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ABSTRACT Knowledge of the organizational and functional properties of hydro-
gen metabolism is pivotal to the construction of a framework supportive of a
hydrogen-fueled low-carbon economy. Hydrogen metabolism relies on the mecha-
nism of action of hydrogenases. In this study, we investigated the genomes of sev-
eral industrially relevant acetogens of the genus Clostridium (C. autoethanogenum,
C. ljungdahlii, C. carboxidivorans, C. drakei, C. scatologenes, C. coskatii, C. ragsdalei,
C. sp. AWRP) to systematically identify their intriguingly diversified hydrogenases’
repertoire. An entirely computational annotation pipeline unveiled common and
strain-specific traits in the functional content of [NiFe]- and [FeFe]-hydrogenases.
Hydrogenases were identified and categorized into functionally distinct classes by
the combination of sequence homology, with respect to a database of curated
nonredundant hydrogenases, with the analysis of sequence patterns characteristic
of the mode of action of [FeFe]- and [NiFe]-hydrogenases. The inspection of the
genes in the neighborhood of the catalytic subunits unveiled a wide agreement
between their genomic arrangement and the gene organization templates previ-
ously developed for the predicted hydrogenase classes. Subunits’ characterization
of the identified hydrogenases allowed us to glean some insights on the redox
cofactor-binding determinants in the diaphorase subunits of the electron-bifurcat-
ing [FeFe]-hydrogenases. Finally, the reliability of the inferred hydrogenases was
corroborated by the punctual analysis of the maturation proteins necessary for the
biosynthesis of [NiFe]- and [FeFe]-hydrogenases.

IMPORTANCE Mastering hydrogen metabolism can support a sustainable carbon-neu-
tral economy. Of the many microorganisms metabolizing hydrogen, acetogens of
the genus Clostridium are appealing, with some of them already in usage as indus-
trial workhorses. Having provided detailed information on the hydrogenase content
of an unprecedented number of clostridial acetogens at the gene level, our study
represents a valuable knowledge base to deepen our understanding of hydroge-
nases’ functional specificity and/or redundancy and to develop a large array of bio-
technological processes. We also believe our study could serve as a basis for future
strain-engineering approaches, acting at the hydrogenases’ level or at the level of
their maturation proteins. On the other side, the wealth of functional elements dis-
cussed in relation to the identified hydrogenases is worthy of further investigation
by biochemical and structural studies to ultimately lead to the usage of these
enzymes as valuable catalysts.
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Hydrogen (H2) metabolism is a widespread feature of microbial life, with many
microorganisms using molecular hydrogen as a low-potential electron donor or

generating it by reducing protons (1, 2). Exploiting the function of H2 metabolism is
pivotal in biological carbon sequestration, bioenergy, and bioremediation (3). H2

stands out as the enabler of the lowest-cost low-carbon energy system, affording emis-
sion-free transport, heating, and industrial processes as well as interseasonal energy
storage. In addition to being a fermentation end product, H2 provides the energy
source necessary for single carbon (C1) gas refinery programs transforming abundant
greenhouse gases such as carbon dioxide (CO2) into value-added chemicals by a wide
range of natural chemolithoautotrophic microorganims, including carboxydotrophic
bacteria and acetogens (4–6).

To interconvert protons and electrons with molecular hydrogen, bacteria resort to
two classes of metalloenzymes, [FeFe]-hydrogenase and [NiFe]-hydrogenase. This
study does not take into account [Fe]-hydrogenases since they are specific of methano-
genic archaea (1).

In this study, we carried out a thorough characterization of the hydrogenases’ rep-
ertoire of acetogens of the genus Clostridium, which, owing to the efficient carbon fixa-
tion pathway, have already found commercial deployment to reduce CO and/or CO2

using H2 as an energy source and produce biofuels and biocommodities (7, 8). In spite
of the prominent role of hydrogenases in acetogenic redox balance and energy metab-
olism as depicted in Fig. 1 (9), the activity of hydrogenases is often assayed globally
(10–12), whereas a systematic study of the content of hydrogenases and their function-
ally relevant features is currently missing. The hydrogenases’ repertoire has not yet
been addressed systematically in clostridial acetogens, with few exceptions, such as
the purification and characterization of the electron-bifurcating NADP- and ferredoxin-
dependent [FeFe]-hydrogenase in Clostridium autoethanogenum grown on CO (13).
Only some genetic outfits have so far been drafted on the basis of genomic annota-
tions, such as those for C. autoethanogenum (14), C. sp. AWRP (15), C. ljungdahlii (16,
17), C. carboxidivorans (18), or C. drakei (19), or on the basis of knowledge transfer by
presumed homology, such as for C. ragsdalei (10). To this aim, we relied on the avail-
ability of genome-scale amino acid sequence data of these microorganisms to develop
an entirely in silico approach to systematically infer and bioinformatically validate and
characterize their [NiFe]- and [FeFe]-hydrogenases’ composition. Finally, we sought to
identify, according to the current knowledge of sequence-based functional elements,
the maturation proteins deemed necessary for [NiFe]- and [FeFe]-hydrogenases’ bio-
synthesis. An in-depth analysis of the acetogenic sequences let us notice distinctive
traits among the inspected acetogens, with just C. scatologenes and C. drakei featuring
the complete gene sets encoding the maturation machinery of both the [NiFe]- and
[FeFe]-hydrogenases.

RESULTS
Identification and functional classification of hydrogenases across clostridial

acetogens. We developed the scheme depicted in Fig. 2 to enable the prediction of
hydrogenase enzymes and of their functional class by primary amino acid sequence
alone. To this aim, we relied on the hydrogenase classification scheme predictive of bio-
logical functionality available at HydDB (20), which descends from the definition provided
in references 1, 18, 21, and 22. Indeed, [FeFe]- and [NiFe]-hydrogenases are hierarchically
classified into different groups and subgroups that differ from each other by biochemical
features and functional role such as respiration, sensing, and fermentation. The HydDB
classification scheme is based primarily on the topology of phylogenetic trees built from
the amino acid sequence of hydrogenase catalytic subunits/domains, and it includes 29
subgroups (within 4 groups) of [NiFe]-hydrogenases and 6 subgroups (within 3 groups) of
[FeFe]-hydrogenases. Our survey of hydrogenase genes relied on an in silico homology
search, where the amino acid sequences of each strain were aligned to the controlled re-
pository of hydrogenase catalytic subunits stored in HydDB (20). We then sorted the statis-
tically significant hits of the query sequences and we leveraged their framing in the
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HydDB classification scheme to predict the functional class of the putative hydrogenases.
We subsequently carried out two checks to confirm if the amino acid sequences inferred
by alignment-based sequence analysis were likely to encode hydrogenase catalytic subu-
nits, as detailed in Materials and Methods. Supplemental file 1 reports the full list of the hy-
drogenase catalytic subunits identified by alignment-based sequence analysis along with
the outcomes of the aforementioned checks. Of 444 catalytic subunits identified across
the acetogens included in our study, 42 were deemed validated and were found to be dis-
tributed as shown in Fig. 3. The hydrogenases, which were ultimately discarded by effect
of the checks carried out in addition to the preliminary hydrogenase identification,
belonged to two main subgroups: group 4f [NiFe]- and group C2 [FeFe]-hydrogenases
(supplemental file 1). Group 4f [NiFe]-hydrogenases are deemed to act as putative for-
mate-coupled H2-evolving [NiFe]-hydrogenases according to the HydDB classification
scheme. The hypothetical nature of these hydrogenases was also highlighted in reference
23, which pointed out a couple of hypothetical group 4 [NiFe]-hydrogenases in C. carboxi-
divorans and C. scatologenes. Group C2 [FeFe]-hydrogenases may sense H2 and regulate
processes via methyl-accepting chemotaxis proteins, which are the most common recep-
tors in bacteria and archaea (24). The genes predicted to encode hydrogenase enzymes
upon completion of the validation procedure were found to be distributed into three
major groups, group 1 [NiFe]-hydrogenase and groups B and A [FeFe]-hydrogenases,
which separate into functionally distinct subgroups, as shown in Table 1. The soundness of

