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Communication-Efficient Federated Learning with
Gradual Layer Freezing

Erich Malan, Valentino Peluso, Member, IEEE, Andrea Calimera, Member, IEEE, Enrico Macii Fellow, IEEE

Abstract—Federated Learning (FL) is a collaborative, privacy-
preserving method for training deep neural networks at the edge
of the Internet-of-Things (IoT). Despite the many advantages,
existing FL implementations suffer high communication costs
that prevent adoption at scale. Specifically, the frequent model
updates between the central server and the many end nodes are
a source of channel congestion and high energy consumption.
This brief tackles this aspect by introducing Federated Learning
with Gradual Layer Freezing (FedGLF), a novel FL scheme
that gradually reduces the portion of the model sent back and
forth, relieving the communication bundle yet preserving the
quality of the training service. The results collected on two image
classification tasks learned with different data distributions prove
FedGLF outperforms conventional FL schemes, with data volume
savings ranging from 14% to 59% or up to 2.5% higher accuracy.

Index Terms—Federated Learning, Internet of Things, Convo-
lutional Neural Networks, Communication, Optimization.

I. INTRODUCTION

THE advancement of cheaper sensing and connecting
technologies in the Internet of Things (IoT) brought rapid

growth of wireless sensor networks capable of gathering and
sharing large volumes of unstructured raw physical data. The
availability of more data with higher quality and capillarity
empowered the development of Machine Learning (ML) ap-
plications built upon Convolutional Neural Networks (CNNs).
Nonetheless, a profitable interaction between IoT and ML
poses challenges beyond functionality, and data privacy is
the most critical one. For instance, security cameras, smart
speakers, and smartphones collect sensitive information that
end-users might not be willing to share with service providers.
Unfortunately, it is a prerogative for any supervised learning
strategy to have centralized and fully accessible training data
at its disposal, which is in conflict with privacy and ownership
rights. A natural yet challenging evolution calls for learning
methods that operate the data locally, on the embedded devices
deployed at the edge of the IoT.

In this context, Federated Learning (FL) is an emerging
paradigm where many clients collaborate in training a global
model hosted on a central server without distributing the
raw data. Although FL has proven feasible in real-life use
cases [1], [2], to manage the limited resource budgets of IoT
end-nodes remains an open issue. FL involves frequent upload
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and download of models to achieve competitive accuracy, gen-
erating massive communication volumes that are unaffordable
for most embedded devices. The communication burden is a
primary concern for typical IoT systems, where download and
upload bandwidths are limited to 0.75MB/s and 0.25MB/s,
respectively [3]. Moreover, the volume of exchanged data
impacts the communication energy [4], with a negative effect
on the battery life of the end nodes.

This brief introduces a novel FL scheme for CNNs to
reduce the volume of data transferred during the learning
process. We propose Federated Learning with Gradual Layer
Freezing (FedGLF), a layer gating strategy where the number
of layers that need to be trained and then synchronized with
the server reduces as the learning flow evolves, letting clients
skip massive download/upload of layers that already reached
(or that are close to reach) convergence. FedGLF was inspired
by observing that shallower layers converge sooner than deeper
ones, as reported in the theoretical study in [5], and that layer
over-training brings limited (or no) improvements in model
accuracy. As main contribution, FedGLF introduces a novel
scheme to coordinate the freezing mechanism at the server
side depending on the global state of the learning process.

The experimental validation conducted on two tasks for
image classification (i.e., CIFAR-10 and CIFAR-100) reveals
the effectiveness of FedGLF. First, FedGLF reduces the com-
munication bundle achieving the same accuracy as a standard
FL scheme, with savings from 14% to 59% (depending on the
accuracy constraint and the data distribution). Second, FedGLF
improves the quality of the training procedure achieving up to
+2.5% higher accuracy while consuming the same data volume
of a standard FL scheme.

II. RELATED WORKS

Recent works addressed the optimization of the commu-
nication cost in FL. Table I shows a brief taxonomy of the
main approaches, emphasizing which synchronization phase
(download, upload, or both) benefits from the optimization.
For a complete review, interested readers can refer to [3]. In
this section, we briefly overview the principal works and their
key underlying strategy.

FederatedAveraging (FedAvg) [6] is a de-facto standard for
training neural networks under a federated setting. FedAvg
plays with the synchronization frequency between the clients
and the server with the aim of limiting the volume of ex-
changed data while ensuring no (or marginal) loss of accuracy.
Some variants of FedAvg foresee a dynamic tuning of the
synchronization frequency during the learning process [7],
eventually following a per-layer basis [8], while others play
on the end-node side, by means of an optimal client selection
mechanism applied before [9] or after aggregation [10], even
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TABLE I
OVERVIEW OF COMMUNICATION-EFFICIENT FL.

