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Abstract

Saliency models are computational algorithms that predict the degree of attention
each visual element has for a human observer. Several studies have used these
models to create patterns, standards, and object recognition algorithms. Nevertheless,
according to our research, saliency has been an instrument that has always been
implicitly exploited in design standards or commonly used patterns, mostly invisibly
from the end-users (and graph creators) awareness.

An example of hidden saliency uses can be seen in Data Visualization (DataViz).
DataViz applications are already coming with well-established patterns, such as
color palettes, that have been extensively studied using saliency models. This means
that DataViz designers implicitly use the benefits of the saliency model predictions
when selecting a preset pattern. Nevertheless, they are unaware that those patterns
have a specific visual attention impact on the final observer.

The main objective of this thesis is to bring the information provided by the
saliency models closer to the graph designer in a DataViz design process. The idea
is to make explicit the potential impact of each design decision in the graph design
process and allow the graph designers to exploit this information in their work. To
that end, the first part of the thesis is a more profound study of saliency prediction
models theory, their currently practical uses in InfoVis, and the functionality and
performance of the InfoVis saliency models. Due to the novelty of the InfoVis
saliency prediction models, we performed experiments on how these saliency models
behaved on specific statistical graphs to validate their performance.

Based on the performance experiments, we choose a saliency model to integrate
it into the graph design process. To achieve this integration, we propose two ap-
proaches described in the second part of the thesis. In the first one (Design Tool),
we explored a mechanism for assisting graph designers in attracting the observer’s
attention to specific relevant data they can choose, specify at design time. In the
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second (Measurement Tool), we integrate the saliency model into a common DataViz
application as a validation tool at the end of the design process. Therefore, the
designer can visualize the visual attention implications of each design decision and
iterate the visual elements in order to improve the result.

Six experts from academia and industry evaluated the developed approaches. In
general, most results demonstrated that integrating saliency prediction models into
the DataViz design process is a relevant and valuable technique. Notably, the experts
mostly expressed that they had not seen this type of support in other tools, which
means they have significant potential.

The presented thesis opens the possibility of linking two relevant areas of vi-
sualization, such as the study of salience and data visualization, not only to create
new visualization techniques but also to bring the knowledge of both areas closer to
the fewer experts. Finally, integrating these two areas, whose objectives intersect
in decision-making support, could become a vital instrument to improve the final
observer decision-making process.
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Chapter 1

Introduction

1.1 Context

"Saliency detection is a principle mechanism to facilitate visual
attention. A good visualization guides the observer’s attention to the

relevant aspects of the representation." by Jänicke and Chen [2].

Visual Saliency Prediction is a large field of study that combines cognitive-
visual research with computer techniques. This field works on simulating how a
human inspects an image and how this information is processed in the brain from
a visual-cognitive point of view. That simulation is made by computer models
called saliency prediction models. In particular, those models determine where a
human observer will focus their attention. The saliency prediction models have been
developed computationally by employing traditional algorithmic models and more
recent deep learning technologies. Saliency prediction has been widely applied to
object detection in images and videos, image re-targeting, virtual reality, augmented
reality, and autonomous robots [3–5]. It is mainly utilized in laboratories for the
development of new patterns, standards, and algorithms. Nevertheless, according to
our findings, saliency prediction uses are hidden from end-user.

An example of that hidden saliency prediction uses can be seen in the Data
Visualization (DataViz) process. Data visualization is the graphical representation
of information and data, which aims to create visual artifacts that facilitate their
analysis for a human observer. In the process of designing data visualizations, many
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authors start with the theory of preattentiveness (first stage of attention) [6–8], which
is the foundation for Saliency Prediction.

In order to generate effective visualizations, these authors emphasize the signifi-
cance of understanding the visual-cognitive elements of human attention. In DataViz
means that the observer can quickly spot patterns that aid in decision-making. How-
ever, all graphical designers should have a thorough understanding of the aspects
that must be considered in order to control attention in a representation correctly. As
a result, many visualization design frameworks already include some notions in their
foundation designs. For example, established color palettes have been thoroughly
investigated using saliency prediction to determine their impact on viewer attention
as well as each of the visualization techniques, which have also been validated with
saliency methods to know their visual-cognitive impact.

Altogether, visual saliency prediction is an important area of knowledge for data
visualization design, although it is hidden behind design patterns and cannot be
understood by all graph designers. This is where our research begins, in the quest
to make explicit the use of saliency prediction within the DataViz design process,
making it more visible and valuable to the graph designer.

1.2 Motivation

“Design graphic representations of data by taking into account human
sensory capabilities in such a way that important data elements and

data patterns can be quickly perceived.” by Colin Ware [6]

DataViz is nowadays a fundamental part of decision-making in different contexts.
DataViz’s growth has made many types of profiles responsible for making graphs,
ranging from designers, statisticians, and engineers to doctors. Some of the men-
tioned profiles do not necessarily have basic design knowledge, such as the visual
impact implied by the usage of one or other color, or how the orientation of a graph
can change the focus of data attention. The graph designers have to consider the
features mentioned previously (e.g., color, orientation, spacial position) to obtain a
graph that correctly represents their data set. Along with this, graph designers must
adequately select the combination of those visual features to drive the observers’
attention to the relevant data (see Fig. 1.1).
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Fig. 1.1 Thesis Motivation

The design element selection process mentioned above is supported by frame-
works such as Tableau, Power BI, or Microsoft Excel. Those frameworks offer
pre-set layouts that guide the designer in selecting the visualization technique (e.g.,
bar charts, scatter plots, maps), the color palette, or the orientation. In most cases,
those pre-established design elements have been previously studied, and their visual-
cognitive impact is well known by experts [9]. The research literature concerning
the techniques to generate and validate such design patterns employed by the vi-
sualization frameworks is voluminous. Unfortunately, much of this information is
kept in highly specialized publications and is frequently written in a way that only
the research scientist understand [10]. Access to this information could be very
beneficial in supporting the graph designer in creating better visualizations in terms
of making conscious design decisions based on a known visual impact of each of
them.

Finally, it is also necessary to consider the relevance of the visual element’s
impact on the observer’s cognitive process. According to Milutinovic et al. [11],
in data visualization, the attractiveness effect (focus attention) impacts decision-
making. The decision-maker can be influenced by the information presented, which
can influence her mental image of the situation as well as her attributes, such as
engagement and task knowledge. Milosavljevic et al. [12] found similar results,
demonstrating that, when making quick decisions, visual saliency affects choices
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more than observer predilections. According to these studies, the observer’s decisions
highly depend on the attention areas in a graph, although they are not the only ones.

“Improving cognitive systems often means optimizing the search for
data and making it easier to see important patterns.” by Colin Ware [6]

Altogether, it would be possible to support the designer in the design process
by making explicit the visual impact that her design decisions could have on the
observer through saliency prediction mechanisms. This thesis aims to integrate
visual-cognitive concepts into the information visualization design process. We
intend to bring those concepts to the graph designer’s context and provide insight
into how her design choices might affect the observer’s perception. To achieve this,
we established two main research aims:

1. Perform deeper research about the concept of salience prediction and its usages
in Information Visualization (InfoVis).

2. Develop exploratory approaches to bridge the gap between the information
provided by saliency prediction and the graph designer into a DataViz design
process.

It is important to clarify that we make a difference between the term InfoVis and
DataViz. InfoVis corresponds to all types of information representation (infographics,
dashboards, statistical graphs). The term DataViz represents only the subgroup of
representations corresponding to Statistical Graphs (bar charts, line charts, scatter
plots, maps).

1.3 Main Thesis Contributions

The study of saliency prediction has been since 1980 [13] widely covered, but in
areas that are often different from InfoVis. For this reason, a significant part of
this thesis is focused on a broad study of saliency prediction (see Fig. 1.2). We
started with saliency fundamentals research, then explored its use in the areas of
Information Visualization (see Fig. 1.2.I), and finally, developed an in-depth analysis
of the few models explicitly created for InfoVis images (see Fig. 1.2.II). Finally, in
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Fig. 1.2 Thesis contributions and thesis organization

order to achieve our goal of incorporating the saliency prediction benefits into the
visualization design process, we developed two approaches, and they were validated
by the academy and industry experts (see Fig. 1.2.III).

As results of this process, we generated four primary contributions:

Preattention Process in InfoVis Review. We conducted a literature review in or-
der to understand more about how the visual attention process is employed
pragmatically in InfoVis and if these uses are connected directly to the graph
designer. However, as human visual attention is a broad knowledge area, we
selected as the focal point the Preattentive Process. This process is the first
stage in the human visual-cognitive mechanism and is the primary source of
information to establish where the attention should be focused. Based on this
process, the primary purpose of the literature review was to determine how the
preattentive visual process is used in information visualization, with the focus
of improving the observer’s cognitive process in graph comprehension. Conse-
quently, the literature review results revealed a classification of the preattentive
process used for the InfoVis design process: as a design and measurement tool
(see Chapter 3).
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InfoVis Saliency Models Validation. Based on the results obtained from the liter-
ature review, we decided that it was important to carry out further research
on saliency models and their development in the InfoVis area. Since this is
a relatively new area, the oldest model was developed in 2017, and only two
saliency models were found for DataViz. However, other classical models
were considered during the investigation due to their previously validated
performance with InfoVis images. We decided to reduce our scope to validate
these models only with DataViz images (statistical graphs) because we wanted
to validate the performance of these models, and doing so for all types of
visualization would be more involved. These models were validated with
eye-tracking collected data and three established metrics to evaluate their
performance. Only one of the validated models showed a consistently high
performance in the different validations conducted. This model was used as
input for the development of two approaches in which saliency could be used
in the two modalities found in the literature review (see Chapters 4 and 5).

Saliency Prediction as a Design Tool. Based on the studies mentioned above, we
realized that we could use saliency prediction during different stages of graph
design. The first option was to use it in the first design steps when the designer
intends to make the data that she considers most relevant to stand out from the
others. This can be done by helping the graph designer find the combination of
visual elements (color, orientation) that will make the most relevant data more
noticeable to the observer. In order to validate this approach, we developed a
tool where the designer chooses the data to be highlighted, and the algorithm
generates some visual elements combinations that achieve this goal. We
utilized a saliency prediction model to validate where the attention is and
select the one that has more saliency on the relevant data. This development
has a Matlab and Python version (see Chapter 6).

Saliency Prediction as Measuring Tool. The second step in the graph design pro-
cess where we notice saliency prediction can be included is at the end of the
process. Saliency prediction can be employed as a measurement tool to vali-
date how each design decision can impact the attention points. We integrated a
saliency prediction model into a common data visualization framework to vali-
date our approach. This development is entirely web-based, and the designer
only has to add the data, select the graph of choice, make changes to the graph
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layout, and finally check if their design decisions would lead the observer to
the area or data they desire.

1.4 Document Structure

Based on the research process presented in Fig. 1.2, the document is structured as
follows:

Chapter 2: presents the fundamental definitions of Human Visual Attention and
InfoVis. During the thesis, we found that some concepts related to the human vision
process have been defined in different ways and addressed in various fields. That is
why we consider it essential to clarify what concepts such as attention, preattentive,
and salience mean for this research. Something similar happened with the concepts
of InfoVis and DataViz, whose definitions are also described in this section. Finally,
we present how both fields’ concepts are connected from the visual-cognitive point
of view.

Chapter 3: reports the process of literary analysis and its results. The literature
review mainly aims at identifying how the preattentive visual process is used in
information visualization, oriented to improve the observer’s cognitive process in
graph comprehension. This section presents the search methodology, the relevant
findings, and a discussion about the development opportunities that emerged from
the findings.

Chapter 4: introduces an overview of saliency prediction models, their develop-
ment techniques, and the image dataset used for their creation and validation. Based
on the literature review’s findings, we established that it was essential to go deep into
saliency prediction. In addition, this chapter aims to map the scenario of existing
saliency prediction models for InfoVis images. During the study, we found that some
authors established that classical saliency models had to be modified to the InfoVis
images characteristics (e.g., color scale). For this reason, in this chapter, we present
a detailed description of two saliency models created explicitly for InfoVis images
together with an extensively used classical model.

Chapter 5: presents the results of the InfoVis saliency models validation. We
perform a structured validation to select one of the models described in the previous
chapter. To perform this validation, we collected eye-tracking data from the DataViz
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images data set created by us, and also we used some saliency standard metrics. In
this chapter, we describe the validation process and the results that led us to choose
one of the models and also reveal some insights into the behavior of saliency in clean
graphs.

Chapter 6: We proposed an exploratory approach to systematically draw the
observer’s attention to relevant data by changing some visual elements. In this
approach, we use the saliency prediction model (described in the previous chapter)
to identify which combination of visual elements would most effectively highlight a
piece of data chosen by the graphic designer. The purpose of this first development
was to make convergence between the information given by a saliency model and
the aim of emphasizing relevant data provided by the graph designer. This chapter
describes the motivation, technique, and results of two development tools, one in
Matlab and the other in Python.

Chapter 7: presents a second developed approach, in which the saliency predic-
tion model is used as a measurement tool. We integrated saliency prediction into a
traditional data visualization system to explore this second possible use of saliency as
a measuring tool. This implementation seeks to allow the graph designer to estimate
how each of her design decisions will affect the observer’s attention. With this tool,
it is possible to observe how each design decision made by the graphic designer can
change the attention focus of the graph. Since it is implemented on a complete graph
design framework, this tool works on all types of graphs. This chapter describes the
motivation, the integration process, and the tool’s results mentioned above.

Chapter 8: presents the protocol and results of a proof-of-concept validation. We
conducted verifications with experts in data visualization from distinct viewpoints,
one from academia and the other from industry, in order to validate the develop-
ments discussed in chapters 6 and 7. The primary goal was to confirm with Data
Visualization experts that using Saliency Prediction in the DataViz design process
was feasible.

Chapter 9: presents the thesis main conclusions.
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Key Concepts

This chapter aims at defining the main concepts in the areas relevant to this thesis: the
Human Visualization Process and Information Visualization. The concepts presented
in this section are described from a computer science perspective. Regarding Human
Visualization, concepts were considered from the side of how they are simulated and
modeled in the computational domain. Concerning InfoVis concepts, the concepts
were defined from a Human-Computing Interaction (HCI) approach. During the
research, we noticed that many authors had different interpretations of the concepts
related to human vision and InfoVis, specifically about visual attention and the design
process, respectively. Due to this interpretation’s diversity, we decided to adopt the
definitions established in this section for the whole thesis. Another factor considered
in establishing the definitions was that the focus should always be on the observer’s
cognitive process impact. For instance, regarding the human vision concepts, we
mainly focused on attention, the first step in the cognitive process. On the other
hand, for InfoVis, we understand the cognitive process as the graph reading and
understanding process.

2.1 Human Visual Attention

According to Ware [6], humans "acquire more information through vision than
through all of the other senses combined.". In biological terms, about 20 billion brain
neurons are dedicated to analyzing visual information. This process is a complex
mechanism whose final aim is to find patterns, the crucial components of human
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cognitive activity [6]. This section describes those concepts related to the human
attention process, a fundamental part of understanding InfoVis images.

Visual Attention. Visual attention is the umbrella term used to denote the various
mechanisms that help determine which regions of an image are selected for
more detailed analysis [14]. The term attention refers to the process that allows
one to focus on some stimuli at the expense of others. According to [6], the
entire attention process (in human vision) is being permanently “tuned from
top to bottom based on mental predictions and on what will be most useful
to us”. This is the concept we focus on most in this thesis with respect to
attention, "what will be most useful".

Furthermore, in information visualization, attention is connected to the human
cognitive process of how the observer understands a graph [15, 16], which
means which information in the graph is most useful to the observer. Specif-
ically, in cognition, the visual working memory holds the visual objects of
immediate attention [6]. For this reason, attention is considered the earliest
stage in the cognitive process. Related terms: visual perception.

Preattentive. According to [17], in the human visual process a visual scene is
analyzed at an early stage by specialized populations of receptors that re-
spond selectively to such properties as orientation, color, spatial frequency, or
movement and map these properties in different areas of the brain. The term

“Preattentive” includes all factors influencing this selection mechanism: the
process (how it works) and the attributes (which visual elements influence the
process).

Preattentive Attributes or Features. They are straightforward visual elements per-
ceived without conscious attention. According to the definitions found in [18]
and [19], Preattentive Attributes are classified in four groups: Form, which
bundles line orientation, length, width, collinearity, size, curvature, spatial
grouping, blur and numerousness; Color, including hue and intensity; Mo-
tion including flicker and direction; Spacial position made up of 2D posi-
tion, (stereoscopic) depth, depth or convex/concave shape from shading. The
authors also use the “visual element” concept in the literature to refer to
preattentive attributes.
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It must also be noted that not all preattentive attributes have the same impact
on the preattentive process. Generally, the most marked impact is based on
color, orientation, size, contrast, and motion or blinking, corresponding to the
findings of neuropsychology [6]. On the other hand, in this thesis context,
visual elements represent data and attract attention to important information.

Preattentive Process. Humans can simultaneously perceive a large number of vi-
sual attributes (e.g., color, orientation, shape) to direct their visual attention.
Preattentive perception is done in parallel: each visual attribute is computed in
parallel and then combined to select specific regions that are perceived without
any conscious effort [20]. The preattentive process is fast (200 to 250 ms) and
unconscious, in contrast to the attention process, which is done serially and is
slower and conscious. In addition, this process decides what visual attributes
are offered up to our attention and easy to find in the next fixation [21]

The preattentive process can be represented algorithmically by two types of
models: Bottom-up (or stimulus-driven, or global) and Top-down (or goal-
directed, or local). These models simulate the mechanism used to detect
the salient visual subsets in the human vision system [8]. Currently, several
computational models can emulate these preattentive models and combine
them into a single model (see Attention definition) [6].

Saliency. The Saliency of an item —be it is an object, a person, a pixel, etc.—
measures how easy it is visually identified and arises from its contrast and
separation relative to other objects or the background [8]. Thus, saliency
detection is considered a critical attentional mechanism that guides visual
attention.

Formally, the Perceptual Saliency is the degree to which a target stimulus
“pops out” in a set of stimuli [22]. Thus, for example, if the target stimulus
differs by a single attribute (e.g., color) from the other objects, it is more
salient; meanwhile, if it differs by a combination of attributes (e.g., color and
form), it is less salient. Alternatively, the Visual Saliency may be defined as
the nature or quality of a viewed object which gives it relevance or importance
to the observer [23]. Related terms: visual attraction effect, focus attention.

Feature Map. contains the information of the features (preattentive attributes) ex-
tracted from every part of the visual field simultaneously. In the “Model of
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Visual Information Processing,” (see Fig. 2.1) proposed by [6], a set of feature
maps is the result of the first stage. These feature maps retain implicit data
about their spatial origins through their links back to visual stimuli. Then,
these feature maps will be combined to perceive the whole object.

Saliency Map. represents the conspicuity at every location in the visual field by
a scalar quantity and to guide the selection of attended locations, based on
the spatial distribution of saliency [24]. A saliency map combines all feature
maps. It is a visual representation that highlights the image regions on which
the observer’s gaze focuses the attention [25]. Commonly, it is represented
with a warm color palette, in which red is in the area with more attention
probability. The main objective of a saliency map is to evidence the degree of
importance of each pixel in an image to the human visual system.

Heat Map. as saliency maps, is a visual representation of the human observer focus
in an image. For this thesis, we called the heat map to the result of an eye-
tracking experiment. This means it is an attentional map generated from the
collected eye-tracker data.

Eye Tracking. is a sensor technology that can detect a person’s presence and follow
what they are looking at in real-time [26]. This technology records observers’
eye movements (gazes) and transforms them into data streams. Those data
streams include pupil position, fixation path, gaze vector for each eye, and
gaze point.
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Fig. 2.1 “A three-stage model of visual information processing.” taken from Ware et al. [6]

2.2 Information Visualization

In the previous chapter, we covered the process of the human vision process, focused
on the preattention stage, wherein concepts related to this early stage were described
from a computing perspective. This section covers the concepts related to information
visualization oriented to design and cognitive characteristics.

Information Visualization (InfoVis). is the process of representing data in a visual
and meaningful way so that a user can better understand it [27]. Visual-
ization provides an ability to comprehend huge amounts of data [19]. Also,
Information Visualization integrates all types of data representation such as in-
fographics, dashboards, word clouds, statistical charts (scatterplots, bar charts,
or line charts), etc.

Data Visualization. (DataVis): is the graphical representation of information and
data, highlighting patterns and trends in data and helping the reader to achieve
quick insights [28]. In the bibliography, Data Visualization and Information
Visualization meaning is nearly homonyms. For this thesis, we use Data
Visualization to reference all statistical data visualization techniques such as
bar charts, scatterplots, and line charts. We explicitly leave out of this group



14 Key Concepts

visualization techniques such as infographics or dashboards, that would be
part of a broader concept (InfoVis for this research).

Graph Visual Elements. are all the graphical elements that compose a graph. For
example, those elements could be textual (title, axes title, legends, axes labels)
or forms (bars, points, lines, circles).

Relevant Data (information). is defined as a selected group of data that could be
chosen by users or by an algorithm [29, 30], and represent data that is important
to the object of study. The data relevance could be defined by an algorithm
(e.g., filters) or by the graph designer. According to Ware in [6], important data
should be represented by graphical elements that are more visually distinct
than those representing less important information. In DataViz, in most cases,
relevant data is highlighted with different preattentive attributes (e.g., color,
position, size).

Highlighting. The goal of highlighting is to make essential data points more visually
prominent [31]. Highlighting in InfoVis is used to guide the user in exploring
the data, for instance, through visual elements to help the observer focus on
relevant data or link data across multiple views [31]. According to Ware [6],
highlighting is considered a computer-side operation that helps to find relevant
patterns. Also, highlighting may be used to ensure the comprehension of charts
with excessive information density [19].

Another important key concept for our research is the visualization development
stages in InfoVis. According to Mazza et al. [7], the design process stages in InfoVis
are:

Preprocessing and data transformations. In this stage, data is extracted from a
data source and transformed into a structured format that a visualization
application can use.

Visual mapping. In this stage, the graph designer defines which visual structures
are used to map the data and their location in the display area. Three basic
structures should be defined in this visual mapping stage: spatial substrate, the
axes selection which defines the physical data representation space; graphical
elements are everything visible that appears in the space (e.g., points, lines);
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and graphical properties are the graphical attributes which the human vision
is very sensitive (preattentive attributes).

Views creation. This is the last stage. The views are the final results of mapping
data structures with visual attributes in this stage. Also, this stage has a refined
process based on data design objectives (e.g., explore, communicate).

The design process described above is used for usual visualizations not related
to the research of the new techniques developed or validations. The term “usual” is
intended as a DataViz design for analyzing particular data, to find patterns, statistical
behaviors, markers trends or important nodes, etc. For this thesis, when we mention

“early design stage” we are referring to the Visual Mapping stage explained previously.
It represents an initial design state because the graph designer has to make the design
decisions, and the graph has not performed any validation.

2.3 Cognition, Human Visual Attention, and InfoVis

According to Rodrigues Jr. et al. [32], InfoVis “provides faster and user-friendlier
mechanisms for data analysis because the user draws on his/her comprehension
immediately as graphical information comes up to his/her vision”. This means the
human vision system is strongly related to cognitive and memory processes that take
action in data comprehension [33] and interpretation [14]. Rodrigues Jr. et al. [32]
said that carrying out conscious management of the human vision system, mainly
the preattentive process, should be the first stage towards the creation of a graph.

These human attention concepts are extensive. However, they are extremely use-
ful for helping in the InfoVis design process by supporting graph creators to archive
their data objectives and guiding the observer in its cognitive process. Design data
visualizations by considering human perception capabilities lead to more accessible
perceiving data elements and patterns for the observer [6].

According to [6], to design graphic representations of data, human sensory
capabilities (visual perception and cognition) must be taken into account in such
a way that relevant data elements and data patterns can be quickly perceived and
processed (by visual working memory). According to Toker et al. [34], “various
cognitive abilities such as perceptual speed, verbal working memory, and visual
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working memory have been shown to impact user performance and/or user subjective
experience with Infoviz task.” Also, Healy et al. [14] explain that the human visual
system is strongly related to cognitive and memory processes that take action in data
comprehension and interpretation.

In addition, the intended use of the concepts discussed in this chapter infers
cognitive productivity. The measure of cognitive productivity is the amount of
valuable cognitive work done per unit of time [6]. Improving cognitive productivity
means that the observer can search for data and find relevant patterns in less time. In
InfoVis, an eye-tracking device is common to get insights into observers’ cognitive
processes when reading the graph and to solve a definite task [35]. With this
measuring technique, InfoVis creators can know which is the focus of attention of
the graph and the performance in its comprehension.

Finally, it is essential to notice that the visual saliency impacts the InfoVis images
comprehension and, therefore, decision making as well [11]. According to research
conducted by Mulutinović et al. [11], the visual attraction effects (saliency) influence
the decision-making in specific scenarios. In some cases, the decision-makers focus
their attention on information that is arbitrary to their decision goals. The influence
of saliency even over decision-maker preferences was demonstrated in [12].

In the next chapter, we present the results of a literature review to deepen how
attention process knowledge practically influences the InfoVis design process.
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Literature Review

The previous chapter has presented some concepts related to human visual attention
and its relationship with InfoVis. We noticed a voluminous theory in both areas,
but we wanted to delve deeper and study how these theories have been integrated
practically. For this research, practically means how human visual attention is used
for the benefit of graph designers in InfoVis. Due to the extended concepts in the
human attention process, we decided to focus our research on the preattentive process.
As previously mentioned, the preattentive process is the first stage in the attention
process and also impacts the InfoVis images comprehension [32, 6, 36, 11, 12].

3.1 Short Summary

We conducted a literature review to deepen how the visual attention process is used
pragmatically in InfoVis and if these uses are somehow brought closer to the graph
designer. The literature presented in this chapter mainly aimed at identifying possible
responses to the following Research Question (RQ): how the preattentive visual
process is used in information visualization, oriented to improve the observer’s
cognitive process in graph comprehension. Therefore, in selecting and analyzing
the papers, rather than on the theory of how preattentive concepts impact the at-
tention process, we focus on how these concepts have been used to improve data
understanding (cognition) in information visualization. In other words, the purpose
of our literature review was to provide an overview of how concepts related to the
preattentive process are used pragmatically and implicitly in recent research.
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In general, we found that the understanding of human attention process impact
is often used implicitly in InfoVis design, in other words, based on analyses of
attention models developed more than 20 years ago. In results section will discuss
the implicitly concept in detail. Furthermore, experts in the field of design or human
vision usually exploit the knowledge of how to correctly handle this observer’s
attention ability. Novices, who design graphics daily, seem not to be a significant
target of current research. On the other hand, we identified a gap between activities
done at design time and at the graph’s validation time. The evaluation of graphs
is done in laboratories and controlled environments and is highly time-consuming.
Surprisingly, in our research, we did not find any tool that, at design time, may
show the graph creator the impact that their design decisions might have on graph
comprehension.

