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Abstract
Weprove a family ofHardy–Rellich and Poincaré identities and inequalities on the hyperbolic
space having, as particular cases, improvedHardy-Rellich, Rellich and second order Poincaré
inequalities. All remainder terms provided improve those already known in literature, and all
identities hold with same constants for radial operators also. Furthermore, as applications of
the main results, second order versions of the uncertainty principle on the hyperbolic space
are derived.

Mathematics Subject Classification 26D10 · 46E35 · 31C12 · 35A23

1 Introduction

Let H
N with N ≥ 2 denote the hyperbolic space, namely the most important example

of Cartan-Hadamard manifold (i.e., a manifold which is complete, simply-connected, and
has everywhere non-positive sectional curvature) and let λ1(H

N ) denote the bottom of the
spectrum of −�HN which is explicitly given by

λ1(H
N ) = inf

u∈C∞
c (HN )\{0}

∫
HN |∇HN u|2 dvHN

∫
HN u2 dvHN

=
(
N − 1

2

)2

. (1.1)
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The present paper takes its origin from the following family of Hardy–Poincaré inequalities
recently proved in [5]: for all N − 2 ≤ λ ≤ λ1(H

N ) and all u ∈ C∞
c (HN\{x0}) there holds

∫

HN
|∇HN u|2dvHN ≥ λ

∫

HN
u2dvHN + h2N (λ)

∫

HN

u2

r2
dvHN

+
[(

N − 2

2

)2

− h2N (λ)

] ∫

HN

u2

sinh2 r
dvHN

+ γN (λ) hN (λ)

∫

HN

r coth r − 1

r2
u2dvHN

(1.2)

where γN (λ) := √
(N − 1)2 − 4λ, hN (λ) := γN (λ)+1

2 and r := d(x, x0) is the geodesic
distance from a fixed pole x0 ∈ H

N . We notice that the function r coth r−1
r2

is positive while

the map [N − 2, λ1(HN )] � λ �→ hN (λ) is decreasing. Furthermore, for N ≥ 3, there

holds 1
4 ≤ h2N (λ) ≤ ( N−2

2

)2
and, for all λ, one locally recovers the optimal Hardy weight:

( N−2
2

)2 1
r2
. Besides, denoted with Vλ the positive potential at the r.h.s. of (1.2), the operator

−�HN − Vλ(r) is critical in H
N\{x0} in the sense that the inequality

∫
HN |∇HN u|2 dvHN ≥∫

HN V u2 dvHN is not valid for all u ∈ C∞
c (HN\{x0}) if V � Vλ.

The interest of (1.2) relies on the fact that it provides in a single inequality, proved by
means of a unified approach, an optimal improvement (in the sense of adding nonnegative
terms in the right side of the inequality) of the Poincaré inequality (1.1) and an optimal
improvement of the Hardy inequality. Indeed, for λ = λ1(H

N ) (γN = 0) inequality (1.2)
becomes the improved Poincaré inequality:

∫

HN
|∇HN u|2 dvHN ≥

(
N − 1

2

)2 ∫

HN
u2 dvHN

+ 1

4

∫

HN

u2

r2
dvHN + (N − 1)(N − 3)

4

∫

HN

u2

sinh2 r
dvHN , (1.3)

for all u ∈ C∞
c (HN\{x0}) with N ≥ 2. Instead, for λ = N − 2 (γN = N − 3) (1.2)

becomes the improved Hardy inequality:
∫

HN
|∇HN u|2 dvHN ≥

(
N − 2

2

)2 ∫

HN

u2

r2
dvHN + (N − 2)

∫

HN
u2 dvHN

+ (N − 2)(N − 3)

2

∫

HN

r coth r − 1

r2
u2 dvHN , (1.4)

for all u ∈ C∞
c (HN\{x0})with N ≥ 3. As concerns inequality (1.3), we recall that it has been

shown first in [1] and then, with different methods, adapted to larger classes of manifolds
in [4] where criticality has also been shown. Very recently, another improvement has been
reached in [17] where, by using the notion of Bessel pairs, it has been proved that a further

positive term of the form
∫
HN

r
sinhN−1 r

∣
∣∇HN

(
u sinh

N−1
2 r

r

)∣∣2dvHN can be added at the r.h.s.
of (1.3) so that the inequality becomes an equality. Clearly, this is not in contrast with the
criticality proved in [4] since the added term is not of the form Vu2. We refer the interested
reader to [2] for the L p version of (1.3), to [8] for remainder terms of (1.1) involving the
Green’s function of the Laplacian, and to [7] for the analogous of (1.3) in the non-local realm
of homogeneous trees.