FIG 1 Schematic overview of energy-conserving mechanisms in acetogens of the genus Clostridium without providing exact stoichiometries. (A) With H2 as
the electron source, the reducing equivalents for the reductive steps in the Wood-Ljungdahl pathway are provided by an H2-oxidizing, electron-bifurcating
hydrogenase/formate dehydrogenase complex (HytA-E/FDH) which reduces Fd, NADP, and CO2. (B) With CO as the electron source, the reducing
equivalents for the reductive steps are provided by the CO dehydrogenase/acetyl coenzyme A synthase (CODH/ACS), which reduces Fd. The hydrogenase
protects the cells from overreduction when NADP and ferredoxin get too reduced during growth on CO. The electron-bifurcating and ferredoxin-dependent
transhydrogenase Nfn is transferring electrons between Fd, NADH, and NADPH. The methylene-THF reductase is assumed to be electron bifurcating. Excess
reduced ferredoxin (Fdred) is oxidized by the Rnf complex, which reduces NAD and builds up an H1 gradient. This gradient drives ATP synthesis via the H1-
dependent ATP synthase. Cofactors and energy equivalents are coded, respectively, in blue and green colors. Bold arrows denote byproducts’ exchange reactions.
Dashed arrowed lines denote reactions’ sets that were collapsed for ease of reading. Metabolites are displayed in the figure. THF stands for tetrahydrofolate.
Capital letters in red denote enzymes. FTHFL, formate:tetrahydrofolate ligase; MTHFC, methenyltetrahydrofolate cyclohydrolase; MTHFD, methylenetetrahydrofolate
dehydrogenase; MTHFR, electron bifurcating; NAD-dependent electron-bifurcating methylenetetrahydrofolate reductase, METR, methyltetrahydrofolate:corrinoid
methyltransferase; ACALDx/y, acetaldehyde:NAD(P) oxidoreductase; ALCDx/y, ethanol:NAD(P) oxidoreductase; PTA, phosphate acetyltransferase; ACK, acetate
kinase; AOR, acetaldehyde:ferredoxin oxidoreductase.
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the hydrogenase class predictions is supported by the fact that the classification reflects
the evolutionary relationships of [NiFe]- and [FeFe]-hydrogenases (see supplemental ma-
terial, Fig. S1), in agreement with the phylogenetic distance of the acetogenic strains
considered (25).

FIG 3 Distribution of predicted [NiFe]- and [FeFe]-hydrogenase catalytic subunits in the acetogens of the
genus Clostridium considered in this study. The bar plot displays the number of hydrogenases of each
subgroup in each acetogen of the genus Clostridium examined in this study. Hydrogenase subgroups are
color-coded.

FIG 2 Computational pipeline for the identification and validation of hydrogenase catalytic subunits. The computational
workflow consists of several steps. (A) Alignment. Protein sequences of each acetogen were aligned against the controlled
catalogue of [NiFe]- and [FeFe]-hydrogenases derived from HydDB. We sorted the hits in descending order of the
following prioritized indices: percentage of sequence identity, E value, and query length. (B) Hit selection. Sorted hits were
retained if the corresponding E value was #0.01 and if its percentage of sequence identity against the query met a class-
specific criterion. Given the predicted class of the hit of a certain query sequence, we computed the distribution of the
percentages of sequence identity between the hydrogenase sequences belonging to that class in HydDB. By way of
example, we depicted the distributions corresponding to different classes in different colors in the figure. We retained an
alignment hit if its percentage of identity against the query was higher than the minimum value of the aforementioned
distribution. (C) Hydrogenase class assignment. We assigned the predicted hydrogenase to the class (group or subgroup, if
necessary) shared by the majority of the four top hits. (D) Hydrogenase validation. We deemed a [FeFe]-hydrogenase
catalytic subunit as validated if the protein sequence contained an amino acid motif known to coordinate the Fe-S cluster
of the H-domain. For validating a [NiFe]-hydrogenase, we also explored the genes flanking each predicted [NiFe]-
hydrogenase large catalytic subunit to ascertain the presence of a gene encoding a [NiFe]-hydrogenase small subunit.
Abbreviations: H2ase, hydrogenase; Seq. Ident., sequence identity; E value, expected value; a. a.: amino acid.
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[NiFe]-hydrogenases in clostridial acetogens. Each microorganism was found to
encode a single H2-uptake [NiFe]-hydrogenase enzyme belonging to the subgroup 1a,
whose members primarily act as hydrogen oxidation catalysts, making hydrogen an
additional usable inorganic electron donor for potentially generating energy. The small
subunits of H2-uptake [NiFe]-hydrogenases usually possess a large signal peptide con-
taining a conserved R-R-x-F-x-K motif, which serves as signal recognition to target fully
folded mature uptake hydrogenases to the membrane thanks to the recognition by a
specific protein translocation pathway designated the membrane targeting and trans-
location (Mtt) (26) or twin arginine translocation (Tat) pathway (27, 28). No evidence
for twin arginine signal peptides was gathered in any of the predicted [NiFe]-hydrogenase
small subunits, as shown in the supplemental material.

We note that group 1a [NiFe]-hydrogenases are expected to be trimeric, but the anal-
ysis of the genes in the neighborhood of the large and small subunits detected a gene
predicted to be a cytochrome b5 only in C. carboxidivorans, C. drakei, and C. scatologenes.
However, when we inspected the acetogenic genomes for the genes responsible for the
cytochrome b5 biosynthesis, we could identify putative candidates only for a few of the
coproporphyrin-dependent (CPD) heme biosynthesis pathways by alignment-based
sequence similarity (Table S3). The InterPro classification of the small subunits of the
[NiFe]-hydrogenases in the remaining clostridial acetogens highlighted the presence of a
domain featured by the C-terminal portion of cytochrome c3 hydrogenases (IPR027394),
as shown in supplemental file 1. However, cytochromes have not yet been characterized
in any acetogen analyzed in this study (29). Furthermore, of the three pathways to
assemble cytochrome c (30), prokaryotes can employ the pathways known as system 1
(31) or system II (32–34). However, with very limited exceptions, neither the system I nor
the system II genes appeared to be carried in the acetogenic genomes according to our
sequence similarity search (supplemental material, Table S4).

[FeFe]-hydrogenases in clostridial acetogens. The genome of each microorganism
considered in this study contains a single gene encoding a group B [FeFe]-hydrogenase
enzyme. A representative hydrogenase of this subgroup, CpIII in C. pasteurianum, has
been recently biochemically and spectroscopically characterized in comparison to the
group A2 CpI and to the group A3 CpII [FeFe]-hydrogenases (35, 36). As a result of this
characterization, preferential stabilization of key catalytic intermediates through subtle
changes in the outer coordination sphere was found to result in stabilization and/or
destabilization of different oxidation states, and, in particular, CpIII was found to have a
catalytic bias toward H2 production (35, 36).

Each acetogenic genome was found to contain from one to three electron-bifurcating
group A3 [FeFe]-hydrogenases. Whereas most acetogens were predicted to harbor a sin-
gle group A3 [FeFe]-hydrogenase, two instances were identified in C. carboxidivorans
and three instances in C. scatologenes and C. drakei. As shown in Fig. 4, prokaryotes use
electron bifurcation to couple exergonic and endergonic chemical reactions from a two-
electron donor to two widely separated one-electron acceptors in a single enzymatic
complex (37).

Each acetogenic genome investigated in our study was predicted to encode from one
(C. carboxidivorans, C. drakei, and C. scatologenes) to two (C. ragsdalei, C. coskatii, C. sp. AWRP,
C. ljungdahlii, and C. autoethanogenum) group A4 [FeFe]-hydrogenases which are deemed
to couple formate oxidation to H2 evolution. One of the group A4 [FeFe]-hydrogenases that
we predicted in C. autoethanogenum is supported by previously published data. Indeed, in
2013, a NADP-specific electron-bifurcating [FeFe]-hydrogenase consisting of six subunits
HytABCDE1E2 was purified from C. autoethanogenum grown on CO and found to form a
complex with a formate dehydrogenase (9, 13).

We believe that the predicted formate dehydrogenase-linked [FeFe]-hydrogenases
could deserve future attempts to experimentally assess their physiological functions in
the metabolism of the acetogens considered.