In the next sections, the process and results of the literature review, whose
objective was explained above, will be presented. In addition, we also will discuss
the findings and development opportunities that emerged from this research.

3.2 Review Methodology

The protocol we adopted for the literature review is a systematic review protocol con-
sisting of three phases, detailed in the following sections: search strategy, selection,
and classification.

3.2.1 Search Strategy

As a first phase of the literature review, we followed a search strategy that will lead
us to find, in different sources of information, the most relevant articles to answer the
main RQ. The search strategy was developed in three steps: the selection of search
sources, the construction of the search string, and the definition of filtering criteria.

Concerning the selection of search search sources, we based our decision on
the main topic, "Information Visualization," and kept the preattentive concepts
as a subtopic. This decision was based on the fact that we were interested in
understanding, at the level of digital graph design, how the concepts related to the
preattentive process were used pragmatically and not how the preattentive process
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operates. For this reason, the sources were selected because of their high relation
with the topics of information visualization in computer science [37] since most
conferences and journals relevant to the Research Question publish their papers in
these sources. Therefore, four sources of information have been selected: ACM
Digital library, IEEE Xplore, ScienceDirect, and Springer Link. On the other hand,
although we were looking for the connection between InfoVis and the preattentive
process, sources such as Pubmed were not considered since they approach the
preattentive process from a more theoretical and neuroscientific approach, while we
are looking for papers where these theories are applied in digital graph design.

For the construction of the search string, we started using the keywords: preat-
tentive and its spelling variation pre-attentive, and information visualization and its
related term data visualization. As mentioned in section 2.2, InfoVis and DataViz
have similar definitions and are commonly used without distinguishing one from the
other. However, the search results were scarce, and for this reason, the search was
expanded by adding the keyword data highlighting. In InfoVis, the ‘highlighting’
term denotes the focus data in a graph, a concept close to the preattentive process’s
output (see section 2.2). The results increased from 161 to 306 articles with this
new keyword. The final search string therefore adopted in the literature review
was: (“pre-attentive” OR “preattentive” OR “data highlighting”) AND
(“information visualization” OR “data visualization”). This search
string was applied in the Metadata search field, that includes document title, au-
thor(s), publication title, abstract, and index terms. We are aware that many works
where the preattentive process is exploited implicitly may have been excluded from
the search; this is consistent with our goals of finding papers that explicitly tackle
preattentive.

About the filtering criteria, we concentrated the search on these knowledge
areas: Computer Sciences, Human-Computer Interaction (HCI), Information or Data
Visualization, Data Analysis, and User Interfaces. In addition to the concepts already
discussed, we added the areas of HCI and User Interfaces. We selected these areas
considering that human visual attention is extensively explored in HCI and User
Interfaces areas. Both areas are related to how humans communicate with computers
and how they perceive that interaction. In addition, InfoVis and DataViz are areas
focused on the communication of data visually also associated with the HCI area.
Another filter criterion was concerned with the period of the published research,
and we selected the period between 2010 and 2021, inclusive. Historically, vision
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Table 3.1 Search Strategy Summary

Step Result

Sources ACM Digital library, IEEE Xplore, ScienceDirect, and Springer
Link

Search string ‘(‘pre-attentive” OR “preattentive” OR “data high-
lighting”) AND (“information visualization” OR
“data visualization”)

Filtering Criteria Knowledge areas: Computer Sciences, Human-Computer Inter-
action (HCI), Information or Data Visualization, Data Analysis,
and User Interfaces.
Period: between 2010 and 2021.

attention has been developed since the 1980s and has been widely researched after
that. However, this research aims to discover the current impact of the preattentive
process in InfoVis’s design stage, not its fundamentals, and for that, we focused
on the last decade. For the last filter criteria, we considered only the articles in
conference proceedings or journals as the document type.

Table 3.1 shows the search sources, the construction of the search string, and the
definition of filtering criteria.

3.2.2 Selection

In this phase, we refined the articles list obtained in the search phase. The selection
process had two steps. First, we refined the article list by removing those related
to concepts outside the research scope. Then we selected the articles that met the
research questions.

To refine the obtained articles list, we excluded the articles associated with
the development of salience prediction algorithms, virtual reality, dynamic and 3D
graphics, theoretical articles, vision problems (e.g. blurred vision or hypertropia), and
surveys. Then, we manually searched those concepts in the article’s title, keywords,
and abstract.

The saliency prediction concept represents the set of models and algorithms
that can predict the focal points of an image with varying degrees of accuracy.
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In InfoVis, there are several saliency models [2, 38–40] that will be explained
deeply in Chapter 4. We dismissed the saliency prediction algorithms concept
because these articles present experiments and developments of attention prediction
algorithms, but not how the saliency cognitively impacts the observer in the specific
InfoVis domain. In addition, several papers currently summarize and evaluate those
saliency algorithms [41–43]. Regarding the Virtual Reality, Dynamic and 3D articles,
we excluded them because those were beyond the scope of the research. We are
concentrating only on static and 2D images for the current study. About theoretical
and survey articles, our research focuses primarily on the practical use of preattentive
concepts in the area of InfoVis rather than on its theoretical aspects.

During the selection sub-step, we identified whether the use of preattentive
concepts in the paper was actually oriented at improving the cognitive process in
graph comprehension (RQ). Moreover, for this research, the concept of preattentive
had to be a primary topic within the article; in fact, several articles used the word
preattentive only to indicate human visualization’s theoretical basis but did not focus
their research on its exploitation. Therefore, in this selection process, some questions
were established to choose those articles that would give us more explicit information
about the use of preattentive in InfoVis; in fact, several reviewed articles were not
explicit in how they used preattentive in their research. Therefore, the articles that
responded to at least one of those four filtering questions (FQ) were selected to be
analyzed. The filtering questions were:

• (FQ1) Are preattentive attributes used to improve the understanding of the
graph?

• (FQ2) Are preattentive attributes used to draw the observer’s attention to
specific information?

• (FQ3) Are the presented article results about the cognitive influence of preat-
tentive attributes?

• (FQ4) Are computational salience models used to measure the impact of the
preattentive process?

To identify which articles answered our filtering questions, we performed a
reading of each article’s abstract, introduction, and conclusion. Besides, we looked



22 Literature Review

Table 3.2 Search Results

Step IEEE ACM ScienceDirect Springer Link Total

Search Results 89 77 81 59 306

Refined Filter 73 59 68 48 248

Selected Articles 11 9 2 7 29

up the concepts used in our “search string” in the full text of the paper and analyzed
the context in which they were used.

Table 3.2 presents the results of the selection process. The first row, “Search
Results,” shows the source whose results were used as inputs for the selected phase.
The ‘Refined Filter’ numbers correspond to articles list refinement, discarding those
related to concepts outside this research scope. Finally, based on thefiltering ques-
tions presented above, 29 articles were selected to be analyzed. In Table 3.3, the
FQ column shows the question numbers (one to four) which each article selected
response. As can see, most of them respond to more than one question.

3.2.3 Classification

The results of the previous phases revealed that preattentive use in the information
visualization design to improve cognitive graph comprehension (RQ) could be
classified according to two main uses: (1) the preattentive attributes as design
components and (2) the preattentive process as a measuring tool. In the first one, we
assume that, in InfoVis design, the preattentive attributes are exploited to highlight
relevant data or represent more data in a single graph. Moreover, for the second use,
the preattentive computational models (prediction algorithms) are used as a method
of graph evaluation, in general, to measure the cognitive processes of the observer.
In section 3.3, this classification will be extensively discussed. At the end, 18 articles
were classified as as design components and 11 as measuring tool.

Table 3.3 shows the list of the selected articles with their classification (Design
Component or Measuring Tool) and author’s names in chronological order. The ”FQ”
column represents the Filter Question (see Section 3.2.2) with which each selected
article satisfies.
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Table 3.3 Selected Articles

Title Authors Classification FQ
Improving focus and context awareness in inter-
active visualization of time lines

Luz et al. [44] Design Component 1, 3

Context-preserving visual links Steinberger et
al. [45]

Design Component 1, 2

Matse: the microarray time-series explorer Craig et al.
[46]

Design Component 1

Stacking-based visualization of trajectory at-
tribute data

Tominski et al.
[47]

Design Component 1

Leveraging cognitive principles to improve secu-
rity visualization

Dunlop et al.
[48]

Design Component 1, 2

Onset: a visualization technique for large-scale
binary set data

Sadana et al.
[49]

Design Component 1

Applying feature integration theory to glyph-
based information visualization

Cai et al. [50] Design Component 1

Comparing color and leader line highlighting
strategies in coordinated view geovisualizations

Griffin et al.
[51]

Design Component 1, 2,
4

Supporting supervisory control of safety-critical
systems with psychologically well-founded info-
vis

Ostendorp et
al. [52]

Design Component 1, 3

Using typography to expand the design space of
data visualization

Brath et al.
[53]

Design Component 2, 3

A space optimized scatter plot matrix visualiza-
tion

Wang et al.
[54]

Design Component 1

Cognitive benefits of a simple visual metrics ar-
chitecture

King et al.
[55]

Design Component 1, 2,
3

Font attributes enrich knowledge maps and infor-
mation retrieval

Brath et al.
[56]

Design Component 1

Keshif: rapid and expressive tabular data explo-
ration for novices

Yalcn et al.
[57]

Design Component 1

CorFish: Coordinating Emphasis Across Multi-
ple Views Using Spatial Distortion

Richer et al.
[58]

Design Component 1, 2

GeoBrick: exploration of spatiotemporal data Park et al.
[59]

Design Component 1, 2

Guidelines for cybersecurity visualization De-
sign

Seong et al.
[60]

Design Component 1, 3

Photographic High-Dynamic-Range Scalar Visu-
alization

Zhou et al.
[61]

Design Component 1, 2,
3,

Continued on next page



24 Literature Review

Table 3.3 – continued from previous page

Title Authors Class FQ
Comparing averages in time series data Correll et al.

[62]
Measuring Tool 1, 2,

3

Does an eye tracker tell the truth about visualiza-
tions? findings investigating visualizations for
decision making

Kim et al.
[63]

Measuring Tool 2, 3,
4

Individual User Characteristics and Information
Visualization: Connecting the Dots Through Eye
Tracking

Toker et al.
[64]

Measuring Tool 3

Highlighting interventions and user differences:
informing adaptive information visualization
support

Carenini et al.
[65]

Measuring Tool 1, 2,
3

Eye tracking to understand user differences in
visualization processing with highlighting inter-
ventions

Toker et al.
[34]

Measuring Tool 1, 3,
4

Towards Facilitating User Skill Acquisition:
Identifying Untrained Visualization Users
Through Eye Tracking

Toker et al.
[66]

Measuring Tool 1, 3,
4

Enhancing infographics based on symmetry
saliency

Yasuda et al.
[67]

Measuring Tool 2, 4

Pupillometry and Head Distance to the Screen
to Predict Skill Acquisition During Information
Visualization Tasks

Toker et al.
[68]

Measuring Tool 1, 2,
3

Mitigating the Attraction Effect with Visualiza-
tions

Dimara et al.
[69]

Measuring Tool 2, 3

Eye-tracking reveals how observation chart de-
sign features affect the detection of patient dete-
rioration

Cornish et al.
[70]

Measuring Tool 1, 3,
4

Incidental Visualizations: Pre-Attentive Primi-
tive Visual Tasks

Moreira et al.
[71]

Measuring Tool 1, 3,
4

3.3 Results Synopsis

The results of the search presented in section 3.2 showed that the preattention process
was mainly exploited in InfoVis in two ways. The first one, preattentive attributes
as Design Components, uses the knowledge about the capability of the preattentive
attributes as part of the graph design components. This use implies manipulating
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these attributes to achieve different goals, in particular, instantly identifying relevant
data or connecting data between graphs.

The second identified usage, preattentive process as a Measuring Tool, uses
the preattentive process as a measurement technique, either using predictive models
or instruments such as eye-trackers. Such measurement is generally used to assess
attention on portions of a graph or determine the impact of preattentive attributes.
Both categories are relevant to this survey’s scope, as they aim to understand or
improve the cognitive processes of the graph observer.

In this context, we present a synthesis of the selected articles grouped according
to their classification.

3.3.1 Preattentive Attributes as a Design Component

We found several articles that use preattentive attributes as part of the design process,
which is evident because color, shape, or size are fundamental design components
in InfoVis. However, for our study, we interpret the use of these attributes as an
explicit attempt, at design time, to steer and focus the observer’s attention and help
them in the cognitive process of graph interpretation. This means that we have been
looking for studies in which the preattentive attributes were consciously used for their
cognitive impact. We found that preattentive attributes have been used to highlight
relevant information, link graphs, or represent several data sets in one graph. Besides,
color, shape, and size are the most commonly used preattentive attributes.

During the classification phase (see section 3.2.3), we noticed that the preattentive
attributes used in InfoVis are more than the commonly established ones (section 2.1).
The authors also consider some design elements such as Glyphs as preattentive
attributes due to their ability to draw attention to relevant information. In addition,
we found in some articles that some attributes are also used as part of graph design
methodologies. Based on these findings, within this Design Component category, we
established three more subcategories to organize the different modalities employed
by the preattentive attributes. These subcategories are: Core Preattentive Attributes,
Unusual preattentive attributes and Preattentive attributes into design methodologies.
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Core Preattentive Attributes

Regarding the use of Core Preattentive Attributes (e.g., color, shape, size), color is
the most common preattentive attribute used to improve the comprehension of the
graphs. The commonly used of color was demonstrated in different visualization
techniques as linked graph [59, 45, 49, 54], dashboards [57], or to grouping related
information on large scale time-series graphs [46]. More recently, a study by Zhou et
al. [61] showed that changes in color characteristics such as the glare pre-attentively
steer attention and focus the visualizer’s attention onto high-value features. Similar
results were obtained by Luz and Masoodian [44], they used blur to avoid attention
on non-focal items to improve the observer’s performance.

Although the color is the most used preattentive attribute, it is also used with other
attributes to enhance the range of attention and give more information with a single
representation in specialized InfoVis graphs. For instance, Tominski et al. [47] used
color and spatial position as preattentive attributes to improve the trajectory graph
(contextual data in a route). A similar study was presented by Dunlop et al. [48],
they created a tool that combined shape, color, and size to identify and analyze
threats in security data analysis. Furthermore, the research made by Cai et al. [50]
also demonstrated how to optimize the visual search in a specific InfoVis graph
combined with different preattentive attributes in a glyph. The last example found in
combined preattentive attributes was the research made by Richer et al. [58]. They
combined size, position, and shape to make selected data more visually prominent in
a coordinated graph (visualization across the graphs).

Unusual preattentive attributes

Due to the many ways to represent data in InfoVis, preattentive attributes are not only
used in specific charts (bars, boxplots, and others), but they can also be manipulated
on text visualizations (e.g., Knowledge Maps). One example is the research presented
by Brath and Banissi in [56]: they use font properties, such as bold and italic, to
make some text visually preattentive and to add more information into textual
displays. Also, they made a systematic exploration intending to include text (font) as
a preattentive attribute in InfoVis [53].
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Preattentive attributes into design methodologies

An interesting finding in the literature review was that some researchers had included
preattentive attributes as a fundamental part of InfoVis design methodologies. For
example, the study by Ostendorp et al. [52] showed that some preattentive attributes
are fundamental design elements in the design of a safety-critical system’s supervi-
sory control dashboard. As part of the design process, the author selects the "most
effective attribute" based on the effectiveness ranking of preattentive attributes con-
sidering the type of information. For instance, if the type of information is nominal,
the possible visualization attributes are position, color hue, texture, connection, etc.

A similar approach was presented by King et al. [55], proposing a Visual Metrics
Architecture to create dashboards including a pre-attentively property rank. For
example, form and color are potent properties for preattentive detection. Another
related research made by Seong et al. [60] showed a guideline for Cybersecurity
information visualization. In this methodological guide, the authors encouraged
designers to “take advantage of the human visual system’s ability to do preattentive
processing by seeking to encode information pre-attentively visually.”

3.3.2 Preattentive Process as a Measuring Tool

As we already mentioned in section 2.1, human visual attention can be predicted,
and the impact of each visual element can be evaluated using a computational model
such as saliency maps. In addition, human attention can be measured with technical
methods such as eye-tracking. Between both measurement methods, saliency pre-
diction and eye-tracking, we found that eye-tracking is a common technique used
in InfoVis to analyze perceptual and cognitive processes of visual tasks [72]. On
the other hand, saliency maps are not a commonly used technique, but they can also
predict InfoVis’s visual perception. There are many saliency prediction algorithms
[73], with a different approaches, most of them based on the Itti-Koch biological
model [74] (see chapter 4). Regarding how these measurement methods are used in
InfoVis, we found that they can be employed to establish design patterns, evaluate
the observer’s cognitive process, determine the influence degree in decision-making,
and draw attention.
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Several studies have investigated how preattentive attributes influence decision-
making using preattentive process measurement methods. For example, Cornish et
al. [70] research provided evidence of how the doctor’s and nurse’s ability to de-
tect abnormal behaviors in patients’ data increases with the use of color scales and
marks. Similar research presented by Dimara et al. [69] showed evidence about
how highlighted optimal choices could help decision-makers to focus on important
information while ignoring distracting choices (decoy and distractor points). Another
study made for Kim et al. [63] results demonstrated that different stimuli configura-
tions, rather than the tasks themselves, could affect information-processing strategies
when people make choices.

Concerning establishing patterns using practically preattentive measurement
methods, Alberts et al. [9] research has provided evidence that the large numbers
in dashboards concentrated the visual attention more than on the graphs. Also, they
observed some context elements (e.g., human-like figures) get prime attention over
the data. On the other hand, Moreira et al. [71] studies how simple visual tasks, such
as finding points in a vertical or horizontal position, can be executed pre-attentively
without a conscious process. The authors discover that the horizontal task is the most
accurate and faster to execute pre-attentively, and color luminance is the worst.

Nevertheless, the most common usage is the use of the preattentive process
measures methods to evaluate the observer’s cognitive process. In a set of studies
by Toker et al. [64, 34, 66, 68] and Carenini et al. [65], the authors present two main
results about highlighting interventions: (1) highlighting interventions can improve
visualization processing compared to receiving no interventions (task performance
and usefulness); and (2) some specific visualization regions can cause low task
performance in users with low values of specific cognitive measures.

The last finding in this preattentive usage classification is drawing visual at-
tention exploding saliency methods. During our investigation, we found a few of
these approaches. One is presented by Yasuda et al. [67], their approach detects a
saliency region based on symmetry Gestalt principles. Then, they used that saliency
to schematize visual images by approximating them as pairs of symmetric patterns
extracted from object silhouettes. The results showed that this approach could draw
more visual attention to the selected region of interest. Similar results were obtained
by Jänicke and Chen in [2], showed that the use of saliency maps could be used to
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improve the search of patterns in complex diagrams (volume, tag clouds, and flow
visualizations).

3.4 Relevant Findings

In general, we found that the preattentive process is currently used to highlight
specific data, often in an ‘implicit’ way limited to specific data sets or visualization
techniques. Also, the preattentive concepts are used to measure graph effectiveness.
Besides, we noticed that in most cases, the research in preattentive on InfoVis does
not directly involve the graph designers. The preattentive notion is still at the research
level (patterns, standards, methodologies), but we did not find specific studies that
seek to bring this knowledge to the graph designer. This designer’s oblivion is
one of the most relevant issues in the conducted research. Finally, we claim that
future research should further develop how to integrate attention prediction models
(evaluation) as an InfoVis design tool to support graph designer decisions, which
will be one of the contributions of the thesis.

3.4.1 Highlighting and Data enhancement

Several articles demonstrated how preattentive attributes could be used to draw
the observer’s attention to specific or relevant data, using highlighting techniques
[57, 70, 61]. Color, form, and orientation preattentive attributes categories are the
most common highlighting techniques used to emphasize data, and at the same
time, they optimize the visual search [50, 65, 34, 59, 63]. We also detected that
highlighting might be applied according to the data type (e.g., identify threats [48])
or based on a design decision (e.g., Coordinate views [51, 45]).

In many investigations [63, 66, 64, 68, 67], the researchers recognize the impor-
tance of highlighting relevant points on the graph so that the observer can detect
them more efficiently. The preattentive attribute handling also helps the observer
make a more effective comparative data analysis. Other studies have used these
preattentive measures to establish design patterns.

Preattentive attributes can also be used to enrich data. We identified two different
techniques: adding more data and linking graphs. Adding more information in one
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InfoVis graph can be done by integrating, commonly, color and shape preattentive
attributes [59, 47, 56]. Integrating these attributes makes it possible to visualize
different data in a single InfoVis graph. In the other technique, the preattentive
attributes like hue, color, and marks are used to link data, which means showing the
connection between graphs or displaying more details about the data [51, 45, 49, 46,
75].

3.4.2 Implicit and Unconscious design decisions

In most papers, using preattentive attributes as design elements is shown as something
implicit, something that the researcher or graph designer already knows, or some
data visualization systems handle by default. The implicit use of these attributes
revealed an essential gap between the theory and the final users’ intended use of
this knowledge. Both expert researchers and data visualization systems are able to
handle the impact of the preattentive attributes in the visual-cognitive process, but
final users use them unconsciously. In most articles, it is clear that the studies are
oriented to creating standards or understanding the attribute’s attention behavior but
do not help novice graph designers to understand the visual-cognitive impact of their
design decisions.

One of the tough challenges for researchers in this domain is to bring the im-
plications of the preattentive attribute’s visual impact to the less knowledgeable in
InfoVis design to make better and more conscious design decisions.

3.4.3 Graph designer oblivion

Although there is a significant theory about the cognitive impact of preattentive
attribute manipulation, and as we showed above, preattentive also has more than one
use in InfoVis, we noticed a gap between the theory and the needs of graph designers.
For the purposes of this research, the graph designer are those who create InfoVis
graphs daily, using any data visualization system. These graph designers come from
different areas of expertise, such as professional designers or data analysis experts.

The results show that graph designers must have extensive knowledge about the
preattentive process to understand how to use its attributes. For example, the data
visualization systems have some visual elements, like color palettes, that have solid
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preattentive visual process fundamentals [76, 77]. However, in those systems, the
visual-cognitive process is implicit, applying standard shapes or color scales without
giving insights to the graph designer on how their use can affect the graph design
objectives. Furthermore, using existing visual elements in data visualization systems
does not provide insights for a novice user in many cases. For instance, a novice
graph designer does not know how to handle visual elements to reduce the cognitive
process’s cost and maximize the observers’ cognitive productivity.

3.4.4 Preattentive prediction and Graph Design Process

In InfoVis, the preattentive measurement techniques (eye-tracking and saliency maps)
are utilized to get insights about an observer’s cognitive processes when they read a
graph. In this study, we identified that these techniques could be employed both to
measure the cognitive impact of preattentive attributes and as a measuring tool to
support graph redesign.

Within the studies, we observed many that used the preattentive concepts to
evaluate their designs or new techniques to prove their possible effectiveness and
establish design patterns [63, 66, 64, 68, 67]. However, only a few articles used the
concepts to evaluate attention and improve the design of the graph, focusing on the
overall design decisions for the whole graph instead of an individual attribute [67, 2].

Currently, some researchers are developing new methods and algorithms to
generate attention prediction maps specifically for InfoVis images [39, 38, 40].
Those algorithms are the first approaches to predicting the visual and cognitive
impact of preattentive attributes in the graph design stage. It is crucial to notice that
these developments in saliency prediction can help reduce the gap between human
vision attention knowledge and the graph design process.

3.5 Development Opportunities

Between the relevant findings exposed in section 3.4, we considered that the most
significant opportunity is to develop mechanisms to close the gap between graph
designers and human vision knowledge (observer’s attention impact) to promote
mindful design decisions.
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Extensive literature exists on how each design decision, and selection of design
elements such as color or orientation, can affect an observer’s visual and cognitive
processing. Given this vast amount of information, we consider it complex to bring
all these concepts closer to every type of graph designer. Because each preattentive
attribute can impact different levels of the graph design, and the impact also changes
if a combination of them is made (see section 3.3.1). From this standpoint, bridging
the gap between the graph designer and the impact of the preattentive attributes could
be made by preattentive measuring methods (saliency maps and eye-tracking).

In section 3.4.4, we discussed how measuring the impact of preattentive attributes
can be a promising tool for performing graph design improvements. Also, we pointed
out that according to several studies, the focus of attention on an image affects the
human cognitive process and improves the observer’s understanding of the graph.
Based on these findings, if a measurement attention method could be integrated into
a visualization system, the graph designer could know the impact that each of her
design decisions would have at the visual-cognitive level on the final observer.

However, in order to establish this bridge between saliency prediction and graph
designers, it is necessary to go deeper into the topic of saliency prediction. First, it is
essential to notice that in the literature, preattentive predicting methods are known as
Saliency Prediction. Based on our investigation, only since 2017, some researchers
have developed computational models to adapt salience prediction to InfoVis images.
For this reason, we had to conduct a deeper study of human vision prediction in
InfoVis, the models, and the algorithms that have been developed (Chapter 4).

The following two chapters will present more profound research about saliency
prediction for InfoVis. Firstly, a short description of the selected saliency prediction
models, and secondly, the description and results of an experiment to evaluate its
functionality.
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Saliency Models in InfoVis

This Chapter aims at mapping the scenario of existing saliency prediction models
approaches, how they work overall and which specific models exist for InfoVis.

4.1 Saliency Prediction Overview

For more than 40 years, researchers have been observing the behavior of human
attention in natural images. These observations were carried out in the field of
psychology since in the ’80s, when some researchers applied them to the area of
computation, creating computational models, so-called Saliency Models, to imitate
human attention.

According to Yan et al. [78], currently, those saliency models can be classified
in: Classic Visual Saliency Models and Deep Learning Visual Saliency Models.
The first group considered the psychological and psychophysical basis, the models
closer to the biological human vision process (See Fig. 4.1). And the second group,
based on trainable data sets with images and their observers’ data, generates deep
learning models implemented in a fully automatic data-driven mode to extract the
saliency regions. The following subsections briefly describe these models and the
data sets used for their creation and validation.
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Fig. 4.1 “Classical Saliency Model” taken from [79]

4.1.1 Classical Saliency Models

Classical Saliency Models term refers to all those models developed based on
psychological and neurobiological visual theories. Traditionally, based on the factors
that drive attention, these Classical Models are divided into two types of models,
namely Bottom-Up and Top-down. Bottom-up models represent the unconscious
visual process (data-driven, task-agnostic model), and Top-down models are related
to the visual-cognitive process (task-driven, task-specific model). In this section,
each of these groups of models will be briefly explained.

