification. In each iteration, the
ConvNet takes as input an altered version of the original data x′

i, which is
generated with a transformation defined in the augmentation policy T . Then, the
ConvNet returns a partial prediction pi, which contains the probabilities over the
C classes. The partial predictions are aggregated class-wise after each inference
using the aggregation function A(pi). The resulting probability distribution PA

is evaluated with the confidence score CS to decide whether to process to the
next transformation or return PA to infer the final output. Specifically, if the
confidence score satisfies a user-defined threshold τ , i.e., CS > τ , the prediction
is deemed reliable, and the TTA loop ends. The class with the largest probability
in PA is then selected as the label of the input image. In other words, AdapTTA
implements an adaptive mechanism to control the augmentation passes at run-
time based on the confidence level accumulated across repeated inferences. In the
worst-case scenario, namely, if CS falls below the threshold τ for each iteration,
the entire set of augmented samples extracted from the policy T is evaluated. In
this case, AdapTTA delivers the same predictions as the static TTA, with the
same computing effort and accuracy gain.

The flow depicted in Figure 3 is kept general to underline that, in princi-
ple, AdapTTA is compatible with different augmentation policies, aggregation
functions, and confidence scores. However, the design and optimization of these
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Fig. 3: AdapTTA schematic flow. Augmented images are generated and fed se-
quentially to the ConvNet. After each iteration, the predictions are aggregated,
and the confidence score is computed. Depending on its value, the following
transformation is applied and evaluated, or the loop is interrupted. In the ex-
ample, only x′

0, x
′
1, and x′

2 get processed by the ConvNet to compute the final
prediction. The label with the largest probability in PA is assigned to the input.

components are paramount to build an efficient adaptive scheme that maximizes
the accuracy gain with minimum computational effort. Regarding the augmenta-
tion policies and aggregation functions, we considered solutions already adopted
in static TTA strategies. The confidence score, on the contrary, is the funda-
mental component that distinguishes AdapTTA from the static approach, as it
regulates the dynamic behavior of the proposed flow. For such reason, it is criti-
cal to identify a good proxy to evaluate the confidence of a model prediction. For
such purpose, we considered different metrics that investigated the level of cor-
rectness of a classification taken from the recent literature [26–30]. Compared
to these works, the novelty of our contribution lies in the application of the
confidence score for the optimization of TTA.

Among the possible design choices for the above mentioned blocks, only a
subset of them is compliant with the systems having limited computing resources.
Therefore, we conducted our analysis considering the portability ops such blocks
to embedded systems as a primary constraint (more details in the following
subsections).

3.1 Augmentation Policy

The augmentation policy T defines the set of transformations that generate N
different versions of the input image. In resource-constrained environments, the
design of the augmentation policies should follow two important considerations.
First, the augmentation policy should keep N as small as possible, as larger
values of N imply more network feed-forward passes, which can affect both la-
tency and power dissipation [31]. Second, the execution time needed to process
a transformation should be negligible compared to that needed for inference.
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Fig. 4: Example of 5-Crops and 10-Crops TTA policies. HF denotes the applica-
tion of horizontal flipping.

Following these observations, we considered only simple spatial manipulations,
i.e., cropping & flipping. We integrated them into two TTA policies, 5-Crops and
10-Crops, inspired by the early implementations of TTA [2,12,13,24]. These two
policies fit our design target. On the ARM Cortex-A53 CPU, cropping requires
only 0.8ms and horizontal flipping 0.9ms, which is negligible compared to the
tens of ms needed for network inference. Specifically, the two policies can be
described as follows:

5-Crops (5C) - This policy takes as input a Kr × Kr image (the leftmost
in Figure 4) and extracts consecutively a set of five crops of size Kc × Kc,
with Kc < Kr, from different areas of the input image. Specifically, it returns
the center crop and the four corner crops (top-left, top-right, bottom-left and
bottom-right).

10-Crops (10C) - This policy is an extension of the 5C policy; it applies
the left-to-right horizontal flipping to the five crops of 5C for a total of 10 images
(Figure 4). Doubling the number of transformations (from 5C to 10C) should
increase the accuracy gain at the cost of a higher overall inference latency.

3.2 Aggregation Function

The aggregation function A(pi) defines how to combine the partial predictions
pi generated at the different iterations of the flow in Figure 3. The study in [26]
reported the most common implementations adopted in cloud-based TTA, Max
andMean aggregation. Although introduced for the cloud, we imported these two
functions to our design target. Their execution, consisting of simple arithmetic
operations, is negligible compared to the intensive workloads of ConvNets, and
makes these functions a good fit for systems with limited computing resources.
We summarize them as follows:
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Max Aggregation - The Max function selects the distribution pi that con-
tains the class with the largest score among all the partial predictions. Therefore,
the outcome of this function rewards only a single prediction and discards the
contribution of the other ones.