Optimization Download Upload Both

Synchronization [6] [7] [8]
Clients selection [9] [10]

Model Compression [14] [12] [13] [11]
Training and Aggregation [15] [16] [17]

Layer Freezing This work

considering multiple criteria, like memory, energy, and latency.
Some alternatives to FedAvg focus on the compression of
the local model through techniques like pruning [11], quan-
tization [12], or a combination [13]. The model compression
works at the server-side, reducing the downloading communi-
cation cost [14]. As a downside, the computational workload
increases due to extra model compression and decompression
stages, both on the client side and the server side. Other recent
works investigated alternative training functions [15], different
aggregation methods [16], or a combination of them [17], to
reach higher accuracy with fewer communication rounds.

The FedGLF strategy proposed in this work is orthogonal to
the aforementioned methods, as its underlying freezing mech-
anism can be combined with other techniques already in place.
As a distinctive feature, FedGLF concurrently optimizes the
arithmetic workload and the communication costs (both client-
to-server and server-to-client), as the number of arithmetic
operations for the back-propagation and the data transmitted
to update the model is inversely proportional to the number
of frozen layers.

III. SYSTEM MODEL & OPTIMIZATION

A. System Model

In a synchronous FL system, the central server coordinates
a set of I embedded devices, the clients. Each client i holds
a local dataset Di with exclusive access. FL implements an
iterative process with multiple interactions between the clients
and the server, referred to as communication rounds. Each
round r consists of three steps. First, the clients download
from the server the global model generated in the previous
round r − 1; the global model consists of L layers, each of
them with a set of trainable weightsWr−1

l , l ∈ [1, L]. Second,
each client trains the model with local data achieving a new
local version of the weights setWr

l,i. Third, the server collects
the updated models that have been sent back by the clients
and it enforces a model aggregation via weight averaging. To
alleviate the resource usage, only a fraction of available clients
participate in a round r. The training flow implements several
rounds until the model reaches convergence above a target
accuracy Ath.

Considering a standard 32-bit floating-point training (i.e., 4
bytes for each weight), the communication cost CCi,r of the
i-th client at the round r is given by:

CCi,r = 4×
L∑

l=1

(|Wr−1
l |+ |Wr

l,i|) (1)

with | · | the number of weights. The two terms in Equation
(1), i.e., |Wr−1

l | and |Wr
l,i| refers to the download and upload

Algorithm 1: Communication Round in FedGLF
1 for l ∈ [1, L] do
2 if globalTimestamp[l] > localTimestamp[l] then
3 Download Wr−1

l from the Server
4 Lmin = min (max (1, d r−K

F e+ 1), L)
5 for epoch ∈ [1, E] do
6 Train W r

l,i, l ∈ [Lmin, L]
7 for l ∈ [Lmin, L] do
8 Upload Wr

l,i to the Server

costs, respectively. In a standard FL framework, the communi-
cation cost of a round keeps constant during the whole learning
flow as the entire model gets synchronized at each round, and
the overall communication cost is the sum of the data volume
generated by the clients over all the communication rounds R:

CC =

R∑
r=1

I∑
i=1

pi,r × CCi,r (2)

with pi,r = 1 if the client i is selected to participate for
round r, pi,r = 0 otherwise.

B. FedGLF

FedGLF optimizes the communication cost CC under a
prediction accuracy constraint Ath, resulting in the following
minimization problem:

minimize CC s.t. A ≥ Ath (3)

In pursuing this objective, FedGLF implements a heuristic
gating scheme that freezes the layers of a CNN incrementally,
in topological order, from input to output, after a predefined
number of rounds K and with a predefined frequency F . The
two hyper-parameters K and F are global state variables set
at the server side, and they act as optimization knobs enabling
trade-off between accuracy and communication cost.

The Algorithm 1 shows the proposed synchronization and
training procedure on the client side. The pseudo-code refers
to a generic CNN with L trainable layers and describes the
three stages of each communication round r: model download
(lines 1–3), model training (lines 5–6), and model upload (7–
8). The client downloads the timestamp (globalTimestamp) of
the last update for each layer of the global model (line 1). If
the local version of the layer (localTimestamp) is older than
that available in the global model (line 2), the client downloads
the updated layer’s parameters (line 3) from the server. Even
though the timestamp is a source of additional information
(not required in conventional FL schemes), it counts 8 bytes
per layer, a marginal overhead compared to the size of a
CNN (from kBs to MBs). The number of layers trained at
each iteration changes during the evolution of the learning
progress. For r < K, i.e., at the first iteration Lmin = 1, all
the layers get involved in the training. This is the initiation
phase, when FedGLF works like a conventional FL strategy
and the whole model is trained for E epochs and then sent to
the server. After the first K rounds (r=K), the first layer, i.e.,
the input layer, is frozen. This is the beginning of the second
iteration (Lmin = 2, line 4) when the L-1 layers participate.
Every F communication rounds, a new layer is frozen in
topological order, until only the output layer is trained alone
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and communicated to the server (Lmin = L). On the server
side, the model versions produced by the clients are aggregated
and sent back to the clients upon request. Although FedGLF
can work with any training loss and aggregation function,
we adopted those proposed by FedAvg for a fair quantitative
comparison.

