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A B S T R A C T   

Due to the increasing frequency of natural and man-made disasters, the scientific community has 
paid considerable attention to the concept of resilience engineering. On the other hand, au-
thorities and decision-makers have been focusing their efforts on developing strategies that can 
help increase community resilience to different types of extreme events. Since it is often 
impossible to prevent every risk, the focus is on adapting and managing risks in ways that 
minimize impacts to communities (e.g., humans and other systems). Several resilience strategies 
have been proposed in the literature to reduce disaster risk and improve community resilience. 
Generally, resilience assessment is challenging due to uncertainty and the unavailability of data 
necessary for the estimation process. This paper proposes a Fuzzy Logic method for quantifying 
community resilience. The methodology is based on the PEOPLES framework, an indicator-based 
hierarchical framework that defines all aspects of a community. A fuzzy-based approach is 
implemented to quantify the PEOPLES indicators using descriptive knowledge instead of complex 
data, accounting for the uncertainties involved in the analysis. To demonstrate the applicability of 
the methodology, three cases with different levels of data availability are performed to obtain a 
resilience curve and resilience index of two out of seven dimensions of the PEOPLES framework. 
When numerical data does not exist, descriptive data based on expert knowledge is used as input. 
Results show that the proposed methodology can cope with both numerical and descriptive input 
data with different uncertainty levels providing good estimates of resilience. The methodology 
can be used as a decision-support tool to assist decision-makers and stakeholders in assessing and 
improving their communities’ resilience for future events, focusing on specific indicators that 
suffer from resilience deficiencies and need improvements.   

1. Introduction 

Past global disaster events have shown an upward trend over the years, suggesting that modern communities are often not resilient 
enough to natural and man-made disasters. In recent decades, an increase in the intensity and frequency of extreme weather events (e. 
g., rainfall, temperature, and wind) has ultimately led to climate change-related hazards, such as increased flooding, heatwaves, and 
sea-level rises [1]. Previous events, such as the intense flooding in Thailand (2011) and Hurricane Sandy (2012), have indicated that 
extreme events can have far-sighted impacts upon communities [2]. Therefore, research on disaster resilience has gained increased 
attention. Since resilience is a multidisciplinary concept and encompasses different research areas, several definitions of resilience can 
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be found in the literature. The term resilience was introduced by Allenby and Fink [3] as “the ability of a system to remain in a practical 
state and to degrade gracefully in the face of internal and external changes”. Bruneau et al. [4], and later Cimellaro et al. [5], defined 
resilience as “the ability of social units to mitigate hazards, contain the effects of disasters when they occur, and carry out recovery 
activities to minimize social disruption and mitigate the effects of future earthquakes”. 

Disaster resilience is often classified into technological units and social systems [6]. The literature offers state-of-the-art approaches to 
quantify community resilience [7–13], mostly indicator-based approaches. Resilience indicators provide a way to cope with the 
complexity of community systems while computing their resilience. Among the available indicator-based resilience frameworks, there 
is the Hyogo Framework for Action (HFA) [14,15], which is an internationally agreed top-down framework to increase the resilience of 
nations and communities through the implementation of detailed measures at the government and policy levels. Based on the Hyogo 
Framework, Kammouh et al. [16] have introduced a quantitative method to quantify resilience at the country level. Another top-down 
resilience framework is the Baseline Resilience Indicator for Communities (BRIC) [17], a quantitative framework that focuses on the 
inherent resilience of communities. A qualitative framework that measures resilience along with the ability to recover from seismic 
events is the San Francisco Planning and Urban Research Association framework (SPUR) [18]. It considers the recovery of buildings, 
infrastructures, and services to determine the resilience of physical infrastructure. Another hierarchical framework for evaluating 
community-level resilience was proposed by Kwasinski et al. [19]. The model consists of community dimensions and their relation-
ships with community services, systems, and resources. 

Similarly, Cimellaro et al. [20] presented the PEOPLES framework, a top-down theoretical framework that addresses all aspects of a 
community. These aspects are classified under seven community dimensions: Population; Environment; Organized government ser-
vices; Physical infrastructure; Lifestyle; Economic; and Social capital. Later, the PEOPLES framework was upgraded into a quantitative 
framework for measuring community resilience [21–24]. Alshehri et al. [25] proposed a quantitative and qualitative assessment tool to 
measure community resilience to disasters. The dimensions of the framework were developed using the census-based Delphi tech-
niques. Another resilience-based risk assessment approach at the community level was developed by Marasco et al. [26]. The PEOPLES 
framework was adopted as the community resilience blueprint for determining resilience through its comprehensive indicators and 
structure. Joerin and Shaw [27] developed the Climate Disaster Resilience Index (CDRI), focusing on physical, social, economic, 
institutional, and natural dimensions of a community to quantitatively assess the resilience of communities against climate-related 
disasters such as floods, landslides, etc. Shammin et al. [28] adopted a holistic approach to designing community-based adaptation 
programs against climate change impacts. 

Recently, several data-driven frameworks have been investigated to assess community resilience. For instance, Hong et al. [29] 
proposed a generalizable method using large-scale smartphone geolocation data to evaluate community resilience. Abdel-Mooty et al. 
[30] developed a data-driven community flood resilience categorizations framework that can be used to develop realistic disaster 
managements strategies and risk mitigation measures. 

Despite this robust literature on community resilience quantification, there is still considerable disagreement about the indicators 
that define resilience and the most useful frameworks for measuring it. The scientific community is aware that data availability is one 
of the main issues. The modeling approaches presented require accurate data inputs to be incorporated into the models to be func-
tional, time, and technical expertise. Access to this data is limited, and often, data collection comprises uncertainties and a lack of 
knowledge, and the accuracy is insufficient. An important aspect missing from different existing resilience assessments is the inclusion 
of uncertainty. Assessing uncertainty will help understand the studied system and reduce critical areas of uncertainty [31–34]. The 
engineering community’s typology and definition of uncertainty are extensive and often discordant [35]. Klir and Yuan [36] cate-
gorized uncertainty into two basic types: vagueness and ambiguity (see Ref. [37] for an extensive list of the uncertainty types). 

The difficulty in the data and indicators acquisition process, as well as in defining the interaction between them, makes resilience 
assessment so complex that decision-makers and industry cannot use it. Stakeholders and practitioners often lack the resources to use 
the available data-intensive methods. To respond to this challenge, many studies have focused on developing methods for quantifying 
community resilience and assessing the impacts of recovery strategies through probabilistic approaches, such as Bayesian Networks 
[38]. For example, Abdelhady et al. [39] proposed a novel framework that integrates damage estimated after a hurricane through 
vulnerability models with a probabilistic community recovery model. Schultz and Smith [40] developed a Bayesian network-based 
approach to evaluate the resilience of infrastructure networks and buildings in Jamaica Bay, New York. Kammouh et al. [41] intro-
duced a novel approach to assess the time-dependent resilience of engineering systems using resilience indicators through the Dynamic 
Bayesian Network (DBN). Another Bayesian network-based approach for seismic resilience quantification was proposed by Ref. [42]. 
Cai et al. [43] employed a Bayesian network to investigate interdependencies of resilience components and improve disaster resilience. 
Furthermore, Kameshwar et al. [44] developed a probabilistic decision support framework for community resilience planning under 
multiple hazards using Bayesian Network. Despite the advantages of the Bayesian network, such as updating the system to which it is 
applied when new data and information become available, the main concern is its application in case of epistemic uncertainties and the 
computational effort in determining conditional probabilities [45]. When dealing with uncertainty, choosing an appropriate model 
depends on the characteristic of the uncertainty presented in the problem description. Generally, probabilistic models are used to 
characterize random variables and treat their uncertainties through statistical information. Statistical information is required for 
comparing probability distribution functions (PDFs) with data. If this information is insufficient (e.g., no numerical data are available), 
an alternative uncertainty model must be utilized. When few data are available with significant uncertainty, expert knowledge with 
linguistic assessment is most frequently required. The Fuzzy set theory provides the basis for modeling a non-probabilistic uncertainty 
model that considers fuzzy sets, subjective information, and human knowledge to represent the uncertainty in the parameters. 
Moreover, in fuzzy systems, the uncertainties contained in both inputs and output of the system are used to formulate the system 
structure itself, unlike conventional systems that formulate a model based on assumptions and then consider uncertainties. 
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The primary goal of this paper is to cover the previously mentioned shortcomings of existing scientific literature by introducing a 
Fuzzy Logic-based method within the context of the PEOPLES framework. The proposed method utilizes the resilience indicators 
presented in Ref. [22] to develop an extensive resilience model that accounts for all aspects of a community. Since some indicators may 
be challenging to quantify in specific scenarios, the fuzzy logic technique is used for inference to account for the data-related un-
certainties. The methodology here derived does not require precise and deterministic data but rather expert knowledge and experience 
for its implementation to determine the different parameters involved in the resilience evaluation of urban communities and provide 
consistent resilience values. 