Dissection of hydrogenase composition in individual clostridial acetogens. We
limit the discussion of the hydrogenases identified (Fig. 5) with the support of system-
atic cross-references to preacquired knowledge in the literature, whenever possible,
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only to C. autoethanogenum, for sake of brevity. Visual representation of hydrogenases’
composition in each acetogen is available in Fig. 5 to 8. Full dissection of hydrogenases
in each acetogen is available in the supplemental material.

The group B [FeFe]-hydrogenase encoded by CLAU_RS00525 corresponds to
CAETHG_0110 reported in reference 9.

The group 1a [NiFe]-hydrogenase was predicted to consist of the large (CLAU_RS04060)
and small (CLAU_RS04065) subunits. This enzyme has been previously mentioned in refer-
ence 9 as a dimeric [NiFe]-hydrogenase (CAETHG_0861-0862). According to the genetic or-
ganization of the blastp best hit (WP_010890826.1) of the catalytic subunit, which depicts
the most common organization within this hydrogenase subgroup, we expected this
enzyme to contain an accessory cytochrome subunit. Since variations often occur in the
genetic organization within subgroups (22), we counted CLAU_RS04060 to RS04065 in
the list of hydrogenases predicted for C. autoethanogenum even if we could not identify the
accessory subunit.

The gene cluster CLAU_RS13680 to RS13705 (corresponding to CAETHG_2794 to
2799) encodes the group 4 [FeFe]-hydrogenase known as the electron-bifurcating
NADP- and ferredoxin-dependent hydrogenase HytABCDE1E2. CLAU_RS13700 encodes
the catalytic subunit HytA, while CLAU_RS13685 encodes the iron-sulfur flavoprotein
HytB, which was predicted to harbor the site binding the redox cofactor. CLAU_RS13680,
CLAU_RS13690, CLAU_RS13695, and CLAU_RS13705 encode the Fe-S subunits HytC,
HytD, HytE1, and HytE2. An additional group A4 [FeFe]-hydrogenase was predicted to be
encoded by CLAU_RS18770-RS18765 with CLAU_RS18770 acting as the catalytic subunit.
According to the genetic organization of its best hit (WP_013238388.1) in the sequence
similarity analysis against the HydDB database, we foresaw this enzyme to encompass
two Fe-S cluster-containing subunits. However, owing to the uncharacterized state of
the protein, we could not gather evidence from any of the databases employed to

FIG 4 Bifurcating/confurcating hydrogenases. (A) Flavin-based electron-bifurcating hydrogenase oxidizes an electron
donor (H2) and delivers the electrons simultaneously to two different electron acceptors. The reduction of a high-
potential acceptor (NAD1) is exergonic and drives the endergonic reduction of a low-potential acceptor (ferredoxin).
(B) The flavin-based electron-confurcating hydrogenase simultaneously oxidizes NADH and ferredoxin to produce H2.
In this scenario, the electron pairs from the two electron donors, NADH and reduced ferredoxin, converge to reduce
protons to H2. Flavin is the cofactor family with bifurcating/confurcating property. (C) Conceptual illustration of ideal
electron bifurcation whereby the transfer of electrons of intermediate reduction potential to a bifurcating site (flavin)
is parsed out to acceptors with, respectively, more positive and more negative reduction potential but whose sum is
equivalent to the overall reduction potential of the donated electrons. (D) A two-electron acceptor of intermediate
reduction potential simultaneously accepts electrons from electron donors with, respectively, more negative and more
positive reduction potentials.
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annotate proteins that the gene flanking the aforementioned catalytic subunit,
CLAU_RS18775, encodes the second expected Fe-S protein.

According to our analysis, the genes CLAU_RS17440 to RS17450 encode a trimeric
group A3 [FeFe]-hydrogenase which is predicted to operate in electron bifurcation
mode. CLAU_RS17440 encodes the catalytic subunit, while CLAU_RS17445 encodes
the redox cofactor-binding subunit and CLAU_RS17450 encodes a thioredoxin. The
genes encoding this hydrogenase (CAETHG_3569 to 3571) were also identified in refer-
ence 9. This work reported an additional trimeric hydrogenase CAETHG_1576 to 1578
corresponding to CLAU_RS07605 to RS07615, which we did not include among the
predicted hydrogenases, although it was present in the initially identified proteins
according to sequence similarity analysis, since we could detect only two of the three
P1, P2, and P3 metal-binding motifs. However, we think that CAETHG_1576 to 1578
deserves further investigation, especially in light of the effects of its inactivation on
growth and product profiles reported for C. autoethanogenum grown on H2-rich gas
(38). Transcriptome analysis by transcriptome sequencing (RNA-seq) carried out in
C. autoethanogenum cultures grown on syngas showed that the genes encoding the
subunits of the hexameric group A4 [FeFe]-hydrogenase HytABCDE1E2 are by far the
most highly expressed. They are followed by CLAU_RS00525, encoding the monomeric
[FeFe]-hydrogenase, and by the genes CLAU_RS18765 to RS18775, which encode the
trimeric group A4 [FeFe]-hydrogenase (Table 2).

Hydrogenase maturation proteins. In order to corroborate the identification of the
hydrogenases in the clostridial acetogens investigated, we carried out a bioinformatic
survey of proteins responsible for the maturation of [FeFe]- and [NiFe]-hydrogenases.

[FeFe]-hydrogenase maturation proteins. Maturation of [FeFe]-hydrogenases
requires the biosynthesis and assembly of the peculiar H cluster consisting of a canoni-
cal [4Fe–4S]H cluster linked by a cysteine thiolate to a unique binuclear [2Fe]H cluster
(39, 40). Each Fe center in the [2Fe]H cluster features terminal CO and CN2 ligands, and
the two Fe centers are bridged with CO and azadithiolate ligands, of which the

FIG 5 Hydrogenase content in C. autoethanogenum and C. ljungdahlii. Shown is the genomic organization of the hydrogenase subunit-encoding genes. Subunits
are color-coded based on their functional role, assigned in agreement with the neighboring genes’ template typical of the hydrogenase class predicted by
HydDB.
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secondary amine is thought to relay H1 to/from a coordination site on the Fe that is
distal to the [4Fe–4S]H cluster (41–43). The assembly of active [FeFe]-hydrogenases fol-
lows a complex pathway, where the [4Fe–4S]H cluster is installed by the regular Fe–S
cluster assembly whereas the construction of the [2Fe]H cluster and its linkage to the
[4Fe–4S]H involves three proteins HydE, HydF, and HydG (39, 44). The engagement of
this set of proteins in [FeFe]-hydrogenases’ maturation was initially identified in C. rein-
hardtii (45) and further investigated by heterologous expression of C. reinhardtii HydA1
and C. saccharobutylicum HydA with various combinations of HydE, HydF, and HydG in
Escherichia coli (45, 46). These pioneering studies set the stage for the mechanistic
characterization of the individual role of HydE, HydF, and HydG in the assembly of the
[2Fe]H cluster. HydG is responsible, via a radical S-adenosylmethionine (SAM)-depend-
ent interaction with its tyrosine substrate (47, 48), for forming both the CO (49) and
CN2 (50) ligands of the [2Fe]H subcluster, in the form of an organometallic Fe(CO)2CN
synthon (39, 51) or as free diatomics (52–55). HydE is deemed the enzyme responsible
for the synthesis of the dithiolate [2Fe]–bridging ligand synthesis, although both its
substrate and its reaction mechanism are currently unresolved (54, 55). The GTPase
HydF is a scaffold or carrier for the [2Fe]H cluster, prior to its insertion into the hydro-
genase (39, 56).