Mean Aggregation - The Mean function performs the class-wise average of
the partial predictions pi. Different from Max, this aggregation function gives the
same importance to all the partial predictions. For higher accuracy, it is possible
to apply a weighted average, where the weights are trained with a dedicated pro-
cedure [26]. However, this procedure requires additional calibration data, which
might be unavailable in the deployment phase. Therefore, our analysis considers
only the arithmetic average.

In static TTA, the aggregation is performed after processing all the transfor-
mations defined in the augmentation policy. In AdapTTA, the aggregated prob-
ability PA is instead updated after every inference to evaluate the classification
confidence at the end of each iteration.

3.3 Confidence Score Estimator

The confidence score estimates the correctness of the classification and regu-
lates the dynamic behavior of AdapTTA. A proper definition of the confidence
score should guarantee two essential properties: (i) an high confidence value
should correspond to a correct prediction, avoiding early stops of AdapTTA; (ii)
low confidence should be assigned only to those inputs that need more trans-
formations for committing the correct prediction, avoiding waste of computing
resources.

Estimating the classification confidence of a ConvNet is not a new research
problem; still, it remains an open issue. Among the viable options, we considered
the following approaches:

MaxP - This function selects as confidence score the largest probability in
PA [26], over the C classes. This function considers only the top-1 probability,
thus it may be misleading if all class probabilities have similar values.

Score Margin (SM) - It denotes the difference between the first and second
largest probabilities over the C classes contained in PA [27, 28].

SM = PAtop1 − PAtop2 (1)

Intuitively, low values of SM denote that the model is uncertain between the two
most likely classes.

Entropy - In information theory and statistics, entropy represents the in-
formative content of a random variable [32]. For this reason, it has been adopted
as an uncertainty metric in many deep learning problems like active learning [29]
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and unsupervised learning [33]. For the AdapTTA design, we computed the nor-
malized entropy Hn [34] of PA (over the C classes).

H = −
C−1∑
c=0

PAc · log(PAc) (2)

Hn = 1− H

log(C)
(3)

In this way, the Entropy score ranges in [0, 1] like the above mentioned con-
fidence metrics, where lower values imply higher uncertainty and larger values
indicate stronger confidence.

Similar to the aggregation functions, these confidence scores are suitable for low-
power systems as they only require simple arithmetic operations with negligible
computational overhead compared to the execution of a ConvNet.

4 Experimental Setup

This section describes the hardware platforms and the software environment for
AdapTTA deployment. In addition, we discuss the ConvNets families used as
benchmarks for the experiments.

4.1 Hardware Platform and Software Setup

The Odroid-C2 platform, powered by the Amlogic S905 SoC, serves as the hard-
ware testbench. The CPU is a quad-core ARM Cortex-A53 with a nominal fre-
quency of 1.5GHz. The board runs Ubuntu Mate 18.04 with Hardkernel’s version
3.16.72-46. TensorFlow Lite 1.14 is the inference engine, and it includes a collec-
tion of neural-network procedures tailored for the ARM Cortex-A architecture.
TensorFlow Lite is cross-compiled in our environment using the GNU ARM
Embedded Toolchain (version 6.5) [35].

4.2 ConvNet Benchmarks

The adopted benchmarks are pre-trained models from TensorFlow Hub [36] and
TensorFlow Hosted Models [37] repository. Specifically, they belong to two fami-
lies of ConvNets that represent the state-of-the-art for image classification tasks
for the mobile segment: MobileNets [38–40] and EfficientNets [7]. All the models
were trained on the ImageNet [41] dataset and quantized to 8 bits, which is a
standard solution for edge inference as it provides a smaller memory footprint
and faster processing with negligible accuracy loss when compared to floating-
point.

Table 2 reports structural properties (memory footprint and latency) and
functional (the classification accuracy) of the ConvNets under test. Specifically,
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Table 2: Storage requirements, input resolution (Kc), top-1 accuracy without
TTA (Top-1), and inference latency (Lnom) of the selected benchmarks.