Bottom-Up Model

This attentional mechanism is also called exogenous, automatic, reflexive, periph-
erally cued, or stimulus-driven model [5]. This model measures how different an
element is from its neighbors [14] and tries to imitate the unconscious visual percep-
tion process. Bottom-up attention is fast, involuntary, and most likely feed-forward.
An example of this is a red spot in a green field that could be a fruit or a predator [80].
This model uses low-level features such as color, texture, size, contrast, brightness,
position, motion, orientation, and shape of objects that influence visual attention.
Also, the influence factors come from solely from the visual scene [4].
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In Bottom-up attention, the interest region must be different enough with respect
to nearby features (e.g., a horizontal bar among several vertical bars) [5]. Although
the information from each fixation influences our mental experience [14], the bottom-
up process operates without prior knowledge about the image content [81]. Because
this model is task-free, it has been more extensively developed. Task-free means
that the observer does not have to solve a specific task over the image, for example,
finding an object or the bigger bar in a chart [82].

According to Itti and Koch in et al. [83], several biological vision systems use
a sequential computational technique to analyze complex visual scenes (images).
Specific areas in the scene are chosen to be detailed depending on their behavioral
significance or local image referent points. In primates, identifying elements and
analyzing their spatial relationships typically requires fast and saccadic eye move-
ments to concentrate the retina onto the object or subtle attention shifts. This process
was described in “Feature Integration Theory” (FIT) proposed by Triesman and
Gelade [13]. According to Borji et al. [5], the basis of most Classical Saliency
Models is the FIT model.

The FIT model stated that incoming visual information is first analyzed by early
visual neurons, which are sensitive to elementary visual features of the stimulus (e.g.,
colors, orientations, etc.) [82]. This analysis is performed in parallel over the whole
visual field, using different spatial and temporal scales, and generating many cortical
feature maps (see section 2.2). Each feature map represents the saliency proportion
of a given elementary visual feature (preattentive attribute) in the visual field. Figure
4.1 shows an example of Treisman and Gelade’s human attention process.

The "Feature Integration Theory" was extended by Koch and Ullman [84]. They
proposed to create a single topographic and scalar saliency map where all feature
maps are combined. Figure 4.2 shows the latest and completed computational model
of "Feature Integration Theory" developed by Itti et al. [24]. The model will be
presented in more detail in section 4.2.2.
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Fig. 4.2 Itti, Koch and Niebur computational approach of the “"Feature Integration Theory"”
taken from [24]

The saliency model explained above is the most commonly used in the literature
mainly because it is the one that comes closest to the biological and psychological
process of human visual attention.

Top-Down Model

The Top-Down attention model, also called endogenous, voluntary, or centrally cued,
is guided by cognitive factors such as tasks, prior knowledge, or expectations [4]. In
contrast to the Bottom-Up, a cognitive task influences the visualization. For example,
if you have to find a blue object, the regions of the image that have this color will
attract your attention.

According to Healy et al. [14], the Top-Down approach is a user-driven attempt
to verify hypotheses or answer questions by "glancing" about an image, searching for
the necessary visual information. This model uses high-level features, and context-
dependent features such as faces, humans, animals, vehicles, text, and others. The
top-down preattentive model uses prior knowledge about the scene and/or about a
given task [81].
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At neural and psychophysical levels, bottom-up attention process responses in
the first 125 milliseconds and top-down response approximately 100 milliseconds
after [80]. This means that bottom-up attention could be rapidly executed because
its effects are over simple properties, while the top-down attention model requires a
cognitive process.

4.1.2 Deep Learning Saliency Models

The second and newest group of saliency models is the Deep Learning Saliency
Models (DLSM). The DLSM “are a single convolutional layer followed by a fully
connected layer trained to predict fixations” [85]. These models generalize the Itti
classical visual model (see section 4.1.1) but add feature maps linear combination.
Currently, there are more than 16 different static DLSMs whose performance is
broadly studied in [5, 85, 78, 86]. Commonly, these deep learning models added
more top-down information to predict saliency, for instance, the cognitive relevance
of each generic object in the image.

The most significant difference between these models and the Classics mentioned
above is the ability to extract higher-level features. For example, due to changes in
image scale changes, text or face features in classical models can be overlooked as
relevant objects.

According to recent studies [85, 78], The DLSM has been demonstrated that
perform markedly better than classical saliency models based on hand-crafted fea-
tures. In addition, these DLSM are pre-trained on large image datasets and with
eye-tracking or mouse click data that provides more detailed information about
vision behavior in different types of images.

4.1.3 Saliency Datasets

Both classical and deep saliency models, since their beginnings, have been validated
and trained with natural images. Natural images include cartoons, art, satellite, life,
landscapes, people, cities, line drawings, etc. The classification of these images
can vary between the existing datasets [78], for instance, MIT300, SALICON, and
CAT2000. Table 4.1 presents a summary of these datasets.
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Table 4.1 Saliency Datasets Description

Name Description Reference Method

MIT300 300 natural indoor and outdoor scenes Eye-tracking. [87]

CAT2000 4000 images from 20 different cate-
gories.

Eye-tracking [88]

SALICON 10,000 images from the Microsoft
COCO, 80 object categories

Mouse Clicks. [89]

MASSVIS Over 5000 static real-world data visual-
izations from 5 different categories.

Eye-tracking [90]

Conventionally, saliency models have been validated using an eye-tracking tech-
nique (see section 2.1). The common databases as MIT300 [87] and CAT2000 [88]
have collected fixation annotations from 39 and 24 observers, respectively. Other
datasets such as SALICON collected the attention data from mouse clicks [89], with
60 observers for each image also using a crowdsourcing platform. From an InfoVis
standpoint, one widely used is the MASSVIS database with eye fixations over 393
InfoVis images [90]. This database includes 2000 data visualization images from
government reports, infographic blogs, news media websites, and scientific journals,
of which exclusively 393 with eye-tracking data. MASSVIS collected eye-movement
data from 33 observers over 393 images and at least 16 observers for each image.

Some databases, such as SALICON and MASVISS, provide additional metadata
as contextual annotations, image categories, dimensionality, distinct colors (e.g.,
black and white), or recognizable objects (e.g., a human).

4.2 Saliency Models for InfoVis

According to Haass et al. [10], visual saliency prediction "has been a valuable tool
for studying how people process information in natural scenes". However, there is
still a lack of work demonstrating the effectiveness of saliency prediction models
with DataViz images. Therefore, this section will briefly describe the research carried
out on saliency prediction in InfoVis until now. Additionally, according to some
studies, three saliency prediction models that have the best performance with InfoVis
images will be discussed.
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4.2.1 Overview

Before going into detail about saliency prediction models in InfoVis, some of them
only for DataViz, we will briefly describe some important features that characterize
saliency models in InfoVis. Also, we will describe three selected saliency models
for InfoVis.

Natural Images vs DataViz Images

One of the essential factors in the limited use of saliency prediction models in InfoVis
is the difference between natural and InfoVis images. As explained in section 4.1.3,
most saliency prediction models are designed and validated with images of natural
scenes. However, those natural scenes have some visual characteristics that make
the attention process different. According to studies performed by Matzen et al. [10]
and Haass et al. [10] those image components are:

• "Born Digital", unlike natural images, InfoVis images are created with digital
tools, which makes it easier to isolate visual elements and even infer their
cognitive relevance (top-down).

• Small Objects, in the classical saliency models, images are scaled to generate
the feature maps (see section 4.1.1). In this process, small objects such as
glyphs, numbers, text, and separate data points are susceptible to obscuring or
smoothed.

• Color Scale, the researchers believe that human color perception changes
accordingly to how the images have been created, which means that the image
color space influences the process of the saliency prediction. For InfoVis
images, some authors proposed that the Lab scale is more perceptually uniform
than RGB for the saliency prediction.

• White Space, natural images tend to have objects everywhere that can focus
the attention in contrast to the InfoVis images that normally have large and
uniform color areas. This means that images in InfoVis are often in a unicolor
background, which can generate more contrasting areas that may generate
noise in the saliency generation.
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• Center attention, classical saliency models use a center weighting approach
(attention starts in the center of the image). However, saliency in photographs
works well because the interesting objects are usually in the center, but in
InfoVis, the relevant information emerges in any spatial location.

• Text, according to several studies [39, 40, 91, 38, 41, 42, 92, 10], text in
InfoVis images receive a significant percentage of the attention. When a human
reads a text, more time and eye fixations are required. Text in the InfoVis
graph offers extra information about the context and details about the data.
The text is an important visual element in the observer’s data understanding.
In contrast with natural images where text is rarely found, and thus it is not
included as a feature attribute in classical saliency prediction models.

InfoVis Saliency Models

As explained above, classical saliency models have traditionally been used for
natural images. Nevertheless, there are some studies where their efficiency has been
evaluated on InfoVis images.

Polatsek et al. [41] attempted to study visual attention and saliency modeling
in the context of task-based visual analysis (e.g., finding the lowest value on the
graph). They investigated the effect of top-down factors on user visual attention
by focusing on three low-level visual tasks: retrieving the value of a specific data
element, filtering data elements based on specific criteria, and locating an extreme
attribute value within a dataset. The authors collected eye-tracking data on the
MASSVIS dataset [90] using those three visual tasks and compared the results to 12
saliency models to determine their accuracy in saliency prediction. However, only
the DVS model (Matzen [38]) was explicitly designed for InfoVis images, while the
others are based on natural images. As a result, according to their findings, observers
pay special attention to data regions (i.e., data-containing components) throughout
task-based visual analysis than during exploratory visual analysis.

Furthermore, the authors discovered that in particular tasks, such as finding an
extreme attribute, the predicted attention points in statistical graphs are not always
the most prominent and that more salient data points are not always faster to notice
during task-based visual analysis [41]. Their research, however, has some limitations,
such as the utilization of a diverse range of InfoVis images. The drawback is that the
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different factors, such as the various types of graphs used in the study, might skew
the results.

Haass et al. [10] conducted a comparison analysis of three saliency models to see
how they performed over a set of InfoVis images. On the MIT Saliency Benchmark
website, the three saliency models are listed: Itti, Koch, and Nieber model [24]
(henceforth called Itti-Koch model), Boolean Map-Based Saliency (BMS) [93], and
Ensembles of Deep Networks (eDN) [94]. The authors selected MASSVIS images
for the study to validate the previously listed models. According to the findings, the
Itti-Koch model outperforms the other models. Based on the author’s observations,
the other models were created for natural scenes; however, the Itti-Koch model is
based on a human visual processing system, which is a more neutral approach.

On the other hand, Livingston et al. [42] presented a study about Perceptual and
Cognitive models used to predict saliency attention in statistical graphs (DataViz).
They are classified as Perceptual models that are related to the perspective given by
Treisman and Gelade [13]: Feature Integration Theory (see section 4.1.1). Regarding
the Cognitive models, those predicting the graph saliency based on cognitive process
depend on each visual element’s perceptual effort. For example, Elzer et al. [95]
defined perceptual effort as the time it takes to complete a task with the minimum
number of fixations, and they assigned visual-cognitive weights on each graph
element. The images on which the study was performed were those found in
MASSVIS and new graphs created by them. Similar to the previous studies, among
all the models evaluated, the perceptual models BMS and Itti and the cognitive model
DVS were the ones that obtained the best results.

These three presented studies, Haass et al. [10], Polatsek et al. [41], and Liv-
ingston et al. [42], find that the Itti-Koch model is the best predictor of salience
in InfoVis among the bottom-up models. Similarly, Polatsek et al. [41] and Liv-
ingston et al. [42] are both in agreement that the DVS Matzen model performs the
best in saliency bottom-up and top-down prediction. Finally, all of the experiments
revealed that text components are the primary center of attention in InfoVis images
(e.g., tiles, axes names).

From the studies presented above, the saliency prediction in DataViz experiments
has been mainly performed on saliency models designed for natural images. Few
researchers have addressed the problem of creating models that precisely predict
saliency for InfoVis. In our search we found three models expressly development
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Table 4.2 InfoVis Saliency Models Overview

Feature Itti-Koch Bylinskii Matzen

Development
Year

2008 (last author
update)

2017 2018

Baseline
Conception

Biologically
conceivable

Computational
Approach

Biologically
conceivable + Digital
born images behaviour.

Model
Classification

Classical Bottom-up
(sec. 4.1.1)

Deep Learning
(sec. 4.1.2)

Classical Bottom-up +
Top-down (sec. 4.1.1)

Visual Features
Channels

Color (RGB),
Intensity and
Orientation

FCN-32 standard
parameters. Color (late
fusion RGB-Depth)

Color (LAB color
space), Intensity,
Orientation and Text
location prediction

Training (Root)
Datasets(s)

Natural Images MASSVIS MASSVIS + Natural
Images

Tested Dataset(s)
(InfoVis)

MASSVIS MASSVIS MASSVIS + authors
graphs

Development
Strategy

Markov chains
(GBVS algorithm
[96])

Fully Convolutional
Networks

Modified Itti-Koch +
Text detection model

Development
Language

Matlab Python + Caffe DL
framework

Matlab

Runtime (one
graph image) ∗

Simple: 2.75s
Complex: 2.48s

Simple: 51.64s
Complex: 119.70s

Simple: 12.52s
Complex: 68.95s

∗ In the feature "Runtime", Simple means with less visual elements (e.g., legend); and Complex with
many visual elements.

for InfoVis: Matzen et al. [38], Bylinskii et al. [39] and Fosco et al. [40]. On the
one hand, the Matzen model is an integration of bottom-up and top-down models.
Moreover, the Bylinskii and Fosco algorithms, which were built using deep learning.
Specifically, Fosco et al. [40] model integrates the Bylinskii model with a new
deep-learning approach trained with a larger image dataset (called Imp1K).

As mentioned above, we found only two saliency models explicitly created for In-
foVis images on which we will perform a more in-depth analysis: Matzen et al. [38],
and Bylinskii et al. [39]. In addition, we considered the Itti-Koch model [74] for
a deeper study based on the results of different authors presented above, demon-
strating this model’s high performance in DataViz images. Finally, it is essential to
clarify that Fosco et al. [40], another InfoVis dedicated model, was excluded from
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the research for two reasons: first, it uses the Bylinskii model as a basis without
modifications; second, it is trained with a broader spectrum of images, for example,
posters and infographics. The above reasons make this model slightly distant from
our prediction objective in statistical graphs.

Table 4.2 shows an overview of the mentioned models. Itti-Koch and Matzen
models have similar bases because the Matzen model is based on Itti-Koch. However,
the Matzen model was adapted for InfoVis images and their digitally born properties.
On the other side, the Bylinskii model has a deep learning foundation, which means
it is a trained model based on real eye-tracking data. Regarding Runtime values, we
measured them in a Mac with the next characteristics: processor of 1.8 GHz Intel
Core i5 dual-core; memory with 8 GB and 1600 MHz DDR3; and a graphics card
Intel HD Graphics 6000 1536 MB.

The following sections describe how the three models work and their developed
characteristics.

4.2.2 Itti-Koch (Classical Bottom-up Model)

The model proposed by Itti et al. [24] is biologically-inspired and the closest develop-
ment to the Treisman and Gelade visual perception model (see section 4.1.1). Fig. 4.2
shows the complete process proposed by Itti-Koch. In addition, Table 4.3 presents
an example for each feature channel, Color, Intensity, and Orientation, the resulting
conspicuity maps (saliency map for feature channel), and the final Saliency map
(base and blur image).

In this model, an input image is deconstructed into a series of multiscale neural
"feature maps" that locate spatial discontinuities in the features of color, intensity, and
orientation. Each feature map contains non-linear spatially competitive dynamics,
which means that the activity of surrounding neurons influences the response of a
neuron at a particular point in the map. The next target is determined by competition
among neurons in this map, which results in a single winning region correlating to
the most salient object. This model could be described in three main steps [86]:
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Table 4.3 Itti-Koch Feature Maps examples.

Input Image

(A) Feature Maps

Color (red) Intensity Orientation (0o)

(B) Conspicuity Maps

Color
(for all RGB channels)

Intensity Orientation
(for all grades channels)

(C) Saliency Map
(sum of Conspicuity Maps)
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• Extract Visual Features (Feature Maps). The basic visual feature used
in most of the FIT base models are [82]: Color, Intensity and Orientation.
However, the research presented by Wolfe and Horowitz [97] demonstrated
that also motion and size are undoubtedly basic features. The saliency models
based on FIT currently consider several visual features by adding impact
weight to the whole attention process. This weight is defined by each saliency
model based on different eye-tracking experiments [4].

In this step, the locations that stand out from their surrounding are detected
for each visual feature. This process is executed in parallel, as in the human
vision process. In addition, from a biological perspective, the saliency models
detect those stand-out locations on several scales by changing the image size
ratio between the center and surrounding regions [24]. As a result of this step,
a considerable number of feature maps are generated for each feature. Those
feature maps are commonly represented as gray-scale images, in which the
brightness of a pixel is proportional to its saliency.

An example of this process is presented in Table 4.3.(A). The first column
represents the feature maps resulting in the Color Red channel. Other feature
maps can be generated for the rest of the RGB (red, green, and blue) scale.
The second column shows the Intensity feature maps. Finally, the last one is
Orientation in 0o from 0o, 45o, 90o, and 135o that are evaluated in this channel.
The number of maps generated is determined by each model. For instance,
Itti-Koch’s model algorithm (GBVS version [96]) generates 12 maps for color,
4 for intensity and 16 for orientation channels.

• Compute Individual Feature Maps (Conspicuity Maps). In this step, the
feature maps are summed up in independent saliency maps (for each feature),
called conspicuity maps. According to Zhao and Koch [86], this step uses
biologically plausible filters such as Gabor or Difference of Gaussian filters
or more sophisticated methods. Some examples are the use of [86]: Bayesian
statistics, discriminant center-surround hypothesis, entropy minimization algo-
rithm to select fixations, stochastic models, and the Bernoulli mixture model.

Firstly, over each feature map is applied a weighting function to determine the
uniqueness of features. For instance, if the feature map has only a single bright
region, this is a unique feature, and its weight is the highest. On the other side,
if the feature map has several bright regions, its weight is lower. Then, each
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conspicuity map is normalized to prevent one of them has more feature maps
than the others. The normalization phase could be made by simple normalized
summation, linear combination with learned weights, and global non-linear
normalization followed by summation or linear competition between saliency
locations [98]. In the last phase, the sum-up was made using the methods
mentioned above, using the resulting conspicuity maps. Table 4.3.(B) presents
an example of the resulted conspicuity normalize map for each channel.

• Integrate Feature Maps (Saliency Map): The last step is the creation of the
saliency map. The resulting conspicuity maps are fused in a single attention
topographic map. Based on the model presented in Fig. 4.2, a Linear Com-
bination has been performed to sum up the conspicuity maps. According to
Itti et al. [24], the linear combination compares “the maximum activity in the
entire map to the average overall activation measures how different the most
active location is from the average. When this difference is large, the most
active location stands out, and the map is strongly promoted”. Then, as in the
biological synaptic interactions, a winner-take-all is performed, which means
that the most active locations remain, and the others are suppressed. Table
4.3.(C) shows the resulting Saliency map and its blur version visualization,
which highlights better focal points.

Table 4.3 presents an example of how this saliency model works. First (A),
the input image is discomposed based on three selected features (Color, Intensity,
and Contrast). Then, a conspicuity map for each feature is generated, showing the
regions where each feature "wins" the saliency (B). Finally, those conspicuity maps
are combined, and the most relevant areas are selected and represented in a saliency
map (C). As shown in Table 4.3, the resulting saliency map takes the most saliency
locations from each feature and represents them in one map.

The resulted presented in Table 4.3 come from Graph-Based Visual Saliency
(GBVS) algorithm [96]. The GBVS algorithm uses a Markovian approach to calcu-
late its saliency maps [99]. The first step in this algorithm is to break up the input
image into the three feature channels explained before. In this research, grayscale
images have been taken as the input image in which intensity, size, and positional
proximity among the faces are considered as the main parameters to estimate the
saliency score.
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Orientation is calculated by using the Gabor filter at 0, 45, 90, and 135 degrees.
Intensity is the grey-scale version of the image calculated by eliminating the hue and
saturation information while retaining the luminance with the following equation:
0.2989∗R+0.5870∗G+0.1140∗B, where R, G, and B and the red, green and blue
color channels respectively [99]. Colour is treated as two channels: Blue-Yellow
(calculated asabs(B−min(R,G)), and Red-Green (calculated abs(R−G)). Salient
regions are then located in each of these channels by computing:

d((i, j)||(p,q)) = log
M(i, j)
M(p,q)

(4.1)

where d((i, j)||(p,q)) represents the connection between pixels, M(i, j) is the value
of the pixel (i, j) in the feature map M (i.e., in the feature channels of color, intensity,
or orientation). The next step is to connect each node (also known as a point or
a vertex, which in this context represents a pixel) to every other node in each M,
resulting in a completely connected graph. A Markov chain is then created. The
system is memoryless and simply considers its present state and no prior state
sequences when determining its next state [99]. Nodes are handled as states, and
edge weights are treated as transition probabilities in the GBVS specified Markov
chains. Higher values are obtained for nodes that differ more from those around them.
This is because it is more likely to transition into subgraphs with lower similarity
measures [99].

The saliency map’s final result is obtained by linearly pooling each equilibrium
distribution. The individual nodes in the GBVS algorithm behave similarly to the
neurons in the visual cortex, communicating networked to identify regions of interest.
Additionally, each node or region can do all calculations concurrently.

4.2.3 Bylinskii (Deep Learning Model)

Bylinskii et al. [39] developed two automated models that predict the relative impor-
tance of different elements in data visualizations and graphic designs. Due to the
nature of the images, we will focus only on the model’s description for DataViz im-
ages. The model is a neural network that was trained on several designs using human
clicks and significance annotations. The authors investigated the model predictions
in terms of ground truth importance and human eye movements using a novel dataset
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of crowdsourced relevance [100]. Researchers show how such relevance predictions
may automatically be utilized for design retargeting and thumbnailing.

Fig. 4.3 Bylinskii Deep Learning Saliency Prediction. Image taken from [39]

The authors use the concept “importance” as a generic term to characterize
the perceived relative weighting of design aspects. Image saliency is a form of
importance that has been examined extensively. Traditional ideas of saliency, on
the other hand, are based on bottom-up, pop-out effects. In contrast, Bylinskii et al.
notion of importance is based on higher-level features such as the semantic categories
of design components (e.g., title text, axis text, data points).

Bylinskii et al. model architecture is based on fully convolutional networks for
semantic segmentation (FCNs), which are similar to some of the best-performing
saliency models for natural images [101]. A directed acyclic graph of linear (e.g.,
convolution) and nonlinear (e.g., max pool, ReLU) operations over the pixel grid
and a set of parameters for the operations are used to define FCNs. The network
parameters are tuned using a loss function given a labeled training dataset. For this
model, the authors used an FCN-32s for DataViz images. The Fig. 4.4 presents an
example of how FCN32 deep learning works.

The model was parameterized according to the authors, as follows:

• The FCN-32s network was initialized with a base learning rate (lr) of 10e−5,
scaled by a factor of 0.1 every 20K iterations. A larger learning rate makes
the algorithm take giant steps down the slope, and it might jump across the
minimum point, thereby missing it. Also, these parameters show that the
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Fig. 4.4 FNC32 deep learning model used by Bylinskii saliency model. The image was taken
from [1]

model must scale the image to move between epochs since it is an extensive
deep learning network.

• With a momentum of 0.9 and a weight decay of 0.0005, a stochastic gradient
descent solver was employed and run for 100K iterations. These parameters are
used to modify the network’s configuration after each training point in an effort
to find the global minimum that minimizes the loss function. Regarding the
momentum values, the model makes use of the standard value for momentum
seen in many well-liked deep learning libraries.

• The model learning rate schedule was similar to the one used for semantic
segmentation.

Regarding the data collection for the model, Bylinskii et al. used part of the
MASSVIS dataset [90], and BubbleView interface [100]. In BubbleView, the ob-
server sees a blurry image and therefore has to click on different segments of it to
reveal small regions of the image, or bubbles, at full resolution. Initial investigations
by Kim et al. [100] revealed a strong link between lab-based eye fixations and
crowdsourced BubbleView click data. From the MASSVISS dataset, the authors
took the eye movement data for testing their importance model predictions.

Some of the higher-level patterns in ground truth human annotations were cap-
tured by this model. For example, the model may learn to localize titles and appro-
priately weigh the relative importance of critical design components across a broad
set of visualizations and designs. It is noteworthy to mention that this Bylinskii et al.
model does not explicitly include aesthetics or design heuristics, instead focusing on
simulating the behavior of the observer’s attention on the content [40].
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The Bylinskii model was not trained on systematic design variations, such as
changes in font, text size, or element locations [39]. Nevertheless, its authors claim
that the model can correctly assign relative importance values to different design
elements as they are moved around and resized.

4.2.4 Matzen (Classical Bottom-up and Top-Down Model)

Top-down attention is extremely task- and situation-dependent in natural contexts,
making it challenging to represent in any generic method. As a result, most extant
saliency models exclusively include bottom-up attention. However, in DataViz,
Matzen et al. [38] model integrates both classical Bottom-up and Top-Down ap-
proaches.

Matzen et al. in [91] presented a study where they demonstrated that high-level
features such as text must be considered to perform a reliable saliency prediction
model for DataViz. In addition, the authors suggest that the explanation for the
poor performance of classical saliency models in InfoVis (see section 4.2.1) is that
the spatial scales and visual features utilized by the classical saliency models are
insufficient for DataViz images. The above statement is linked to the differences
between a natural image and a DataViz image, described in section 4.2.1.

Based on these statements, high-level features, and DataViz image specifications,
Matzen et al. [38] proposed the Data Visualization Saliency model (DVS). DVS
model has two main components: a modify Itti-Koch bottom-up classical model
(explained in section 4.2.2), and a text recognition algorithm as top-down high-level
component.
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Table 4.4 Matzen’s Feature, Conspicuity, Saliency and Text Maps examples

Input Image

(A) Feature Maps

Color (CIO Lab) Intensity Orientation (90o) Text

(B) Conspicuity Maps

Color
(all CIO Lab channels)

Intensity Orientation
(all position grades)

Text

(C) Saliency Map
(sum of Conspicuity Maps)
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The first DVS model component is a modified Itti-Koch model. Specifically, the
DVS changed the channels used for color features. The original Itti-Koch model
utilizes an essential color opponency representation based on RGB values. The
DVS model adjusted the original technique by converting the representation of
the input images into CIE Lab color space to resemble human visual perception
better. Matzen et al. [38] claimed that the current saliency models often assigned
low saliency values to bright and red regions, causing a more considerable difference
with the human fixations map (e.g., eye-tracking data). In color theory, the CIE Lab
scale reduces, as possible, the perceived difference between colors, bringing the
color scale closer to an "organismal color perception" [102], which means that the
CIE Lab model has the benefit of being perceptually consistent. As a result, values
from feature maps computed over several color space channels can be meaningfully
contrasted with one another [38].