In FedGLF, the communication cost varies over time, de-
pending on the number of frozen layers. Specifically, the
FedGLF scheme reduces the communication cost during the
downloads, as the client must just synchronize the layers that
differ from the global model, and during the uploads, as the
clients just send the new learned layers. Moreover, the local
training workload reduces with the number of frozen layers.

IV. EXPERIMENTAL RESULTS

This section presents a comparative analysis between the
proposed FedGLF and FedAvg, the most common baseline
used for the assessment of FL optimizations. We describe the
experimental setup, the evaluation metrics adopted, and the
collected results.

A. Benchmark, Datasets, and Training

The neural network used as benchmark is a five-layer CNN
suited for tiny IoT applications and borrowed from [6]. The
network consists of two convolutional (conv) layers with 64
5 × 5 filters, two fully connected (fc) layers with 394 and
192 neurons, respectively, and a final linear layer that returns
the prediction logits. The same CNN was trained for image
classification using two different datasets, CIFAR-10 and
CIFAR-100 [18]. We applied a standard split for the training
and testing set and data augmentation based on random crop
followed by random horizontal flip.

We considered different data distributions which reflect two
possible federating learning scenarios: (i) independent and
identically distributed (IID) and balanced, i.e., each client
trains the CNN using samples belonging to all the classes
(IID) and all the clients have the same number of samples
(balanced); (ii) non-IID and unbalanced, i.e., each client trains
the CNN using samples belonging to a subset of classes (non-
IID) and the clients have a different number of samples (un-
balanced). For non-IID distributions, the splits were generated
following a Dirichlet distribution with coefficient 0.3.

The training is distributed across 100 clients with a partic-
ipation rate of 10% at each round. The on-device training is
done using Stochastic Gradient Descent (SGD) with a number
of epochs of 5 and batch-size 50. The learning rate follows a
polynomial decay schedule with initial value 0.01. We selected
the same hyper-parameters in both FedAvg and FedGLF
experiments. The training is iterated until the communication
cost reaches an upper-bound 60.5GB, which is equivalent to
1000 communication rounds in FedAvg.

The solutions achievable with FedGLF were explored using
different values of K and F , enabling a trade-off analy-
sis in the accuracy vs. communication cost space. Specif-
ically, we opted for a grid-search approach with K ∈
{350, 400, 450, 500} and F ∈ {25, 50, 75}.

B. Evaluation metrics

We probed the evolution of the classification accuracy of the
global model on the test set and, like in [16], we computed
the moving average over a fixed window of 30 communication
rounds. The filtering suppresses the oscillations due to intrin-
sic instability of the training loop enabling a more reliable
assessment. Moreover, we measured the communication cost
needed by the clients for uploading and downloading the
model and we collected the number of communication rounds
in both FedAvg and the proposed FedGLF to achieve a pre-
defined level of accuracy within communication upper-bound
(60.5GB).

C. Results

IID setting. Tables II-III report the comparison between Fe-
dAvg and FedGLF on the CIFAR-10 and CIFAR-100 datasets
in the IID scenario. The tables summarize the achieved
performance for different accuracy thresholds (Ath) and the
communication cost (CC) in GB. Concerning FedGLF, we
reported the setting parameters K and F (column K/F ) under
which the training reaches the target accuracy with the lowest
communication cost. We also reported the number of rounds
for the two schemes (RAVG and RGLF).