Regarding (1.4), it’s worth recalling that generalizations to Riemannian manifolds of the
classical Euclidean Hardy inequality have been intensively pursued after the seminal work
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of Carron [10]. In particular, on Cartan-Hadamard manifolds the optimal constant is known

to be
( N−2

2

)2
and improvements of the Hardy inequality have been given e.g., in [12, 17,

20–22, 34]. This is in contrast to what happens in the Euclidean setting where the operator

−�RN −( N−2
2

)2 1
|x |2 is known to be critical inR

N\{0} (see [13]). In particular, in inequality
(1.4) the effect of the curvature allows to provide a remainder term of L2-type, therefore
of the same kind of that given in the seminal paper by Brezis-Vazquez [9] for the Hardy
inequality on Euclidean bounded domains.

The above mentioned results make it natural to investigate the existence of a family of
inequalities extending (1.2) to the second order. That is, with the convention ∇0

HN u = u and

∇1
HN u = ∇HN u, we look for an inequality including either improvements of the second order

Poincaré inequalities:

∫

HN
(�HN u)2 dvHN ≥

(
N − 1

2

)2(2−l) ∫

HN
|∇l

HN u|2 dvHN (l = 0 or l = 1) (1.5)

for all u ∈ C∞
c (HN ) (N ≥ 2), and improvements of the second order Hardy inequalities:

∫

HN
(�HN u)2 dvHN ≥ N 2

4

(
N − 4

2

)2(1−l) ∫

HN

|∇l
HN u|2
r4−2l dvHN (l = 0 or l = 1) (1.6)

for all u ∈ C∞
c (HN ) (N ≥ 5), i.e. the Rellich inequality which comes for l = 0 and the

Hardy–Rellich inequality for l = 1. We recall that inequalities (1.5) are known from [29,
32] with optimal constants, while improvements have been provided in [3, 4] and, for radial
operators, in [6, 31]. Instead, inequalities (1.6) were firstly studied in [20] and in [34], where
the optimality of the constants was proved together with the existence of some remainder
terms. More recently, a stronger version of (1.6), only involving radial operators and still
holding with the same constants, has been obtained in [30]. See also [23] for improved
versions of (1.6) in the general framework of Finsler-Hadamard manifolds.

In the present paper we complete the picture of results in H
N by proving a family of

inequalities including either an improved version of (1.5) and an improved version of (1.6)
when l = 1, therefore extending (1.2) to the second order, see Theorem 2.2 below. Further-
more, in Theorem 2.1, we show that the obtained family of inequalities reads as a family
of identities for radial operators (also for non radial functions) giving a more precise under-
standing of the remainder terms provided. A fine exploitation of these results also allows
to obtain improved versions of (1.5) and of (1.6) for l = 0 in such a way to exhaust the
second order scenario, see Corollaries 2.3 and 2.4. As far we are aware, all the improvements
provided have larger remainder terms than those already known in literature, see Remark 2.2
in the following.

We notice that (1.2) was proved in [5] by means of a unified approach based on critical-
ity theory, well established for second order operators only (see [13]); therefore, a similar
approach seems not applicable in the higher order case. Here, drawing primary motivation
from the seminal paper [18], we extend (1.2) to the second order by using the notion of Bessel
pair. This notion has been very recently developed in [17] on Cartan-Hadamard manifolds to
establish several interesting Hardy identities and inequalities which, in particular, generalise
many well-known Hardy inequalities on Cartan-Hadamard manifolds. By combining some
ideas from [17, 18], and through some computations with spherical harmonics, in the present
article we develop the method of Bessel pairs to derive general abstract Rellich inequalities
and identities on H

N that we employ to prove our main results, i.e., Theorems 2.1 and 2.2. In
this way, we get either Poincaré and Hardy–Rellich identities, and improved inequalities, by
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means of a unified proof where the key ingredient is the construction of a family of Bessel
pairs, see (4.1) in the following. Finally, as applications of the obtained inequalities, we derive
quantitative versions of the second order Heisenberg-Pauli-Weyl uncertainty principle, see
Sect. 2.3. As far as we know, the results provided represent the first example of second order
Heisenberg-Pauli-Weyl uncertainty principle in the hyperbolic context.

Thepaper is organized as follows: inSect. 2we introduce someof the notations andwe state
ourmain results, i.e. Poincaré andHardy–Rellich identities and related improved inequalities;
furthermore, in this section, we also state second order versions of theHeisenberg-Pauli-Weyl
uncertainty principle. In Sect. 3 we provide abstract Rellich identities and inequalities via
Bessel pairs together with a related Heisenberg-Pauli-Weyl uncertainty principle. Section 4 is
devoted to the proofs of the results stated in Sect. 2 by exploiting the results stated in Sect. 3,
while Sect. 5 contains the proofs of the results stated in Sect. 3. In Sect. 6 we discuss possible
extensions of our proofs and results to more general manifolds. Finally, in the Appendix we
present a family of improved Hardy–Poincaré identities which follows as a corollary from
[17, Theorem 3.2], see Lemma 3.1 below, by exploiting the family of Bessel pairs introduced
in Sect. 4. In particular, these identities give a deeper understanding of (1.2) and include [17,
Theorem 1.4] as a particular case.