The second DVS model component is a Text Recognition model. This integration
was proposed because the images in classical Bottom-up models are resized in
several scales, which might lead to the loss of small features. In particular, DataViz
images have small objects that are susceptible to being smoothed in this process,
including text elements. Furthermore, most of the saliency studies in InfoVis state
that observers devote a great deal of attention to the text, which is not featured in
existing saliency models. To resolve these problems, DVS integrated a text saliency
model into the modified Itti model described above. Thus, the Matzen model has a
Top-down approach because the observer considers the text a container of meaningful
information (see Section 4.1.1).

Regarding the text saliency model, DVS employed a typical strategy in the text
detection literature: extract the Maximally Stable Extremal Areas (MSER) that candi-
date text regions and then filter out non-text candidates using different text-diagnostic
traits. Then a filter is performed to exclude non-text regions. Following the previous
filtering, the remaining MSER areas were more likely to be letters or numbers. DVS
generated three text-diagnostic edge features upon those remaining MSER areas to
assess this probability using three text-diagnostic edge features: following a highly
uniform background, capturing a specific topological characteristic of text, and the
number of crossings between a vertical or horizontal scan line and the text edges is
often an even number. In part A, Table 4.4 shows an example of the text detection
model.



4.3 Discussion 53

The integration of the two Matzen model main components, the modified Itti-
Koch model and the text detection, is performed employing a linear combination.
The formal equation is [38]:

s = (I +w∗T )/(1+w) (4.2)

where I is the saliency result of the Itti-Koch modified model and T is the text saliency
map. The parameter w defines the relative weight between I and T. The denominator,
(1 + w), provides a weighted average to preserve the saliency scaling from 0 to 1
intact. The w value was defined by performing a systematical manipulation of I
and T and comparing the resulting saliency maps with MASSVIS eye-tracking data
(see Table 4.1). The authors chose to use a weight of 2 because it was the value in
which the performance metrics approached an asymptotic limit (continuous variable
tending to 2).

Table 4.4 presents an example of the Matzen model process. In part (A), it is
possible to see how visible are the graph details until the last image scale (with CIO
Lab channels), compared with the classical Itti-Koch RGB color channels approach
(see Table 4.3). In addition, in part (A), Matzen added the text detection model,
making the graph text parts visible. Then, part (B) shows the summed maps with
bases of the Itti-Koch model (conspicuity maps). Finally, as explained before, the
four conspicuity maps are combined by linear combination.

4.3 Discussion

This section gives an overview of saliency models to contextualize how the compu-
tational prediction of human visual attention is performed. In addition, we further
elaborated on current work on saliency prediction in InfoViz images.

One of the most important aspects was the difference between natural and InfoVis
images. These differences were explicitly focused on features such as color scale,
large empty spaces, and the importance of the text as an attention-getting element.
In addition, we found that only two saliency models, one classical and one deep
learning, have been built or adapted for InfoVis images: Bylinskii and Matzen.
However, according to several authors, classical models such as the one developed
by Itti-Koch also maintain acceptable performance.
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Based on the study presented in this chapter, the behavior of these models left us
with some concerns:

• Bylinskii and Matzen’s models use the same dataset to train and calibrate
their models, MASSVIS, which means the image categories in that dataset
could limit them. On the other hand, the Itti-Koch model has been validated
only with the same dataset, limiting the knowledge about its performance in
different graphs.

• MASSVIS is a set of InfoVis images, from simple bar charts through scat-
terplots and maps to infographics. This image variety can be a disadvantage
for the models because they are too generic, and these images often contain
descriptive titles, annotations, logos, and text, noting the data source.

• In general, InfoVis images have other features such as orientation (vertical or
horizontal) or the position of data-containing elements (e.g., bar in a bar chart),
which could influence the focus points in an image.

• A common factor in all models described in this section is a tendency to devote
most of the attention to the text, a relevant feature in the observer’s cognitive
process. However, we considered that an imbalance compared to the attention
given to data-containing components.

Finally, the authors cited in this section highlight the importance and usefulness
of these saliency models in the graph design process. However, in order to use any
of these algorithms as a design support tool, we had to perform a validation of the
performance of each of the models explained, considering the questions listed above.
In the next chapter, we present the process and results of that analysis.



Chapter 5

InfoVis Saliency Prediction Models
Validation

In the previous chapter, we described three saliency models developed or validated
expressly for InfoVis: Itti-Koch model [74], which is based on a human visual
processing system and uses a bottom-up approach; Bylinskii model [39], which is a
neural model trained with real-world InfoVis images and has a top-down approach;
and Matzen model [38], which combines a modified Itti-Koch (bottom-up) model
with a text saliency model (top-down).

Although some authors have already performed validations on these models, we
had four concerns about the models’ behavior (see section 4.3):

1. These models have a remarkable performance because they can detect the
image’s text areas, which usually get most of the observer’s attention. However,
we want to verify whether there is a significant imbalance in the attention
given to data-containing components (e.g., bars, lines).

2. According to our research, these models use the MASSVISS dataset (see
section 4.2.1) to be trained and evaluated. However, using the same dataset
to create and validate the models could make the predictions tailored without
differentiating the characteristics of the visualization technique.

3. Related to the previous doubt, the MASSVIS dataset images often contain sev-
eral context elements (e.g., logos, legends, annotations). Such context elements
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generate additional information but do not represent the data, constraining the
model’s performance.

4. We identified that some representative InfoVis visual elements, such as orien-
tation and position, are not considered in developing InfoVis saliency models.

The above questions suggested that the models should be evaluated in a different
scenario to check possible biases due to the training effect. In addition, it is important
to observe their behavior when varying some visual elements, particularly the text.
To resolve the previous InfoVis saliency models behavior questions, we performed
a set of validation experiments employing a ground truth collected data from an
eye-tracking device. Fig. 5.1 shows the three performed experiments.

It is essential to clarify the fact that our experiments, as in the definition of
the saliency models for InfoVis, use Exploratory Visual Analysis as a base task.
As explained by Polatsek et al. [41], within the taxonomy of tasks related to data
visualization, saliency models are developed within the exploratory analysis task. In
this low-level task, the observer formulates a hypothesis about the data, which means
that the observer will observe it without having any specific task set in advance, such
as looking for the highest or the lowest value.

For the experiment, we plan to analyze and evaluate the selected models in two
scenarios: Saliency Models on MASSVIS dataset and Saliency Models and Clean
Graph. In the first experiment, Saliency Models on MASSVIS, we wanted to confirm
the performance of these models with the frequently used dataset. In addition, we
sought to analyze in more detail how the models behaved by predicting the graph
saliency. That is, how saliency is predicted in visual elements such as bars or lines
representing the data. Besides, we made a Crop Analysis to analyze the model’s
behavior when applied to data-containing elements.

For the second experiment Saliency Models and Clean Graph, we constructed
a set of Clean Graph that are statistical graphs without context elements (e.g., logos,
background images) and with text element variations. Next, we built saliency maps
for each clean graph with each saliency model (Itti-Koch, Bylinskii, and Matzen).
We also used an eye-tracking technique to acquire clean graphs of gaze data from
62 persons as ground truth. As the last step, we used three well-known saliency
measures to compare the saliency maps obtained on each graph to the ground truth
(CC, NSS, and AUC-Borji).
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Fig. 5.1 Validation Experiments Process Overview
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Because we found some shortcomings in the prediction of saliency in the second
experiment, we conducted a third experiment (see Fig. 5.1): Saliency Models and
data-containing elements. From this experiment, we could only extract some
insights into the attention behavior in the data-containing elements (e.g., bars in a
bar chart). The objective was to delve into the behavior of attention in the graph
without textual elements. For this third experiment, we constructed a new set of
clean graphs without textual elements and variations in color, orientation, and data-
contained elements size. Experimental data were collected from 22 observers using
the eye-tracking technique.

The following sections will present the experiments’ inputs (graphs), valuation
criterion (metrics), procedure, results, and insights. In addition, Appendix A has
the link, and the folder description, to access the images and data resulting from the
three experiments presented in this section.

5.1 Clean Graphs

As we stated previously, one of the shortcomings in the development and evaluation
of the models was the exclusive use of the images provided by the MASSVIS dataset.
For this reason, we produced a set of 30 statistical graph pictures named “Clean
Graphs” (Fig. 5.2). These graphs were intended to avoid several design distractors
that might cause saliency miscues in important visual components. Many of the
images in the MASSVIS dataset have distracting feature elements such as logos,
background images, captions explaining the data, double or combined graphs (such
as bar charts and line charts), 3D graphs, and context shots (such as animal pictures).
Furthermore, we could use the Clean Graphs to exhibit the same data set with
alternative combinations of visual components. In this sense, we will know how
accurate the saliency models were when some common visual elements were omitted
or changed their placements.

The data visualization technique that we selected was bar charts. Bar charts
were chosen as the principal graph because they are essential and widely used. Also,
it is the most searched graph technique on Google and the most popular way to
portray quantitative data, according to Visualization Universe [103], which analyses
over 10,000 data points on data visualization-related queries. Furthermore, the bar
graph is more adaptable than other graph techniques since it may modify some
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design aspects without altering their statistical nature. For instance, the bar positions
can be reordered if the data is not tied to timelines.

We used the Coronavirus (COVID-19) data-set [104] to create the Clean
Graphs. We showed the six nations with the highest casualties (USA, Brazil, India,
Mexico, UK, and Italy) against the number of deaths at the time using data from
COVID-19 Deaths Worldwide (293.439, 178.184, 141.398, 110.874, 62.033, and
61.240, respectively). This dataset was chosen because it produces a graph with a lot
of variance among the subsets (i.e., each country).

Fig. 5.2 Visual elements variations. The numbers in blue circles represent the amount of
images that have that visual element characteristics.

In terms of visual elements variations, we varied whether or not the graphs
featured the following textual elements: title, axis titles, axis labels, and data-
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containing elements labels. The Baseline was a white graph with no textual content.
Then, as a common textual element, we added the Axis Labels since it is essential
text information that every graph should have. Finally, we added the Title, Values,
and Axis Titles to the remaining images independently. Figure 5.2 shows, on the
right, an example for each variation made with and without textual elements.

We also included three variables that according to Itti et al. [24] are essential in
determining saliency: color, position, and orientation. We employed three common
color palettes (qualitative, divergent, and sequential) that varied in tonality (pastel
and dark). We changed the color palettes to observe how the color degree affected the
saliency forecast of the selected models. Since these models have a strong tendency
to emphasize texts, they tend to overlook essential concepts of attention, such as
the colors of an image. A sequential palette is used in 40% of the photos, while a
category palette is used in another 40%. Finally, a divergent palette is used in 20%
of the graphs since it is comparable to the sequential but has two colors as bounds.
In Figure 5.9, b is an example of a sequential palette, c is a qualitative palette, and f
is a divergent color.

Regarding the position variable, we shifted the data-containing elements to
different locations (Big bar center, sorted or unsorted). Figure 5.2 shows an example
of each position variation. It is clear that this cannot be done with all graphs, such as
those depicting a time scale. However, we wanted to see if the saliency map differed
depending on the size of the data-contained element. For instance, its position among
the other bars determines the saliency of the bar representing the smaller data.

Lastly, we modified the graph’s orientation from vertical to horizontal. This last
variable was introduced since prior research revealed that there is a minor shift in
saliency and reduced dispersion when the graph is rotated. Half of the images in the
sample are vertical, and the other half are horizontal. Figure 5.2 shows an example
of each orientation variation, horizontal and vertical.

It is important to note that by including these controlled variables, we are merely
trying to check if the models are still accurate after all of these modifications or if
they have no effect on the saliency prediction (see Fig. 5.2). For each Visual Element
Variation, the clean graph can alter in numerous ways (Features).

Based on the variations described in Fig. 5.2, we sampled the 30 Clean Graphs
utilized in the trials from a total of 120 potential variants. The number of graphs for
each variation is shown in the blue circles in Fig. 5.2. For instance, 15 images have
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a horizontal orientation, six images have diverging color palettes, 12 images have
sorted bar positions, and so on.

5.2 Saliency Metrics Validation

The MIT Saliency Benchmark project [105] is frequently used as a benchmark for
evaluating saliency models. This project is an online source of saliency model
performances and data sets. They score and summarize results for the most recent
saliency models and maintain an up-to-date listing of other saliency data sets. The
MIT Saliency Benchmark project uses measures that have been widely utilized to
assess and compare salience algorithms to a set of known fixations. These metrics are
classified as location-based (discrete fixation sites), distribution-based (continuous
fixation map), and Value-Based Metrics, according to Bylinskii et al. [106] (average
normalized saliency at fixated locations). In our research, we used three measures,
one for each category.

A binary classifier assesses saliency maps in location-based metrics to see which
pixels are fixated or not. As a consequence, the saliency map is used as a binary clas-
sifier to split the positive and negative point sets at different thresholds, and the area
under the ROC (Receiver-Operating Characteristics) curve (AUC) is calculated [10].
The AUC statistic ranges from 0.0 to 1.0, with one being the most outstanding value
and indicating that the saliency prediction is as near to human fixation as feasible.
This statistic comes in three variants: AUC-Judd, AUC-Borji, and scrambled AUC
(sAUC). The AUC measure, specifically the AUC-Borji, was chosen for this category
because, according to Polatsek et al. [41], it is “historically the most commonly-used
metric for saliency evaluation”.

Regarding distribution-based classification, these metrics look at the distribution
of fixations rather than the “binary” fixation positions. These metrics are the Similar-
ity Metric (SIM), Earth Mover’s Distance (EMD), Pearson’s Correlation Coefficient
(CC), and Kullback-Leibler divergence (KL). The CC metric was used for this cate-
gory. This metric “measures the euclidean distance between the predicted saliency
map and the normalized empirical saliency map” [43]. Unlike other measures like
KL, which penalizes misdetections heavily, the CC metric handles false positives
and false negatives evenly [106]. Furthermore, the CC metric scale is between −1.0
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and 1.0, suggesting that the connection between the saliency map and the empirical
saliency map is described by a linear equation (heat map).

Only the Normalized Scanpath Saliency (NSS) metric is included in the last
category, Value-Based metric. NSS metric “first standardizes saliency values to have
zero mean and unit standard deviation, then computes the average saliency value at
human fixation locations” [10]. As a result, a higher NSS indicates a better match
between fixation locations and saliency predictions. The NSS score might be higher
than one, depending on the distribution of fixations.

According to the literature, AUC, CC, and NSS measures are strongly recom-
mended for saliency evaluation (e.g., [106, 41]). The CC measure allows us to assess
how accurate the saliency map is in the heat map’s most focused points in a balanced
manner. On the other hand, the NSS measure helps evaluate relative significance in
areas since it considers the distribution and order of fixations (scanpath). Finally,
because the AUC metric evaluates the saliency of the entire image, it provides a more
comprehensive assessment of the number of right points predicted by each model.

5.3 Experiments Methodology

5.3.1 MASSVIS validation

MASSVIS is a dataset composed of InfoVis images and consists of 393 images
shown for 10 seconds each to 33 observers whose eye movements were tracked [90].
At least 16 observers viewed each image. Four examples of what MASSVIS contains
are shown in Fig. 5.1 (first experiment). Of the 393 images present, we chose 110
with statistical graphs like bar charts or line charts. Because of their simplicity, we
decided to make this filter and only measure with statistical graphs. This simplicity
leaves us free of context images or logos, which can distract from the essentials
of the graph. Additionally, we could also compare them with the behavior of the
models in the case of clean graphs (see section 5.2).

In the validation using the MASSVIS images data set, each image was analyzed
using two different approaches considering the initial saliency perceptions. The first
approach was to make an analysis on the complete image with which we validated
the effectiveness of the models shown in different studies. In the second, we make
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an image crop, looking only at the data-containing elements zone (the ones that
actually represent the data).

For the experiment with the complete image, we took the statistical images
extracted from MASVISS and generated the saliency maps with the three selected
models. With these saliency map data, we could compare these models’ behavior.
To carry up this comparison (both graphically and numerically), we employed the
saliency metrics described in section 5.2 by using the original Matlab code provided
by MIT [105]. Considering that these saliency maps shown by all the models were
consistent with the results shown by their researchers [10, 38, 42], we decided to
perform a more detailed experiment on data zones (Crop validation approach).

The results of the previous experiment had not yet yielded any novel discoveries.
Due to these results, we decided to perform a second one detailing the saliency
more in-depth. The last experiment was to crop the graph on the data-contained
zone and generated the saliency map with the three models. This experiment’s main
objective was to evaluate the accuracy of the saliency model over the graph without
the title and other context elements. Based on studies on the saliency in InfoVis, it is
clear that text elements within statistical images have a high impact [38–40]. As a
result, some models use text detection algorithms to move the image’s saliency to
text elements.

However, as we stated before, our goal is to focus the saliency study on the
representation of data that may be more cognitively meaningful to the observer.
Specifically, for this experiment, we wanted to know how the three models perform
compared to the observers’ valid fixation points after cropping the image and exclud-
ing part of the text. We started the test with a sample of 11 images of MASSVIS.
The images were cropped to exclude some of the text areas. A few images were also
cut several times due to their composition and number of data elements. After the
cuts had been made, the same analyses were repeated as the other two MASSVIS
experiment approaches.

The data collected in this first scenario was consistent with prior evidence [38–
40]. However, we observed that the models presented difficulties predicting saliency
when removing the titles and others’ attention-attracting elements. Therefore, we
performed a new experiment with our eye-tracking data in the following scenario to
obtain better evidence of the models’ behavior in statistical images with and without
attention-attracting elements.
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5.3.2 Clean Graph Validation

Saliency prediction studies have shown that most attention is focused on textual
elements, such as titles or axis names, as described in section 4.2. As a result,
the saliency models have been modified to emphasize primarily textual elements.
However, these models have also been trained and tested using real-world InfoVis
images, so they have a lot of distractions. We aim to see how effectively current
saliency models predict attention without those distractions and modify other design
elements (textual elements, color, and location).

As a method to validate the saliency model’s efficiency, we decided to perform an
experiment using Eye-tracking. According to the studies presented in section 4.2.1,
the saliency maps can be compared with the eye-tracking data through several
metrics.

The first step was to collect the eye-tracking data from the 30 clean graphs. We
had a total of 62 observers with the following characteristics: There were 57 men
and five women; 51 aged between 14 and 18, 3 aged between 24 and 30, and 8
aged between 45 and 50. The Tobii Pro Nano model eye-tracker was employed in
the investigation. This device is a USB-connected portable eye-tracker that records
gaze data at 60 frames per second and is intended for fixation-based investigations.
The information gathered from these images will be utilized to create the Ground
Truth. Fig. 5.3 shows an eye-tracking process overview, the general data about the
experiment variables, and the process developed for collecting the gaze data.

The experiment was carried out using the open OpenSesame [107] program.
OpenSesame is block-based visual programming to conduct eye-tracking and psy-
chological experiments. In appendix C, we report the program development overview,
the main screens, and the process flow. The process developed in OpenSesame for
the eye-tracking data collection followed the below steps (see Fig. 5.3):

1. Each observer was first placed in front of the computer to which the eye-tracker
was connected.

2. The eye-tracker was then calibrated on the observer, adjusting the distance and
height in relation to the screen. To make this calibration, the screen shows five
points, intermittent, one for each corner and the center of the screen.
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Fig. 5.3 Eye-Tracking main data and collection process for Clean Graphs experiment. The
icons used in the process flow come from the OpenSesame program used to implement the
process

3. The observer starts the experiment, pressing any key to start and then focalizing
their attention in the center of the screen. At this point, the program executes a
drift correction which establishes the Eye-tracker at the center of the screen
(x=0, y=0).

4. The experiment began with each observer viewing each of the 30 graphs in the
dataset for 5 seconds in random order, separated by a black screen. It should
be noticed that between each image, a keyboard push was required, to allow
spectators to move their gaze to the screen center. In this step, the program
records the eye-tracker data and generates a text file containing the gaze point
data required for each observer’s analysis. Regarding the time selected for
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eye-tracking data collection (5 seconds), is important to mention that we kept
the parameters used by the model’s authors [74, 39, 38] and state-of-the-art
authors [41, 10, 42, 91, 106, 92].

5. As the last step, the data were cleaned to remove any irrelevant or unhelpful
information before entering into the Matlab algorithm to generate the heat
maps.

In parallel, to compare the Ground Truth and prediction models, saliency maps
were generated on the same 30 Clean Graphs using the Itti-Koch, Bylinskii, and
Matzen models. For the Itti-Koch model, as explained in section 4.2.2, the GBVS
algorithm is commonly used and with the best perfomance [105]. For Bylinsky and
Matzen models algorithms, we used the code provided by the authors (deep learning
model and Matlab code, respectively).

Finally, we use the available saliency metrics algorithms (AUC-Borji, CC, and
NSS) to compare the collected eye-tracking data and the generated saliency maps.

5.3.3 Data-Containing Elements

The last experiment was carried out as a deepening of the second experiment, consid-
ering some results such as the behavior of the salience in different graphs (see Fig. 5.1
third experiment).

Considering the relevance of the text in the attention in the graphs, we also
wanted to deepen the behavior of the attention only on the elements that represent
the data in the graph. This experiment is similar to the crop analysis performed
in the first experiment (MASSVIS experiment). However, the crop analysis had a
weakness in that the fixations points data had been collected in conjunction with
all the textual elements, which meant that we were comparing with late attention
to the data-containing elements. Additionally, as demonstrated by Polanski et al.
[41], to generate a saliency model adapted to the InfoVis images characteristics, it is
necessary to perform other analyses of the non-textual element’s attention relevance.
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Fig. 5.4 Data-Contained Elements experiment general data. The numbers rounded by a blue
circle represent the number of images for each visual element variation.

The process of this experiment is the same as performed in the second experiment
with the clean graph. First, we built a second set of statistical images and carried up
a gaze point collection with an eye-tracker. With the information given by the eye
tracker, we analyzed the attention behavior in the data-containing elements and thus
established some possible insights.

Figure 5.4 presents the initial data for the eye-tracking process. About the
observers, we had 23 observers with the following characteristics: 13 males and 10
females, all aged between 21 and 24. Each observer looked at the images for five (5)
seconds, continuing with the parameters used in the previous experiment. Also, the
observer task was “explorative,” which means the observer only has to examine the
graph.

About the graph visual elements variations (see Fig. 5.4). We eliminated all
textual elements for this experiment in a new Clean Graph image set. We kept the
variations in the color palettes, adding only a black palette in order to analyze if there
was any change in the fixations in the absence of color variations. We also kept the
change in orientation. Compared to the first clean graphs set, we did not consider
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the bars’ position for this experiment. Since a more detailed experiment with more
systematic variations is necessary to distinguish the impact.

On the other hand, we added the bar size variable using two different data sets.
This variation would allow us to observe whether the difference between the heights
of the bars generated a change in saliency. As is shown in Fig. 5.4, we use Colombia
and Latinoamerica data about the number of deaths due to Covid-19. The Colombia
data set has a pronounced difference in the number of deaths in its regions. The other
dataset, Latinoamerica data, has more similar values, therefore, the bars have a less
pronounced difference.

The experiment was executed as the previous one (see Fig. 5.3.Eye-Tracking
Experiment). The only variation was in the transition between images because we
eliminated the keyboard press as a transition. Instead, we added a visual control, the
user had to look at a dot in the center of the screen, and when the program detected
that the observer was looking at it, it moved to the following image. This control
made the experiment go a little faster and did not exhaust the observer as much.

Overall, this experiment firstly demonstrated our hypothesis about the change
in saliency when no text is present in the other important elements. Secondly, we
observed several attention behaviors repeated between images, which can be taken
as a baseline for improving InfoVis saliency models.

5.3.4 Experiments Limitations

Our study has shown some unknown aspects of visual attention behavior on data-
containing elements in graphs. However, the study had some limitations. The first
limitation is the age range of the observers. Approximately 87% of the observers
were between the ages of 14 and 22. This age range is a reasonably young sample.
However, like MASSVIS creators, we consider our observers to be categorized as
novices because of their inexperience in understanding or reading graphs. Another
experiment would have to be conducted with expert observers to verify if this
influences in any way the attention on the graphs.

Second, we are aware of the sample in terms of the quantity and gender of the
observers. Nevertheless, given the period of health emergency during these months,
it was impossible to collect a set of observers with more uniform characteristics,
even if we are not aware of any gender or age effects over saliency. However, we
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are unaware that these characteristics can affect the outcome of the experiments.
Therefore, the variables of age, gender, and InfoVis experience are not considered
for this study.

The third limitation is associated with the possible emotional reaction to the
data presented. Although for both sets of graphs, we used updated pandemic data
generated by COVID, only in the first set of images were the names of the countries
and the numbers of deaths in each visible. However, all the observers were Italian,
and even so, the bar representing Italy did not get much attention. The texts, in
general, were more critical. In addition, the observers performed an exploratory task,
indicating that there was no specific task that cognitively biased them toward specific
data.

5.4 MASSVIS experiments results

The results of generating saliency maps with the three models on the MASVISS
images were consistent with those presented by other researchers [93, 38, 42, 41, 10].
Table 5.1 shows each model’s maximum, minimum, and average metrics values.
As can be seen, on average, the Matzen model had the highest weight on the three
metrics, followed by Bylinskii and then Itti-Koch.

Table 5.1 Summary of metrics values in MASSVIS experiment

Metric Value Itti-Koch Matzen Bylinskii

AUC
Max 0.83 0.85 0.84
Min 0.47 0.65 0.52

Average 0.69 0.76 0.71

CC
Max 0.84 0.84 0.87
Min -0.2 0.24 -0.07

Average 0.41 0.63 0.6

NSS
Max 1.53 1.71 1.57
Min -0.29 0.47 -0.09

Average 0.64 1.08 0.89

In addition to the metrics’ results, the models’ differences are visually distin-
guishable. Figure 5.5 shows an example of each model’s saliency map in one of the
selected statistical images. As we can see, the most accurate model in comparison
with the observer’s fixations (see Fig. 5.5a) is the Matzen model (see Fig. 5.5d).
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(a) Heatmap (eye-tracking data) (b) Itti-Koch Saliency Map

(c) Bylinskii Saliency Map (d) Matzen Saliency Map

Fig. 5.5 MASSVIS first experiment example saliency maps

Closely followed, the Bylinskii model in this image, at first glance, reveals a co-
incident saliency on the title and on the x-axis. However, it also reflects a wider
distribution of attention rather than the Heatmap. Meanwhile, the Itti-Koch model
shows the focus attention on the graph bars. Nevertheless, some images show
different behavior. The result of each image can be seen in Appendix A.

Figure 5.6 summarizes the results of the three metrics used to evaluate the
effectiveness of the models. In general, Bylinskii and Matzen models have the best
scores in the three metrics, and the Itti-Koch model has a slightly lower percentage
but is still near to them. The results also show a low behavior of the Bylinskii and
Itti-Koch models, making them score below 0.0 (the lower limit of the three metrics).
We took a sample of image 10% of lower values, and we observed some common
characteristics:

• In the Itti-Koch model, the lower scores in the three metrics were in graphs
with these characteristics: bar charts (all of the 10 lowers), the same color on
each bar, small graph titles without legends, and also stacked graphs.