Radical SAM maturation proteins HydE and HydG in clostridial acetogens. Both
HydE and HydG belong to the radical SAM superfamily of proteins (57). Their radical
SAM domains contain conserved motifs among which C-x(3)-C-x(2)-C (45) and C-x(2)-C-x
(4)-C (54) are characteristic. Mutations of conserved Cys residues in the SAM-binding
motifs of either C. acetobutylicum HydE or HydG resulted in defective maturation of the
C. acetobutylicum [FeFe]-hydrogenase HydA (58). Furthermore, we found additional
motifs typical of Fe-S cluster binding sites in the C-terminal ends of HydE and HydG (45,
57). The variable nature of the C-terminal motifs is notable since the amount of their
sequence and/or functional conservation differs between HydE and HydG and even
among HydG proteins (59). In HydE, the C-terminal Fe-S cluster is partially conserved and

FIG 6 Hydrogenase content in C. coskatii and C. sp. AWRP. Shown is the genomic organization of the hydrogenase subunit-encoding genes. Subunits are
color-coded based on their functional role, assigned in agreement with the neighboring genes’ template typical of the hydrogenase class predicted by
HydDB.
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can be coordinated by the conserved C-terminal C-x(7)-C-x(2)-C motif (57). However, in
HydE, the presence or absence of this motif, and therefore of the cluster coordinated,
does not affect the reaction mediated by this enzyme (54, 60). Instead, in HydG, the addi-
tional C-terminal Fe-S cluster, coordinated by the most known C-x(2)-C-x(22)-C motif (45,
52, 58, 61), was shown by mutational analysis to be essential for [FeFe]-hydrogenase
maturation (58). However, the amino acid sequences responsible of coordinating this Fe-
S cluster can be subject to variability (59).

When we inspected the acetogenic genomes for the radical SAM proteins HydE and
HydG, by using the current knowledge from the literature, we were able to identify
both of them in only three of eight Clostridium species, C. autoethanogenum, C. drakei,
and C. scatologenes, as shown in Table 3. Table S7 reports the detailed reconstruction
of motifs in the amino acid sequences. According to a previous [FeFe]-maturation pro-
tein annotation in C. autoethanogenum (9), CAETHG_0339 (CLAU_RS01585) encodes
the HydG protein. Its amino acid sequence contains the radical SAM enzyme signature
C-x(3)-C-x(2)-C but is missing the conserved Fe-S cluster binding motif on its C-terminal
end. Here, instead, CLAU_RS03260 is deemed to plausibly encode the HydG protein in
C. autoethanogenum since it harbors both signatures of a typical HydG protein, with
the C-x(5)-C-x(19)-C motif supposed to coordinate the C-terminal Fe-S cluster. In the
genome of the other five Clostridium species studied, we were not able to detect puta-
tive genes coding the HydG maturation protein.

HydF maturation protein in clostridial acetogens. HydF is a cation-activated
GTPase, (58, 62), and its N-terminal end harbors amino acid sequence motifs, which are
typical of this protein family and allow the interaction with GTP (63). The conserved G-
x(4)-G-K-[S/T] P-loop is responsible for the binding of a- and b- phosphate groups of
the nucleotide. The h(4)-D-x(2)-G motif (h, hydrophobic) is responsible for the interac-
tion with g- phosphate and Mg21. The [N/T]-K-x-D interacts with the nucleotide. HydF
is also an Fe-S protein whose C-terminal end presents the conserved C-x-H-x(46-53)-C-x
(2)-C motif, which coordinates a [4Fe-4S] cluster essential for the hydrogenase maturation

FIG 7 Hydrogenase content in C. ragsdalei and C. carboxidivorans. Shown is the genomic organization of the hydrogenase subunit-encoding genes. Subunits
are color-coded based on the functional role, assigned in agreement with the neighboring genes’ template typical of the hydrogenase class predicted by
HydDB.

Hydrogenase Composition in Clostridial Acetogens Microbiology Spectrum

Month YYYY Volume XX Issue XX 10.1128/spectrum.01019-22 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

23
 J

un
e 

20
22

 b
y 

31
.1

57
.1

9.
54

.

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.01019-22


(58). Table 3 reports the genes encoding HydF proteins, and Table S9 reports the detailed
reconstruction of the motifs featured by the amino acid sequences.

[NiFe]-hydrogenase maturation proteins. The maturation process of [NiFe]-hydro-
genases is possible thanks to the primary action of six enzymes, known as HypABCDEF
(64, 65). A vast number of biochemical studies and the resolution of the crystallographic
structures of maturation proteins, individually or in different complexes, showed that the
maturation process is an intricate and dynamic pathway dependent on the formation of
transient complexes of the Hyp proteins with each other (66, 67). The maturation pro-
teins of [NiFe]-hydrogenases can be functionally separated into two groups according to
the role they play. First, HypC, HypD, HypE, and HypF are responsible for synthesizing
the Fe(CN)2CO moiety and inserting it into the precursor of the large subunit (68, 69).
Subsequently, HypA and HypB are responsible for inserting the Ni ion in order to com-
plete the bimetallic active site of the large subunit (65, 70). After the action of an endo-
peptidase that removes the C terminus of the immature large subunit (71), the latter can
associate with the small subunit to build the catalytic unit of the [NiFe]-hydrogenase.
The supplemental material provides a detailed dissection of individual maturation
proteins.

Maturation proteins of [NiFe]-hydrogenases in clostridial acetogens. Based on
literature data known to date, we were able to detect all six [NiFe]-hydrogenase matu-
ration proteins in only three of eight Clostridium species, namely, C. drakei, C. scatolo-
genes, and C. carboxidivorans, as recapitulated in Table 4. Our survey revealed that the
HypB protein in these three species is a GTPase protein. It is interesting to note that we
identified two putative homologs for each of the proteins HypC, HypD, and HypE in
the genome of C. carboxidivorans, which deserves further investigation.

Our inspection of the C. autoethanogenum, C. ljungdahlii, C. coskatii, C. sp. AWRP,
and C. ragsdalei genomes, using the conserved features reported in literature, did not
allow us to reconstruct the complete maturation machinery of [NiFe]-hydrogenases
since we detected the genes putatively encoding HypC, HypD, HypE, and HypF but not
HypA and HypB.

FIG 8 Hydrogenase content in C. scatologenes and C. drakei. Shown is the genomic organization of the hydrogenase subunit-encoding genes. Subunits are
color-coded based on the functional role, assigned in agreement with the neighboring genes’ template typical of the hydrogenase class predicted by
HydDB.
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Diaphorase subunits in electron-bifurcating [FeFe]-hydrogenases. Of the hydro-
genases identified, the hexameric [FeFe]-hydrogenases of group A4 (9, 13) and the trimeric
[FeFe]-hydrogenases of group A3 (72–74) can operate reversibly with a flavin-based elec-
tron-bifurcating mechanism using ferredoxin and NAD/NADP as electrons donor/acceptors.
Indeed, when we analyzed the neighboring gene organization of such hydrogenases, we
could identify a putative diaphorase subunit (as shown in Fig. 5 to 8). In the following sec-
tion, we sought to gain some insights on the sequence/structural features involved in the
cofactor binding.

Rossmann’s introduction of the so-called Rossmann’s fold (75, 76) was pioneering in
the elucidation of the mode of interaction of enzymes with nucleotide-based cofactors.
Albeit subject to a wide variability, the initial bab fold of this structural motif is the
most conserved segment among the different enzyme classes and the conserved gly-
cine-rich (Gly-rich) loop between the first strand and the following helix (77).

As reported in several studies (18, 21, 78, 79), hydrogenase subunits and domains
share sequence and structure similarities with other redox enzymes, such as complex I,
also known as NADH:ubiquinone oxidoreductase (NUO), involved in the respiratory
chains (78, 80–82). The noticed structural similarity suggests that the elucidation of the
cofactor binding mode in hydrogenases could benefit from the transfer of knowledge
acquired on the NAD binding mode of NuoF in complex I. The structural annotation of
the putative diaphorase subunits in the identified hydrogenases showed domain simi-
larity to the superfamily cluster NuoF (accession: COG1894; superfamily: cl34375)
according to the Conserved Domain Database (CDD) (supplemental file 1). Thus, we
investigated the sequence and structural features shared between our putative diaph-
orase subunits in group A4 and group A3 [FeFe]-hydrogenases and NuoF of complex I
from Thermus thermophilus.