2 Main results

2.1 Notations

From now onward, if nothing is specified, wewill always assume N ≥ 2. It is well known that
the N -dimensional hyperbolic space H

N admits a polar coordinate decomposition structure.
Namely, for x ∈ H

N we can write x = (r ,�) = (r , θ1, . . . , θN−1) ∈ (0,∞)×S
N−1, where

r denotes the geodesic distance between the point x and a fixed pole x0 inH
N and S

N−1 is the
unit sphere in the N -dimensional euclidean space R

N . Recall that the Riemannian Laplacian
of a scalar function u on H

N is given by

�HN u(r ,�) = 1

sinh2 r

∂

∂r

[

(sinh r)N−1 ∂u

∂r
(r ,�)

]

+ 1

sinh2 r
�SN−1u(r ,�), (2.1)

where �SN−1 is the Riemannian Laplacian on the unit sphere S
N−1. In particular, the radial

contribution of the Riemannian Laplacian �r ,HN u reads as

�r ,HN u = 1

(sinh r)N−1

∂

∂r

[

(sinh r)N−1 ∂u

∂r

]

= u′′ + (N − 1) coth r u′,

where from now on a prime will denote, for radial functions, derivative w.r.t .r . Also, let us
recall the Gradient in terms of the polar coordinate decomposition is given by

∇HN u(r ,�) =
(

∂u

∂r
(r ,�),

1

sinh r
∇SN−1u(r ,�)

)

,

where ∇SN−1 denotes the Gradient on the unit sphere S
N−1. Again, the radial contribution of

the Gradient, ∇r ,HN u, is defined as

∇r ,HN u =
(

∂u

∂r
, 0

)

.
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2.2 Hardy–Rellich and Poincaré identities and improved inequalities

Our main result for radial operators reads as follows

Theorem 2.1 For all 0 ≤ λ ≤ λ1(H
N ) = ( N−1

2

)2
and all u ∈ C∞

c (HN\{x0}) there holds
∫

HN
|�r ,HN u|2 dvHN = λ

∫

HN
|∇r ,HN u|2 dvHN + h2N (λ)

∫

HN

|∇r ,HN u|2
r2

dvHN

+
[(

N

2

)2

− h2N (λ)

] ∫

HN

|∇r ,HN u|2
sinh2 r

dvHN + γN (λ) hN (λ)

×
∫

HN

r coth r − 1

r2
|∇r ,HN u|2 dvHN +

∫

HN
(�λ(r))

2
∣
∣
∣
∣∇r ,HN

(
ur

�λ(r)

)∣
∣
∣
∣

2

dvHN

where γN (λ) :=√
(N − 1)2 − 4λ, hN (λ) := γN (λ)+1

2 and �λ(r) :=r− N−2
2

( sinh r
r

)− N−1+γN (λ)

2 .

Furthermore, for N ≥ 5 and λ given, the constants h2N (λ) and
[( N

2

)2 − h2N (λ)
]
are

jointly sharp in the sense that, fixed h2N (λ), the inequality does not hold if we replace[( N
2

)2 − h2N (λ)
]
with a larger constant.

Remark 2.1 We remark that the the function r coth r−1
r2

is positive, strictly decreasing and
satisfies

r coth r − 1

r2
∼ 1

3
as r → 0+ and

r coth r − 1

r2
∼ 1

r
as r → +∞ .

Besides, the map [0, λ1(HN )] � λ �→ hN (λ) is decreasing and 1
4 ≤ hN (λ) ≤ ( N

2

)2
.

Furthermore, for non radial operators we obtain the second order analogous to (1.2):

Theorem 2.2 Let N ≥ 5. For all 0 ≤ λ ≤ λ1(H
N ) = ( N−1

2

)2
and all u ∈ C∞

c (HN\{x0})
there holds

∫

HN
|�HN u|2 dvHN ≥ λ

∫

HN
|∇HN u|2 dvHN + h2N (λ)

∫

HN

|∇HN u|2
r2

dvHN

+
[(

N

2

)2

− h2N (λ)

] ∫

HN

|∇HN u|2
sinh2 r

dvHN

+ γN (λ) hN (λ)

∫

HN

r coth r − 1

r2
|∇HN u|2 dvHN

+
∫

HN
(�λ(r))

2
∣
∣
∣
∣∇HN

(
ur

�λ(r)

)∣
∣
∣
∣

2

dvHN

where γN (λ), hN (λ) and �λ(r) are as given in Theorem 2.1. Furthermore, for any given λ,

the constants h2N (λ) and
[( N

2

)2 − h2N (λ)
]
are jointly sharp in the sense explained in Theorem

2.1.