• About Matzen model, as Itti-Koch, has the worst scores in bar charts with the
same bar colors, prominent data-containing elements area (many bars), and
small or no titles. Other graphs among this group were line charts, most of
them without titles and wide blank spaces.
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Fig. 5.6 All metrics results on MASVISS images. The orange line represents the AUC and
CC metrics range limit.

• Regarding the Bylinskii model, unlike the others, almost all the graphs where
it had a lower salience rating were untitled. In addition, most of them were
line charts.

• If the graphs were cleaner, the model’s performance was lower. By clean, we
mean that they had in common white backgrounds, legends without much
color or design, titles with little or no visible titles, and the same color for each
graph element.

Analyzing these results, we have confirmation that Matzen, at least on these
images, is the best algorithm of the three we are discussing. In addition, as already
stated in the study description, the text elements have the highest salience among
all the other elements in these statistical images. This occurs in the Matzen model
and the fixations given by the MASSVIS data set. Although they scored low on the
metrics, the other two models moved attention to the graph, which we consider a
better measure of graph comprehension to some extent. Due to these results, and as
explained in section 5.3.1, the next experiment (Crop Analysis) we performed was
to detail these models’ behavior only on the graph without context elements.
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(a) Heatmap Complete Image

(b) Heatmap Crop Image (c) Itti-Koch Saliency Map

(d) Bylinskii Saliency Map (e) Matzen Saliency Map

Fig. 5.7 MASSVIS crop analysis saliency examples

For the Crop Analysis, to make the cuts on the images to get the saliency in
the data-contained elements area, we had to choose an initial sample of 11 graphs.
This initial sample was because the MASSVIS images are so diverse in viewing
techniques, orientations, and sizes that it was complex to make automatic cuts of the
images while maintaining the original fixation points data. Figure 5.7a is an example
of a heatmap (observers fixations data) on the entire image, and Figure 5.7b is the
cropped image heatmap. The results of this experiment are shown in Fig. 5.7. In this
experiment, we made a cut-out excluding the original images’ titles (see Figure 5.7b).
Afterward, we took each cut and generated the saliency map in each model.
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Fig. 5.8 MASSVIS crop analysis results

In general, the three analyzed models are getting into difficulties with saliency
accuracy. Figure 5.8 presents the results from the metrics on the three models. Itti-
Koch model decreased its performance by 9% for AUC and -23% for NSS. Although
this drop in performance is significant, the model had a performance increase in crop
images. It had a 4% improvement in the CC metric, which means more accurate
in heat zone detection than the other models over the data-contained elements. On
the other hand, the Matzen model had the most significant decrements, going from
-24% in AUC to -66% in CC and 72% in NSS. These values are because the Matzen
saliency model still prioritizes text areas, such as axis labels, which causes the
saliency of data elements to be overshadowed.

Finally, concerning Bylinskii, it had drops of -13% in AUC, -32% in CC and
-31 in NSS. These Bylinskii scores are not as bad as Martzen’s, maybe because the
model was trained with these same images, however, without a title, the model lost
precision.

It is essential to understand whether the three models had an important decrease
in their performance once the title was cropped. However, Matzen’s model remains
the best performer in all three metrics, followed by Itti-Koch. This leaves the question
of what happens to these models when the graphs do not maintain their composition
like those that are part of MASSVIS. Especially the second study on the cropped
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images allows us to hint at the potential difficulties these models can have if we want
to detect the saliency in the data-contained elements.

The results showed that the data was consistent with our previous findings and
did not diverge from the collected data. Additionally, we realized that this experiment
had a limitation that could have affected not finding new salience patterns. This
limitation was that the eye-tracking data given by MASSVIS were collected by
showing the whole statistical image to the observers, generating distractors on the
graph data-contained attention. This limitation will be addressed by the following
experiments.

5.5 Clean Graph Results and Insights

This second experiment was conducted based on two fundamental premises:

• Bylinskii and Matzen models were developed using the same types of images
as a basis, and their performance can be highly dependent on their structure.
However, based on the previous experiment, the dependence of these models
on text element detection limits their performance when the graphs change
their structure.

• We do not know with certainty how the three models behave on other features
like color, position, or orientation.

Based on these premises, we created the Clean Graphs with the variations ex-
plained in section 5.1. Then we compared the ground truth (eye-tracking data) with
the saliency maps predicted by Itti-Koch, Matzen, and Bylinskii models. Fig. 5.9
presents an example of each Clean Graph variation, the ground truth fixation map
(Eye Tracking column), and the saliency map resulting from each tested model. For
instance, image (e) has only the axis titles, has a vertical orientation, and the bar
position is unsorted. Bold numbers are the highest score.

Table 5.2 summarizes the models results for each graph variation. This table
summarizes the results of the model’s behavior with each type of variation. These
results are the averages obtained in each of the metrics. The highest scores in each
variation for each metric are highlighted in bold. At a glance, it can be seen that
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Fig. 5.9 Examples of Clean Graphs Experimental Results. The first column is the graph
variation feature (textual element). The original graph images are displayed in the second
column; each image represents a distinct version such as data position (sorted or unsorted),
color palette (e.g., image a has a Qualitative palette), and orientation (vertical or horizontal).
The third column is the ground truth. The saliency maps generated by each of the models are
shown in the other columns: Itti-Koch, Bylinskii, and Matzen.
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Table 5.2 Summary of metrics average in Clean Graph experiment for each text variation.
Bold numbers are the highest score.

Metric Variation Itti-Koch Matzen Bylinskii

AUC

Blank 0.76 0.75 0.57
Axis Labels 0.69 0.67 0.65
Axis Title 0.67 0.67 0.7
Bar Values 0.74 0.75 0.65

Title 0.73 0.71 0.69

CC

Blank 0.57 0.59 0.2
Axis Labels 0.41 0.48 0.43
Axis Title 0.29 0.53 0.49
Bar Values 0.39 0.57 0.28

Title 0.55 0.73 0.58

NSS

Blank 1.04 1.08 0.37
Axis Labels 0.66 0.82 0.65
Axis Title 0.49 0.87 0.84
Bar Values 0.89 1.43 0.56

Title 0.84 1.24 1.06

Matzen is the one that obtains the best average in two of the three metrics. On the
other hand, Itti-Koch obtains the best scores in only one metric. This leaves the
Bylinskii model underperforming the other models.

In order to better understand these results, this section will analyze the values
obtained for each of the variations organized into baseline (without text), textual,
position, color, and orientation.

5.5.1 Baseline Clean Graphs

The Bylinskii model has the worst performance in all three metrics among the
saliency models. For example, Bylinskii reports the lowest value of 0.02 (SD: 0.28)
in the Baseline graphs for the NSS metric, whereas the maximum value for the same
metric was 1.5 for the other models. The average for baseline graphs in the CC
metric was 0.20 (SD: 0.16 SD), while the AUC metric was about 0.57. (SD: 0.06).
The overall poor performance of the Bylinskii model indicates an apparent behavior:
since it was created on images with numerous distracting elements, its effectiveness
plummets when those aspects are removed. A glimpse of such behavior was seen in
the previous experiment when we cropped the saliency area.
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Fig. 5.10 CC metric results: baseline clean graph vs. textual elements

The Itti-Koch and Matzen models have remarkably similar overall behavior
in all metrics. This behavior makes sense because the Matzen base method is a
modified Itti-Koch algorithm. The distribution of their results in the CC measure
(see Fig. 5.10) is relatively similar, with a maximum difference of 0.01 between
their highest values and 0.07 between their lowest values. Furthermore, the Itti-
Koch model has an accuracy of above 0.50 and 0.70 in the CC and AUC metrics,
respectively. According to these results, the model performs quite well when no
textual elements are in the graph.

The Matzen model outperforms the competition on three different metrics. The
NSS achieves a value of 1.08, and it performs better than 0.50 in the other measures
(0.58 CC and 0.75 AUC). These data indicate that when no text is available in the
graph, Matzen’s adaption of the Itti-Koch model only minimally improves model
efficiency.

5.5.2 Textual Behaviour

The models report varied efficacy based on the metric they have evaluated, whether
the graph contains or does not include particular textual elements. Consequently,
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Fig. 5.11 AUC metric results: baseline clean graph vs. textual elements

unlike the baseline graphs, which exhibited identical tendencies, the score for each
textual element shows significant disparities in the metrics results.

We used three saliency criteria to assess model correctness, as we did in the
previous analysis: AUC, CC, and NSS (see Figures 5.11, 5.10, and 5.12, respectively).
In general, the accuracy of the three models improves when the graph contains a title
and values above the bars (bar values). Given the nature of the basis images with
which Matzen and Bylinskii models were implemented, this behavior was predicted.
It’s also clear that the Matzen model achieves the highest average values for most of
the textual elements in all three metrics.

The AUC metric (Fig. 5.11), which considers all attention points when evaluating
the models, reveals that the three models have accuracy with textual elements over
0.60. The Itti-Koch and Matzen models have the highest values when the graph
contains values above bars. Both models focus on the text in Fig. 5.9.d, which
illustrates this. Although Itti-Koch displays a wider saliency dispersion, it also
highlights the AUC metric’s relevant points. The Bylinskii model, on the other
hand, gets the lowest score in this metric, even in graphs with values above bars
(0.65). As seen in Fig. 5.9.c and f, the three models behave similarly for title and
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Fig. 5.12 NSS metric results: baseline clean graph vs. textual elements

axis label elements. According to the AUC metric, salience mainly depends on
their recognition when textual elements are given. Because this metric measures all
images, it is pretty soft with the saliency evaluation (see section 5.2). As a result,
the other metrics highlight how the models have issues with the saliency of various
textual elements.

The CSS metric, which compares the saliency map to the heatmap, demonstrates
that the scores within each model vary significantly more (Fig. 5.10). Matzen’s
model distinguishes out in this metric since it received the greatest scores for all
modifications in textual elements. These results suggest that the focus is still on
the text, and those algorithms that include a text recognition component have an
advantage. With titles, axes labels, and axes titles, this behavior may be illustrated in
the Bylinskii model. Bylinskii, on the other hand, only performed 0.25 on average
with the values above the bars (SD: 0.16). This impact might be because Bylinskii
was trained on graphs with standard text placements (e.g., titles at the top of the
graph), and it performs poorly when these are absent. In this metric, the Itti-Koch
model, on the other hand, has the lowest accuracy among the models having axis
title and axis label elements. As seen in Fig. 5.9.e and f. The Itti-Koch prediction
lays a greater emphasis on the bars and less on the textual contents.
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In general, the NSS measure (Fig. 5.12), which compares the saliency map
directly with human fixation points, produced similar results to the CC metric. When
saliency prediction was examined with the “values” element (see Fig. 5.9.d), the
Matzen model performed significantly better than the others, in contrast to the CC
metric. The NSS measure revealed the various scores, especially when the points
are concentrated in certain image regions. This shift may be because the NSS
metric assigns relative importance based on point dispersion. When these fixation
points are extremely dense, and the saliency map reflects the same density, the NSS
metric assigns a higher score. Fig. 5.9.d.illustrates this behavior. The saliency map
generated by Matzen is very close to the ground truth, where the saliency is similarly
heavily concentrated at each value on the bar.

Overall, the Bylinskii model’s efficiency significantly varies when the graph’s
fundamental structure changes (e.g., without title). However, when the graph con-
tains the title (see Fig. 5.10 and 5.12), we were wowed that the Itti-Koch model
maintained efficiency of over 60% in CC and above 1.0 in NSS. Because the Itti-
Koch structure does not distinguish between objects and text, our first hypothesis was
that it would be the least efficient. However, when the other elements change, their
performance improves. Conversely, using a text detection algorithm, the Matzen
model demonstrated the expected behavior. However, it is noteworthy that it behaves
similarly to the other models when the graph has only the axis labels. Visually, this
result may be affected by the position of the graph (as in Fig 5.9.f respect to e).

5.5.3 Position Behavior

In terms of data-containing behavior, we wanted to see if the data position, in this
case, the order of the bars, impacted the graph saliency. We divided the positions
of data-containing elements into three groups: sorted, huge bar in the middle, and
unsorted. In the sorted group, the graphs are displayed in a decreasing order by
category (e.g., Fig. 5.9.b). In the Big bar in the center position, the bar indicating the
largest data is placed in the center of the graph (e.g., Fig. 5.9.d). The last position
group is Unsorted, where the graphs have an arbitrarily consistent position of the
bars (e.g., Fig. 5.9.a). As a result of this analysis, we could observe that when the
data is sorted, all three algorithms perform best, and when the largest bar is in the
center, they perform worst. Fig. 5.13 and Table 5.3 show the results of each metric
for each data position.
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Fig. 5.13 Metrics results for each position category.
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Table 5.3 Summary of metrics average in Clean Graph position variations.

Metric Position Itti-Koch Matzen Bylinskii

AUC
Big bar center 0.7 0.69 0.67

Sorted 0.75 0.73 0.64
Unsorted 0.71 0.71 0.63

CC
Big bar center 0.37 0.52 0.4

Sorted 0.57 0.69 0.43
Unsorted 0.39 0.53 0.32

NSS
Big bar center 0.68 0.99 0.68

Sorted 0.97 1.23 0.8
Unsorted 0.72 1.06 0.56

Based on the experimental data, when the huge bar is in the middle or is unsorted,
the CC metric shows that saliency models lose at least 0.15 score points of accuracy
with respect to the score obtained in the sorted position. Figure 5.9.a shows an
example. According to eye-tracking research, the large bar attracts major attention.
On the other hand, the three algorithms predict that intermediate bars will receive
more attention.

In contrast, the NSS and CC metrics show that the large bar center position on
the Matzen model had the greatest accuracy scores (see Fig. 5.13). However, the
AUC metric shows that the Itti-Koch model has a slight performance gain over the
other models. We presume this difference occurs because the text was placed above
the bars in some graphs, such as the large bar center layout. The fixation distribution
was limited on those kinds of clean graphs, as we mentioned in 5.5.1, and this narrow
distribution influences the results provided by NSS and CC metrics [43].

5.5.4 Color Palette Behavior

Color is one of the most significant preattentive characteristics, and its influence has
been researched extensively [13]. For this reason, in this second experiment, we
employed diverse and predefined color palettes as part of our experiment to assess
the colors’ relevance to the saliency models under consideration. The selected color
palettes were: Qualitative, Sequential, and Diverging.

The results show that the saliency models studied perform best with sequential
palettes in terms of color palette division, CC, and AUC metrics (see Fig. 5.14). In
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addition, the performance of the divergent palettes degrades significantly in CC and
NSS measures. Therefore, we anticipated that the colors chosen would substantially
impact the saliency metrics. However, there was no discernible difference in the
accuracy outcomes across the salience models.

Table 5.4 Summary of metrics average in Clean Graph color palette variations. The highest
score for each model on each metric is in bold.

Metric Color Palette Itti-Koch Matzen Bylinskii

AUC
Divergente 0.69 0.67 0.65
Qualitative 0.73 0.72 0.65
Sequential 0.72 0.72 0.66

CC
Divergente 0.41 0.48 0.43
Qualitative 0.49 0.63 0.41
Sequential 0.41 0.58 0.36

NSS
Divergente 0.66 0.82 0.65
Qualitative 0.85 1.25 0.77
Sequential 0.77 1.06 0.64

From another point of view, as shown in Table 5.4, the behavior of the models
remains similar to the previous variations. However, we could say that the classical
models generally perform better when the color palette is qualitative (more difference
between colors). In contrast to the classical ones, the deep learning model (Bylinskii)
does not show any pattern of behavior since each metric has its highest values in
different color palettes. However, these results may have a potential bias because not
only does the color feature influences saliency, but also the graphs with qualitative
color had the title, which makes the saliency prediction more accurate.

In comparison, the model’s performance continues to be as in the other features.
As a result, Matzen’s saliency model continues to be the most effective, followed by
the Itti-Koch model and Bylinskii.

5.5.5 Orientation Behavior

We made half of the clean graphs vertically and half horizontally (see Fig. 5.2). The
accuracy of the three models in both locations is similar, as shown in Table 5.5.
However, the three metrics’ accuracy is consistently greater when the graph is
oriented horizontally.
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Fig. 5.14 All metrics results for each Color Palette variable
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Table 5.5 Summary of metrics average in Clean Graph orientation variations.

Metric Orientation Itti-Koch Matzen Bylinskii

AUC
Horizontal 0.73 0.73 0.64

Vertical 0.7 0.69 0.67

CC
Horizontal 0.48 0.61 0.37

Vertical 0.4 0.55 0.42

NSS
Horizontal 0.85 1.14 0.65

Vertical 0.72 1.03 0.74

Although the models’ performance in the metrics results is consistent with
the other variants, several elements stand out aesthetically. The saliency areas, for
example, differ slightly depending on the graph orientation. These analyses, however,
are outside the focus of this research and are part of a larger project. Overall, the
Bylinskii model is the least successful, whereas Matzen is the most effective.

5.5.6 Comparison MASSVISS and Clean Graph experiments

Regarding the premises established at the beginning of this experiment, we could
verify that, indeed, the models that have been generated or tested with the MASSVIS
data set have a decrease in their performance.

Table 5.6 Comparison between MASSVISS and Clean Graph results.

Metric Value Itti-Koch
Massvis

Itti-Koch
CleanG

Matzen
Massvis

Matzen
CleanG

Bylinskii
Massvis

Bylinskii
CleanG

AUC
Max 0.83 0.8 0.85 0.81 0.84 0.72
Min 0.47 0.61 0.65 0.61 0.52 0.5
AVG 0.69 0.72 0.76 0.71 0.71 0.65

CC
Max 0.84 0.83 0.84 0.84 0.87 0.65
Min -0.2 0.2 0.24 0.4 -0.07 0.06
AVG 0.41 0.44 0.63 0.58 0.6 0.4

NSS
Max 1.53 1.44 1.71 1.58 1.57 1.19
Min -0.29 0.3 0.47 0.61 -0.09 0.02
AVG 0.64 0.78 1.08 1.09 0.89 0.69

Table 5.6 shows some metrics value references (maximum, minimum, and aver-
age) for each model in the two initial experiments. As can be seen in Table 5.6, the
Itti-Koch model obtained better results in the experiment with clean graphs. On the
other hand, the Matzen model has similar behavior in both experiments, although it
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obtained higher scores in MASVISS, its average remains very similar between both
experiments. The Bylinskii model showed a pattern of decreasing performance in all
three metrics.

For more detail about the data obtained in this experiment, we created an interac-
tive dashboard in Google Data Studio 1.

About the second premise, how the three models behave on other features (color,
position, and orientation), we found some insights. The position and orientation
of the data-contained elements apparently influence saliency behavior. Although
the Clean Graph dataset was created thinking also about the variation of these
characteristics, it was complex to know how much real influence it can still have
on the prediction and, therefore, on the saliency performance. Further experiments
on each element would have to be performed to get a deeper insight into the issue.
In the following experiment, we investigate in more depth, on another clean graph
dataset, how two of these elements can be important to complement the prediction
of saliency in data-contained elements.

5.6 Data-Containing Elements Experiment

Based on the previous experiment results, we established another two premises: (i)
saliency models behavior in graphs where textual elements are eliminated, and (ii)
what could be those visual elements that influence the data-containing element’s
salience. It is essential to highlight that in the previous experiment, our clean graphs
had at least the names of each point on the scale (axis labels) as a fundamental element
of a graph. Our clean graphs eliminate any textual element in this experiment, aiming
to deepen the saliency analysis only in the data area. Regarding the second premise,
we constructed some hypotheses about saliency behavior that we solved with the
collected data to understand more about saliency in data-contained elements. As in
the previous experiment, we collected data with an eye tracker but on the second set
of images (see Fig. 5.4).

1https://bit.ly/2sdExpe_Dashboard, Experiment Interactive Dashboard, last visited on
October 14, 2022

https://bit.ly/2sdExpe_Dashboard


5.6 Data-Containing Elements Experiment 87

Fig. 5.15 Results of Data-Contained elements experiment for each Saliency Metric

5.6.1 Saliency Models Performance

This experiment rectified our hypothesis that some saliency models would drop their
performance significantly if we completely removed the textual elements from the
graph (see Table 5.7).

Table 5.7 Summary of metrics in Data-Contained Elements (DataC) vs. Clean Graph
(CleanG) experiment

Metric Value Itti-Koch
CleanG

Itti-Koch
DataC

Matzen
CleanG

Matzen
DataC

Bylinskii
CleanG

Bylinskii
DataC

AUC
Max 0.8 0.86 0.81 0.87 0.72 0.7
Min 0.61 0.5 0.61 0.49 0.5 -0.35

Average 0.72 0.75 0.71 0.74 0.65 0.17

CC
Max 0.83 0.7 0.84 0.73 0.65 0.71
Min 0.2 0.33 0.4 0.35 0.06 0.43

Average 0.44 0.56 0.58 0.58 0.4 0.54

NSS
Max 1.44 1.76 1.58 1.88 1.19 0.42
Min 0.3 -0.03 0.61 -0.04 0.02 0.01

Average 0.78 0.99 1.09 1.05 0.69 0.16

The Bylinskii model was the worst-performing of the three models. Its values
dropped by 320%, which is significant for performance. This decrease was especially
evident in the NSS metric, which is the one that validates the saliency distribution.
Furthermore, the metric that proves that this model is indeed strongly attached to a
certain form of graphs is AUC. In this metric, which is the one that does not penalize
erroneous predicted salience points, Bylinskii also had a significant decrease (from
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0.65 to 0.17). This may mean that this model has difficulty predicting saliency solely
on the visual elements representing the data.

The only model that showed improvement in this experiment was Itti-Koch
(between 3.8% and 21.3% percentage of improvement). We assume that this is
because by eliminating the text, the model would have no distractors outside of the
three channels it handles (color, orientation, and intensity). Matzen model remains
the highest scoring in all metrics (see Table 5.7 Max values). This behavior of the
Matzen model was expected, since there is no text in the graph, the prediction is
made by the Itti-Koch algorithm modified.

The results of each of the metrics on each of the elements that were varied in this
experiment can be seen as following: Color Palette, Fig. 5.19, Orientation Fig. 5.20,
and Data Set Fig. 5.21. Since the figures mentioned above are oversized, they can be
found at the end of the chapter.

For more detail about the data obtained in this experiment, we created an interac-
tive dashboard in Google Data Studio 2.

5.6.2 Features Behavior Hypothesis

Following the completion of all the studies, we were able to identify specific behav-
iors that we believed could improve the accuracy of the saliency prediction. These
observed behaviors were categorized into three hypotheses, which were substan-
tially answered using the clean graph data. The next sections detail each of these
hypotheses and our response proposition.

The attention is mainly on the more prominent data-containing element

Our first hypothesis was about the height or size of the elements. We think that most
of the attention would be on the largest bar, with any of the datasets used for the
experiment. As shown in Fig. 5.16, Bar 1, which represents the largest data, is not the
one with the highest average number of fixations. For the first dataset, where there
was no significant difference between the bar sizes, it is Bar 2 that has the highest
average number of fixations. In the second dataset, which has more equidistant bars,

2https://bit.ly/data-elements_results, Experiment Interactive Dashboard, last visited on
October 14, 2022

https://bit.ly/data-elements_results
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Fig. 5.16 Bar average fixations on the first and second datasets. The first dataset had a
significant difference between the values of the subsets, the second one had more equidistant
data. Bar 1 represents the largest bar, and Bar 6 is the smallest

the bar with the most significant average attention is the third (intermediate bar).
Based on the averages of fixations, we can see that the attention behavior on the
largest data-containing element varies according to its relationship with the others.
Being the largest data-containing element does not give it the most attention on the
graph.

The orientation influences the attention behavior

In Fig. 5.17, we presented the fixations average on each graph bar depending
orientation (vertical or horizontal). This hypothesis is one of the most important we
had since we noticed a change in the attentional behavior according to the orientation
in the first experiment. As can be seen in Fig. 5.17, the fixation rate of each bar
changes significantly with bar orientation. First, concerning the largest bar (B1),
under the first dataset, the average number of fixations increases by about 50%
when going from vertical to horizontal; in the second dataset, the increase is more
significant, the fixations increase by 400% (on average). This aspect is crucial to
developing a saliency prediction, as a graph can completely change the attention if it
changes the orientation. Similar behavior can be seen in bars 2 and 5.

However, when the data-containing element becomes smaller, it gets more
saliency when the graph is vertical. This performance is most visible in the second
dataset, where the increase in attention on Bar 3 and Bar 5 is at least 100 fixations
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Fig. 5.17 Bars Average Fixations. Attention behavior with the first and second datasets.
The colors represent the bar behavior in a different orientations, Purple vertical and Red is
horizontal.

points more. On the other hand, it can also be seen that bar 4 is relatively constant in
its average fixations regardless of orientation change. This change may be because it
is the most central bar in the plot. Thus, the data collected show a noticeable change
in the fixation points depending on the orientation of the graph. Such a change can
drastically influence the saliency to either increase or decrease depending on the
element size.

Attention varies on the bars according to their color.

Our theory is that, apart from the bar size and graph orientation, the graph’s color
also influences the number of fixations on each element. This hypothesis arises from
what we observed from the behavior of the current saliency models evaluated in the
first experiment. The evaluated models did not indicate significant variations if we
changed the color palette. For this reason, we investigated the influence of color on
the saliency of data-containing elements.
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Fig. 5.18 Bars average fixation in each color palette. Attention behavior with the first and
second dataset

In Fig. 5.18, we present each bar’s average number of fixing points and their
variation in each color palette used. Also, we show the attention behavior for each
data set.

With the first dataset, the changes in the fixations are most prominent in the
central bars (3 and 4). When the color palette is qualitative, bar 3 significantly
loses attention, dropping from 600 points on average to minus 200. This decrease
may be because the bar is a light color between two dark colors (given the palette
handles’ degradation). On the other hand, on the same dataset, bar 4 is another bar
that changes significantly when the palette is diverging (degrade between two colors)
from a maximum point of 700 fixations on average to only 230. In this palette, that
bar has a light color, just like bar 3.
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In the second data set, the behavior is roughly similar. However, in this case, bars
3 and bars 6 had a significant change. When the palette is qualitative, contrary to the
first dataset, the bar reaches an average of 1400 fixation points. However, we could
not say that is only due to the color palettes, given the opposite change between the
first and the second dataset. On the other hand, bar 6 firmly declines, from 200 to
less than 100 points, with the categorical and qualitative colors. It showed that the
attention is less distributed because it does not reach the lowest value (the smallest
bar in this case).

In general, we do not see drastic changes in the saliency of the bars according
to their color type; there are no significant variations, and the maximum is 200-400
points. However, it is noteworthy that the Sequential and Divergent color palettes
showed a relatively symmetrical dispersion behavior. That is, as shown in Fig. 5.18,
both color palettes maintain a more or less equal distribution over most of the data
bars. Also, the data show that the changes are notable between datasets and not only
between colors.

5.7 Models Comparison

We observed how the models changed their performance based on data collected in
the three experiments. Some improved while others declined, depending on the type
of visual elements included in the graph.