The structure of the entire complex I from T. thermophilus has been solved (83), and
details about the interactions with flavin mononucleotide (FMN) and NADH in its NuoF
subunit have been reported (84–86). Even though NuoF from T. thermophilus presents
a Rossmann’s fold domain (residues 73 to 240), the loop between the first strand and
the following helix does not contain Gly residues, which at first suggested a different

TABLE 3 Overview of predicted [FeFe]-hydrogenase maturation proteins (HydE, HydG, HydF)
in each acetogen of the genus Clostridium

Microorganism

Gene encoding protein:

HydE HydG HydF
C. autoethanogenum CLAU_RS08145 CLAU_RS03260 CLAU_RS10040
C. carboxidivorans Ccar_RS19085 Ccar_RS05080
C. ljungdahlii CLJU_RS18880 CLJU_RS20880
C. sp. AWRP DMR38_RS19105 DMR38_RS21245
C. coskatii CLCOS_RS19995 CLCOS_RS18855
C. ragsdalei CLRAG_RS10265 CLRAG_RS02690
C. drakei B9W14_RS22750 B9W14_RS10345 B9W14_RS10005
C. scatologenes Csca_RS21720 Csca_RS08575 Csca_RS08935

TABLE 4 Overview of predicted [NiFe]-hydrogenases maturation proteins (HypABCDEF) in each acetogen of the genus Clostridium

Microorganism HypA HypB HypC HypD HypE HypF
C. autoethanogenum CLAU_RS01740 CLAU_RS01735 CLAU_RS01730 CLAU_RS01745
C. carboxidivorans Ccar_RS06395 Ccar_RS06400 (GTP) Ccar_RS06375,

Ccar_RS09605
Ccar_RS06370,
Ccar_RS09600

Ccar_RS06365,
Ccar_RS09595

Ccar_RS09610

C. ljungdahlii CLJU_RS11355 CLJU_RS11350 CLJU_RS11345 CLJU_RS11360
C. sp. AWRP DMR38_RS11930 DMR38_RS11925 DMR38_RS11920 DMR38_RS11935
C. coskatii CLCOS_RS19295 CLCOS_RS19300 CLCOS_RS19305 CLCOS_RS19290
C. ragsdalei CLRAG_RS00845 CLRAG_RS00850 CLRAG_RS00855 CLRAG_RS00840
C. drakei B9W14_RS11020 B9W14_RS11025 (GTP) B9W14_RS14125 B9W14_RS14120 B9W14_RS14115 B9W14_RS14130
C. scatologenes Csca_RS07895 Csca_RS07890 (GTP) Csca_RS04330 Csca_RS04335 Csca_RS04340 Csca_RS04325
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mechanism of interaction with the cofactor of interest. In fact, the N-terminal domain
(7 to 72) ends with a Gly-rich (R-G-G-A-G-F-P in T. thermophilus) loop (65 to 71), highly
conserved in NuoF subunits (87, 88), which plays a key role in the interaction with NADH.
It follows that in NuoF, an atypical Rossmann’s fold domain, interacting with FMN, has
evolved to accommodate both FMN and NADH in the binding pocket, with the coopera-
tion of an additional Gly-rich loop at the N terminus (86, 89).

In the diaphorase subunits of the hydrogenases identified in our study, we con-
firmed the presence of the Gly-rich loop region at the end of the N-terminal domain of
NuoF, with the conserved R-G-G-A-G-F-P motif in all group A4 [FeFe]-hydrogenases
and the conserved R-G-G-G-G-F-P motif in all group A3 [FeFe]-hydrogenases (Fig. 9 and
10). Furthermore, for each examined subunit, the secondary structure prediction
obtained by I-TASSER confirmed the presence of a secondary structure context typical
of the Rossmann’s fold domain downstream of the aforementioned Gly-rich loop
(Fig. 9 and 10). However, different from NuoF, the loop connecting the first strand with
the following helix in the Rossmann’s fold domain is Gly rich. In particular, we could
notice the occurrence of the G-D-E-G-D-P-G motif in all group A4 [FeFe]-hydrogenases.
Thus, the analysis of the hydrogenases’ diaphorase subunits allowed us to identify the
presence of structural elements and arrangement thereof, which are characteristic of
the NuoF cofactor-binding pocket (Fig. S3). Moreover, the in silico reconstruction with
I-TASSER highlighted the existence of a region resembling the cofactor-binding pocket
in NuoF (Fig. 11). However, the diaphorase subunits showed some distinctive features
of their amino acid sequence in correspondence to the putative structural elements
involved in the cofactor binding compared to those of NuoF.

The loop connecting the first strand with the following helix in the Rossman’s fold
domain of group A3 [FeFe]-hydrogenases is Gly rich, but, different from group A4
FeFe-hydrogenases, the conserved motif A-D-E-G-D-P-G features, except for a couple
of cases, the replacement of the glycine in the first position with an alanine (Fig. S4).
The exceptions are represented by the group A3 [FeFe]-hydrogenases of C. drakei
(B9W14_RS20215 to B9W14_RS20225) and C. scatologenes (Csca_RS24050 to Csca_
RS24060), where the first loop of the Rossmann’s fold domain shares the same con-
served G-D-E-G-D-P-G motif of the group A4 [FeFe]-hydrogenases. It is possible to
hypothesize that the sequence motif corresponding to this loop could contribute to
determining the cofactor binding specificity.

Since structural and spectroscopic determination is not available for the hydroge-
nases of the considered strains, we suggest that, to recognize the determinants of re-
dox cofactor specificity, it may be useful to conduct targeted mutagenesis studies at

FIG 9 Portion of the multiple sequence alignment of NuoF from T. thermophilus with the diaphorase subunits of the hexameric [FeFe]-hydrogenases of group
A4. The figure focuses on the NuoF region in between the N-terminal domain and the Rossmann’s fold domain. NuoF region involved in cofactor binding.
Structural elements obtained by I-TASSER are color-coded. Red boxes: amino acids of the two conserved loops involved in the interaction with FMN and NAD/
NADP; blue: a helices; yellow: b sheets.
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the locations of the hydrogenase diaphorase subunit that map to the NuoF-like cofac-
tor-binding pocket and show pronounced variability with respect to NuoF.

DISCUSSION

In this study, we carried out a thorough characterization of the hydrogenases’ reper-
toire in acetogens of the genus Clostridium, which, owing to the efficient carbon fixation
pathway, are particularly appealing, with some of them already deployed in commercial-
ized gas fermentation technology (4). To this aim, we relied on the availability of ge-
nome-scale amino acid sequence data to develop an entirely in silico approach which
led us to the identification of candidate [NiFe]- and [FeFe]-hydrogenases and to their val-
idation by the assessment of the existence of sequence-based patterns known to bind
to the relevant metal clusters.

Each microorganism was found to encode a single H2-uptake [NiFe]-hydrogenase
enzyme belonging to group 1a, whose members primarily act as hydrogen oxidation
catalysts, making hydrogen an additional usable inorganic electron donor for poten-
tially generating energy (Fig. 3). Since H2-uptake [NiFe]-hydrogenases are expectedly
periplasmic, we searched the sequence motif usually recognized by the Tat pathway in
the small subunits of these hydrogenases, but we found no supportive evidence. It is
possible that the [NiFe]-hydrogenase small subunits could carry unusual signal pep-
tides since naturally occurring Tat signal peptide variants have been previously
reported mainly for E. coli (90–93). Alternatively, we cannot rule out the possibility that
these hydrogenases resort to the general Sec protein transport (94, 95) or that their
subcellular localization is cytoplasmic.

The [FeFe]-hydrogenase content of the acetogens investigated is composed of one
group B [FeFe]-hydrogenase enzyme, of one to two group A4 [FeFe]-hydrogenases,
and of one to three group A3 [FeFe]-hydrogenases (Fig. 3).