The contributions of this work are summarized as follows: 

1. Developing a comprehensive hierarchical framework that captures casual and logical relationships among the PEOPLES di-
mensions belonging to a specific component.  

2. Implementing the weighting technique developed in Ref. [22] to rank the indicators according to their importance.  
3. Employing the fuzzy logic inference technique to account for data uncertainties of the analyzed indicators.  
4. Presenting three cases with different levels of uncertainty to demonstrate the applicability of the introduced resilience estimation 

methodology.  
5. Verifying the methodology by comparing the model output with the output obtained from Ref. [22]. 

The resilience quantification methodology presented in this paper can be used as a decision-support tool by decision-makers to (i) 
determine the state of their communities after a hazardous event and (ii) prioritize planning and management strategies, assign 
appropriate resources for enhancing the individual indicators that suffer from resilience deficiencies, and improving the resilience of 
their communities to future hazardous events. The remainder of the paper is organized as follows. Section 2 reviews the PEOPLES 
framework along with its seven dimensions. Section 3 is dedicated to reviewing the basic knowledge of the Fuzzy Logic and its 
implementation within the PEOPLES framework. Section 4 describes the proposed methodology for estimating community resilience. 
Section 5 presents three cases with different levels of uncertainty to demonstrate the applicability of the methodology and verify the 
proposed resilience estimation model by comparing the model output with the output of the benchmark system. Sensitivity analysis for 
membership functions and defuzzification methods is presented in Section 6 to reduce the subjectivity of the fuzzy system. Finally, 
conclusions are drawn in Section 7 together with the proposed future work. 

2. PEOPLES framework 

PEOPLES is a multi-layered framework developed at the Multidisciplinary Center of Earthquake Engineering Research (MCEER, 
State University of New York) that aims to identify different resilience characteristics of a community at different scales (spatial and 
temporal) and assess possible responses of a community by taking into account the interdependence between community levels [7]. 
The PEOPLES framework consists of seven dimensions of a community divided into a set of components, each of which is subdivided 
into several indicators. The seven dimensions are summarized by the acronyms PEOPLES as follows [6,46] (see Fig. 1): Population and 
demographics, Environment and ecosystem, Organized government services, Physical infrastructure, Lifestyle and community 
competence, Economic development, and Social-cultural capital. 

Every dimension of the PEOPLES framework is divided into a set of components and every component is further broken down into a 

Fig. 1. Peoples resilience framework – dimensions (adapted from Ref. [46]).  
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set of indicators. Regarding the indicators, a list of 115 resilience indicators found in the literature was collected and allocated to the 
proper components of PEOPLES [22]. Each indicator has a numerical value assigned to it to enable an analytical examination of the 
indicator’s performance and make all indicators computable. Furthermore, each value is normalized to the target value (TV). The 
target value provides the baseline for measuring the resilience of a system and represents the quantity at which the analyzed value is 
considered fully resilient [47]. For instance, considering the measure “Number of beds per 100,000 population” (Indicator 4.2.1 in 
Appendix), the output of this measure would be an absolute number of beds that cannot be incorporated into other measures unless it is 
normalized; thus, the result is divided by TV, which in this scenario represents the “optimum” number of beds per 100,000 people (e.g., 
TV = 1000 beds/100,000 people). If the ratio of the value of the measure and the TV is less than one, this means that the indicator 
could still be improved; while if the ratio is greater than one, a value of 1 is assigned to the measure [22]. Furthermore, the measures 
are classified into “static measures (S)” and “dynamic measures (D)”. A static measure is a measure that is not impacted by a hazardous 
event, while a dynamic measure is a measure that is event-sensitive (i.e., the value of the measure changes following a hazard event). 
The variables (i.e., dimensions, components, and indicators) included in the PEOPLES framework do not contribute equally to the 
resilience output. Therefore, they are classified according to their importance. Each variable in the same group is assigned an 
importance factor (I) which is normalized using a min-max rescaling technique. The min-max rescaling technique is used to scale the 
importance score of each variable between 0 and 1, where 0 corresponds to the worst rank and 1 represents the best rank. To represent 
the functionality of each variable (i.e., dimensions, components, and indicators) within the PEOPLES framework, a set of parameters 
obtained from past events or by performing hazard analysis is used: un-normalized initial functionality q0u, normalized initial func-
tionality before the event q0, post-disaster functionality q1, the functionality after recovery qr, and the restoration time Tr required to 
complete the recovery process [22]. 

3. Background on fuzzy logic 

Zadeh [48] introduced the concept of fuzzy set theory and fuzzy logic to address the subjectivity of human judgment in the use of 
linguistic terms in the decision-making process [49,50]. The purpose of fuzzy logic is to solve high degree uncertainty problems and to 
represent vague, ambiguous, and chaotic information [51,52]. Over the years, Fuzzy Logic has become a key factor in many fields due 
to its effectiveness and reliability. 

In the existing literature, fuzzy set theory and fuzzy logic have been applied in Machine Intelligence Quotient (MIQ) to simulate 
human ability, in earthquake engineering for seismic damage evaluation [37,53,54], in fragility curve analysis [55], and natural 
disaster risk management [56]. 

Fuzzy logic assigns different membership grades (μ) ranging between 0 and 1 to a variable x to indicate the membership of the 
variable to several classes (fuzzy sets). The strength of the fuzzy logic inference system relies on the following two main features: (i) 
fuzzy inference system can handle both descriptive (linguistic) knowledge and numerical data; (ii) fuzzy inference system uses 
approximate reasoning algorithm to determine relationships between inputs by which uncertainties can be propagated throughout the 
process [57]. In this work, the Mamdani Fuzzy Logic inference method, known as the Max-Min method, is implemented as it is the most 
suitable when the fuzzy system relies on expert knowledge and experience [58]. Implementing fuzzy logic as an inference system to 
quantify the resilience requires three main steps: 1) fuzzification and membership functions (MFs); 2) Fuzzy Inference System (FIS) to 
aggregate the indicators, and 3) defuzzification (Fig. 2). Theoretical information and detailed applications of fuzzy logic can be found 
in Refs. [36,59]. 

4. Fuzzy-based methodology to estimate community resilience 

The methodology proposed in this work enhances the previous work introduced by Ref. [22] by incorporating fuzzy logic in the 
computation process. The methodology can be divided into the following (see Fig. 3):  

• Resilience modeling and indicator grouping: a hierarchical rule base model is built based on the structure of the PEOPLES 
framework. According to predefined criteria, indicators belonging to a specific component are further divided into subgroups. This 
step is necessary to have a manageable and straightforward hierarchical structure for each dimension to simplify the subsequent 
implementation of Fuzzy Logic and reduce its computation requirements.  

• Interdependency analysis and importance factor: weighting factors and importance factors are allocated to each PEOPLES variable 
(i.e., indicators, components, and dimensions) as they do not contribute equally to the overall resilience output. 

Fig. 2. Fuzzy inference system (FIS).  
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• Inference: the last step of the methodology is to combine the indicators through a Fuzzy Logic (FL) inference system and obtain the 
final output of the framework. 

4.1. Step 1: resilience modeling and indicators grouping 

The first step of the methodology is the definition of a hierarchical scheme for the seven dimensions of the PEOPLES framework. A 
total of eight flowcharts are presented (Fig. 4-Fig. 11); i.e., seven flowcharts for the seven dimensions and an additional flowchart for 
the final resilience output. Indicators within each component are further clustered into subgroups with no more than three indicators 
each to simplify the implementation of fuzzy logic. That is, in a fuzzy-based model, a high number of inputs results in an exponential 
increase in the number of fuzzy rules as well as membership functions. This paper adopts a decomposition technique at the level of 
indicators proposed in Ref. [60] to reduce the computational complexity. Further details are provided in Section 5. 

Fig. 3. Hierarchical rule base model applied to PEOPLES framework.  

Fig. 4. Population and demographics dimension hierarchical scheme.  

M. De Iuliis et al.                                                                                                                                                                                                      



International Journal of Disaster Risk Reduction 78 (2022) 103118

6

4.1.1. Population and demographics 
This dimension contains indicators that describe the population and demographics in a given community. It considers the socio-

economic composition of the community and measures social vulnerabilities that could affect the emergency response and recovery 
systems (e.g., minority and socioeconomic status, age distribution, population density). For instance, median income and age distribution 
information is essential to measure the community’s economic health. The Population and demographics dimension comprises three 
components, Distribution/density, Composition, and Socioeconomic status, with nine indicators. Indicators within this dimension are 
clustered into six subgroups: Percentage of population, Family asset, Economic diversity, Aggregation, Population equity, Disparities, 
and Demography. The hierarchical scheme designed for the Population and demographics dimension is shown in Fig. 4. 

4.1.2. Environment and ecosystem 
The Environment and ecosystem dimension serves as indicators for measuring the ability of the ecological system to return to or near 

its pre-event state. Environmental degradation has strongly contributed to increasing risks from natural hazards by altering the fre-
quency and intensity of climate-related hazards and decreasing ecosystems’ physical buffering capacity [61]. 