Table 5.8 Experiments comparison using t-test method.

Model Experiments CC NSS AUC
t p t p t p

Bylinskii

MASSVIS vs.
Clean Graph

7.50 1.06e-09 5.26 2.30e-06 6.13 9.81e-08

Clean Graph vs.
Data-Contained

6.28 9.31e-08 5.94 7.44e-07 5.60 3.08e-06

Matzen

MASSVIS vs.
Clean Graph

0.66 0.51 0.49 0.63 2.74 0.008

Clean Graph vs.
Data-Contained

0.097 0.92 0.74 0.46 -1.24 0.23

Itti-Koch

MASSVIS vs.
Clean Graph

-1.90 0.063 -2.40 0.020 -2.70 0.01

Clean Graph vs.
Data-Contained

-3.12 0.003 -2.03 0.052 -1.05 0.30
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In order to get a clearer idea of these changes in performance, we use a t-test to
analyze the changes in each model for each experiment. The t-test is a statistical test
that indicates how similar two samples are. This test outputs two values: t and p.
The t value represents the number of times the data samples are different from each
other [108]. The p-value (p) is the probability that the results from the sample data
occurred by chance [108]. If p < 0.05 there is a statistically significant difference,
and if p > 0.05, there is no statistically significant difference.

The hypothesis is that if the samples are similar, the model has a uniform behavior
regardless of the type of graph. Otherwise, this t-test will show how different the
samples are. Table 5.8 shows the results of the t-test (using RStudio). For each model,
we compare the first and second experiments and the second and third experiments.
We performed the comparisons this way because the experiments ranged from graphs
with more contextual elements to graphs with no contextual elements.

Starting with the Bylinskii model, all three metrics and comparing the three
experiments’ p-values are largely less than 0.05. This means that the values obtained
by Bylinskii in each experiment are significantly different from each other. On the
other hand, we can see that the proportion of the difference between each experiment
(the t values) is above five. These t values show that Bylinskii’s performance in
the Clean and Data-Contained experiments was at least 5 times lower than in the
MASSVIS experiment. With these results, it is evident that this type of model (deep
learning) is strongly attached to the training images,

On the other hand, the Matzen model, between the first and second experiments,
maintained overall similar results. The t-test showed that in the NSS and CC metrics,
its p-value was greater than 0.05, which may denote that the two samples are
similar in statistical terms. Only the AUC metric showed different behavior. The
above behavior may be because the Matzen model, as a result, shows less saliency
distribution, the attention points are more evident, and this causes fewer pixels to
show saliency. To a certain extent, this behavior is penalized by AUC since this
metric counts positives and negatives without measuring the number of attention
points over a region.

Comparing the second and third experiments, the Matzen model showed similar
behavior. The CC and NSS metrics maintained their performance, but the AUC
metric improved. The t-value showed a negative behavior, which means that the
second sample entered in the test, in this case, Data-Contained elements, is larger
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than the first one (Clean Graph). In this case, Matzen revealed a slight improvement
in this metric, which may be due to the lack of text in the graphs, making the saliency
more distributed over the data area and not limited to the texts.

Finally, Itti’s model was the only one that showed a constant improvement among
the three experiments. Unlike the other models, all the t-values obtained were
negative. Additionally, in almost every metric, the p-value is less than 0.05, meaning
there is a statistical change between the samples. The above evidence suggests that
the Itti-Koch model performs better if the graph has fewer contextual elements. The
behavior of Itti could be since it is a model developed with the basic concepts of
vision, it does not take into account top-down aspects, such as the importance of the
texts in the graph. Therefore, the less context information (distractors), the better the
saliency prediction.

Altogether, it is evident that Matzen is the model that demonstrated the most
stable behavior during the three experiments. Additionally, this model obtained
the highest scores among the three metrics. Its minimum values reached a limit of
-0.07 when Bylinskii obtained scores as low as -0.35. The only metric Matzen did
not achieve the highest value was AUC. As explained above, Matzen may perform
saliency prediction in a more focused manner, especially on text, leaving out pixels
less important to the algorithm. This could affect the values given by the AUC
metric.

It is important to emphasize that we know that text is a fundamental part of the
graph and that its removal is not proof that the current models do not perform well.
Our premises were based on the fact that although the text has the most attention,
the other visual elements show us the data, knowing their attention behavior is also
essential.

Since Matzen’s model was the one that kept the best scores constant in all three
experiments, we will use this model for the next part of the research. In the following
two chapters, we will present two approaches to how this model can be used in the
graph design process.
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Fig. 5.19 Color Palette in Data-Contained elements - metrics results
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Fig. 5.20 Orientation in Data-Contained elements - metrics results
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Fig. 5.21 Data set in Data-Contained elements - metrics results



Chapter 6

Using Saliency Prediction as a Design
Tool

At this point in our research, and taking into account the results presented in the
previous chapters, we have three important insights regarding saliency prediction
and graphs design:

1. There is a vast amount of knowledge about how human vision operates and
how it affects the cognitive process and, therefore, decision-making in graph
design (chapter 3).

2. There is a gap between the graphic designer and the knowledge about how
the design features influence saliency and, therefore, the observer’s perfor-
mance(chapter 4).

3. Existing saliency models for DataViz can be used as a tool to validate visual
attention on a graph with reasonably good performance (chapter 5).

Bringing these three insights together, we developed two approaches for using
saliency prediction within the graph design process. The first approach is used
saliency prediction as a Design Tool to help the graph designer find the combination
of visual elements (color, orientation) that will make the most relevant data more
noticeable to the observer. The second approach is used saliency prediction as
Measurement Tool to validate how each design decision can impact the attention
points in the graph. These approaches are proofs-of-concept that demonstrate how a
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saliency model might assist iterative design and automate particular graph design
activities.

This chapter will describe the Design Tool approach oriented to draw the ob-
server’s attention to specific relevant data selected by the graph designer at design
time. For the sake of simplicity, we will call this approach as Design Tool meaning
the use of saliency prediction as a design tool. The second approach,Measurement
Tool, will be described in Chapter 7.

6.1 Motivation

Data visualization has become a fundamental part of decision-making in any com-
pany or industry. A large amount of daily data has created a need to develop design
tools that different user profiles can use. Those in charge of creating graphics, graph
designers, can have different profiles, such as statisticians, engineers, scientists, and
administrators, among others. However, due to the broad profile spectrum that a
graph designer can be, the graphic validation process becomes complex from the
design point of view. Nowadays, in companies, the process of validating the design
and clarity of a graphic is done by presenting the chart to a group of experts who
give a final judgment based on their expertise (see section 6.5).

On the other hand, many researchers have studied the impact of visualization on
an observer’s decision-making [16, 12, 11, 63]. One of the most recent is the study
presented by Milutinović et al. [11], they demonstrated that “specific combinations
of saliency form and visualization method seem to be favorable in terms of gained
decision quality and attribute attachment.” They suggest that saliency in visualiza-
tion should be considered. Designers might disclose potential risks for biases in
DataViz by raising awareness about saliency effects in visualizations using saliency
analysis, as with the Matzen model [11]. Finally, they highlighted the importance
of development tools for visualization evaluation, which should examine the effects
of spatial layout and the usage of visual factors on saliency in visualizations from a
broader viewpoint.

Furthermore, according to Jänicke et al. [2], ‘every visualization creator would
be curious about how a visualization is perceived and what the observers learn
from it”. Visual saliency models could predict which areas attract the observer’s
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visual attention. With this information about where the observer’s attention will be
focused, the graph designer could know beforehand where his chart will start to be
read and also could know how well the chart is aligned with the relevant data. As we
explained in section 2.2, relevant data is the data that is important to the object of
study.

Bringing the Milutinović et al. [11] study about specific design combinations
to improve decision-making, Jänicke et al. statement about the graph interest in
aligning the graph with the relevant data, with what has been established from our
research results, three insights presented before, we proposed an exploratory method
to draw the observers attention to relevant data systematically. We developed two
prototype tools to gain further information about this exploratory method. In both,
the graph designers use the tool to select the data subset their want the observer’s
attention to focus on. Then the tools create several graph variations, preserving
the same graph semantics but modifying: a) color palettes (using sequential and
diverging palettes); b) texture (by creating a black grille with different widths);
position (by shifting and reordering data subsets in the X-axis); and c) orientation
(by swapping the X and Y axes).

The first tool, made in Matlab, varied in color, texture, and orientation. Regarding
determining the graph with the highest salience region in the initially selected
data subset, all graph alternatives are analyzed with a saliency map algorithm et
al. [38]. We developed a second prototype in Python for two reasons: firstly,
Matlab’s response times were considerably longer than those given by Python;
secondly, Python allowed us to design a more natural user interface for a graph
designer. Therefore, we combine the color, position, and orientation features in a
Python version. Compared to the Matlab version, the python version changes one of
the features: Texture to Position. The decision was based on the model’s validation
results, which showed that position variation could change the saliency points. In
addition, due to language limitations, the libraries selected for the Python version
did not allow textures.
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6.2 Related Works in Saliency Prediction for Graph
Design

Some contemporary InfoVis tools (e.g., Tableau) use the preattentive process knowl-
edge in an implicit manner. For instance, they present charts with sequential color
palettes to highlight, in a natural way, the most important points (e.g., low and
high subset) [109]. However, these tools do not provide a mechanism to know if
the selected chart (e.g., subset position, shape, color palette) is the one that better
emphasizes the relevant data or how it could be perceived by the observer.

In the literature, we found some studies oriented to assist in the graph design
process, in particular in highlighting relevant data, using saliency prediction. For
instance, Feng et al. [110] developed a methodology to draw the observer’s attention
toward values of high certainty while not calling attention to uncertain values in
scatter plots and parallel coordinate plots. To highlight the relevant points in these
two types of plots, they basically superimposed the plot on a gray-scale saliency map.
The saliency map used is in fact a probability density function, which“describes
the likelihood of each value, it naturally deemphasizes unreliable data points in the
original data”. This makes the representative outliers visually represented as discrete
glyphs. However, this proposed technique was intended only for large volumes of
data, the more information (more lines, or more points) the denser the map and
therefore the more visible the relevant points.

Similar results were obtained in Jänicke and Chen in [2], who showed that is
possible to attract attention to relevant data using a saliency algorithm. In this study,
the graph designer can choose the areas that represent the relevant data. Then, they
used the Itti-Koch model to generate the saliency maps, balancing the weights of each
preattentive feature. Both maps are combined to calculate a quality metric which
allows the graph designer to see whether the graph is good o bad based on the graph
designer’s purpose. Additionally, Jänicke and Chen in [2] include a contribution
map that shows the contribution that each of the features has on the salience map.
Nevertheless, this method only shows how close or far the graph focus attention is
from the end user’s expectations, but does not give any recommendations on how to
achieve the objective.

A study by Shive et al. [111] showed the development of a method to support the
color selection for data markings in maps using a statistical saliency model. They
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estimate the importance of an item in relation to the distribution of all features in
a particular display. They had a color palette that they assigned to each pushpin
on the map and categorized according to their prominence (minimum, median,
and maximum). Finally, they developed three versions of each map to see if the
statistical saliency model can determine colors on cluttered and uncluttered maps
that reduce search time for things. Shive et al. [111] showed that search time has a
slight decrease. However, because the only color was examined, this method had
a restriction on the amount of saliency features that could be used. Furthermore,
the saliency model does not include attention across the visual field, which has an
impact on search performance.

Finally, an interesting finding was presented in a study presented in Fosco et
al. [40] that closely correlates with our tool. They created two tools based on their
importance saliency prediction model (see section 4.2.1), a deep learning model that
used the Bylinskii saliency model. In the first tool, the user is allowed to edit design
elements on a canvas and receive immediate feedback about each element’s predicted
relevance, which means the tool adjusted the relative importance of design elements.
Additionally, the users can interact with each design element’s importance scores,
allowing them to establish parameters to enhance or reduce the importance of design
elements. Similar to the previous tool, the second uses the element’s importance
score to automatically adjust the locations and sizes of design elements to fit new
aspect ratios. This second tool scaled and repositioned visual elements based on
predetermined graphic layouts to achieve new aspect ratios while maintaining the
visual prominence of the input design. Even though the saliency model they employ,
as they claim, works for any graphics and DataViz images, both developments were
built and tested specifically for posters and infographic designs. Furthermore, as we
previously established, the Bylinskii models, that was also utilized for these tools,
showed a significant performance decline with images with simple structures.

The mentioned papers employ saliency prediction as a design tool in different
approaches to improve the presentation of the graphs in a variety of ways. However,
some of them are created for complex visualizations, such as parallel coordinates
plots [110], infographics [42] or flow visualizations [2], on which salient area de-
pends more on the quantity of data than the preattentive features. On the other hand,
only one study gives recommendations about which should be the best accurate com-
bination of preattentive features to highlight relevant information [111]. However,
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they only varied one feature, when saliency models generally operate on at least
three of them.

In the next section, we will describe our approach which includes the graph
designer’s desired attention objectives, validated saliency models for DataViz images,
and design recommendations varying at least three preattentive attributes. Then, in
section 6.4, we will present the two developed prototypes.

6.3 Approach Process

Our main goal is to explore a mechanism for assisting graph designers in drawing
the observer’s attention to specific relevant data they can choose at design time. To
test the approach’s viability, we created a tool that allows us to conduct systematic
graph variations and then evaluate their impact using a saliency map model [112].
We only consider bar charts for this initial approximation, and we only evaluate three
preattentive properties: color, position, texture, and orientation. These attributes
were decided based on the results of a data-contained elements experiment described
in section 5.6. The saliency map algorithm proposed by Matzen et al. [38], which,
as previously stated, has the highest performance, is used to analyze graph changes.

The Design Tool proposed approach is composed of five main phases, as illus-
trated in Fig. 6.1: 1) Load initial data, 2) Charts Systematic Construction, 3) Saliency
Maps Generation, 4) Salience Rating, and 5) Plot Final Charts.

Fig. 6.1 Saliency Maps as Design Tool - Exploratory Approach



104 Using Saliency Prediction as a Design Tool

6.3.1 Load initial data

Our approach begins with three inputs: the data set to be plotted, the specific data to
be highlighted, and a set of palette profiles. In this first approximation, the data to be
focused on should be categorical data chosen by the graph designer.

The graph designer could choose a palette profile from a list of pre-set color
palettes. These palettes, like other visualization tools, can be of multiple kinds,
including sequential, divergent, and qualitative. However, we limited the research
qualitative palettes taken from COLOURLovers [113], only, and filtered by those
that were related to the keyword “data”. We decided on categorical palettes because
the color placements can be varied without changing the meaning of the colors,
unlike a sequential palette where the colors must be “arranged.” For each palette, a
profile was constructed to determine which color in the palette has the most salience,
and whether the salience increases using textures or changing the position on the
chart (see Fig. 6.2).

The Matzen et al. [38] salience algorithm was used to construct these profiles.
The selected palettes were applied and then processed through the salience algo-
rithm using a bar chart as a baseline. Thirty-four color palettes were analyzed. To
characterize each palette we identified the dominant and secondary colors. If the
color palette showed a constant distribution of saliency, that is, it did not have a
dominant color, we changed the position of the colors. If neither of the above two
options worked to obtain at least one dominant color, we added texture. We also
tested changing the orientation to see if there was any change in color dominance.
In some limited cases, we found that there was a saliency change due to orientation.
This was a long procedure, given that many combinations were made in order to
understand and profile the colors of each palette.

Based on the generated profiles, the colors of each palette were sorted for pre-
dominance at the end of this step. The texture and orientation attributes were used in
the same way. All these values can be pre-computed and are not dependent on the
specific data set.
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Fig. 6.2 Example of Palette Profiling

In Fig. 6.2, the dominant color is number four (4) in the palette, on the verti-
cal (Fig. 6.2.a) and horizontal (Fig. 6.2.b) position, both without texture. For the
prototype, we use the palettes with a clean saliency color in one or more of the
combinations (e.g., dominant color and orientation), the others were removed.

Table 6.1 Example Color Palette Profile: “Data Fact” Palette

Property Value
Dominant color 4

Vertical 1
Horizontal 1

Vertical with texture 0
Horizontal with texture 0

Table 6.1 presents an example of a palette profile. “Dominant color” represents
the color position in the palette of the most salient color. The other properties are
marked with a one (1) if their presence affects salience in the specified palette. For
example, the Data Fact palette (see Table 6.1) has a clean saliency with vertical
and horizontal orientation, but without texture. “Clean saliency” means that the
color palette has one dominant color, only, on a specific position (vertical or/and
horizontal), and with or without texture. Fig. 6.3 shows the salience map of the
previous example dominant color, in different combinations.
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Fig. 6.3 Color Palette saliency changes

6.3.2 Graphs Systematic Construction

The purpose of this stage is to construct graphs methodically based on the graph
designer’s specifications (color palette and data to be highlighted). The graph
designer chooses a variety of color palettes to apply to the graph. A systematic graph
construction is carried out using the color palette profiles as input. At each phase, the
graph is constructed by depicting the data to be emphasized with the color that has
the maximum salience (see Fig. 6.3). The palette’s remaining colors are then shifted
through the remaining data subsets. The palette profile determines whether salience
rises with texture and/or orientation. Therefore several candidate graphs are created.

6.3.3 Saliency Maps Generation

In this step, we generate salience maps for each chart variation created in the previous
stage. To accomplish this, as reported in the study on salience map models and
algorithms (see Chapter 5), the selected algorithm was DVS, Matzen’s model [38],
implemented in Matlab language. The algorithm output is the image of the chart,
enriched by a salience map layer.

6.3.4 Salience Rating

In this step, each salience map is evaluated to identify which charts have the highest
saliency values on the area corresponding to the data subset to highlight. The DVS
algorithm has a function that supports this ‘proximity’ evaluation. This function
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compares a given set of coordinates with the same coordinates on the salience map.
The coordinates of the data subset to be highlighted are sent to this function; the
function returns a value between 0.0 and 1.0 that measures the weighted overlap of
the data subset coordinates and the chart salience areas. The final result of this step
is a list with the percentage of proximity value per each graph variation.

6.3.5 Plot Final Charts

The last step is the selection of the best chart. For each palette the graph designer
selects, the chart with the best proximity percentage is chosen (see Section 6.3.4).
The winning charts are shown to the graph designers, one for each color palette
selected, and they can choose the preferred one.

6.4 Prototype

To validate our approach, we developed a tool that implements the process described
in the previous section.

Fig. 6.4 Use Case Diagram for Design Tool, for both versions

Fig. 6.4 shows the tool Uses Cases diagram. The graph designer can select the
data to be highlighted and the preferred color palette. The system is responsible
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for creating the graph, making the variations to the visual elements, generating the
saliency maps, and evaluating which graphs are more accurate representations of
the graph designer’s objective. Each use case represents the phases described in
section 6.3.

6.4.1 Development

We first had to make some changes to the original Matzen algorithm to develop the
prototype. These changes made the algorithm accessible via web protocol (JSON
standard and code packaging). With these changes, it was possible to upload the
algorithm to the Matlab Web App Server, making it accessible to other applications
external to Matlab.

Fig. 6.5 Design Tool - Components Diagram

Therefore, we implemented a first version in Matlab (see Fig. 6.5, blue com-
ponent). This version uses the Matzen algorithm directly through a Matlab App
Designer User Interface responsible for the whole interaction with the graph designer.
In addition, in this first version, we developed a component that was in charge of all
the system functionalities (use cases) presented in Fig. 6.4.

Due to response times and interface flexibility, we decided to develop a second
version, a web Python application (more details in section 6.4.2). This Python
version managed two components (see Fig. 6.5, green component): the "Saliency
Manager" is in charge of connecting to the Matlab server to generate the saliency
maps, and a web component is responsible for graphing and generating the user
interface. This second version runs on the streamlite server (python library) [114].
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6.4.2 Matlab Version

The first version of the prototype was the Design Tool in Matlab. We used common
libraries for data analysis and visualization (e.g., App Designer, Plots), and we
generated salience maps with the DVS algorithm [38]. The goal here is to understand
the behavior of the preattentive attributes and the feasibility of moving the attention
area starting from a baseline chart. In this first round of experiments, we use bar
charts as a baseline on which to apply the systematic variations.

Fig. 6.6 Prototype User Interface

As the case study, we selected the Coronavirus (COVID-19) dataset [115], which
consists of data from COVID-19 Deaths Worldwide as of May 29, 2020. We plotted
the five countries with the most casualties (USA, UK, Italy, France, and Spain) vs.
the number of deaths (103,330, 37,837, 33,142, 28,662, and 27,119, respectively).
This combination was selected because it generates a graph with a considerable
variation between subsets. The other countries have a difference, in the number of
deaths, of at least 17,000 with respect to the selected five, which would make their
bars too tiny compared with the others. As the bars are small, they saw as a line and
not as a bar, and the changes in color and texture could be difficult to perceive.

Fig. 6.6 shows the prototype interface, where the four steps are controlled in the
left column. The graph designers must first select the database for which they want
to plot the chart. Based on the selection of the dataset, the graph designer must then
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select the data subset to be highlighted (step 2). The next step is to choose some
possible color palettes that the graph designer wants to use on his chart (see section
6.3.1). The interface shows a pop-up with a color palette list, and the user can choose
three of them. After that, the graph designer can execute the algorithm presented
in section 6.3 (step 4, button “plot”). For each color palette, the graph designer
selects, a minimum of one and a maximum of 8 charts are generated. Four of these
charts correspond to the states in which the palette has a dominant color (see section
6.3.2). The other four correspond to variations on the palette’s remaining colors (not
predominant). Fig. 6.3 shows an example of those variations, with the same palette
profile presented in Table 6.1, and Italy as a the data selected to be highlighted (third
data point in the chart).

Chart b in Fig. 6.3 is the chart with the best ranking. The final result comprises the
charts selected by the algorithm, one per palette, whose salience map had the highest
percentage of proximity to the data selected by the user (Fig. 6.6). Additionally, the
interface displays the salience maps of each of those charts.

Insights

We discovered some insights on the impact of feature attributes based on the pro-
totype results. Although we only worked with palettes with a dominant color, we
discovered that this predominance might be greater or weaker based on the nearby
colors when it came to the preattentive characteristic Color. As shown in Fig. 6.3,
the salience is more precise in the color combination b and less vivid in d. Due to
a lack of evaluation tools, it is usual for viewers to choose the "strongest" hue to
highlight certain data. However, it is feasible to improve accuracy by knowing the
occurrence of nearby hues.

Concerning to preattentive attribute Texture, in most of the revised color palettes,
the texture made the salience region wider. Also, in some palettes, it is only possible
to obtain a salience focus on the selected data if that one has a texture. Otherwise,
the palette has only a salience in the text on the charts. In the “data Color Pie” color
palette chart on Fig. 6.6, the palette has a texture because the saliency would be
on the title without a texture, but with the texture is on the data. Nevertheless, the
presence of the texture tends to increase the saliency area excessively. Even so, the
salience is not as neat as with the other graphs because the saliency region is on three
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data subsets. A future step could be to systematically handle the textures to achieve
a more precise salience.

Regarding the preattentive attribute Orientation, we found that the salience
is consistent, with the same predominant color, when the orientation is changed.
However, since the Matzen et al. algorithm has a text recognition component when
some of the data have a long name, the salience region is enlarged. Fig. 6.3.c has
the same color order as b, but the saliency area is more expanded at the bottom.
The previous behavior happens because the data name (United Kingdom) is large,
creating a black text area that will be more prominent for the top-down part of the
Matzen algorithm.

This prototype has a performance disadvantage. The program takes at least 20
to 25 minutes to display the results described above. These times were due to the
amount of processing that had to be done to evaluate where the highest percentage
of saliency was found since it was done pixel by pixel (Saliency Rating step, section
6.3.4).

We conclude that moving the attention area to a certain data subset is possible.
The graph designers can choose which data to emphasize and which color palettes to
use. Finally, they learn about the potential impact of each color choice on the chart
perception during the design stage. That is why multiple color profiling helps the
graph designer evaluate more than one alternative in positioning the colors in the
graph. The present visualization tools do not provide this functionality.

6.4.3 Python Version

In the first tool version, we had some problems in the development process, specifi-
cally with the complexity of making the graph and knowing the positions of each
visual element, for instance, the position of each bar within the graph. Furthermore,
the processing time took 20 to 25 minutes.

For these reasons, we decided to look for an alternative and more efficient way
to test the feasibility of our first approach. So we developed a web application
in Python, which also made the interface simpler. This Python version makes the
systematic variation of three preattentive features: color, position, and orientation. In
contrast to the Matlab version, the texture was left out because the selected Python
graphics design libraries are missing this property. Besides, the color palettes used
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are the ones already established by python libraries, which showed us better behavior
when studying their saliency than those selected for the Matlab prototype. Moreover,
in this version, we have full control over the position feature, which means that we
can change the bars’ position and always know their position.

As a result of this release, we realized that it is feasible to help the graph designer
establish a focal point in a way that is closer to the common DataViz process.

Python Prototype Process

This prototype integrates three main libraries: Streamlite, an open-source Python
library to create and share custom web apps for machine learning and data sci-
ence [114]; Seaborn, a Python DataViz library; and a Matlab Production Server, for
the connection with DVS (Matzen model algorithm).

Fig. 6.7 shows the process implemented in this version. As in the Matlab version,
the graph designer chooses the data to highlight and a set of color palettes. Regarding
the process carried out by the Python program, there are six main tasks:

• Generate a set of graphs. In this task, the program makes the variation of the
bar color, position, and orientation to be highlighted. Firstly, the user selects
three color palettes as the Matlab version. Then, the tool makes the position
variations for each color palette selected. An example of bar position variation
is presented in Fig. 6.8. If we wanted to highlight the data PHP, the bar that
represents is in the second place (see Fig. 6.8a), then it goes to the fourth
place ( Fig. 6.8b), and successively until passing through all of the possible
positions in the graph. Additionally, a horizontal version of the same graph
is also generated for each of these position shifts. In Fig. 6.8c, PHP is in
the fourth place but with horizontal orientation. Finally, two other position
swings were added, placing all the bars in ascending or descending order, and
horizontal and vertical shifts as well (see Fig. 6.8d). This is included because
this type of arrangement is one of the most commonly used.

• Send Encoded Graph and Decode Saliency Map. Since the saliency algo-
rithm is developed for Matlab, we use a Matlab server we use to render the
algorithm into a web service to be accessed from Python. Each image was
encoded and sent using base64 and json formats. The Matlab algorithm returns
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Fig. 6.7 Python Design Tool Process
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two images: the saliency map overlaid on the graph image and the saliency
map as a binary matrix. Then, both maps are converted to OpenCV images.