ConvNet Storage Kc Top-1 Lnom

[MB] [%] [ms]

MobileNetV1 4.3 224 70.0 53.1
MobileNetV2 3.4 224 70.8 44.2
MobileNetV3 4.2 224 72.2 46.2

EfficientNet-B0 5.4 224 74.4 68.5
EfficientNet-B1 6.4 240 75.9 103.4
EfficientNet-B2 6.9 260 77.0 122.6

the column Storage collects the size (in MB) of the ConvNet in .tflite format,
which includes the model weights and additional metadata (i.e., the topology
description) to deploy the model on the target device. The metric Top-1 refers to
the top-1 classification accuracy measured on the ImageNet validation set, which
consists of 50k images split into 1k different classes. The accuracy is evaluated
without TTA, i.e., with a standard pre-processing pipeline consisting of resizing
the images to a fixed resolution of Kr × Kr pixels and extracting the central
crop of shape Kc × Kc (Kr = Kc + 32). Finally, the column Lnom reports the
nominal latency of a single inference running at the maximum available resources
(4 threads @1.5GHz).

5 Results

5.1 Design & Optimization of AdapTTA

The primary goal of any TTA strategy, static or adaptive, is to improve clas-
sification accuracy. For this reason, our first analysis aims to identify the most
accurate static configurations that will serve as baselines to assess the quality of
AdapTTA. In the static TTA, the design choices that impact the accuracy are
the augmentation policy and the aggregation function. Therefore, we conducted
an exhaustive exploration that considers all the possible combinations of the
augmentation policies and aggregation functions under investigation.

Specifically, the results in Table 3 report the accuracy gain achieved by Max
and Mean aggregation functions with the 5C and 10C policies for the entire
benchmark suite. Regardless of the design choices, TTA improves the classifi-
cation quality, yet with different benefits depending on the configuration. The
accuracy gain ranges from 0.5% (MobileNetV3) to 2.70% (MobileNetV1) for 5C
policy and from 0.9% (EfficientNet-B2) to 3.1% (MobileNetV1) for 10C policy.
In general, a larger number of transformations brings higher accuracy. Moreover,
the Mean aggregation function always outperforms Max, with relative improve-
ments up to 1.2% (MobileNetV2 with 5C policy). The two functions only reach
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Table 3: Accuracy gain (in %) of 5-Crops (5C) and 10-Crops (10C) TTA policies
with Max and Mean aggregation functions.

5C 10C
ConvNet Max Mean Max Mean

MobileNetV1 2.4% 2.7% 2.8% 3.1%
MobileNetV2 1.0% 2.2% 1.8% 2.9%
MobileNetV3 0.5% 0.5% 1.0% 1.2%

EfficientNet-B0 0.7% 1.1% 0.9% 1.3%
EfficientNet-B1 1.9% 2.2% 2.2% 2.5%
EfficientNet-B2 0.7% 0.8% 0.9% 1.1%

the same accuracy level for MobileNetV3 with the 5C policy. For two ConvNets
(MobileNetV2 and EfficientNet-B0),Mean with 5C shows even a larger gain than
Max with 10C, suggesting that the proper selection of the aggregation function
enables a smaller number of transformations, retaining the same accuracy.

Our findings confirm the analyses conducted in previous studies like [26],
which reported similar trends on a different set of networks and datasets. We
believe that the Max function is susceptible to wrong classifications due to a
partial prediction that erroneously overestimates a class probability. In these
cases, the other predictions would be simply discarded. On the contrary, the
Mean function mitigate this effect, as averaging over all the predictions can
distribute the influence of outliers over the final decision. Motivated by these
observations, we selected Mean as the aggregation function for both the static
TTA used as a reference and the implementation of AdapTTA (more details
about their comparison in Section 5.2).

As described in Section 3, the dynamic behavior of AdapTTA is controlled by
the confidence score and the corresponding value of the confidence threshold τ
(set as a hyper-parameter). We then focus on understanding which confidence
estimator provides the most reliable evaluation of the classification correctness.
For this purpose, we validated the three candidate functions (MaxP, Entropy,
SM) in AdapTTA and we measured the accuracy gain for different values of
τ ∈ [0.1, 0.9], with a step of 0.1. Notice that τ = 0 is equivalent to classification
without TTA, and τ = 1 corresponds to the static TTA (all the transformations
get processed).