One such indicator is the Normalized Difference Vegetation Index (NDVI) that can be applied to quantify ecosystem structure 
following disturbances caused by climate change impact, such as fire, flooding, and hurricanes [46]. For instance, the main soil 
changes resulting from climate change would be soil temperature regimes and soil hydrology. The community response to climate 
change risks would be determined by considering the resource users and their access to new technologies [62]. 

The Environment and ecosystem dimension contains six components: Water, Air, Soil, Biodiversity, Biomass (Vegetation), and Sus-
tainability, with 13 indicators. Indicators within this dimension are classified into five subgroups: Environment quality, Percentage of 
land, Land type, Land use, and Vegetation index (see Fig. 5). Note that components with a single indicator are processed as a single 
component. In other words, the indicators of those components are clustered within the same subgroup. 

4.1.3. Organized governmental services 
The Organized governmental services dimension includes information about traditional legal and security services such as police, 

emergency, and fire departments as well as services provided by public health, hygiene departments, and cultural heritage de-
partments. The indicators within this dimension are also related to disaster emergency plans, training, and other operations that might 
help ensure proper disciplined responses. The Organized governmental services dimension comprises 5 components: Executive/admin-
istrative, Judicial, Legal/security, Mitigation/preparedness, and Recovery/response, with 26 indicators. As the Judicial component presents 
one indicator, it has been linked to the Executive/administrative component indicators. As shown in Fig. 6, the hierarchical scheme 
consists of 10 subgroups where indicators are aggregated to get the result of the Organized governmental services dimension. 

4.1.4. Physical infrastructure 
The Physical infrastructure dimension emphasizes the built environment of a community. It incorporates both Facilities and Lifelines 

components with 21 indicators, as illustrated in Fig. 7. Indicators included within the Facilities component refer to housing, commercial 
and cultural facilities. Indicators under the Lifelines component consider food supply, health care, utilities, transportation, and 
communication networks. The hierarchical scheme is structured in 7 subgroups: Communication, Evacuation, Healthcare, Services, 

Fig. 5. Environment and ecosystem dimension hierarchical scheme.  
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Commercial activities, Housing, and Supply. 
Among PEOPLES dimensions, Physical infrastructure is often the dimension that needs urgent attention after a hazardous event. 

Authorities and government services work to restore the utilities’ functionality to allow critical facilities to perform their functions. 

4.1.5. Lifestyle and community competence 
This dimension deals with the ability of a community to develop solutions to complex problems, including warning plans, pro-

cedures, and disaster training programs. Also, the participation of community members in the activities required to sustain the 
community is a crucial indicator to measure community resilience. It is believed that communities that collectively believe that they 
can stand complex problems are more likely resilient against environmental and governmental obstacles. 

Lifestyle and community competence is divided into two components: Quality of life and Collective actions and efficacy, with seven 
indicators. The hierarchical framework of the Lifestyle and community competence dimension is organized into three subgroups: Abil-
ities, Security, and Neighborhood (see Fig. 8). 

4.1.6. Economic development 
The Economic development dimension includes the static evaluation of a community’s current economy (economic activity) and the 

dynamic evaluation of a community’s economic growth (economic development). The former accounts for the provision of labor to 
produce economic goods and services, while the latter measures a community’s productive capacities in terms of technologies, 
technical cultures, and the capacities and skills of those engaged in production. Key indicators of the Economic development dimension 
also focus on life expectancy and poverty level. Thus, it is evident that this dimension is closely connected with the Population and 
Demographics dimension. Other vital indicators cover the availability of evacuation plans and drills for structures, adequacy plans for 

Fig. 6. Organized governmental service dimension hierarchical scheme.  
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damaged buildings, and commercial reconstruction following a disaster. The Economic development dimension consists of 3 compo-
nents: Financial services, Industry production, and Industry employment services, with 16 indicators. Seven subgroups are used to group 
indicators in the hierarchical framework, as illustrated in Fig. 9. 

4.1.7. Social-cultural capital 
The last dimension of the PEOPLES framework, namely Social-cultural capital, incorporates education, social, and cultural services, 

child and elderly services, and community participation in formal organizations such as religious congregations, schools, and resident 
associations. The Social and cultural capital dimension is measured through the acquisition of surveys concerning the number of 
members of civil and community organizations, and the quality of life. Furthermore, key indicators include adequacy plans and 
management plans following a hazard. 

The Social-cultural capital dimension is split into seven components: Community participation, Nonprofit organization, Place 

Fig. 7. Physical Infrastructure dimension hierarchical scheme.  

Fig. 8. Lifestyle and community competence dimension hierarchical scheme.  
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Fig. 9. Economic development dimension hierarchical scheme.  

Fig. 10. Social-cultural capital dimension hierarchical scheme.  
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attachment, Child and elderly activities, Commercial centers, Cultural and heritage services, and Education services, with a total of 17 in-
dicators (see Fig. 10). Indicators within this dimension are classified into six subgroups: Social organizations, Participation classes, 
Participation, Social and civic programs, Risk reduction programs, and Education. 

4.1.8. The final resilience output 
The final hierarchical scheme that combines the seven dimensions is shown in Fig. 11. The Population and demographics dimension is 

closely related to the Economic development dimension as the latter involves the life expectancy and poverty rates of the population, and 
therefore they are grouped. The Physical infrastructure dimension is related mainly to the Organized governmental services dimension, 
which considers the infrastructure robustness and assessment, and the availability of resources for recovery programs. The Environment 
and ecosystem dimension depends on the Organized governmental services dimension, which verifies the availability of local government 
plans to support the restoration, protection, and sustainable management of ecosystem services [63]. Finally, the Social-cultural capital 
dimension is considered a prerequisite to Lifestyle and community competence as the Social-cultural capital dimension incorporates 
different services that a community has provided for itself [64]. 

4.2. Step 2: interdependency analysis and importance factor 

PEOPLES indicators do not contribute equally to the overall resilience outcome; hence, their interdependencies can affect the final 
result [22]. To include interdependencies in this work, weighting factors are assigned to each variable through an interdependency 
analysis. In the analysis, variables of the PEOPLES framework are classified into three main groups [22]:  

1. Indicators within a component are considered as a group (29 groups in total).  
2. Components that fall within a dimension are taken as a group (7 groups in total).  
3. The seven dimensions of PEOPLES make up a group (1 group). 

The interdependency analysis assumes that the importance of a variable is related to the number of other variables in the same 
group that depends on it. Variables in the same groups are given importance factors using the [n x n] adjacency matrix in Fig. 12, where 
n is the number of variables in the analyzed group. Each cell (aij) in the matrix represents the degree of dependence between two 
variables and can take the values 0 or 1. A value of 0 indicates that the variable in the row does not depend on the variable in the 
column, while 1 indicates that the variable in the row depends entirely on the variable in the column. The importance factor is carried 
out by summing up the values in each matrix column. 

An interdependency matrix is built for each group of variables. A single interdependency matrix is constructed for the seven di-
mensions of PEOPLES, for each group of components under the dimensions, and finally for every group of indicators under the 
components. This results in 37 matrices to perform the interdependency analysis for the different variables of the PEOPLES framework. 

The level of interdependency between two variables can be identified using descriptive knowledge in the form of a walk-down 
survey filled by a team of experts. For instance, “low” and “high” dependence between two variables can be translated into 0 and 
1, respectively. Importance factors for different variables are collected through walk-down surveys filled by experts to reduce 
subjectivity and possible uncertainty. More than one person (e.g., approximately a group of 10 experts) defines the interdependency 
between any two variables. Experts employ their knowledge to provide information in a yes/no or 1/0 format. Due to the compre-
hensive structure of the PEOPLES framework, the expert can quickly fill out the survey without making arbitrary guesses. Then, the 
average of all responses is considered as the final importance factor that is used for further analysis. 

Finally, a weighting factor for each variable (wi) is obtained by dividing the importance factor by the maximum importance factor, 
as indicated in Equation (1) [22]: 

Fig. 11. Resilience hierarchical scheme.  
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wi =

∑n
j=1aji

∑n
i=1

∑n
j=1aji

(1)  

4.3. Step 3: inference system 

The last step of the methodology is implementing the fuzzy logic inference system for combining the PEOPLES variables to get the 
resilience index. In the following, the fuzzy logic process is described. 