It was initially hypothesized that group B [FeFe]-hydrogenases could be involved in cou-
pling reduced ferredoxin (Fdred) oxidation to fermentative H2 evolution (22) on the basis of

FIG 10 Portion of the multiple sequence alignment of NuoF from T. thermophilus with the diaphorase subunits of the trimeric [FeFe]-hydrogenases of
group A3. The figure focuses on the NuoF region in between the N-terminal domain and the Rossmann’s fold domain. NuoF region involved in cofactor
binding. Structural elements obtained by I-TASSER are color-coded. Red boxes: amino acids of the two conserved loops involved in the interaction with
FMN and NAD/NADP; blue: a helices; yellow: b sheets.
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domain conservation and phylogenetic similarity with group A1 [FeFe]-hydrogenases. More
recently, a biochemical and spectroscopic characterization of the [FeFe]-hydrogenase CpIII
from C. pasteurianum, which belongs to group B2 as reported in reference 36, unveiled a
distinctive H cluster population of catalytic intermediates compared to that of CpI (group
A2) and CpII (group A3) [FeFe]-hydrogenases. More precisely, the study showed that CpIII
features an extreme catalytic preference for H2 production that was related to local differen-
ces in the H cluster environment (35).

Each acetogenic genome was found to contain one to three electron-bifurcating
group A3 [FeFe]-hydrogenases.

Shortly after the discovery of flavin-based electron bifurcation (FBEB) (96, 97), a
number of hydrogenases were shown to employ this mode of action to couple exer-
gonic and endergonic oxidation–reduction reactions (98, 99) in order to fulfill various
roles. The primary example of [FeFe]-hydrogenase that uses FBEB was isolated in
Thermotoga maritima, where it utilizes the exergonic oxidation of ferredoxin to drive
the unfavorable oxidation of NADH to produce H2 (72). The convergence of electrons

FIG 11 Structure of NuoF compared to structures of representative group A4 and group A3 [FeFe]-
hydrogenases computed by I-TASSER. (A) Structure of NuoF from T. thermophilus (PDB ID: 6ZIY). (B) I-
TASSER 3D model predicted for the diaphorase subunit (CLAU_RS13685) of the hexameric
hydrogenases encoded by CLAU_RS13680 to RS13705 in C. autoethanogenum. (C) I-TASSER 3D model
predicted for the diaphorase subunit (CLAU_RS17445) of the trimeric hydrogenase encoded by
CLAU_RS17440 to RS17450 in C. autoethanogenum. Red: conserved loops involved in the interaction
with FMN and NAD/NADP; blue: a helices; yellow: b sheets.
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from different sources of electron donor (NADH and Fdred) to a single-electron acceptor
(protons) is named electron confurcation (Fig. 4). Subsequently, the electron-bifurcat-
ing NAD- and ferredoxin-dependent [FeFe]-hydrogenases HydABCD and HydABC of
the acetogens Acetobacterium woodii (100) and Moorella thermoacetica (73), respec-
tively, and the NADP- and ferredoxin-dependent HydABC of Thermoanaerobacter kivui
(74) were found able to operate in the electron confurcation mode to produce H2 from
organic substrates. The redox balancing achieved by electron confurcation increases
the energy level in anaerobic microorganisms fermenting sugars since it allows acetyl
coenzyme A (acetyl-CoA) to be converted to acetyl phosphate and then to acetate,
yielding additional ATP by substrate-level phosphorylation (101).

FBEB in hydrogenases functioning in hydrogen-uptake mode allows the generation
of reduced low-potential ferredoxin from comparably high-potential electron donors
such as NADH or H2. Reduced ferredoxin serves two purposes. It acts as the electron do-
nor for reducing CO2 to CO in the Wood-Ljungdahl pathway (102) and for anaerobic ion-
motive respiratory chains leading to the synthesis of ATP (103–105). In this case, electron
transfer from reduced ferredoxin to the electron acceptor leads to transport of ions
across the cytoplasmic membrane and to the formation of a transmembrane electro-
chemical ion potential that drives the synthesis of ATP by an F1FO ATP synthase (106).

It is worth noting that the aforementioned electron-bifurcating [FeFe]-hydroge-
nases serve the aim of both H2 uptake and H2 evolution, depending on the energetic
needs of the acetogens when they grow in autotrophic or heterotrophic conditions.
Elucidating the functions of the bifurcating group A3 [FeFe]-hydrogenases predicted in
the acetogens considered in the present study is a daunting task that requires experi-
mental assays of their biochemical and physiological properties.

Historically, group A4 [FeFe]-hydrogenases came in the spotlight thanks to the char-
acterization of HytABCDE1E2 from C. autoethanogenum in complex with a formate dehy-
drogenase (9, 13), but the predicted formate dehydrogenase-linked [FeFe]-hydrogenases
deserve experimental assessment in the remaining acetogens considered. According to
the studies carried out in C. autoethanogenum, the complex catalyzes both the reversible
coupled reduction of ferredoxin and NADP with H2 or formate and the reversible forma-
tion of H2 and CO2 from formate. When CO is the electron donor, the reduction of 1 mol
of CO2 to formate is catalyzed by the redox-consuming formate dehydrogenase activity,
which depends on 0.5 mol of NADPH and 0.5 mol of reduced ferredoxin (12). The func-
tion of the hydrogenase in the complex is puzzling and has been related to the protec-
tion of cells from overreduction of NADP and ferredoxin during growth on CO (13).
During growth of C. autoethanogenum on H2 and CO2, HytABCDE1E2 appears to be active
and provide the cells with electrons for reduction of ferredoxin and NADP as well as, in
complex with formate dehydrogenase, for the reduction of CO2 to formate (9). Likewise,
gene expression data and metabolic flux balance analysis of C. autoethanogenum (9, 12),
C. ljungdahlii (107), and C. drakei (19) grown on gas mixtures containing H2 showed that
the reduction of CO2 to formate directly makes use of H2 thanks to the formate-H2 lyase
activity of the hydrogenase/formate dehydrogenase enzyme complex.

In a previous study, hydrogenase inactivation using the ClosTron technology in C.
autoethanogenum showed that the two group 4 [FeFe]-hydrogenases could not be dis-
rupted and were concluded to be essential whereas the group B [FeFe]- and the group
A3 [FeFe]-hydrogenases could be disrupted without a negative effect on growth in
syngas (9). Noteworthily, when the group A4 [FeFe]-hydrogenases (CLAU_RS13680 to
RS13705 and CLAU_RS18765 to RS18775) and the group B [FeFe]-hydrogenase
(CLAU_RS00525) were targeted again in C. autoethanogenum LZ1561 (38) grown in
CO-rich gas (44% CO, 32% N2, 22% CO2, and 2% H2 or 50% CO, 21% N2, 25% CO2, and
4% H2), they were found to be redundant. Indeed, the hydrogenase mutants appeared
to grow, even though the mutant growth rates were different, the highest negative
impact being recorded for mutants bearing inactivated group 4 [FeFe]-hydrogenase
HytABCDE1E2 and the group B [FeFe]-hydrogenase. Interestingly, the scenario was dif-
ferent when the hydrogenase mutants grew on H2-rich gas (65% H2, 9.2% N2, and 23%
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CO2). In this case, the mutant bearing inactivated Hyt was found to grow better than C.
autoethanogenum LZ1561, indicating that other hydrogenases intervene to sustain
growth, whereas the mutant bearing the group B [FeFe]-hydrogenase was found to
grow poorly, which is potentially indicative of essentiality for survival in H2-rich gas. In
the light of the observed redundancy among hydrogenases which can bring about differ-
ent gas uptake and carbon fixation profiles (38), it is of utmost relevance to characterize
the H2 uptake/evolving rates and cofactor dependency of the individual hydrogenases
encoded by the genomes of the acetogens of the genus Clostridium.

Maturation proteins of the identified [FeFe]- and [NiFe]-hydrogenases. The bio-
informatic identification of most of the maturation proteins for [NiFe]- and [FeFe]-hydroge-
nases corroborated the reliability of the inferred hydrogenases. Our bioinformatic analysis
was articulated differently for [FeFe]- and [NiFe]-hydrogenases since their maturation relies
on different sets of proteins.

The maturation of [FeFe]-hydrogenases involves the proteins HydE, HydF, and HydG.
Whereas we detected putative HydE- and HydF-coding genes in each acetogen, we could
detect putative HydG-coding genes only in C. autoethanogenum, C. drakei, and C. scatolo-
genes (Table 3). We are not able to give a straightforward explanation for the missed iden-
tification of hydG, but we can hypothesize several scenarios.