The results are reported in Figures 5 and 6 for the MobileNet and Efficient-
Net families, respectively. SM is the only metric that, with appropriate values
of τ , ensures the same accuracy as the static TTA (dashed grey line in the plots).
In general, SM always outperforms the other metrics, even at lower values of τ .
The same trend holds for all the ConvNets and augmentation policies (5C and
10C). The most representative example is MobileNetV2 with the 5C policy (Fig-
ure 5-b left). In this case, SM keeps almost the maximum level of accuracy even
with τ = 0.4, while MaxP and Entropy reduce accuracy by 1.48%. In summary,
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Fig. 5: Accuracy gain of AdapTTA for different confidence scores (MaxP, En-
tropy, SM) using 5C policy (left) and 10C policy (right). Results on the Mo-
bileNets family.

with SM the accuracy shows a lower sensitivity to the variations of τ . This is
a desirable property, as lowering the value of τ could enable higher accelera-
tion. Intuitively, if the classification is deemed correct even at ”low” confidence
levels, fewer transformations must be processed to return the final prediction
(see Section 5.3 for more details). In MobileNetV3 with 10C policy (Figure 5-c
right) and EfficientNet-B2 with 5C policy (Figure 6-c left), SM shows the lowest
sensitivity to τ : the accuracy gain quickly saturates to the maximum level of
accuracy starting from τ ≥ 0.3.

5.2 Comparing Static TTA and AdapTTA

We compared the computational efficiency of a standard static TTA and AdapTTA,
measuring the average prediction rate (in FPS) across the ImageNet validation
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Fig. 6: Accuracy gain of AdapTTA for different confidence scores (MaxP, En-
tropy, SM) using 5C policy (left) and 10C policy (right). Results on the Effi-
cientNets family.

set (50k images). For the static TTA, we benchmarked two different implemen-
tations:
Batch-TTA - the augmented images get processed in parallel through batching
(the batch size is equal to the number of transformations);
Seq-TTA - the augmented images get processed sequentially.
The overall inference time includes the data augmentations latency measured on
the target device (0.8ms for cropping and 0.9ms for horizontal flipping).

In all cases, we considered the Mean aggregation, and we studied both the 5C
and 10C policies. For AdapTTA, we fixed τ = 0.8 to ensure the same accuracy
gain of the static TTA, although this high value could limit the potential accel-
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Fig. 7: Average prediction rate (Avg. FPS - the higher, the better) for 5C
and 10C policies of the static implementations (Batch-TTA and Seq-TTA) and
AdapTTA. The arrows indicate the relative speed-up of AdapTTA compared to
Seq-TTA. Results on the MobileNets family.

eration of AdapTTA. However, we opted for this conservative choice to assess
the feasibility of AdapTTA decoupling our analysis from the optimization of τ .

Figures 7 and 8 summarize the collected results for the two families of bench-
marks. As mentioned in Section 1, batching turns out to be inefficient on em-
bedded CPUs due to the low number of parallel cores (4 in the Cortex-A53);
hence, Seq-TTA is slightly faster than Batch-TTA. Also, AdapTTA enables sub-
stantial acceleration, with much faster prediction rates ranging from 1.16× to
1.78× in 5C and from 1.19× to 2.21× in 10C. In MobileNetV1, AdapTTA on
10C outperforms Seq-TTA on 5C in both accuracy (+3.1% vs. +2.7%) and speed
(4.05FPS vs. 3.73FPS). The reason can be inferred from Table 4, which reports
the average number of inferences needed to run a prediction with AdapTTA.
AdapTTA needs less than 5 (4.57) inferences on average (row MobileNetV1, col-
umn 10C), achieving superior performance than a static 5C implementation. A
comprehensive analysis on all the benchmarks shows that the average number
of images ranges from 2.81 to 4.32 for 5C and from 4.57 to 8.41 for 10C at the
same accuracy level, demonstrating that static TTA is too conservative in most
cases and unreliable for less frequent complex inputs.



On the efficiency of AdapTTA 17

5C 10C
0

1

2

3

4
A

vg
.

F
P

S 1.40x

1.49x

Batch-TTA

Seq-TTA

AdapTTA

(a) EfficientNet-B0

5C 10C
0

1

2

3

A
vg

.
F

P
S

1.54x

1.67x

Batch-TTA

Seq-TTA

AdapTTA

(b) EfficientNet-B1

5C 10C
0

1

2

3

A
vg

.
F

P
S

1.16x

1.19x

Batch-TTA

Seq-TTA

AdapTTA

(c) EfficientNet-B2

Fig. 8: Average prediction rate (Avg. FPS - the higher, the better) for 5C
and 10C policies of the static implementations (Batch-TTA and Seq-TTA) and
AdapTTA. The arrows indicate the relative speed-up of AdapTTA compared to
Seq-TTA. Results on the EfficientNets family.

Table 4: Average number of inferences in AdapTTA for the 5-Crops (5C) and
10-Crops (10C) policies.