Fuzzification process – Membership functions: The fuzzification process is helpful when it comes to uncertainties in the estimation 
of system inputs as it can cope with both numerical and descriptive variables. In the case of numerical input, the fuzzification process is 
straightforward and depends on the shape of the MFs. MFs can have different forms, such as triangular, trapezoidal, and Gaussian 
shapes. The simplest MFs are formed using straight lines. Both triangular and trapezoidal fuzzy MFs have been widely used due to their 
simple formulas and computational efficiency in representing linguistic variables [65,66]. Descriptive inputs, instead, must be con-
verted in fuzzy terms by assigning different membership degrees to the different granularities. For example, within the PEOPLES 
framework, if the average number of internet connections, television, radio, and telephone per household in a community is classified 
as “poor”, the indicator Telecommunication can be converted in fuzzy terms by assigning the membership degrees to the granularities 
[L, M, and H] as follows: [μL, μM, μH] = [0.9, 0.1, 0]. The chosen membership degrees show a low level of functionality for the 
Telecommunication indicator. If the average number of internet connections, television, radio, and telephone per household in a 
community is classified as “good”, the membership degrees assigned to the granularities [L, M, and H] would be: [μL, μM, μH] = [0.2, 
0.8, 0.2], showing a medium level of functionality. Finally, if the average number is classified as “rich”, the indicator Telecommuni-
cation can be converted in fuzzy terms by assigning the membership degrees to the granularities [L, M, and H] as follows: [μL, μM, μH] =
[0 0.1, 0.9]. The chosen membership degrees show a high level of functionality for the Telecommunication indicator. 

Fuzzy Inference System (FIS) – fuzzy rules: a Fuzzy Inference System (FIS) aims to map the input information into an output space 
exploiting the previously defined fuzzy sets. The relationships between inputs and outputs are defined through the fuzzy rule base (FRB) 
that comes from the heuristic knowledge of experts or historical data. As mentioned above, in this work, the Mamdani Fuzzy Logic 
inference system, known as the Max-Min method, is adopted Mamdani system consists of if-then statements (rules) that link the input 
(antecedent) to a consequent (output). Each rule delivers a partial conclusion, which is aggregated to the other rules to provide a 
conclusion (aggregation). In a complex system with many input indicators, the number of rules must cover all the possible 
combinations. 

Defuzzification process – crisp number: the defuzzification step is carried out to obtain a crisp number from the fuzzy output set 
resulting from the inference process. The defuzzification is performed according to the MF of the output variable and represents the 
inverse of the fuzzification process. Several defuzzification techniques have been developed, such as the center of gravity, the center of 
area, and the mean of maximum method [67]. 

5. Demonstrative example and verification 

To demonstrate the applicability of the proposed fuzzy logic-based methodology, three different cases for evaluating the resilience 
of San Francisco city have been applied.  

1. Case 1: Physical Infrastructure dimension with complete data.  
2. Case 2: Physical Infrastructure dimension with partial data.  
3. Case 3: Lifestyle and Community competence with no data available. 

In Case 1, the hazard event considered in the analyses is the 1989 Loma Prieta earthquake, characterized by a moment magnitude of 
6.9 Mw. The introduced methodology has been implemented focusing only on the Physical Infrastructure and Lifestyle and Community 
competence dimensions. In the first case, the list of indicators and components within the Physical Infrastructure and the corresponding 
functionality and repair time parameters required to quantify the resilience (see Appendix A) is considered as input data. For this 
study, open database sources were investigated to determine the parameters of the San Francisco community [68]. In Appendix A, q0u 
is the un-normalized initial functionality that must be normalized to be combined with the other parameters. The normalization of the 
initial functionality q0 is done by dividing the un-normalized functionality q0u over the Target Value TV described before. According to 
their nature (i.e., static, or dynamic), the classification of indicators is indicated in Appendix A as Nat. Furthermore, the recovery time 

Fig. 12. Interdependency matrix between variables in a same group (adapted from Ref. [22]).  
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Table 1 
Interdependency matrix between indicators under the Lifelines component.  

Indicator Telecommunication Mental 
health 
support 

Physician 
access 

Medical 
care 
capacity 

Evacuation 
routes 

Industrial 
resupply 
potential 

Internet 
infrastructure 

Efficient 
energy 
use 

Water 
use 

Gas Access and 
evacuation 

Transport Wastewater 
treatment 

Telecommunication 1 0 0 0 0  1 1 0 0 1 1 0 
Mental health 

support 
0 1 0 1 0 0 0 0 0 0 0 0 0 

Physician access 0 0 1 1 0 0 0 0 0 0 0 0 0 
Medical care 

capacity 
1 0 1 1 0 0 0 1 1 1 0 1 1 

Evacuation routes 0 0 0 0 1 0 0 1 1 1 0 1 1 
Industrial resupply 

potential 
0 0 0 0 1 1 0 1 0 0 1 1 0 

Internet 
infrastructure 

1 0 0 0 0 1 1 1 0 0 0 0 0 

Efficient energy use 0 0 0 0 0 0 0 1 1 0 1 0 0 
Water use 1 0 0 0 0 0 0 1 1 0 1 1 1 
Gas 1 0 0 0 0 0 0 1 1 0 1 1 1 
Access and 

evacuation 
1 0 0 0 1 0 0 1 1 1 1 1 1 

Transport 1 0 0 0 1 0 0 1 1 1 1 1 1 
Wastewater 

treatment 
1 0 0 0 0 1 0 1 1 0 1 1 1 

Importance factor 8 1 2 3 4 3 2 11 7 5 8 9 6  
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Table 2 
Interdependency matrix between indicators under the Facility component.  

Indicator Sturdy housing type Temporary 
housing0 

Housing stock quality Economic infr. exposure Commercial 
facilities 

Community 
services 

Hotels and accommodation Schools 

Sturdy housing type 1 0 0 0 0 0 1 1 
Temporary housing0 1 0 0 0 0 1 0  
Housing stock quality 0 0 1 1 0 0 0 0 
Economic infr. exposure 1 0 1 1 0 1 0 1 
Commercial facilities 0 0 0 0 1 0 0 1 
Community services 0 0 0 0 1 1 0 1 
Hotels and accommodation 1 0 0 0 0 1 1 1 
Schools 0 0 0 0 0 1 0 1 
Importance factor 2 2 3 3 2 4 2 2  
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parameter Tr is normalized based on a 3-year time span, which is usually the time reference for civil applications. 
Case 2 is equivalent to Case 1 with an additional assumption that some of the data are not available. This case is introduced to study 

the effect of partial unavailability of data. Case 3 is an application of the methodology to another dimension of the PEOPLEs 
framework, assuming no availability of data. For this case, a group of experts was asked to evaluate the missing indicators and 
components by providing information in linguistic terms. 

In the following sections, the three cases are described. 

5.1. Case with available numerical data 

Step 1: Resilience modeling and indicators grouping. 
The first step of the proposed methodology is defining a hierarchical framework for the analyzed dimension. As illustrated in Fig. 7, 

indicators together with the corresponding parameters belonging to Facilities and Lifelines components are divided into subgroups with 
no more than three indicators each. The indicators are clustered in 7 subgroups following the PEOPLES structure: Housing, Com-
mercial Activities, Services, Healthcare, Evacuation, Supplies, and Communication. In every subgroup, indicators (e.g., telecommu-
nication, high-speed internet infrastructure, etc.) are combined through fuzzy rules to obtain Facilities and Lifelines components. Finally, 
the components in turn, are combined to get the resilience output. 

Step 2: Interdependency analysis and importance factor. 
Once the hierarchical framework for the studied dimension is built, the second step of the methodology starts. The weighting 

factors of the different variables under the Physical infrastructure dimension are determined using the interdependency matrix tech-
nique. The interdependency matrix of the indicators within the Lifelines and Facility components is shown in Table 1 and Table 2 [22]. 
The report by the National Institute of Standards and Technology [69] and the Lifelines Council [70] were used to fill the interde-
pendency matrix. 

Once the importance factors have been extracted from the interdependency matrix, weighting factors for indicators and compo-
nents under the Physical infrastructure dimension are obtained through Eq. (1). 

Table 3 lists the weighting factors of the different variables under the Physical infrastructure dimension. 
Step 3: Inference – Fuzzy logic. 
The design of the hierarchical framework and the calculation of the weighting factors of the variables within the analyzed 

dimension allow implementing fuzzy logic as an inference system. Weighting factors are used to determine fuzzy rules for aggregating 
indicators and components. Assuming to mapping the three granularities [L, M, H] into the numerical values [FL, FM, FH] = [1–3], 
which indicate an increase of functionality (F) of the system, and considering two inputs x1 and x2 with w1 = 0.75 and w2 = 0.5 
respectively, where w1 signifies a higher impact of the input towards the output, Eq. (2) is used to evaluate rules: 

Table 3 
Weighting factors of variables within Physical infrastructure dimension for city of San Francisco.  