First, we cannot exclude that the instances of the functional motifs at the C- and N-
terminal ends of the HydG protein sequences do not thoroughly reflect in the motifs
reported in the literature. The plausibility of this hypothesis is questionable in light of
the fact that the acetogens under consideration are phylogenetically close to each
other and the fact that we found that a few of these acetogens putatively encode an
HydG protein (15, 108). Nonetheless, an analysis of the radical SAM protein sequences
present in our genomes allowed us to identify, in all the acetogens except for C. autoe-
thanogenum, a putative HydG-coding gene, which does not entirely fulfill the motifs
typical of HydG according to the literature (Table S8). Several clues support this hy-
pothesis. The putatively identified proteins have a similar amino acid length of known
HydGs (~450 amino acids [aa]). Along with the presence of the canonical C-x(3)-C-x(2)-
C motif of the radical SAM proteins, sequence analysis unveiled two conserved Cys-
containing patterns in the C-terminal end. One of these Cys-containing patterns may
coordinate an Fe-S cluster, which is known to be essential for the catalytic HydG activ-
ity, since the instances C-x(4)-C-x(23-25)-C, found in C. carboxidivorans, and C-x(4)-C-x
(23-24)-C, found in the remaining acetogens, resemble the known motif C-x(2)-C-x(22)-
C (see Fig. S2 in the supplemental material). It is worth noting that also C. drakei and C.
scatologenes harbor a gene encoding a radical SAM protein and containing the same
atypical Cys-based motif, C-x(4)-C-x(23-25)-C, as C. carboxidivorans. This observation
might thus suggest that these two microorganisms also harbor a homologue gene of
HydG. Further experimental studies are required in order to confirm or discard this
hypothesis.

A second way to interpret the missed identification of hydG on the basis of known
characteristic motifs originates from the in vitro demonstration that the activation of a
[FeFe]-hydrogenase can occur coexpressing only HydE and HydF (HydFE), without
HydG, which should be the normal source of CO and CN2 ligands (49). Whereas HydFE

was capable of activating HydADEFG (hydA expressed in a genetic background devoid of
the active site H cluster biosynthetic genes hydE, hydF, and hydG), albeit to a limited
extent (only ~1% of that obtained by using all three the maturation proteins), HydFG

did not provide any detectable activation of HydA. Notably, activation assays with
HydFE showed that trace diatomics from the cellular environment could be incorpo-
rated into a [2Fe]-like precursor on HydF in the absence of HydG. Furthermore, supple-
mentation of exogenous free CO or CN2 to HydFE doubled the activation of HydADEFG.
It is interesting to note that exogenous CO and CN2 were found to increase the ability
of HydFEG to activate HydADEFG (53), indicating that also HydFEG harbors some partially
assembled [2Fe] cluster precursors that, upon delivery of the dithiomethylamine ligand
by HydF, can be activated by free diatomics from the cellular environment (53).
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Following this course of reasoning, in the light of the toxicity of these compounds, we
wonder if acetogens might have developed fine mechanisms, not yet identified to our
knowledge, for the incorporation of ligands. This hypothesis may be also supported by
the fact that HydG from Clostridium acetobutylicum has been demonstrated to produce
CO and CN2 in free form (49, 50, 52), which is indicative of the fact that the formation
of the organometallic Fe(CO)2CN synthon is not essential for the incorporation of CO
and CN2 in the [2Fe]H cluster.

The maturation of [NiFe]-hydrogenases involves the proteins putatively encoding
HypC, HypD, HypE, and HypF, for which we identified putative coding genes in all the
acetogens considered, and HypA and HypB, for which we were able to identify puta-
tive coding genes only in C. carboxidivorans, C. drakei, and C. scatologenes (Table 4). It
is known that, compared to the well-conserved biosynthesis, assembly, and insertion
of the Fe(CN)2CO group by HypCDEF, the Ni-insertion process, conventionally medi-
ated by HypA and HypB, is characterized by higher structural and functional diversity
across different microorganisms (64, 66). This observation could suggest that the
missed identification of putative HypA- and HypB-encoding genes in the aforemen-
tioned microorganisms, on the basis of currently known functional motifs, could be
due to the usage of Ni traffic mechanisms which have not been reported yet in the lit-
erature for Ni insertion in [NiFe]-hydrogenases.

Diaphorase subunits in the identified electron-bifurcating [FeFe]-hydroge-
nases. Of the hydrogenases identified, the hexameric [FeFe]-hydrogenases of group
A4 (9, 13) and the trimeric [FeFe]-hydrogenases of group A3 (72–74) can operate rever-
sibly with a flavin-based electron-bifurcating mechanism using ferredoxin and NAD/
NADP as electron donor/acceptors. Therefore, we inspected the sequence/structural
features involved in the cofactor binding carried out by the diaphorase subunit identi-
fied in these hydrogenases (Fig. 5 to 8). To this aim, we relied on the previous observa-
tion that hydrogenase subunits and domains share sequence and structure similarities
with other redox enzymes, such as complex I (78, 80–82). The structural similarity
between the HydB subunit of the T. maritima electron-bifurcating [FeFe]-hydrogenase
HydABC and the NuoF subunit of complex I (Birrell J, Furlan C, Chongdar N, Gupta P,
Lubitz W, Ogata H, andBlaza J, unpublished data) was recently highlighted. Indeed, it
has been hypothesized that the evolution of complex I could originate from the unifi-
cation of prebuilt modules of hydrogenases and transporters (109, 110).

As a reference for the analysis of the hydrogenase subunits, we adopted complex I
from T. thermophilus since the interaction between its NuoF subunit with flavin mono-
nucleotide (FMN) and NADH has been investigated in several reports (84–86). It is
worth noting that, in addition to the identification of structural elements characteristic
of the NuoF cofactor-binding pocket, the diaphorase subunits of the hydrogenases
showed some distinctive features of their amino acid sequence in correspondence to
the putative structural elements involved in the cofactor binding. Dissimilar elements
could be interpreted as pointing to the reliance on the binding to a cofactor different
from NuoF. Indeed, the characterization of the electron-bifurcating [FeFe]-hydrogenase
in C. autoethanogenum unveiled its NADP specificity (13). The loop connecting the first
strand with the following helix in the Rossmann’s fold in the diaphorase subunit of
hydrogenases showed distinctive amino acid content compared to that of NuoF.
Indeed, different from NuoF, the aforementioned loop in the group A4 [FeFe]-hydroge-
nases is glycine rich (G-D-E-G-D-P-G). Group A3 [FeFe]-hydrogenases feature a slightly
different variation of the Gly-rich loop, where the first glycine is replaced by an alanine
(A-D-E-G-D-P-G). We note just a couple of exceptions to the conservation of this in the
group A3 [FeFe]-hydrogenases. Indeed, the first loop of the Rossmann’s fold domain of
the group A3 [FeFe]-hydrogenases of C. drakei (B9W14_RS20215 to B9W14_RS20225)
and C. scatologenes (Csca_RS24050 to Csca_RS24060) shares the same conserved G-D-
E-G-D-P-G motif of the group A4 [FeFe]-hydrogenases. It is possible to hypothesize
that the sequence motif corresponding to this loop could contribute to determining
the cofactor binding specificity. Indeed, the A-D-E-G-D-P-G motif occurs in the loop of
the electron-bifurcating hydrogenase in Moorella thermoacetica and in Desulfovibrio
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fructosovorans, which references 73 and 111 experimentally proved rely on NAD rather
than NADP. On the other side, the G-D-E-G-D-P-G motif occurs in the loop of the
Thermoanaerobacter kivui electron-bifurcating hydrogenase HydABC, which reference
74 showed depends on NADP but not NAD. Finally, the genes encoding the trimeric
hydrogenases (B9W14_RS20215 to B9W14_RS20225, Csca_RS24050 to Csca_RS24060),
which share the same motif in the loop of the Rossmann’s fold domain with the group
A4 [FeFe]-hydrogenases, are also genomically close to the genes coding the hexameric
group A4 [FeFe]-hydrogenases, separated only by a formate dehydrogenase-coding
gene. The exploration of potential interaction among such enzymes is worthy of con-
sideration in light of the previously observed interaction of the hexameric group A4
[FeFe]-hydrogenases with the formate dehydrogenase (13).