ConvNet 5C 10C

MobileNetV1 2.81 4.57
MobileNetV2 3.37 6.26
MobileNetV3 3.48 6.54

EfficientNet-B0 3.57 6.75
EfficientNet-B1 3.24 6.02
EfficientNet-B2 4.32 8.41

5.3 Accuracy vs. Performance Trade-offs

This section aims to assess the sensitivity of AdapTTA efficiency on the hyper-
parameter τ . Even though we selected the same value (τ = 0.8) for all the
networks in the preliminary analysis of Section 5.2, more precise control of τ
could enable additional margins of optimization. Indeed, a too low value of τ
can limit the accuracy gains of AdapTTA, while a too high value can lower
the prediction rate as unneeded transformations get processed. Here, we aim
to quantify the maximum speed-ups that can be achieved while retaining the
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Fig. 9: Accuracy gain (in %) vs. average prediction rate (Avg. FPS) at different
values of τ for 5C and 10C policy. The size of the circles is proportional to τ (a
larger size indicates a higher τ). Results on the MobileNets family.

maximum accuracy. For this purpose, we evaluated a discrete set of values of τ ,
ranging from 0.1 to 0.9, with a step of 0.1. The experiments were conducted on
the ImageNet validation set.

The main outcome of the analysis is that the minimum value of τ ensuring
the highest accuracy gain differs across the selected benchmarks: from 0.7 for
MobileNetV1 in 5C policy to 0.3 for MobileNetV3 in 10C policy (Figure 9). This
translates to additional acceleration: in MobileNetV1 5C policy, the prediction
rate increases from 6.64 FPS (τ = 0.8) to 7.28 FPS (τ = 0.7) on average; in
MobileNetV3 10C policy, from 3.26 FPS (τ = 0.8) to 6.07 FPS (τ = 0.3). Sim-
ilar trends do hold for the EfficientNet family (Figure 10). Besides a different
topology, these networks followed a different training protocol, e.g., integrat-
ing different data augmentation pipelines [7,38]. This observation suggests that
training hyper-parameters can affect the efficiency of AdapTTA, and potentially
corrective actions applied at training time could reduce the number of transfor-
mations needed at test time.

Moreover, the circles in the plots represent different operating points that
can be selected at run-time to enable a fine-grain trade-off between accuracy
and speed. This can be helpful when the application has to rescale its energy
footprint (e.g., together with DVFS [42], if the mobile system is running out of
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Fig. 10: Accuracy gain (in %) vs. average prediction rate (Avg. FPS) at different
values of τ for 5C and 10C policy. The size of the circles is proportional to τ (a
larger size indicates a higher τ). Results on the EfficientNets family.

battery) or when the classification task is not a critical application (some ac-
curacy loss is tolerable). For example, with τ = 0.5, MobileNetV1 reaches 8.7
FPS, yet with a marginal accuracy loss with respect to Seq-TTA (< 0.5%). Also,
a more in-depth analysis of the collected results reveals an interesting relation-
ship between the value of τ and the policy selection. In all the networks except
MobileNetV3 and EfficientNet-B2, the 10C (blue) and 5C (yellow) curves show
a point of intersection. This point qualitatively delimits the boundary of two
working conditions, high-accuracy on the left and high-performance on the right.
For high-accuracy, 10C always outperforms 5C, while, for high-performance, the
opposite consideration holds. This is due to the rapid drop in the accuracy
observed in the 10C policy at lower values of τ . In summary, the maximum
efficiency can be reached only with the joint optimization of τ and the augmen-
tation policy. However, MobileNetV3 (Figure 9-c) and EfficientNet-B2 (Figure
10-c) show different trends. As mentioned, the accuracy of these networks is less
sensitive to the variations of τ , resulting in almost flat curves in the accuracy
vs. performance space. Specifically, the 10C curve never intersects the 5C curve,
indicating that the 10C policy is the most practical choice for these networks.
The 5C policy could be taken into account only for smaller values of τ (the
two rightmost points in this case), which can still guarantee high-performance
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operating conditions with limited accuracy loss (< 0.4% for MobileNetV3 and
< 0.7% for EfficientNet-B2).

6 Conclusions

AdapTTA introduced a dynamic implementation of TTA targeting low-power
applications deployed on embedded systems. Specifically, AdapTTA minimizes
the number of augmented samples to process, with the final goal of reducing the
computational effort while preserving the same accuracy benefits. To validate
the efficiency of AdapTTA, we conducted a comprehensive analysis of different
components and configurations of the proposed framework. We explored differ-
ent TTA policies, aggregation functions, and confidence scores, assessing their
impact on accuracy and performance. Our analyses serve as practical guidelines
for designers and end-users to identify the most efficient configuration. Moreover,
extensive experiments on a large variety of benchmarks reveal that AdapTTA
reaches substantial acceleration, from 1.16× to 2.21× compared to static TTA
policies, with no loss of prediction accuracy.
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