Component/Indicator W 

4.1 Facility 0.5 
Housing 
4.1.1 Sturdy housing types 0.5 
4.1.2 Temporary housing availability 0.5 
4.1.3 Housing stock construction quality 0.75 
Commercial activities 
4.1.4 Economic infrastructure exposure 0.75 
4.1.5 Distribution commercial facilities 0.5 
Services 
4.1.6 Community services 1 
4.1.7 Hotels and accommodations 0.75 
4.1.7 Schools 0.5 
4.2 Lifelines 1 
Healthcare 
4.2.1 Mental health support 0.09 
4.2.2 Medical care capacity 0.27 
4.2.3 Physician access 0.18 
Evacuation 
4.2.4. Access and evacuation 0.73 
4.2.5 Transportation 0.82 
4.2.6 Evacuation routes 0.36 
Supplies 
4.2.7 Efficient energy use 1 
4.2.8 Efficient water use 0.64 
4.2.9 Gas 0.45 
4.2.10 Industrial resupply potential 0.27 
4.2.11 Wastewater treatment 0.55 
Communication 
4.2.12 Telecommunication 0.73 
4.2.13 High-speed Internet infrastructure 0.18  
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Fout =

∑n
i=1Finp,i ·winp,i
∑n

i=1winp,i
(2)  

where Fout is the granularitiy of the output, Finp is the numerical value corresponding to the belonging granularity of the input i, wi is the 
weighting factor for indicator i, and n is the total number of indicators in the subgroups. Consider the following example of a fuzzy rule: 
IF x1 is Low AND x2 is High, THEN the output is Fout = 1.8, which can be rounded to 2. Therefore, the level of the output is Medium. 

The aggregation is done by following the relationships between the variables provided by the hierarchical model. 
The following steps to implement the fuzzy logic inference system are performed: 
Step 3.1: Fuzzification process – membership functions. 
As mentioned before, a set of parameters is used to define the functionality of PEOPLES indicators. The proposed methodology 

adopts three of the four functionality parameters: initial functionality q0, functionality drop (robustness), defined as Δq = q0 – q1, 
where q1 is the functionality after the event, and the restoration time Tr. These parameters could have different states called linguistic 
quantifiers or fuzzy sets. To implement the fuzzy inference system in the PEOPLES framework easily, the number of states is set to three 
states for all indicators’ parameters: low, medium, and high for the functionality parameters, short, long, and very long for the recovery 
time parameter, and resilient, intermediate, and not resilient for the resilience index. Considering more than three states leads to a more 
complicated fuzzy process. That is, if more states are considered (e.g., five states), more MFs would then be necessary, and a high 
number of fuzzy rules would be required to cover all the possible permutations of the states. A higher number of states can make the 
results more specific; however, this comes at the cost of input demand: the expert would then need to provide more detailed MFs and 
more fuzzy rules, which could be not practical. Therefore, choosing three states would provide the best balance between input demand 
and output clarity. The MFs considered in the methodology are based on trapezoidal fuzzy numbers and they are expressed by four 
vertices (a, b, c, and d) as: 

μ̃n(x){
0, x < n1,

x − n1

n2 − n1
, n1 ≤ x ≤ n2,

1, n2 ≤ x ≤ n3,

x − n4

n3 − n4
, n3 ≤ x ≤ n4,

0, x > n4

(3)  

where ñ is a trapezoidal fuzzy number and can be defined as (n1, n2, n3, n4), μ̃n(x) is the membership function. 
The MFs have been first designed relying on the intuition method, which relied on the authors’ opinion and understanding [59]. 

That is, membership functions have been generated to be as symmetric as possible to get the simplest trapezoidal membership 
functions as depicted in Fig. 13. 

For instance, in the figure, the linguistic variable “Low” of the initial functionality q0 of Telecommunication indicator can be rep-
resented as (0, 0, 0.1, 0.2), the membership function of which is: 

Fig. 13. Membership function and granulation for the initial functionality q0 of Telecommunication indicator.  
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μLow(x){
0, x < 0,
x − 0
0 − 0

, 0 ≤ x ≤ 0,

1, 0 ≤ x ≤ 0.1,
x − 0.2

0.1 − 0.2
, 0.1 ≤ x ≤ 0.2,

0, x > 0.2

(4) 

Later, membership functions have been calibrated so that the resilience outcome predicted by the model is equal (or nearly equal) 
to the resilience outcome obtained in the benchmark case study [22]. Calibration is a fundamental operation and consists of gradually 
modifying the shapes of the MFs such that the final output approximately matches that of the benchmark case study. An example of 
granulation assigned to the initial functionality q0 of the Telecommunication indicator and Resilience indicator is illustrated in Fig. 14. 

The functionality and recovery time parameters for each indicator and component listed in Appendix A are used as numerical 
inputs in the fuzzification process. That is, one can enter the corresponding membership graph using directly the numerical values 
listed in Appendix A and obtain the membership degree. 

The MFs used in the methodology associated with the Physical Infrastructure dimension along with its components and indicators 
are based on trapezoidal fuzzy numbers (see Fig. 14) and they are listed in Table 4. 

The membership degrees obtained through the fuzzification process for the components under the Physical Infrastructure dimension 
are listed in Table 5. 

Step 3.2: Aggregation through Fuzzy rules. 
The most common type of FRB, known as the Mamdani type is adopted herein. 
As shown in Fig. 7, many indicators with their corresponding parameters are considered in the physical infrastructure framework, 

and consequently, several fuzzy rules are necessary to combine them. As mentioned before, a decomposition technique at the level of 
indicators is adopted to have no more than three indicators in each subgroup aggregated through intermediate rules (temporary rules), 
for example TR1, TR2, TR3, etc. By implementing the decomposition technique, a maximum of 33 = 27 rules per subgroup must be 
determined. The output of the intermediate inference is combined through fuzzy rule based R1 and R2. For instance, indicators within 
the subgroup Services are aggregated through TR1, indicators under the subgroup Commercial Activities are combined through TR2, and 
finally, the indicators under the subgroup Housing are aggregated through TR3. The outputs of these components are then aggregated 
through R1 to obtain the Facilities component. At each level of the hierarchical scheme, the three-tuple fuzzy set output is defuzzified to 
obtain a single crisp value. In turn, this value is fuzzified into the next level. 

An example of the fuzzy rules assigned for combining the recovery time parameter of the Commercial Activities indicators is given in 
Table 6. 

Table 6 shows that the output is mainly driven by the Economic infrastructure exposure indicator (w = 0.75), in agreement with the 
fact that it is more important than the Distribution commercial facilities indicator (w = 0.5). 

Using the fuzzy rule table (Table 6), the recovery time TR parameter of the Commercial Activities indicator is computed as follows: 

μCA
S = max(min(1, 0.95),min(1, 0),  min(0, 0.95)) = 0.95

μCA
L = max(min(1, 0),min(0, 0),min(0, 0.95)) = 0

μCA
VL = max(min(0, 0),min(0, 0), min(0, 0)) = 0

(5) 

Step 3.3: Defuzzification process – crisp output. 
The last step of the fuzzy-based methodology is the defuzzification process. The center of gravity (also called the center of area) 

method is used here. Generally, the center of gravity method yields superior results and is the most commonly chosen [71]. The 
advantage of this method is that it is easy to compute for triangular and trapezoidal functions [72]. Furthermore, one of the advantages 
of the center of gravity defuzzification method is that in case of symmetrical membership functions in the output linguistic categories, 

Fig. 14. Membership function and granulation for the initial functionality q0 of Telecommunication indicator and Resilience indicator.  
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Table 4 
Membership functions for Physical Infrastructure dimension, components, and indicators.  

Dimension/component/subgroups/ 
indicators 

Initial functionality q0 (μL, μM, μH) Drop of functionality Δq (μL, μM, μH) Repair time Tr (μS, μL, μVL) 

4 - Physical infrastructure (0, 0, 0.1, 0.3), (0.2, 0.3, 0.6, 0.8), 
(0.5, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.2, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

(0, 0, 0.1, 0.2), (0.1, 0.3, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

4-1 - Facilities (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.2, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

(0, 0, 0.1, 0.4), (0.2, 0.3, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

Housing (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.2, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

(0, 0, 0.1, 0.2), (0.1, 0.3, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

4-1-1 - Sturdier housing types (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0.1, 0.2], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-1-2 - Temporary housing 
availability 

(0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0.1, 0.2], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-1-3 - Housing stock construction 
quality 

(0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0.1, 0.2], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

Commercial Activities (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0.1, 0.2], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-1-4 - Economic infrastructure 
exposure 

(0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0.1, 0.2], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-1-5 - Distribution commercial 
facilities 

(0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0.1, 0.2], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

Services (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0, 0.3], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-1-6 - Community services (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0.1, 0.2], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-1-7 - Hotels and accommodations (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0, 0.3], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-1-8 - Schools (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0, 0.3], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-2 - Lifelines (0, 0, 0.1, 0.3), (0.2, 0.4, 0.6, 0.8), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.2, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0.1, 0.3], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

Healthcare (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0.1, 0.2], [0.1, 0.2, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-2-1 - Mental health support (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0.1, 0.2], [0.1, 0.2, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-2-2 - Medical care capacity (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0.1, 0.2], [0.1, 0.2, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-2-3 - Physician access (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0.1, 0.2], [0.1, 0.2, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

Evacuation (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0.1, 0.2], [0.1, 0.2, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-2-4 - Access and evacuation (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