In conclusion, our study provided detailed information on the hydrogenase compo-
sition of an unprecedented number of clostridial acetogens at the gene level. We iden-
tified hydrogenases from select acetogen genomes via a computational workflow,
which involved comparison to a database of known hydrogenase sequences, with vali-
dation provided by reference to known catalytic sequence motifs and further analysis
of neighboring genes. Albeit similar in terms of [NiFe]-hydrogenases, the acetogens
considered showed increased variability in their [FeFe]-hydrogenases repertoire, with
special reference to electron-bifurcating [FeFe]-hydrogenases. For the hydrogenases of
the electron-bifurcating type, comparison to the diaphorase subunit of complex 1
identified several differences in structural motifs hypothesized to be relevant to NAD
(P)H cofactor binding. The identified hydrogenases were further analyzed in the con-
text of the maturation genes required for their biosynthesis, which revealed several
interesting insights regarding absences of conserved genes in several acetogens. Our
study represents a helpful resource to deepen our understanding of hydrogenases’
functioning to develop future strain-engineering approaches and biotechnological
approaches reliant on clostridial acetogens.

MATERIALS ANDMETHODS
Acetogen genomic data set. Detailed information on the genomes of the clostridial acetogens (C. autoe-

thanogenum DSM 10061, C. ljungdahlii DSM 13528, C. carboxidivorans P7, C. drakei SL1, C. scatologenes ATCC
25775, C. sp. AWRP, C. ragsdalei P11, and C. coskatii PTA-10522) is provided in the supplemental material.

Reference data set of known hydrogenases. A reference set of curated and nonredundant amino
acid sequences corresponding to 3,265 hydrogenases was retrieved from the HydDB database (20). We
then selected only [NiFe]-hydrogenase sequences and [FeFe]-hydrogenase sequences, which account
for 2,012 and 1,228 sequences, respectively, along with their hydrogenase class, assigned according to
the classification scheme developed within HydDB. This database contains the entire sequence of the
[NiFe]-hydrogenase large subunits and only the H-domain of the [FeFe]-hydrogenase catalytic subunits
to reduce the risk of misannotations due to the complex organization of [FeFe]-hydrogenases.

Hydrogenase classification method. In order to detect and functionally classify the hydrogenases,
we devised the entirely computational approach depicted in Fig. 2.

Inference of hydrogenase enzymes and hydrogenase class by alignment-based sequence anal-
ysis. Protein sequences of each acetogen in the genus Clostridium under examination were aligned
against the controlled catalogue of the [NiFe]- and [FeFe]-hydrogenases derived from HydDB by using
the command-line application (112) of the blastp algorithm (113). Default parameters were used, except
for the output format where the number 7 (“outfmt7”) was chosen. To process the blastp output, we first
sorted the hits in descending order of the following prioritized indices: percentage of sequence identity,
E value, and query length. We subjected the sorted hits to a threshold on the E value (E value of #0.01)
and to a class-specific threshold on the percentage of sequence identity. The threshold on percent
sequence identity varied according to the functional class assigned to the best hits of the query sequen-
ces. This classwise approach accounted for the fact that the intersequence identity of hydrogenase cata-
lytic subunits varies when we consider different classes of hydrogenases annotated in HydDB (Table S1).
Therefore, we retained a hit only if its percentage of identity against the query was higher than the mini-
mum value of the distribution of the percentages of identity between the hydrogenase sequences of
the class to which we predicted the hit belonged.

Of the hits that passed this filtering approach for each query, we selected the top four (except for
some queries which were left with fewer than four hits after the thresholding) with which we predicted
the class of the putative hydrogenase catalytic subunits identified in each acetogenic strain. Indeed, we
assigned the predicted hydrogenase to the class (group or subgroup, if necessary) shared by the major-
ity of the four top hits. In case of ties, we assigned the hydrogenase class of the top hit to the query
sequence.
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Validation of putative hydrogenases by assessment of hydrogenase functional signatures. We
employed the following criteria to validate the reliability of the hydrogenase catalytic subunits predicted
based on homology search. We considered a [FeFe]-hydrogenase catalytic subunit as validated if the
protein sequence was found to contain an amino acid motif known to coordinate the Fe-S cluster of the
H-domain. A [NiFe]-hydrogenase required the fulfillment of an additional criterion for validation pur-
pose. Indeed, we explored the genes flanking each predicted [NiFe]-hydrogenase large catalytic subunit
to seek the presence of a gene encoding a [NiFe]-hydrogenase small subunit. To identify the small subu-
nit of a putative [NiFe]-hydrogenase, we carried out two checks.

First, the protein sequences flanking the predicted large catalytic subunits were retrieved and inputted
to the InterPro protein families and domains database (114) and to the Conserved Domain Database (CDD)
(115) in order to verify if the protein sequences were annotated as [NiFe]-hydrogenase small subunits.

Second, the protein sequences deemed as small subunits according to InterPro or CDD were searched
for at least one instance of the amino acid patterns, which are known to ligate the Fe-S clusters in the small
subunit of [NiFe]-hydrogenases that were identified in reference 39, using the ScanProsite tool (116).
Previous surveys (21, 22, 117) on hydrogenase occurrences and biological functionality identified amino acid
segments highly conserved around the Cys ligands of the metal clusters. The [NiFe]-hydrogenases feature
the H cluster binding motifs referred to as L1 and L2, whereas the [FeFe]-hydrogenases feature the H cluster
binding motifs referred to as P1, P2, and P3, which were initially recognized in reference 1 and subsequently
updated in references 21, 22, and 117. Therefore, in this study, the catalogues of metal-binding motifs devel-
oped in references 21 and 22 were referenced to validate the identified hydrogenase catalytic subunits. In
order to take into account the variability inherent to these patterns highlighted in reference 117, we opted
for the usage of both sets of metal-binding motifs since they differ in granularity.

Neighboring genetic organization. As demonstrated in reference 22, genome architecture is a val-
uable hydrogenase classification tool. Therefore, to trace the possible structural composition of putative
hydrogenases, we consulted the information on known hydrogenases reported on HydDB (20) (Data set
S1). In particular, we investigated whether the number and type of subunits reported on HydDB for the
hydrogenase class predicted by our analysis were traceable in the neighborhood of each candidate hy-
drogenase catalytic subunit. To this aim, we employed functional RefSeq and Uniprot annotations, as
well as conserved domain annotations reported in UniParc and CDD, to verify the consistency of the
neighboring genes of each catalytic subunit with the subunits expected in the hydrogenase class-spe-
cific template.

Detection of putative genes encoding hydrogenase maturation proteins. To verify the presence
of [NiFe]- and [FeFe]-hydrogenase maturation genes, we performed a sequence-based alignment (blastp
with standard parameters) of known maturation proteins against the amino acid sequences of each ace-
togen. As queries in the alignment-based analysis, we used the amino acid sequences of maturation pro-
tein-coding genes whose crystallographic structures are available in the Protein Data Bank (PDB). Since
the framework of maturation pathway differs between [FeFe]- and [NiFe]-hydrogenases, the sets of
query sequences differed between [NiFe]- and [FeFe]-hydrogenases. Regardless of the number of hits
obtained for each query sequence, we then inspected each hit, searching for the conserved amino acids
signatures reported by the literature to date for the recognition of hydrogenase maturation proteins.
Full details are available in the supplemental material.

Diaphorase subunits of group A4 and group A3 [FeFe]-hydrogenases. We analyzed the protein
domain annotations of the subunits of each validated [FeFe]-hydrogenase of the groups A3 and A4 by
interrogating CDD (115) with the CD-search tool (118) in order to check for the existence of a subunit
that features structural domains typical of the complex I NuoF subunit (accession: COG1894; superfamily:
cl34375). Upon positive outcome of this verification, we assessed if the genomic position of the putative
cofactor-binding subunit matches up with the neighboring genomic organization typical of the pre-
dicted hydrogenase class (20).

To add a further level of detail, we compared the sequences and the structural features of these sub-
units with the NuoF subunit of T. thermophilus (PDB ID: 6ZIY), as detailed in the supplemental material.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 2.8 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.5 MB.
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