The resulting trends are similar for both datasets and can
be summarized as follows. First, FedGLF outperforms FedAvg
achieving the same accuracy at a lower communication cost,
with savings ranging from 14.1% to 28.1% for CIFAR-10
and from 23.3% to 39.5% for CIFAR-100. These findings
validate the efficiency of the adopted layer freezing strategy.
The gradual layer freezing has no impact on accuracy if
compared to a full model training, but substantially reduces
the volume of exchanged data achieving higher efficiency.
Second, for higher target accuracies the communication cost
increases for both FedGLF and FedAvg, but FedGLF is by far
less data-hungry. To increase the accuracy by 0.5% on CIFAR-
10 (CIFAR-100), FedAvg calls for an average communication
cost increment of 26.6% (20.6%), while FedGLF calls for a
smaller increment of 19.4% (11.8%). This reflects the nature of
the two methods: in FedAvg, the only viable option to improve
accuracy is to increase the number of rounds, with a constant
cost of 62.24MB per round, whereas FedGLF offers a new
way to reach a better trade-off, namely, the speed of the layers
freezing that is controlled with the two hyper-parameters K
and F . The results collected on CIFAR-100 reinforce these
considerations. To notice that, even though FedGLF requires
more rounds than FedAVG (RGLF > RAVG) for most of the
accuracy levels under analysis, the communication cost gets
lower (CCGLF < CCAVG) due to the freezing mechanism. As
an example, with K/F = 450/25 (third row in Table III), we
observed that after 550 rounds the last layer of the network
was already trained, lowering the communication cost per
round to 0.15MB. As a side note, the increased number of
rounds does not necessarily imply longer training time or
worse performance. By reducing the arithmetic workload and
the size of the transmitted payloads, FedGLF progressively
shortens the training and communication time, hence the
overall round duration. Therefore, the shorter duration of the
rounds mitigates the larger number of rounds.
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TABLE II
COMMUNICATION COST IN GB (CC), NUMBER OF ROUNDS (R) OF

FEDAVG (AVG) AND FEDGLF (GLF) UNDER DIFFERENT ACCURACY
THRESHOLDS (ATH ) FOR CIFAR-10 IN IID SETTING.1

Ath CCAVG CCGLF K/F RAVG RGLF

≥ 80.0% 27.24 23.40 (-14.1%) 350/25 448 386
≥ 80.5% 33.26 27.30 (-17.9%) 350/50 547 469
≥ 81.0% 41.16 30.58 (-25.7%) 400/50 677 593
≥ 81.5% 55.14 39.64 (-28.1%) 500/75 907 753

TABLE III
COMMUNICATION COST IN GB (CC), NUMBER OF ROUNDS (R) OF

FEDAVG (AVG) AND FEDGLF (GLF) UNDER DIFFERENT ACCURACY
THRESHOLDS (ATH ) FOR CIFAR-100 IN IID SETTING.1

Ath CCAVG CCGLF K/F RAVG RGLF

≥ 40.0% 32.91 25.23 (-23.3%) 350/25 530 507
≥ 40.5% 39.74 26.17 (-34.1%) 350/25 640 1155
≥ 41.0% 47.19 32.54 (-31.0%) 450/25 760 1368
≥ 41.5% 57.68 34.92 (-39.5%) 450/50 929 968

Non-IID setting. FedGLF achieves larger savings in the
non-IID scenario: up to 59.0% for CIFAR-10 and 54.8% for
CIFAR-100 (Tables IV-V). Moreover, FedGLF reaches higher
accuracy levels than FedAvg; in some cases FedAvg cannot
reach the target accuracy within the communication budget
(60.5GB). As general trend, the training on non-IID data
calls for more rounds than the IID case, limiting FedAvg.
FedGLF ensures better performance instead, reaching higher
accuracy while consuming fewer data. These gains are achiev-
able controlling the layer freezing rate through K and F . On
CIFAR-10, FedGLF reaches 78.0% accuracy with 39.82GB,
while FedAvg reaches a mere 74.5% consuming more data,
45.35GB. Similar trends hold for CIFAR-100, where FedGLF
is up to 2.5% more accurate with comparable communication
cost (38.73GB vs. 34.77GB). Those results confirm the sub-
optimality of standard FL schemes that work over all the layers
during the entire learning process, promoting FedGLF as a
more efficient approach.

Limitations and future directions. One open issue for
FedGLF is how to estimate the values of K and F to minimize
the communication cost under a given accuracy constraint.
Nonetheless, the grid search adopted in this work reveals
some useful insight. First, lower values of K and F can be
used to prioritize solutions with fewer communication costs
and slightly lower accuracy, while higher values of K and F
enable higher accuracy, but a larger communication overhead.
Second, K represents a coarse-grain knob, whereas F allows
a finer control in the accuracy vs. communication cost space.
Future works will explore optimal layer freezing policies.

V. CONCLUSIONS

This letter presented FedGLF, a distributed training strategy
based on gradual layer freezing that reduces the communica-
tion cost of conventional FL. By tuning two simple algorithmic
control knobs, the FedGLF schedule offers multiple solutions
in the accuracy vs. cost space, which outperform FedAvg in
terms of attainable accuracy and communication costs.
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