(0, 0, 0.1, 0.2], [0.1, 0.2, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-2-5 - Transportation (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0.1, 0.2], [0.1, 0.2, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-2-6 - Evacuation routes (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

(0, 0, 0.3, 0.5), (0.3, 0.5, 0.7, 0.8), 
(0.7, 0.9, 1, 1) 

[0, 0, 0.1, 0.2], [0.1, 0.2, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

Supplies (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

[0, 0, 0.3, 0.4], [0.2, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

[0, 0, 0.1, 0.2], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-2-7 - Efficient energy use (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

[0, 0, 0.3, 0.5], [0.3, 0.5, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

[0, 0, 0.1, 0.1], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-2-8 - Efficient Water Use (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

[0, 0, 0.3, 0.5], [0.3, 0.5, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

[0, 0, 0.1, 0.1], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-2-9 - Gas (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

[0, 0, 0.3, 0.5], [0.3, 0.5, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

[0, 0, 0.1, 0.1], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-2-10 - Industrial re-supply 
potential 

(0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

[0, 0, 0.3, 0.5], [0.2, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

[0, 0, 0.1, 0.2], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-2-11 - Waste water treatment (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

[0, 0, 0.3, 0.5], [0.2, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

[0, 0, 0.1, 0.2], [0.1, 0.3, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

Communication (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

[0, 0, 0.3, 0.5], [0.2, 0.4, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

[0, 0, 0.3, 0.4], [0.2, 0.4, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-2-12 - Telecommunication (0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

[0, 0, 0.3, 0.5], [0.2, 0.4, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

[0, 0, 0.3, 0.4], [0.2, 0.4, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

4-2-13 - High-speed internet 
infrastructure 

(0, 0, 0.1, 0.4), (0.1, 0.3, 0.6, 0.9), 
(0.6, 0.9, 1, 1) 

[0, 0, 0.3, 0.5], [0.2, 0.4, 0.7, 0.8], 
[0.7, 0.9, 1, 1] 

[0, 0, 0.3, 0.4], [0.2, 0.4, 0.7, 0.8], 
[0.7, 0.9, 1, 1]  
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the extend of overlapping of some membership functions does not affect the result of defuzzification. The method first calculates the 
area under the MFs and within the range of the linguistic variable, then calculates the geometric center of the area as follows: 

CoA=

∫ xmax
xmin

f (x) · xdx
∫ x max
xmin

f (x)dx
(6)  

where CoA is the center of area, f(x) is the function that shapes the output fuzzy set after the aggregation process, x stands for the real 
values inside the fuzzy set support [0,1], and xmin and xmax represent the range of the linguistic variable. 

Using the center of gravity method, the recovery time parameter TR of the Commercial Activities indicator is defuzzified as 0.086. 
The defuzzification of the other indicators and components is done similarly. Physical Infrastructure dimension’s resilience is given by 
inferencing the Physical Infrastructure functionality and recovery time parameters. The results obtained in terms of fuzzy functionalities 
and recovery time are listed in Table 7. 

The resilience index R of the city of San Francisco is computed as R = 0.73. The R is a percentage that reflects the community’s 
response to the earthquake event. That is, a higher R signifies a good response of the community. In this demonstrative example, the 

Table 5 
Fuzzification process.  

Dimension/component/subgroups/indicators Fuzzification 

Initial functionality q0 (μL, μM, μH) Drop of functionality Δq (μL, μM, μH) Repair time Tr (μS, μL, μVL) 

4 - Physical infrastructure (0,0,0.63) (0.92, 0.37,0) (0,0.39,0) 
4-1 - Facilities (0,0.67,0.33) (0.37,0.63,0) (0.31,0.69,0) 
Housing (0,1,0) (0.62,0.38,0) (0,1,0) 
Commercial Activities (0,0.53,0.47) (1,0,0) (0.95,0,0) 
Services (0,0.76,0.24) (1,0,0) (0.23,0.77,0) 
4-2 - Lifelines (0,0,0.76) (0.92, 0.37,0) (0.9, 0.1, 0) 
Healthcare (0,0.78,0.22) (1,0,0) (0.72,0,0) 
Evacuation (0,0.15,0.85) (1,0,0) (1,0,0) 
Supplies (0.36,0.64,0) (0,1,0) (0,1,0) 
Communication (0,0.15,0.85) (0.64,0.82,0) (0.93, 0.52,0)  

Table 6 
Fuzzy rule table for Tr of Commercial Activities indicator.  

Rule Economic infrastructure exposure w = 0.75 Distribution commercial facilities w = 0.5 Fout
d Commercial Activities 

1 Sa S 1 S 
2 S Lb 1.4 S 
3 S VLc 1.8 L 
4 L S 1.6 L 
5 L L 2 L 
6 L VL 2.4 L 
7 VL S 2.2 L 
8 VL L 2.6 VL 
9 VL VL 3 VL  
a Short. 
b Long. 
c Very Long. 
d Granularity of the output. 

Table 7 
Fuzzy functionality and recovery time parameters for Lifelines and Facilities components and the Physical Infrastructure dimension.  

Lifelines component Parameters Results 

q0 0.831 
Δq 0.312 
q1 0.518 
Tr 0.117 

Facilities component q0 0.67 
Δq 0.328 
q1 0.342 
Tr 0.329 

Physical Infrastructure dimension q0 0.80 
Δq 0.31 
q1 0.49 
Tr 0.2  
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obtained value of R corresponds only to the physical infrastructure dimension of the community. To establish a resilience index for a 
whole community, the functionality and recovery time parameters of other dimensions must be similarly evaluated and combined in 
the same way the available measures were aggregated. 

The loss of resilience of the Physical Infrastructure dimension can be computed using the following equation: 

LORPhysicalInfrastructure = 1 − RPhysicalInfrastructure = 27% (7) 

Finally, the functionality curves for the Lifelines and Facilities components and the Physical Infrastructure dimension are shown in 
Fig. 15. 

From Fig. 15 it is possible to compare the functionality curves of the two components facilities and lifelines. The city of San 
Francisco shows more problems in facilities than lifelines. It is evident that the LOR of facilities is higher than lifelines. In such a case, 
authorities should focus more on improving facilities by prioritizing activities and choosing proper resilience measures to assure the 
functionality of their systems and to assign appropriate resources to get resilient communities. Results from the case scenario can be 
used to pursue the best strategies during the planning and management post-disaster processes as well as to manage and minimize the 
impacts of seismic events. The usefulness of having the final resilience metric and a graphical representation is to indicate whether the 
community needs to improve in terms of resilience by comparing it to a given desirable level. Using the resilience index, the user can 
establish immediately whether the community has a high functionality deficiency. Furthermore, by looking at the functionality curves, 
the user can focus on specific components and indicators that have the highest impact on resilience and determine whether the 
resilience deficiency is caused by a system’s lack of robustness or by the restoration process. 

The proposed methodology has been verified by comparing the obtained R with the result given by Ref. [22], who analyzed the 
same case study focusing on the estimation of the loss of resilience LOR. The verification phase has been conducted at each level of the 
framework by calibrating the shape of MFs that strongly impact results. Within the proposed approach, the shape of MFs was first 
estimated through the authors’ opinion and it was designed to be as symmetrical as possible; then the angle points of the MFs were 
modified little by little to get R, and consequently LOR, as similar as possible to the result obtained from the benchmark system [22]. As 
a result of the calibration, the MFs used in the methodology are neither equivalent nor symmetrical (e.g., the width of the MF “low” 
may be larger than the width of the MF “high”). 

It should be noted that focusing on a single resilience index can result in the loss of information about indicators that have resilience 
deficiencies and should be improved. To manage or improve resilience, close attention should be paid to the individual indicators that 
influence system resilience to highlight the strengths and weaknesses. In the methodology, this is possible by exploiting the inherent 
hierarchical-based structure where indicators and components are combined. The application of fuzzy logic to the hierarchical 
framework enables changing the input values of certain indicators or components (e.g., those that show resilience deficiencies) to 
update the whole system and improve the resilience accordingly. In addition, the layer-based structure permits performing sensitivity 
and diagnostic analysis to determine the critical indicators. 

5.2. Case with partial availability of data 

The same case study has been investigated in this section, assuming partial availability of data inputs. A group of experts was asked 
to provide qualitative information and observations on the missing parameters within the Physical infrastructure dimension. The steps 
described in the previous section to compute the resilience index are implemented in the same manner, except for the fuzzification 
step. While the fuzzification process is straightforward when numerical inputs are available, qualitative information and descriptive 
inputs must be converted into fuzzy sets by assigning different linguistic quantifiers (i.e., states). Table 8 lists the indicators whose 
information is not available and the corresponding transformed values on a range [0 1], which are mainly based on expert knowledge. 

Using the transformed values, it is possible to enter the corresponding membership graph and obtain the membership degrees 
(Fig. 14). The results obtained in terms of fuzzy functionalities and recovery time are listed in Table 9. 