• Calculate Saliency Data Percentage. First, the received saliency map is
transformed to grayscale. This transformation was done because we considered
only the intensity of each pixel. Then, we chose a range from 190 to 255,
representing the highest (most intense) saliency points and where the saliency
is most concentrated.

mask[gray > 190] = 1 (6.1)

Finally, we calculated the area of saliency over the bar representing the data
selected by the graph designer using the equation below 6.2).

area = (((barin == 1)&(mask == 1)).sum())/((mask == 1).sum()) (6.2)

• Selected Best Graph and Plot. Based on the results of the Saliency Data
Percentage, the graph with the highest color range is selected and then plotted
for each color palette chosen by the graph designer. The selection criteria are
the same as the Matlab version.

Regarding Matlab Production Server, it is an application part of Matlab. We
package the Matzen algorithm using MATLAB Compiler SDK, then deploy it to
MATLAB Production Server in a json format to receive the image, execute the
algorithm, and return the saliency maps.

Results and Tests

In Fig. 6.9, the interface of the Python version of our Design Tool approach to
drawing the observer’s attention can be seen. In the first part (see Fig. 6.9a), the
program shows the data and the option to select which data will be highlighted. Then,
for each group of color palettes (Qualitative, Sequential, and Diverging), the graph
designer can choose one from the list. Finally, the program executes the process
described in the previous section.
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(a) PHP bar in second position (b) PHP bar in the fourth position

(c) PHP bar third position and horizontal. (d) PHP bar in the first position, ordered and verti-
cal.

Fig. 6.8 Design Tool, Python prototype variations example

(a) Python prototype - PHP highlight
(b) Python prototype - PHP highlight results

Fig. 6.9 Python Graph Variations example. PHP was the data selected to be highlighted

We performed two tests with Covid-19 data in Latin American countries and
Programming Languages Usage to see the tool’s general behavior. We used data
from the six (6) Latin American countries with the most Covid-19 deaths for the first
test (see Fig. 6.10). The characteristic of this data set is that the countries have a
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similar number of deaths, which makes the difference between bars relatively small.
On the other hand, for the second test, we use data related to the use of programming
languages. In this case, the numerical difference between each data is significant
( Fig. 6.8 shows an example).

For the first test, we ran 108 combinations for each color palette (18) and looked
for combinations that would highlight each of the countries (6). For example, the bar
representing Brazil was tested in which position and with which orientation it was
most salient. Appendix D has some examples of the winner for two data and four
color palettes.

Fig. 6.10 Desing Tool, Python Dashboard with the results from Covid-19 death rate in
Latinoamerican Countries. Link to interactive dashboard 1.

Fig. 6.10 shows a dashboard with the resulting data. As can be seen, from this
data, most of the winner graphs have a horizontal orientation (77,8%). This is a
behavior we discovered in the model validation: the saliency changed and, generally,
was more centered when the data orientation was horizontal (see Chapter 5). Regard-
ing the percentage of saliency, it is clear that it is quite variable since it is possible to
obtain graphs that have 89% of the total saliency on the selected data. However, on
other data, only 14.1% of saliency is achieved. These numbers are not only related
to the position, color, or orientation of the highlighted data but also depend on the
data size since some data have a smaller area than others.
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With respect to the CPU time, as seen in the Fig. 6.10, the tool’s maximum time
to find a suitable combination for each color palette, position, and orientation, is
283.4 seconds. These times are still highly dependent on the response of the Matzen
algorithm when there are more colors or visual elements. Finally, we found that
some bar positions have a strong relationship with the type of color palette. For
instance, in Diverging color palettes, the winner was always the data in the sixth
position (the last one in the graph). On the other hand, positions such as the second
one did not have any winning graphs with these types of data.

Fig. 6.11 Desing Tool, Python Dashboard with the results from Programming Languages
usage. Link to the interactive dashboard2

To conduct the second test, we generated 90 permutations for each color palette
(18) and looked for combinations that would draw attention to each programming
language (5) (see Fig. 6.11). For instance, it was determined which location and
orientation made the bar representing the C language the most evident. (see Ap-
pendix D. Fig. D.3 and D.4).

The second test showed several differences in behavior from the previous one
(see Fig. 6.11). The response times were significantly shorter and more consistent
in this test, probably because the graph had greater white space and the bars were
smaller. Regarding the orientation, both options are closer in percentage. However,
the horizontal orientation is still predominant. One feature that varied quite a bit was
the saliency percentages on the data to be highlighted. However, given that there is a
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large gap between the maximum (97.8%) and minimum (3.9%), it can be noted that
it is due to the size of the bars, which in this second test had a smaller area.

Finally, similar to the behavior of the first test, with some color palettes, the data
can only be highlighted if it is in an exact position. For example, the Diverging palette
type only achieves winning graphs if the data is at position one (at the beginning
of the x-axis). Based on these results, we conclude that a systematic change of the
design elements can indeed change the possible attention to the data.

Insights

As in the previous development, we can state that it is possible to draw attention to
relevant data previously defined. However, in this development, we realized that the
number of variations created can be smaller and still achieve the goal. We could also
see that using the already established palettes without changing their order makes
finding a feature combination where the data can be highlighted more feasible.

One of the most relevant improvements is in time, passing from 20-25 minutes
to 8-9 minutes per chart. This decrease in time is due to the saliency search process
in each bar since it is now a more straightforward and faster process. Although it is
still a considerable waiting time, it is essential to highlight the time of the saliency
algorithm and the number of graphs that have to be sent. Possibly, parallel processing
would make it more agile.

6.4.4 Limitations

One of our significant limitations was access to the image components individually.
Precisely, we needed to know in which pixels of the graph each component was
located. This location data is required in order to contrast the resulting saliency map
and the graph image. Although this limitation was more complex in the Matlab
version, Python also depends on each library’s functions. This limitation forced us to
work with only one type of graph, bar charts because both programming languages
made it simpler to access the positions of each of its components.

The Matzen algorithm was developed in Matlab, which forced us to create a
user interface in the same language. This meant that the usability and appearance
of the interface were not the best. However, for the Python version, we were able
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to package the algorithm as a web service so that it can be accessed from any other
application.

6.5 Discussion

We developed a tool with two versions in different programming languages, in which
we implemented the graph design process assisted by a saliency model. With this
tool, it was possible to make systematic modifications to the graph to meet the
attention goals given by an end user (graph designer).

Because design decisions are subjective, there is never an objectively best result,
i.e., a graph that is the best for every observer or graph designer’s purposes. Fur-
thermore, determining the quality of a design decision is challenging because there
are many variables related to the final observer, such as level of expertise or visual
disabilities and graph designer design level of knowledge. However, the proposed
tools described in this section aim to bring graphic designers closer to the visual
impact of their design decisions and bring them closer to the final observer.

With the use of tools like these, the designer will be able to know what could be
the most appropriate combination of design elements to achieve the highlighting of
the data considered most relevant in the graphic. Additionally, the tool also brings
the designer closer to the final observer due to the widely studied attention cognitive
impact, that is to say, the combination of preattentive attributes, on the performance
in a task solution [11] (defined in chapter 3).

Finally, it is essential to note that shifting attention can be extended systematically
to different types of graphs. It specifically depends on the tool’s flexibility to generate
the graphs, the kind of graph, and the possible variations. For example, if a graph
shows a timeline, changes in position could not be made because they would alter
the main objective of the graph. They are keeping in mind this need to extend the
use of saliency prediction to other types of graphs.



Chapter 7

Using Saliency Prediction as a
Measurement Tool

The previous chapter presented an exploratory approach (Design Tool) that varies
visual graph elements to find the best combination to highlight relevant data selected
by the graph designer. The Design Tool approach supports the graph designer
in the process of focusing attention on specific data. Regardless of the Design
Tool development, saliency was used to quantify the amount of salient in each
data-contained element but not to validate design decisions. Furthermore, the graph
designer was limited by the data visualization technique (bar chart) and the variations
of the visual elements (by selection only color).

On the other hand, in the results of the Literature Review study (see Chapter 3),
saliency can also be used as a design validation instrument. Based on that study,
we established that the use of saliency prediction as a measurement attention method
could be helpful for the graph designer who could know the impact that each of her
design decisions would have at the visual-cognitive level on the final observer.

The development of this second approach, called Measurement Tool, aims to
integrate saliency prediction into a classical data visualization system to explore
its capabilities as a measuring tool. In addition, this development allows the graph
designer to measure how each of her design decisions would impact the observer’s
attention with some degree of accuracy.
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7.1 Motivation

Ware, in his book “Information Visualization, perception for design” [6] claims
that graph designers have to “design graphic representations of data by taking into
account human sensory capabilities in such a way that important data elements and
data patterns can be quickly perceived.” These human sensory capabilities, for Ware,
represent the knowledge about the visual impact that each design decision has in the
graph observer interpretation. Ware in [6] highlights the importance of attention in
DataViz due to its relation with the visual working memory. This type of memory
“holds the visual objects of immediate attention, and the contents of working memory
can be drawn from long-term memory” [6].

In short, every graph designer must be aware of these relationships between
design decisions and their cognitive impact on the observer. However, all mentioned
knowledge about attention behavior is information that is not necessarily appre-
hended in all contexts. Moreover, graph designers currently have different profiles
and specialties that are not always related to the design field. For this reason, it
is important to develop a tool that can provide insights into the behavior of those
human sensory capabilities, limited to attention behavior for this thesis, at the design
time.

Besides, saliency prediction has long been used to understand the cognitive
process of humans interpreting a graph, as stated in the section on saliency prediction.
However, we note that saliency prediction has not been available to graph designers
in their daily application toolkit. For example, the classical DataViz systems have not
included saliency prediction models as part of the graph design process. Thus, the
use of saliency prediction gives the graph designer a general idea of how attention
will be distributed in the graph.

Another motivation for this development was expanding the vision of the use of
saliency in other DataViz techniques. In the previous approach, Saliency Prediction
as a Design Tool, our tool was limited to bar charts due to software limitations and
the goal of trying to make modifications with features, such as a position, that can
only be used in certain graphs. Therefore, extending our development to a system
with the entire chart design cycle and a wide range of DataViz techniques expanded
the tool capacity to a more natural context for a graph designer.
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Altogether, we proposed an integrated approach to bring closer the understanding
of the observer’s attentional behavior to the graph designer and to use the salience
prediction instrument as an explicit function in the graph design process. In this
integration, a saliency prediction algorithm is used as a new function in a classical
DataViz system, as a validation tool.

Finally, with the development of this tool, we noticed that for the most inexperi-
enced designer in the area of graph design, it could become a learning tool as well
since novice graph designers can learn visual decision behaviors on each interaction
with the measurement tool.

7.2 Related Works in DataViz Evaluation Process

Considering that the goal is to use saliency prediction as a validation tool within the
design process, we performed a short search of which methods are generally used
for graph design validation. In DataViz, the evaluation process, according to Wall et
al. [116], could be made by several adapted human-computer interaction usability
assessment methodologies. Measuring accuracy and duration in a study where par-
ticipants do benchmark activities is one method of evaluating a visualization’s utility.
In addition, these studies can help establish if individuals can correctly understand
data by manipulating the user interface and interpreting the visualization [117].

The insight-based visualization evaluation methodology is another approach [118].
Experts in data visualization use this method to determine if the visualization gives
valuable information to the end-users. Experts must decide how many new insights
about data collection were gained as a result of the visualization. Complex, profound,
qualitative, unexpected, and meaningful values are defined as insights. Alternatively,
Task performance techniques can be applied [116]. These methods set up a sequence
of tasks that observers should be able to complete by using the provided visualiza-
tion. The visualization performance is then assessed using task completion time and
accuracy measures.

However, the most studied and used methods to evaluate a visualization are the
heuristics methodologies. For constructing visualizations, Zuk and Carpendale [119]
propose a set of ten “Cognitive and Perceptual Heuristics.” Within these heuristics,
four are dedicated to color handling, another four to data positioning and sizing,
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and the remaining are general recommendations such as using Gestalt Laws or
providing multiple levels of detail. Hearts et al. [120] instead established only three
heuristics: the visualization makes important information visually salient, uses visual
components appropriately, and successfully presents multiple relevant facts into a
single visual pattern. The above heuristics were also validated with novice observers.
Instead, Forsell and Johansson [121] gathered 63 existing heuristics, assessed them
on a set of usability issues from prior information visualization evaluations, and
then selected 10 top heuristics. Among the heuristics proposed in [121], only 3 are
specific to manipulating visual features. The others are targeted to the nature of the
graph data, e.g., data reduction or consistency.

Additionally, some studies adapted the heuristics from HCI usability validation.
However, these heuristics are reasonably high level, subjective, and provide limited
guidance on improving a visualization tool’s specific visual or interactive aspects.
These heuristics are high-level, suggestive, and offer only a limited amount of direc-
tion on how to validate specific visual or interactive components of a visualization
tool [116]. In addition, heuristics commonly be misinterpreted by different experts.
Another critical issue is that heuristics are created to validate usability performance,
but DataViz is deeply rooted in each element’s impact on observer attention.

Another technique from the HCI area is assessing observer engagement. A study
by Hung et al. [122] was about how meaningful user engagement is in InfoVis. They
presented a questionnaire with 11 engagement characteristics, where only two of
which are related to the graph design (Aesthetics and Attention). The remaining
characteristics are related to basic visualization tasks such as exploration and dis-
covery, and user behavior as interest or captivation [122]. A similar methodology is
proposed by Ware [123] called a cognitive walkthrough. This methodology includes
selecting a potential final observer and having them talk aloud through the procedures
required to complete a series of activities. Wherever observers become confounded
by the information shown or fail to use the DataViz system effectively, it is an
improvement point. This method can also be used to identify cognitive bottlenecks,
such as excessive memory load or situations where repeated tasks can be delegated
to a computer.

We noticed in the exploration of related work that many of the evaluation methods
are oriented towards data visualization systems [124–129]. In the papers cited before,
the authors, in general, presented standard usability validation methodologies for
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InfoVis systems/tools: paper prototype, focus group, and log file analysis [124];
domain experts validation [126, 129]; interview technique with focus groups [127];
and also heuristic evaluation [128]. These studies are oriented to DataViz systems,
how the user interacts with them, and the fulfillment of the business objectives with
the created graphs.

It is essential to highlight that related works described above are primarily
guidelines for evaluating graphs from a high-level point of view. Those guidelines
are mainly oriented to answer questions (heuristics) that lead to finding current or
future problems in the interaction and design of the graph. In the validation with
experts that we carried out at the end of the developments, we noticed that the most
common process to validate the graphs in companies is to show them to another
group of experts. On the other hand, those studies that focus on expert validation
also express that accustomed problems could be an essential bias. The used problem
is when experts perform validations in the same context, and this causes a narrow
view about patterns that they traditionally apply or that one worked best. The
previous statement is not intended to detract from the relevance and usefulness of
heuristic validations, only that they can be time-consuming and rigged because of
their complexity. In addition, since most of them are subjective, they can lead to
problems of understanding.

In short, for a graph designer to perform any validation over the design decisions,
he has three options: to complete a heuristic validation process, present his graph
to experts for evaluation, or both. The saliency prediction could be an additional
tool, which does not replace heuristic or expert assessments, but can complement
them and, in some cases, accelerate their process. In section 3.3.2, we discussed how
saliency models had been used to validate the observer’s graph comprehension, find
patterns, or improve the graph design. For these reasons, we have developed this
integration between saliency prediction and a DataViz system to bring this validation
tool closer to the graph designer. This approach and the resulting tool are tangible
validation of how each design decision can affect an image’s attention centers or the
image layout.
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7.3 Measurement Tool Integration Process

7.3.1 Process Definition

The main objective is to integrate saliency at the end of a common graph design
process so that every decision the graph designer makes can be seen how it affects the
attention distribution in the graph. Fig. 7.2 shows a typical graph design process and
the point at which saliency was integrated. The data visualization process mentioned
before has four sub-process:

1. Data Input. In this process, the graph designer can copy-paste data, upload a
file with tabular data or load an example dataset.

2. Graph Type Selection. The provided graphs are displayed in a grid along
with the visual preview, the visual model name, and the category to which it
belongs. The graph designer can select one based on the graph data nature and
visual objectives.

3. Data Mapping.The data dimensions can be mapped to the graph by users. The
column headings identify the dataset dimensions on the screen’s left side and
the possible chart dimensions on the right. In this step, the system employs
symbols to distinguish the type of data (text, number, date).

4. Customize Visualization. Users can modify the graph features provided on
the left side of the screen and preview the chart in real-time to fine-tune the
chart.

The integration of the saliency prediction model is reflected in a new sub-process
into the original DataViz process: “Saliency” (see Fig. 7.2 fifth process). In this sub-
process, the graph designer can see the saliency map of the graph in its current state.
Finally, suppose the saliency map result does not satisfy the designer’s objective. In
that case, the graph designer can make design modifications to the graph, return to
sub-process four (4), and the saliency map will be generated again.
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7.3.2 Development Process

To develop the process described in the previous section, we selected an open-source
framework for data visualization design as a basis. This system was developed by the
DensityDesign Research Lab (Politecnico di Milano) and is called RawGraphs [130].
This framework is a web application primarily built using two different libraries:
AngularJS for the visual interface and D3.js for data visualization.

Fig. 7.1 Measurement Tool - Use Case Diagram

In the use case diagram shown in Fig. 7.1, it can be seen the base functions that
the graph designer could execute, together with the functions of the system. The end
user, the graph designer, is in charge of loading the data, selecting the desired type
of graph, mapping the data (graph parameters), and making visual changes to the
graph (color, size, text). It should be noted that the use cases in blue are the new
saliency functions. After performing all the other actions, the user can also request
the saliency map generation to validate their previous design decisions.

The original RawGraphs framework can be accessed at https://app.rawgraphs.io.
The RawGraphs design flow is shown in Fig. 7.2 from sub-process one (Data Input)
until sub-process four (Customization). Some changes were made to the original
design. The aim was to improve the design process and render it clearer than the
original version.

https://app.rawgraphs.io
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Fig. 7.2 Measurement Tool Process. RawGraphs framework supports the process between
one (1) and four (4). We integrated the process five (5).

The main change to RawGraphs was to place each process within a horizontal
tab that could be expanded and contracted. Thanks to this modification, the graph
designer can better visualize the graph design steps. This change also makes it
easier for the graph designer to go back to an earlier point in the process without
going through the intermediate stages. Fig. 7.4a shows the first screen of the original
framework, next to it in the Fig. 7.4b, the new startup interface can be seen, where
all process steps are shown.

Regarding the saliency prediction model integration, we add a new component
to the original framework. The step is called “Saliency” (see Fig. 7.4b green tab)
and shows the saliency map of the graph created with the framework. The Matzen
Model generates the saliency map by web connection (by JSON protocol) between
the RawGraphs framework and the algorithm running in a Matlab Production Server
(for more details, see section 6.4.3).

Fig. 7.3 Measurement Tool - Component Diagram

An overview of the software architecture of this tool can be seen in Fig. 7.3.
RawGraphs has four subcomponents. The first one is "Graph Visualization," which
uses the D3.js library to render and display the graphs on the web. The subcomponent
"User Interface" uses AngularJS to construct the user interface and interact with the
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end user. The DataViz component is responsible for characterizing each graph type
and mapping the data. Finally, the Saliency component is the one we added and is
responsible for connecting with the saliency algorithm and generating saliency maps.

(a) RawGraphs framework original interface. (b) RawGraphs framework interface changes.

Fig. 7.4 Measurement Tool user interface original and changes

As a result, the integration of the saliency maps into a standard graph design
framework was successfully achieved. The Fig. 7.5 presents an example of the tool’s
usage. The graph designer created a Bubble chart with the goal of highlighting the
initial and final data group (those closest to the x-axis). In the first design, Fig. 7.5a,
the desired data, according to the saliency map, has high attention. However, the
legend also draws a large part of the attention. If the designers want to change the
focus of attention and the graph orientation, as shown in Fig. 7.5b, they change the
focus of attention again. This change moves attention slightly longer to the legend
and attracts attention to the data farther away from the graph (the farthest from the
x-axis).

In the third modification example, in Fig. 7.5b, it is possible to observe how
making changes that seem visually not so striking, such as removing the bubble
stroke (white border), causes a more distributed saliency by moving the saliency
also to the center of the graph. The third modification is more close to the graph
designer’s attention objective.

On the other hand, unlike the previous development (see chapter 6), the time
to see the results of the salience is between 30 and 70 seconds, instead of the 8
minutes that the other ones require. This difference in time is essential; although
both developments have different objectives, the fact that the functionality time is
shorter helps the user to get engaged more easily in using the tool.
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(a) Vertical with bubble strokes (b) Horizontal with bubble strokes

(c) Vertical without bubble strokes

Fig. 7.5 Measurement Tool usage examples. Bubble chart with different design modifications
and the saliency map showing the attention impact.
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With this new functionality, the graph designer can see where the final observer’s
attention may focus. As stated earlier, graph designers need a validation tool to
facilitate the validation process of their design decisions to a meaningful degree.
Additionally, there is a learning component. Each time the graph designers change
the design, there can see how the attention changes and learn how each design
decision influences the highlighted visual elements.

In this chapter, we presented how saliency prediction may be integrated as a
first-class feature into a DataViz system. This feature allows an exploratory approach
through which the designer personally explores and evaluates (with the assistance
of the tool). However, to see if this development has any potential among expert
graphic designers, we performed a set of experimental evaluations and validation
that will be described in the next chapter.



Chapter 8

Experts Evaluation

In order to validate the developments presented in chapters 6 and 7, we carried out
validations with experts in data visualization but with different perspectives, one
from academia and the other from the industry.

The main objective was to validate with Data Visualization experts the feasibility
of use of Saliency Prediction in the DataViz design process. This section will present
the expert’s validation protocol and results. We made the validation with six (6)
experts in the area of DataViz. The results demonstrated that integrating saliency
prediction would be useful and can improve design task performance. In addition,
although some of the experts disagree that the use of saliency prediction can make
their jobs easier, it can help to shorten graph evaluation time.

In this chapter, for the sake of simplicity, we will call the Saliency Prediction as a
Design Tool approach as Design Tool, and the Saliency Prediction as a Measurement
Tool approach as Measurement Tool.

8.1 Fundamentals

The expert’s validation protocol is based on the heuristics validation methodology.
This methodology involves examining an interface and attempting to form a judgment
about what is excellent and what is terrible about it [131]. There are a variety
of heuristics that can be used to make subjective measurements on a tool [132].
However, most of them are oriented to interaction and usability. Since the validation
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applies to proof-of-concept applications, only, we decided to adopt some parts of
each heuristic, only, that were related to perceived usefulness, satisfaction, overall
reactions, and ease of use.

The heuristics methodology is commonly performed through the use of question-
naires. Perlman presented in [132] a list of a few standard questionnaires for user
interface evaluation. From this list of usability questionnaires, we choose parts of
USE (Usefulness, Satisfaction, and Ease of use) and QUIS (Questionnaire for User
Interface Satisfaction) for the first approach (Design Tool). To validate the second
approach, the Measurement Tool, we chose TAM (Technology Acceptance Model)

The USE instrument [133] measures the subjective usability of a product or
service. Furthermore, because it is non-proprietary and technology-agnostic, this
metric can be used in a variety of usability evaluation contexts. USE comprises
30 questions divided into four segments: usefulness, ease of use, learning ease,
and satisfaction. Each question has a 7-point Likert rating scale [133]. According
to Gao et al. [134] the reliability of USE has been confirmed with Cronbach’s
al pha = 0.98 (maximum value is 1.0), which means USE could be a valid and
reliable instrument to measure usability.

On the other side, the QUIS instrument [135] focuses on how an interface is
evaluated, and it was created based on Shneiderman’s list of five different types
of dependent measures [136]. QUIS has in total 27 questions, that are grouped in
five dependent measures: overall satisfaction, screen, terminology and information,
learning, and system capabilities. The questions have a 10-point scale. The reliability
of QUIS was confirmed with Cronbach’s al pha = 0.98 according to [137].

The last selected instrument was TAM, also known as Perceived Usefulness (PU)
and Ease of Use (PEU). The model intends to forecast the future use of a product
(expected usefulness and ease-of-use as viewed before any use) rather than to rate
the actual user experience. In the TAM, PU denotes how confident a person is that
technology will improve job performance, whereas PEU denotes how confident a
person is that using the technology will be simple [138]. The TAM instrument has 12
items in total, six for the PU and six for PEU, and also is a generalizable instrument
across different systems, user groups, and research settings [137]. The reliability of
TAM instrument was confirmed with Cronbach’s al pha = 0.98 according to Lah et
al. [138]
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Other instruments, that according to recent studies such as Hodrien and Ter-
rence [137], are more widely used, such as SUS (System Usability Scale), were
considered to be beyond our scope. The instruments mentioned above are oriented to
validate the interface design and its interaction by executing specific task completion
scenarios. These validation characteristics presented a limitation for our expert’s
evaluation since the developed tools were intended to be assessed only at the concep-
tual level rather than as a complete system. Additionally, some of these instruments
have been built only for specific contexts, unlike QUIS, USE, and TAM, which are
not connected to specific technologies.

After selecting the measurement instruments, we took the aspects we were
interested in evaluating. Besides, from QUIS, we took only the questions related to
“Overall Reaction to the Software.” These questions would help us know the general
reaction that the evaluation would have to the Design Tool approach. In addition,
regarding the USE instrument, we chose three groups of questions: Perceived
Usefulness, Perceived Easy to Use, and Perceived Satisfaction. This instrument was
also used for Design Tool. On the other hand, from the TAM instrument, we use all
questions, and it was used for the Measurement Tool approach.

Finally, in the selection of the appropriate number of experts for this proof-of-
concept, we took as a reference what was established by Nielsen [131]. Nielsen study
established that “the number of usability results found by aggregates of evaluators
grows rapidly in the interval from one to five evaluators but reaches the point of
diminishing returns around the point of ten evaluators.”. For these reasons, Nielsen
claims that it is "reasonable to recommend the use of about five evaluators" to get
an acceptable reliability validation. Based on this statement, we performed the
validation with six experts, three with academic backgrounds and three from the
industry.

8.2 Protocol

Firstly, we established an expert’s profile in which the expert has at least these
characteristics:

• Expertise areas: informatics, statistics, data visualization or data analysis.

• Years of expertise: minimum 5 years working in data visualization.
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• Current Job: academic or industry.

The above characteristics ensured that the evaluators had a broad background
in data visualization. We also considered looking for experts in the business sector
because the tools developed are intended for inexperienced users in the visual-
cognitive area of graph design. In addition to the minimum profile established, we
looked for experts from different countries so that we would have a globalization
component in the evaluation. Finally, in the search for experts, we sought a gender
balance.

Concerning to the validation protocol, we established eight steps:

1. Introduce the saliency prediction process, DataViz design process, and Rele-
vant Data. Also, explain the project aim and the integration of the previous
concepts in the graph design process.

2. Collection of basic data from the expert.

3. Open questions about highlighting relevant data and the conscious selection of
design elements.

4. Demonstration of the first approach, Design Tool, with the explanation of how
it performs the variations of the design elements. Both developed versions
(Matlab and Python) are shown.