The resilience index R of the city of San Francisco in case of less availability of information is computed as R = 0.53. The loss of 
resilience of the Physical Infrastructure dimension can be computed using the following equation: 

LORPhysicalInfrastructure = 1 − RPhysicalInfrastructure = 47% (8) 

Finally, the functionality curves for the Lifelines and Facilities components and for the Physical Infrastructure dimension are shown in 
Fig. 16. 

The comparison between the functionality curves of the two components facilities and lifelines highlights that the LOR of facilities 
is higher than lifelines, as in the previous case. While the lifelines component performs better, showing a small drop of functionality, 
the facilities component has a small initial functionality (0.51) and with an additional 27% drop of functionality when the seismic 
event occurs. Although the obtained R is not the same as that carried out from the case with numerical data, similar results in LOR 
indicate that the proposed methodology can cope with both numerical and descriptive information. Of course, to improve the con-
sistency of the results, more experts could be asked to provide their observations on the data input. 

5.3. Case with no available data 

In this section, the applicability of the proposed fuzzy logic-based method is demonstrated by computing the resilience of the city of 
San Francisco, focusing on the Lifestyle and Community competence dimension. It is assumed that no numerical input is available for 
evaluating resilience. The list of indicators and components along with observations of functionality and recovery time parameters 
provided by a group of experts is shown in Table 10. 
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Step 1: Resilience modeling and indicators grouping. 
The hierarchical framework of the analyzed dimension is depicted in Fig. 8. The indicators are clustered in 3 subgroups following 

the PEOPLES structure: Abilities, Neighborhood, and Security. In every subgroup, indicators and components are combined through 
fuzzy rules to obtain the resilience output. 

Step 2: Interdependency analysis and importance factors. 

Fig. 15. Functionality curves of components Facilities and Lifelines under the dimension Physical Infrastructure.  

Table 8 
Indicators within the Physical Infrastructure dimension and the corresponding transformed values.  

Indicators Parameters Field of observation Transformed values 

Sturdier housing types q0 Medium 0.55 
Dq Low 0.07 
Tr Short 0.22 

Economic infrastructure exposure q0 Medium 0.6 
Dq Medium 0.45 
Tr Short 0.1 

Community services q0 High 0.78 
Dq Medium 0.43 
Tr Short 0.28 

Medical care capacity q0 Medium 0.65 
Dq Low 0.19 
Tr Long 0.39 

Transportation q0 High 0.88 
Dq Low 0.15 
Tr Long 0.55 

Telecommunication q0 Medium 0.7 
Dq Medium 0.68 
Tr Short 0.09  

Table 9 
Fuzzy functionality and recovery time parameters for Lifelines and Facilities components and the Physical Infrastructure dimension in case of less availability of data.  

Lifelines component Parameters Results 

q0 0.84 
Δq 0.503 
q1 0.337 
Tr 0.108 

Facilities component q0 0.51 
Δq 0.27 
q1 0.24 
Tr 0.50 

Physical Infrastructure dimension q0 0.81 
Δq 0.032 
q1 0.778 
Tr 0.142  
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The weighting factors of the different variables under the Lifestyle and community competence dimension are defined through the 
interdependency matrix technique. The interdependency matrix of the indicators within the Quality of life and Collective actions and 
efficacy components is determined in Table 11. 

Weighting factors for indicators and components under the Lifestyle and Community competence dimension are carried out 
through Eq. (1) (see Table 12). 

Step 3: Inference – Fuzzy logic. 
As mentioned above, qualitative observations must be converted into fuzzy numbers on a range [0 1] to obtain the membership 

degrees. The indicators and the corresponding transformed values are depicted in Table 13. 
Inference of indicators and components is made following the relationships between the variables provided in the hierarchical 

model. Finally, the Lifestyle and Community competence’s resilience index is given by inferencing the Lifestyle and Community competence 

Fig. 16. Functionality curves of components Facilities and Lifelines under the dimension Physical Infrastructure in case of less availability of data.  

Table 10 
Functionality parameters of indicators within the Lifestyle and Community competence dimension.  

Dimension/component/subgroups/indicators Measure I Nat. q0 Dq Tr 

5 – Lifestyle and community competence 
5-1 – Collective action and decision making 
5-1-1 – Authorities interdependency Less than three parties are involved in the decision-making 

(1) otherwise (0) 
2 S Medium Low Short 

5-2 – Collective efficacy and empowerment 
5-2-1 – Creative class Percentage of workflow employed in professional 

occupations divided by TV 
3 S High Medium Very long 

5-2-2 – Scientific services Professional, scientific, and technical hours services per 
population divided by TV 

2 S Low Low Long 

5-3 – Quality of life        
5-3-1 – Means of transport Percentage of households with at least 1 vehicle 2 S High Low Long 
5-3-2 – Safety 1 crime rate 2 D Medium Low Short 
5-3-3 – Quality of homes Sustainability rating systems (LEED, BREEAM) divided by 

maximum index number 
3 S High High Long 

5-3-4 – Quality of neighborhood Sustainability rating systems (LEED, BREEAM) divided by 
maximum index number 

4 S Low Medium Short  

Table 11 
Interdependency matrix between indicators under the Quality of life and Collective actions and efficacy components.  

Indicator Authorities 
Interdependency 

Creative 
class 

Scientific 
services 

Means of 
transport 

Safety Quality of 
homes 

Quality of 
neighborhood 

Authorities 
Interdependency 

1 0 0 0 0 0 0 

Creative class 1 1 1 0 0 0 0 
Scientific services 0 1 1 0 0 0 0 
Means of transport 0 0 0 1 1 0 1 
Safety 0 0 0 1 1 1 1 
Quality of homes 0 0 0 0 0 1 1 
Quality of neighborhood 0 1 0 0 0 1 1 
Importance factor 2 3 2 2 3 4 4  
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functionality and recovery time parameters. The results obtained in terms of fuzzy functionalities and recovery time are listed in 
Table 14. 

The resilience index R corresponding to the community’s Lifestyle and Community Competence dimension is computed as R = 0.45 
and the loss of resilience is estimated as 55%. Finally, the functionality curves for the components within the Lifestyle and community 
competence dimension are depicted in Fig. 17. Results show that the Quality of life component must be enhanced to improve the 
resilience index. 

Table 12 
Weighting factors of variables within the Lifestyle and Community competence dimension for city of San Francisco.  

Component/Indicator W 

5.1 Collective action and decision making 0.5 
Abilities 
5.1.1 Authorities interdependency 0.5 
5.1.2 Creative class 0.75 
5.1.3 Scientific services 0.5 
5.2 Quality of life 1 
Security 
5.1.4 Means of transport 0.5 
5.1.5 Safety 0.5 
Neighborhood 
5.1.6 Quality of home 0.75 
5.1.7 Quality of neighborhood 1  

Table 13 
Indicators within the Lifestyle and Community competence dimension and the corresponding transformed values.  

Authorities’ interdependency q0 Medium 0.55 
Dq Low 0.25 
Tr Short 0.04 

Creative class q0 High 0.75 
Dq Medium 0.62 
Tr Very long 0.95 

Scientific services q0 Low 0.02 
Dq Low 0.14 
Tr Long 0.45 

Means of transport q0 High 0.88 
Dq Low 0.15 
Tr Long 0.55 

Safety q0 Medium 0.47 
Dq Low 0.023 
Tr Short 0.11 

Quality of homes q0 High 0.95 
Dq High 0.89 
Tr Long 0.77 

Quality of neighborhood q0 Low 0.23 
Dq Medium 0.5 
Tr Short 0.14  

Table 14 
Fuzzy functionality and recovery time parameters for Quality of life and Collective actions and efficacy components and the Lifestyle and community competence dimension.  

Quality of life component Parameters Results 

q0 0.54 
Δq 0.51 
q1 0.003 
Tr 0.523 

Collective actions and efficacy component q0 0.817 
Δq 0.312 
q1 0.505 
Tr 0.52 

Lifestyle and community competence dimensiont q0 0.6 
Δq 0.523 
q1 0.077 
Tr 0.54  

M. De Iuliis et al.                                                                                                                                                                                                      



International Journal of Disaster Risk Reduction 78 (2022) 103118

23

6. Sensitivity analyses 

6.1. Sensitivity analysis of fuzzy membership functions 

A sensitivity study is conducted in this work to perform a series of different simulations per type of MF to reduce the subjectivity in 
the choice of MFs and identify the best result in terms of resilience. Such a sensitivity analysis allows understanding how the variation 
in the shape of the MFs affects the system’s overall effectiveness. It is performed by repeating the whole fuzzy inference procedure of 
the Lifestyle and Community competence dimension while varying only the MFs (triangular, trapezoidal, and Gaussian MFs) while 
keeping all the other features, thus performing three different simulations. From each of the three simulations performed, information 
concerning the resilience output (i.e., the. resilience index) is obtained. The membership function parameters are specified in Fig. 18. 

By analyzing the results, it is possible to conclude that the choice of MFs is not extremely sensitive to the final resilience output 
(trapezoidal 0.45, triangular 0.50, and Gaussian 0.46). Hence, it is reasonable to assume any MF. 

Fig. 17. Functionality curves of components within the Lifestyle and Community competence dimension.  

Fig. 18. Membership functions adopted in the sensitivity analysis.  
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6.2. Sensitivity analysis of defuzzification methods 

Five different defuzzification methods were employed in the analysis of Lifestyle and Community competence dimension to compare 
their applicability in terms of the output result (i.e., resilience index). These included Center of Gravity (COG), Mean of Maximum 
(MOM), Largest of Maximum (LOM), Smallest of Maximum (SOM), and Bisector of Area (BOA). Details of defuzzification methods can 
be found in Refs. [59,73]. Five simulations were performed, varying only the defuzzification method. Results are summarized in 
Table 15. 

Based on the results, the centroid, bisector, and mean of maximum defuzzification methods generate approximately the same 
results of resilience index (i.e., the percentage difference between COG and BOA is 5.4%, between COG and MOM is 6.8, and finally 
between BOA and MOM is 12.3%); the largest of maximum method generates maximum results (i.e., 0.60), while the smallest of 
maximum method generates the minimal resilience value (i.e., 0.30). As pointed out by Zadeh [48], there is no general defuzzification 
method that can give satisfactory performance, and the choice of the best defuzzification techniques is context or problem-dependent 
[59]. Although the largest of maximum method is most convenient as it provides higher values of resilience, and consequently smaller 
values of loss of resilience, it may be not always realistic. That is, the main shortcoming of the maxima defuzzification methods is that 
the defuzzified value depends only on extreme values of membership and all the other values are not accounted for. Instead, using the 
center of gravity method, all set of membership is accounted for. Therefore, it has been preferred in this work. Details analyses of 
various defuzzification strategies are presented in Ref. [71]. 

7. Conclusion 

The recent disasters worldwide have demonstrated that resilience is the solution to cope with natural and man-made threats. This 
paper presents a holistic framework for evaluating community resilience in response to a catastrophic event. The proposed method-
ology benefits from the structure of the PEOPLES framework for its implementation and deals with the complexity and vagueness that 
characterizes processes where human intervention is significant by implementing fuzzy logic theory. 

A general indicator-based resilience model to estimate the resilience index of communities is proposed. The resilience assessment 
can be easily adapted to any communities of different sizes and types by changing the values of the indicators. The fuzzy logic inference 
method is utilized within the resilience assessment model to deal with potential uncertainties. Since indicators do not contribute 
equally to the resilience assessment, the contribution of every indicator towards resilience has been determined through a proposed 
interdependency analysis. 

To illustrate the applicability of the resilience assessment model, three cases with different degrees of uncertainty are introduced. 
The considered hazard event is the earthquake that struck the city of San Francisco on October 17, 1989, with a magnitude of 6.0 on the 
Richter scale. The first case with available numerical data was used to verify the proposed methodology by comparing the model 
output with the result of [22], who proposed a methodology to treat the PEOPLES framework as a quantitative model by analyzing the 
same case study. Although Kammouh et al. [22] proposed a data-extensive methodology that requires precise input data, they suc-
ceeded in applying the methodology to the case study of San Francisco through the collection of all needed data. Therefore, their 
reliable results have been used for calibration and verification in this work. The fuzzy-based resilience assessment was verified by 
calibrating the membership functions of fuzzy sets to obtain a resilience index that approximates that of the benchmark system. 
Therefore, the obtained resilience index depends on the decisions made during the design of the fuzzy inference system. This is un-
avoidable since the main feature of fuzzy logic is to rely on expert judgment. Nevertheless, sensitivity analyses conducted on the 
membership functions and defuzzification methods have shown that they do not have a high impact on the final output in the proposed 
resilience estimation model. 

Results have demonstrated that the proposed approach can cope with both numerical and descriptive inputs with different un-
certainty levels; it is consistent with the existing evaluations in the literature and can be easily applied to large communities. Of course, 
the proposed methodology would yield less accurate results since it relies on expert judgments rather than actual data, as it is evident 
in the second case. This can be partially addressed by asking multiple experts. When data does not exist (which is often the case in the 
aftermath of a disaster), the proposed methodology should be used to plan for future events. 

The results from the proposed framework are suitable for assisting decision-makers, planners, and engineers to assess and learn 
from the resilience of their communities against a particular event. It is worth noting that paying attention to a single resilience index 
alone sometimes causes system managers to lose information about the indicators that suffer from resilience deficiencies and need 
improvements. Therefore, paying attention to the factors influencing system resilience can bring out the strengths and weaknesses of 
system resilience in either the technical or organizational domain. It helps managers identify the area of the system that is more 
sensitive and requires more attention. Consequently, they can make a more detailed assessment and implement improvement 
strategies. 

Table 15 
Comparison of the defuzzification methods.   

Defuzzification method Output (Resilience) 

1 COG 0.45 
2 BOA 0.475 
3 MOM 0.42 
4 LOM 0.60 
5 SOM 0.30  
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Future work will focus on applying the proposed approach by considering all dimensions of PEOPLES as more reliable data become 
available. 
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Appendix A 

Functionality parameters of indicators within Physical Infrastructure dimension of the San Francisco city. The reported values are 
retrieved from [22].   

Dimension/component/ 
subgroups/indicators 

Measure Nat. q0u TV q0 q1 Δq Tr Tr 
Norm. 

4 - Physical infrastructure 
4-1 - Facilities 
Housing 
4-1-1 - Sturdier housing 

types 
% Housing units not manufactured homes D 1 1 1 0,599 0401 120 0,11 

4-1-2 - Temporary housing 
availability 

% Vacant units that are for rent D 2,68 5 0,536 0,05 0,486 620 0,57 

4-1-3 - Housing stock 
construction quality 

100-% Housing units built prior to 1970 D 0,241 1 0,241 0145 0,096 700 0,64 

Commercial Activities 
4-1-4 - Economic 

infrastructure exposure 
% Commercial establishments outside of high 
hazard zones ÷ total commercial establishment 

S 0,85 1 0,850 0850 0 –  

4-1-5 - Distribution 
commercial facilities 

% Commercial infrastructure area per area ÷ TV D 0,3 0,15 0,867 0520 0,347 160 0,15 

Services 
4-1-6 - Community services % Area of community services (recreational 

facilities, parks, historic sites, libraries, museums) 
total area ÷ TV 

D 0,16 0,2 0,800 0480 0,320 430 0,39 

4-1-7 - Hotels and 
accommodations 

Number of hotels per total area ÷ TV D 102 128 0,797 0478 0,319 130 0,12 

4-1-8 - Schools Schools’ area (primary and secondary education) 
per population ÷ TV 

D 134 140 0,957 0574 0,383 90 0,08 

4-2 - Lifelines          
Healthcare 
4-2-1 - Mental health 

support 
Number of beds per 100000 population ÷ TV D 69 75 0,920 0644 0,276 35 0,03 

4-2-2 - Medical care 
capacity 

Number of available hospital beds per 100000 
population ÷ TV 

D 544 600 0,907 0635 0,272 35 0,03 

4-2-3 - Physician access Number of physicians per population ÷ TV S 2,5 3 0,833 0833 0 – – 
Evacuation 
4-2-4 - Access and 

evacuation 
Principal arterial miles per total area ÷ TV D 172138 2E+05 0,861 0602 0,259 45 0,04 

4-2-5 - Transportation Number of rail miles per area ÷ TV D 5412 6000 0,902 0631 0,271 72 0,07 
4-2-6 - Evacuation routes Major road agrees points per building ÷ TV S 0,67 1 0,670 0670 0 – – 
Supplies 
4-2-7 - Efficient energy use Ratio of Megawatt power production to demand D 1 1 1 0,240 0760 25 0,02 
4-2-8 - Efficient Water Use Ratio of water available to water demand D 1 1 1 0,240 0760 60 0,05 
4-2-9 - Gas Ratio of gas production to gas demand D 0,1 1 0,100 0050 0,050 70 0,06 
4-2-10 - Industrial re-supply 

potential 
Rail miles per total area ÷ TV D 5412 6000 0,902 0631 0,271 45 0,04 

4-2-11 - Waste water 
treatment 

Number of WWT units per population ÷ TV D 3 4 0,750 0300 0,450 65 0,06 

(continued on next page) 
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(continued ) 

Dimension/component/ 
subgroups/indicators 

Measure Nat. q0u TV q0 q1 Δq Tr Tr 
Norm. 

Communication          
4-2-12 - 

Telecommunication 
Average number of internets, television, radio, 
telephone, and telecommunications broadcasters 
per household ÷ TV 

D 5 6 0,833 0500 0,333 90 0,08 

4-2-13 - High-speed 
internet infrastructure 

% Population with access to broadband internet 
service 

D 0,9 1 0,900 0450 0,450 300 0,25  
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