5. Expert compiles USE and QUIS selected questions regarding the Design Tool
prototype.

6. Inspection question about expert’s ability to detect points of attention on a
graph.

7. Demonstration of the second prototype, Measurement Tool, with the explana-
tion of how it is connected with the saliency algorithm. The result of the graph
shown in the previous step and the realization of a completely different graph
is shown.

8. Experts must validate the feasibility of the Measurement Tool integration by
TAM instrument.
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The protocol was carried out with six experts, having separate meetings with
each expert and in a virtual format. Thus, the evaluation protocol begins with a brief
explanation of the preattention process, the concepts of salience prediction, and its
relationship with the cognitive process. Afterward, basic data was collected from the
expert, such as years of experience, age, gender, and country where he/she works.

In the protocol steps number three (3) and six (6), to inquire about the expert’s
knowledge of the visual-cognitive processes that may influence design decision
making, we generated some open-ended questions:

• Generally, when you design a graph, do you have in mind that one or more
data points should be highlighted?

• When you choose visual elements such as color or orientation, do you think
you are consciously or unconsciously selecting them?

• Generally, when you design a graph, do you have any kind of tool to validate
your design decisions?

• Do you know the visual-cognitive impact that design decisions have on the
observer? do you think it would be useful?

The first two questions correspond to the protocol step four (4). The purpose
of these questions was to understand if it was natural for the expert that some data
had to be highlighted and its visual attention implications. In addition, we asked
about the level of conscience with which the expert chooses the design elements.
The intention of the other two questions for the protocol step six (6) was to inquire
about the expert’s process to validate the graph design. Also, we wanted to know
how aware the expert was of the design decisions she made.

During the demonstration steps of the prototypes, steps four (4) and seven (7),
a full working sample was shown, along with an explanation of how it worked.
Initially, a video of the Matlab version was shown for the first prototype because
it takes more than 20 minutes to generate a result. On the other hand, the Python
version was presented with an established data set in real-time. Finally, for the
second prototype, a real-time sample was also demonstrated, first with a data set and
then with the test data provided by the framework. For this second prototype, it was
essential to highlight that the functionality was also shown with other graphs, not
only the bar graph, which is the base graph in the first prototype.
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Finally, in order to obtain information about the experts’ perception of the
presented prototypes, we used the validation methods explained in section 8.1. For
the first prototype, we used both QUIS and USE questionnaires. Both questionnaires
were chosen because the “Design Tool” prototype is independent. This means that
the full prototype is developed entirely, contrary to the Measurement Tool where we
integrated the salience into an existing application. Due to the above, it was also
necessary to know what the general perception of this development is, and QUIS has
a dedicated section of questions, “Overall Reaction,” that would give us information
about the general vision of having an application like this (see Table B.1). About the
USE instrument, the used questions can be seen in Table B.2.

Regarding the perception validation of the second prototype, we only used the
TAM instrument to know if the inclusion of saliency could mean an improvement in
its design processes (see Table B.3). We omitted an interface validation or general
responses since we did not develop the base application. We only made some minor
improvements. The idea was to evaluate if integrating a saliency map viewing
functionality in a typical data visualization application could be helpful in their
work. Appendix B presents the complete list of questions chosen for each validation
instrument.

The first part of the protocol was to know the experts’ profiles who participated
in the validation. In Table 8.1, the country of origin, age, gender, areas of expertise
(expressed by each of them), and years of experience working in data visualization
are presented.

The Table shows a balanced group of experts, half were women, and half were
men. On the other hand, in the column "Expertise Area," those working in academia
have an (A) and those from industry an (I). The previous parameter is also balanced,
three in academia and 3 in industry. Finally, with this group of experts, we also seek
to have a more geographical vision on the subject, which is reflected in the four
countries where the experts work.

In the next sections, we will present the results of each development tool accord-
ing to two views of a point, academic and industrial.
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Table 8.1 Experts Profiles. Those with the A are working in academia. Those with the I are
working in the industry.

Country Age Gender Expertise Area Years
Colombia 29 Woman (I) Data Visualization Expert 6

Canada 45 Man (A) Higher Education/Research In-
formation Visualization, HCI

10

France 37 Man (I) Software Development/Data Vi-
sualization

5

Italy 41 Man (I) Project Manager in Business In-
telligence

11

Italy 32 Woman (A) Computational Biology 7

Colombia 44 Woman (A) Informatics 8

8.3 Design Tool Results

In this section, we will show the results obtained divided according to the two main
points of view: academic and industry.

8.3.1 Academic Experts

From the results of the protocol step tree, open questions, we noticed that, in general,
everyone is aware that each graph has one or more pieces of information that should
be highlighted. Moreover, that data is already known by them, i.e., in all cases, after
analyzing the data, they already know which data they want to highlight. Regarding
the selection of design elements such as colors or orientation, they all agreed that
they consider themselves to be aware of their use. Most of them already have a
basic knowledge of color management. They also know what colors work for their
graphics and that these elements should also be selected according to the data context
(observers and data meaning). Another essential point to mention is that most experts
spoke only about color attributes. However, only one expressed the importance of
making a good selection of the graph orientation and position or the graph within
others (as in a dashboard).

In Fig. 8.1 shows the results of the three groups of questions we chose from
the USE for each expert measurement instrument. The first group of questions,
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Usefulness (see Fig. 8.1a), are oriented to validate if for the users the presented tool
could help them to be more productive, effective, and in general, save time. As we
can see in the Fig. 8.1a graph, two of the experts consider that this tool could help
them to be more effective in performing their visualization tasks. The expert who
provided the lowest scores is one of those who has the most experience designing
and interacting with graphs. Because he already has extensive experience in this
area, it might not help with task execution time. However, the evaluator emphasized
the importance of these tools for more inexperienced people and felt that they would
be helpful in less academic contexts.

In the second group of USE questions, Ease of Use (see Fig. 8.1b), we can see
that everyone agrees that the tool is not entirely “easy to use”(Q8). However, in
“I can use it without written instructions.”(Q9), two evaluators expressed that they
could use it without instructions. The third expert explained that it was not easy to
use without instructions because the saliency concept had to be explained, along
with the process the tool goes through to select the winning graphs. Without this
prior explanation, the reliability of the process is not clear, and for someone in
the academia, many doubts about the process would arise. About the third group,
Satisfaction (see Fig. 8.1c), we can notice that there is general Satisfaction with the
tool because all experts would recommend it to a friend. However, some do not feel
that they need to have it.

Regarding the QUIS validation results, Table 8.2 presents the average rating
and the median scores for each question scale. The overall reactions to the tool are
positive in general. It can be emphasized that the tool was considered “Wonderful”
and “Satisfying” by all of them, which means they see it as a tool that they would
feel motivated to use. However, one of the lowest scores was seen in the “Flexible”
criterion, this could be because the tool currently only works for one type of graph,
and it is not interactive graph (e.g., zooming to see more details). The output is a
static image.

In general, all three surveyors perceived the Design tool as an exciting develop-
ment, which can be extended and which they find very useful, especially for support
in design decision making.
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(a) USEFULNESS results (b) EASE OF USE

(c) SATISFACTION

Fig. 8.1 Results of USE validation instrument from Academic Experts

8.3.2 Industrial Experts

On the other hand, the results obtained from industrial experts slightly differ from the
perception of academics. The main points of difference are the Usefulness and the
Ease of Use of the tool. Regarding the USE instrument results presented in Fig. 8.2,
we can see that, in general, two of the experts perceived the tool as useful, easy to
use, and were satisfied with it. One of these evaluators has the amplest experience in
the visualization area in a software development company. However, another of the
evaluators expressed that even though he found the tool useful and could help reduce
some validation process time, he did not feel that such a tool was really indispensable
to him in his job tasks (travel data visualizations).

One of the questions with the lowest scores was “Both occasional and regular
users would like it.”(Q10). This low score on the Q10 question was because the
experts thought that the tool is very specialized, and someone who does not do
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Table 8.2 QUIS Academia Experts

Scale Average Rating Median Score
Terrible 0 . . . 9 Wonderful 8,3 8,0
Difficult 0 . . . 9 Easy 7,3 7,0
Frustrating 0 . . . 9 Satisfying 8,3 8,0
Inadequate 0 . . . 9 Adequate 7 8,0
Dull 0 . . . 9 Stimulating 7,7 9,0
Rigid 0 . . . 9 Flexible 5,3 8,0

(a) USEFULNES results (b) EASE OF USE

(c) SATISFACTION

Fig. 8.2 Results of USE validation instrument from Industrial Experts for Design Tool

visualizations all the time may not need the tool. Another question whose answers
caught our attention was Q4. As shown in Fig. 8.2a, each expert gave a very different
score. The question Q4 was, “It gives me more control over the activities in my daily
DataViz tasks.” Regarding this, some of the experts expressed that the tool would
not give them more control due to the fact that they would still have to go through a
validation process within the company focus group. However, they said that the tool
could reduce these validation times.

One of the comments made about the tool’s design was that it should give the
possibility to choose each of the graph colors. The above is because many of the
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Table 8.3 QUIS Industrial Experts results for Design Tool validation

Scale Average Rating Median Score
Terrible 0 . . . 9 Wonderful 7,3 8
Difficult 0 . . . 9 Easy 6 7
Frustrating 0 . . . 9 Satisfying 6,3 8
Inadequate 0 . . . 9 Adequate 6,3 8
Dull 0 . . . 9 Stimulating 7 9
Rigid 0 . . . 9 Flexible 7,3 8

companies have their own color palettes, and they have to play with these to maintain
the client’s parameters.

The results obtained from the QUIS questions were as divided as those of USE.
Two of the experts scored the majority of the items above seven points. However, the
other expert gave values below five. The above difference can be seen in Table 8.3.
For instance, the “Inadequate - Adequate” scale has an average of 6.3, but the median
is 8,0, demonstrating that at least two experts selected a score over seven.

This validation showed us a very relevant aspect of our development concerning
its usefulness in different contexts. We see it reflected in the fact that experts working
on more general developments, such as dashboards, perceived the tool as very useful,
a bit complicated to use but with great potential. On the other hand, in contexts where
the graph design is a bit more specialized, working on the same data (maps graph),
they found the tool useful, and well developed but did not consider it a fundamental
tool to improve or support their daily tasks.

8.4 Measurement Tool

In the evaluation of this Measurement Tool, the evaluators had to answer the questions
of the TAM survey.

Initially, we asked open-ended questions about what design validation tool each
expert uses and if they have some ideas about the visual impact of each design
decision. The industry experts expressed that the design validation is done with
members of the same development team or with a panel of experts within the same
company. Additionally, they said that cross-validation is a time-consuming process.
One of them expressed that he does not use any validation tool, her decisions are
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(a) TAM Perceived Usefulness (PU) (b) TAM Perceived Ease of Use (PEU)

Fig. 8.3 Results of TAM validation instrument from Academic and Industry Experts

based on experience. The academic experts indicated that their only validation tool
is their knowledge and experience. Concerning whether the experts are aware of the
design decisions’ visual impact, more than half of the experts said that they were not
fully aware of the topic. Only one of the experts, who has the most experience in
visualization design, expressed that this knowledge is acquired with time, although it
is only from academia.

Finally, the experts answered the TAM questions in the last part of the validation.
Fig. 8.3 shows the results, in pink the average of the academic’s answers and purple
those of the industry experts. In Fig. 8.3b, the scores were between five and six, with
six being the highest possible value, especially in the “perceived Ease of Use” part.
In this TAM-PEU part, we can see a consensus among the expert groups. The only
question that had a low value (4.0 on average), especially for the industry experts,
was, “I would find it easy to get Saliency Prediction Tool to do what I want it to do.”
This can be interpreted, along with some comments they made to us, that they work
more on dashboards in their daily tasks, and the tool presented is for single charts.

On the other side, in the TAM-PU questions part (see Fig. 8.3a), a little more
difference can be seen between the two groups of experts, but not more than one
score point difference. Academics have the highest usability perception of having
saliency in the application, while industry experts think it is slightly less useful. In
the lowest-scoring question, “Using Saliency Prediction in my job would increase my
productivity” (Q3), industry experts expressed that although the tool would certainly
help them to reduce design time, they do not believe it would increase productivity.
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Overall, the final expert’s reaction was enthusiasm for integrating saliency in a
data visualization system. They said that it is a relevant tool and that they would like
to be able to access it. On the other hand, especially those who work in the industry
said that they wished the tool was also intended to be used for dashboards and show
more information about the saliency percentages seen on the map.

We will discuss the results obtained on the two tools developed in the following
section.

8.5 Discussion

Design Tool Prototype

In general, we could notice that all experts know that one piece of data is always
more important than the others. Besides, it highlights that data is also part of their
visualization tasks. These statements confirmed that this task is fundamental in the
graph design process, so making careful design decisions to highlight data is also
relevant.

The academia experts expressed that it was a tool with much potential and would
be very useful. In addition, they expressed that although the saliency model did not
have 100% reliability, it was clear to them that this design tool is a visual support
for decision-making only. From the industry experts’ perspective, they had many
questions about the development, specifically how it had been implemented for
future use.

Finally, both expert groups agreed that the tool should provide more information
about saliency. For example, the tool may show the percentage of attention on each
graph element. Furthermore, it should be a bit more ample with other visualization
types, such as dashboards, taking advantage of the position change function that the
tool already handles. Regarding the two tool versions (Matlab and Python), both
expert groups indicated that the tool made in Python was much better in terms of
appearance and usability than the one developed in Matlab.

Measurement Tool Prototype

During the interviews with each expert, we noticed that the visualization val-
idation process is done in two ways: showing the visualization to a focus group
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or by using the experience. Showing the visualization to a focus group is used in
companies, and the graphs are shown to colleagues in the same area or a specialized
User Experience group. However, that process can take a considerable amount of
time. On the other hand, the rest of the experts validate their designs based on their
experience and theoretical design knowledge. Based on these statements, we can
state that a tool is needed to support the validation process of a graph designer’s
intent.

The experts highlighted two complementary advantages that saliency prediction
integration could offer. The first is that it is a learning tool. This statement is because
specific attention behavior is learned if the tool is used for an extended period.
Therefore, the graph designer is acquiring knowledge while validating the graph’s
attention. The second benefit is expert-oriented since there may be an acquired data
visualization bias over time. For example, an expert who has been working on the
same type of data for a long time, who has seen it for a long time, may have a bias
since it is already clear to him what the relevant data is. However, it may not be the
same for a final observer who sees the data for the first time.

Like the other tool, the experts said it would be interesting if it were more
extensive and could be used for dashboards. Additionally, the academia experts
mentioned again that they would like more information about saliency reflected in
the resulting saliency map. For example, divide the graph into four quadrants and
indicate the salience percentages in each quadrant.

In conclusion, most results demonstrated that integrating saliency prediction into
the design process, both as a Measurement Tool and Design Tool, is a relevant and
valuable approach. It is noteworthy that the experts mostly expressed that they had
not seen this type of support in other tools, and they have significant potential.
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Conclusions

“The greatest value of a picture is when it forces us to notice what we
never expected to see.” John Tukey (U.S. statistician)

The thesis objective was to integrate visual-cognitive concepts (particularly
saliency prediction) into the DataViz design process to bring them closer to the
graph designer and support the design decisions. To achieve this objective, firstly,
we conducted a Literature Review to understand how the preattentive process, the
first step in human attention, has been used in InfoVis in the last ten years. We found
that understanding the impact of preattentive attributes (e.g., colors, orientation) is
mainly used implicitly, which means they were used to generate design patterns and
incorporated into design systems. However, graph designers are oblivious to their
visual impact. On the other side, we found that the effects of the preattentive process
are commonly used for graph validation. However, graph validation takes place in
laboratories with controlled environments and takes an extended period. Finally, we
were unable to locate any tool that could show the graph designer the influence of
their design decisions on graph attention during the design and validation phases. To
sum, we identified a gap between the existing knowledge about the visual-attention
impact and the graph designer.

We realized that we could bring graph designers closer to the concepts of human
visual impact through saliency prediction. Saliency prediction models have been
developed over 30 years, mainly oriented to object detection. However, in the
last five years, we found that some models have been designed specifically for
attention analysis in InfoVis images. One of the essential factors in the limited
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use of saliency prediction models in the field of InfoVis is the difference between
commonly natural images used (e.g., landscapes) and graph images: InfoVis images
are born digital; they have meaningful small objects; different color scales; the white
space between visual elements is higher than in natural images; and an essential
present of textual elements. Furthermore, these new models specialized for InfoVis
have been developed with classical theories (Bottom-up and Top-down) and with
more modern methods such as deep learning.

Given the relative novelty of the InfoVis saliency models, we decided to perform
a experimental validation of the accuracy of such saliency models. As a result,
we found that models based on classical (bottom-up) saliency prediction obtained
the best results under three different scenarios. First, using MASSVIS, a commonly
used dataset with more than 300 InfoVis images, together with the saliency data.
In the second scenario, we used another dataset but with clean graphs, created by
us, with only essential visual elements (titles, axes, and values), and with ground
data collected from 80 observers using an eye-tracking device. Finally, the third
scenario with graphs without textual elements only focuses on the attention behavior
in data-contained elements. In addition, we found some insights about the saliency
behavior on specific features, e.g., the position, and orientation of the data-contained
elements (bars in a bar chart) have an apparent influence on saliency behavior. Finally,
based on these results, the Matzen model, which used a classical saliency model
(Bottom-up) combined with the text saliency model (Top-Down), obtained the best
result on average in each scenario.

“To find signals in data, we must learn to reduce the noise - not just the
noise that resides in the data, but also the noise that resides in us. It is
nearly impossible for noisy minds to perceive anything but noise in data.”
– Stephen Few (founder and principle of Perceptual Edge)

In order to use the saliency model selected above and make it part of the graph
design process in an explicit way, we decided to address the two steps of the graph
design process: the initial design and the validation step. For the initial design step,
we use saliency prediction as a Design Tool. We developed a tool in which the
designers can choose the data they want to highlight, and it presents three options
of graphs that would highlight that specific piece of data. First, the graphs are
generated by systematically varying color, position, orientation, and texture. Then,
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the tool applies the saliency prediction to choose the combinations showing the
highest percentage of saliency in the selected data. This tool has Matlab and Python
versions.

For the second selected design step, the graph validation, we developed a second
tool that uses saliency prediction as a Measurement Tool. This development aimed
to allow the graph designer to measure how each of her design decisions would
impact the observer’s attention. The tool is a data visualization web application
integrated with a saliency map generation function. As a result, the graph designer
can choose from a variety of graphs, make design changes, and interactively and
iteratively see how each of these choices will impact the observer’s attention on the
data (visual graph elements).

Finally, we conducted validations with experts in data visualization from dis-
tinct viewpoints, three from academia and three from industry, to validate the two
advanced tools. In general, the academic experts perceived the Design Tool as an
exciting development that can be extended and which they find very useful, especially
for support in design decision-making. On the other hand, the industrial experts
slightly differ in the usefulness and the ease of use criteria because they perceive the
tool as a bit complicated to use but with great potential.

The expert’s reaction was enthusiasm for integrating saliency in a data visual-
ization system for the Measurement Tool. They said it is a relevant tool that could
help reduce validation times as it is generally a lengthy cross-validation process.
In addition, the experts highlighted two complementary advantages that saliency
prediction integration could offer: learning tools and bias-breaker. First, the tool can
be used as a learning instrument because the designer will have acquired a lot of
information about which design decisions have the most impact after a period of use.
Secondly, the tool can be a bias-breaker because if an expert has been working on a
visualization for a long time, the relevant data is already clear to her. Still, it may be
perceived differently by the final observer.

The experts said it would be interesting if both tools were more extensive and
could be used for dashboards. Additionally, they mentioned that they would like
more information about saliency reflected in the resulting saliency map (saliency
percentage per area).
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“How we visualize data will evolve into more complex forms that better
communicate uncertainty and complexity.” – Amanda Makulec (Data
viz designer, teacher & speaker)

Although our approaches are useful, they are limited by the saliency prediction
model’s weaknesses. Firstly, saliency models for DataViz are for “explorative tasks,”
but in DataViz, there are more tasks (e.g., correlate, find anomalies, retrieve value).
Due to the relationship between human vision and the human cognitive process, the
nature of the task should also be included in how it influences attention. Another
limitation of our approach is the response time. Although we improved the response
time by making the tools web-based, it is still a shortcoming, especially in the design
tool. Although, according to our understanding, this could be improved with a better
machine capacity or parallel computing.

“Visualization gives you answers to questions you didn’t know you had.”
by Ben Schneiderman (Computer scientist and notable referent in HCI)

According to Schneiderman in the above quote, visualization can provide a lot
of information. Evidently, the construction of visualizations focused on properly
showing that information to the observer. However, the research studies ignore
the graph designers, who are responsible for combining many visual elements so
that their visualizations are clear to the observer. In this thesis, we presented an
investigation of how the same visualizations can also answer questions the graph
designers do not even know they have. Furthermore, we prove that information can
be gleaned from the same graph to support the graph design process with saliency
prediction.

“The purpose of visualization is insight, not pictures.” by Ben Schnei-
derman

Future Work. Researchers are now working on customized saliency prediction
algorithms for InfoVis and DataViz, so much work is still to be done in this field. With
the insights found during the validation of these models, it would be possible to start
working on improving saliency models. For example, InfoVis Saliency models could
have two levels of detail: a general one on the whole graph (titles, captions, context
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images); and a second level that would predict the attention behavior specifically on
the data-containing elements. The presented developments could be extended and
used in InfoVis by adding a study on how to work with saliency in dashboards.

Regarding the developed tools, we consider it possible to extend the graph types
to be used. First, additional experiments should be carried out on graphs other than
bar graphs to validate the saliency model’s performance with them. Then, within
the developed tools, we should have a profile of each graph to know which visual
elements can be varied without affecting the consistency of the graph.

Finally, it is also open to future work on the amount of detail that can be given
on the saliency in the graph, for example, showing saliency percentages by zones or
making static calculations on saliency variations from one design to another.

“The important thing in science is not so much to obtain new facts as
to discover new ways of thinking about them.” by William Lawrence
Bragg, a British physicist.
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Appendix A

Saliency Models Validation Results

All the results of the three experiments performed in chapter 5 can be downloaded
from the following link: https://bit.ly/eyeTracking_ImagesResults

The folder is organized as indicated below:

• First Experiment. This folder contains a sub-folder with selected MASSVIS
images. A second sub-folder has the saliency maps of each image for each
validated saliency model. This folder also has a .mat file (Matlab) that contains
the metadata and the fixation points for each image.

• Second Experiment. This folder includes a sub-folder with the created Clean
Graph set of images. A second sub-folder contains the saliency maps of each
image for each validated saliency model. The last sub-folder has the ground
truth: observer’s data, graph description, fixations, and the heatmap.

• Third Experiment. This folder includes a sub-folder with the second group
of Clean Graphs. A second sub-folder contains the image fixations and the
heatmaps. The other sub-folder has the resulted saliency maps for each model.
Also, this folder has the eye-tracking collected data. The last sub-folder has
the images with the number of fixations.

• Metrics Results. For each experiment, there is an excel file where the values
obtained from the metrics (three excel files in total)

https://bit.ly/eyeTracking_ImagesResults
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• Results Power Point. This file shows all the images resulting from the second
and third experiments. This file provides an easy way to view the results
obtained.



Appendix B

Experts Evaluation Questionnaires

Questionnaire for User Interface Satisfaction (QUIS)

The scale used for this validation instrument was from zero (0) to nine (9).

Table B.1 QUIS selected questions

USEFULNESS
Question
Number

Scale

1 Terrible to Wonderful

2 Difficult to Easy

3 Frustrating to Satisfying

4 Inadequate Power to Adequate Power

5 Dull to Stimulating

6 Rigid to Flexible

Usefulness, Satisfaction, and Ease of use (USE)

The used scale for this validation instrument is: DISAGREE (0) to AGREE (6)
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Table B.2 USE selected questions

Question
Number

Question

USEFULNESS
1 It could help me be more effective.

2 It could help me be more productive.

3 It is useful.

4 It gives me more control over the activities in my daily
DataViz tasks.

5 It makes the things I want to accomplish easier to get done.

6 It could save me time when I use it.

EASY TO USE
7 It is simple to use

8 I can use it without written instructions.

9 I don’t notice any inconsistencies as I use it.

10 Both occasional and regular users would like it.

SATISFACTION
11 I am satisfied with it.

12 I would recommend it to a friend.

13 I feel I need to have it.

Technology Acceptance Model (TAM)

The used scale for this validation instrument was one (1) to six (6).
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Table B.3 TAM list of questions

Question
Number

Question

PERCEIVED USEFULNESS
1 Using Saliency Prediction in my job would enable me to

accomplish tasks more quickly.

2 Using Saliency Prediction would improve my job perfor-
mance.

3 Using Saliency Prediction in my job would increase my
productivity.

4 Using Saliency Prediction would enhance my effectiveness
on the job.

5 Using Saliency Prediction would make it easier to do my
job.

6 I would find Saliency Prediction useful in my job.

PERCEIVED EASE OF USE
7 Learning to operate Saliency Prediction would be easy for

me.

8 I would find it easy to get Saliency Prediction to do what I
want it to do.

9 My interaction with Saliency Prediction would be clear and
understandable.

10 I would find Saliency Prediction to be flexible to interact
with.

11 It would be easy for me to become skillful at using Saliency
Prediction.

12 I would find Saliency Prediction easy to use.



Appendix C

Eye-Tracking Process Screenshots

The following images show the process developed in the OpenSesame application
for data collection with the eye-tracker.

Fig. C.1 General Eye-Tracking developed flow.
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Fig. C.2 Initial black screen

Fig. C.3 Image List. In this part of the process, the program chooses the images randomly
and takes the numbers from this list.

Fig. C.4 Black point screen to focus the observer’s attention previous to the graph image.
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Fig. C.5 The 0,0 point for the Eye-tracker is also located, thus synchronizing both the Eye-
tracker and the first fixation point of the observer.

Fig. C.6 Show clean graph (randomly)



172 Eye-Tracking Process Screenshots

Fig. C.7 Final Screen



Appendix D

Design Tool - Python Examples

(a) Accent color palette, horizontal and Brazil

(b) Accent Saliency Map

(c) Blue color palette, horizontal and Brazil

(d) Blue Saliency Map

Fig. D.1 Example Design Tool (python). Data to be highlighted is Brazil, winners per palette
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(a) Pastel1 color palette, vertical and Brazil

(b) Pastel1 saliency map

(c) Viridis color palette, vertical and Brazil

(d) Viridis saliency map

Fig. D.2 Example Design Tool (python). Data to be highlighted is Brazil, winners per palette
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(a) Accent color palette, horizontal and C
(b) Accent Saliency Map

(c) PuOr color palette, horizontal and C
(d) PuOr Saliency Map

Fig. D.3 Example Design Tool (python). Data to be highlighted is C, winners per palette
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(a) PiYG color palette, vertical and C
(b) PiYG saliency map

(c) Paired is the color palette, vertical and C
(d) Paired saliency map

Fig. D.4 Example Design Tool (python). Data to be highlighted is C, winners per palette
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