We notice that the dimension restriction N ≥ 5 in Theorem 2.2 comes from assumption
(3.4) in Theorem 3.2 below where we state our abstract Rellich inequalities, see also Remark
3.1 for some comments about this assumption that naturally comes when passing from the
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radial to the non radial framework. Theorems 2.1 and 2.2 yield a number of improvedPoincaré
and Hardy–Rellich inequalities that we state here below; a comparison with previous results
is provided in Remark 2.2. More precisely, for λ = 0 we readily got the following improved
Hardy–Rellich identity and inequality:

Corollary 2.1 For all u ∈ C∞
c (HN\{x0}) there holds

∫

HN
|�r ,HN u|2 dvHN =

(
N

2

)2 ∫

HN

|∇r ,HN u|2
r2

dvHN

+ N (N − 1)

2

∫

HN

r coth r − 1

r2
|∇r ,HN u|2 dvHN

+
∫

HN

r N

(sinh r)2(N−1)

∣
∣
∣
∣∇r ,HN

(
(sinh r)N−1 ur

r
N
2

)∣
∣
∣
∣

2

dvHN .

Moreover, if N ≥ 5, for all u ∈ C∞
c (HN\{x0}) there holds

∫

HN
|�HN u|2 dvHN ≥

(
N

2

)2 ∫

HN

|∇HN u|2
r2

dvHN

+ N (N − 1)

2

∫

HN

r coth r − 1

r2
|∇HN u|2 dvHN

+
∫

HN

r N

(sinh r)2(N−1)

∣
∣
∣
∣∇HN

(
(sinh r)N−1 ur

r
N
2

)∣
∣
∣
∣

2

dvHN ,

and the constant
( N
2

)2
appearing in the L.H.S of both equations is the sharp constant.

For λ = λ1(H
N ) we got an improvement of the second order Poincaré identity (1.5) with

l = 0, and the related inequality:

Corollary 2.2 For all u ∈ C∞
c (HN\{x0}) there holds

∫

HN
|�r ,HN u|2 dvHN =

(
N − 1

2

)2 ∫

HN
|∇r ,HN u|2 dvHN

+ 1

4

∫

HN

|∇r ,HN u|2
r2

dvHN + N 2 − 1

4

∫

HN

|∇r ,HN u|2
sinh2 r

dvHN

+
∫

HN

r

(sinh r)N−1

∣
∣
∣
∣∇r ,HN

(
(sinh r)

N−1
2 ur

r
1
2

)∣
∣
∣
∣

2

dvHN .

Moreover, if N ≥ 5, for all u ∈ C∞
c (HN\{x0}) there holds

∫

HN
|�HN u|2 dvHN ≥

(
N − 1

2

)2 ∫

HN
|∇HN u|2 dvHN

+ 1

4

∫

HN

|∇HN u|2
r2

dvHN + N 2 − 1

4

∫

HN

|∇HN u|2
sinh2 r

dvHN

+
∫

HN

r

(sinh r)N−1

∣
∣
∣
∣∇HN

(
(sinh r)

N−1
2 ur

r
1
2

)∣
∣
∣
∣

2

dvHN .

The constant
( N−1

2

)2
appearing in the L.H.S of both equations is the sharp constant. More-

over, for N ≥ 5, the constants 1
4 and

N2−1
4 are jointly sharp in the sense explained in Theorem

2.1.
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By combining Corollary 2.1 with [17, Corollary 3.2] we also get an improved Rellich
inequality:

Corollary 2.3 For all u ∈ C∞
c (HN\{x0}) there holds

∫

HN
|�r ,HN u|2 dvHN = N 2

4

(
N − 4

2

)2 ∫

HN

u2

r4
dvHN

+ N 2(N − 4)(N − 1)

8

∫

HN

r coth r − 1

r4
u2 dvHN

+ N (N − 1)

2

∫

HN

r coth r − 1

r2
|∇r ,HN u|2 dvHN

+ N 2

4

∫

HN

1

r N−2

∣
∣
∣
∣∇r ,HN

(

r
N−4
2 u

)∣
∣
∣
∣

2

dvHN

+
∫

HN

r N

(sinh r)2(N−1)

∣
∣
∣
∣∇r ,HN

(
(sinh r)N−1 ur

r
N
2

)∣
∣
∣
∣

2

dvHN .

Moreover, if N ≥ 5, for all u ∈ C∞
c (HN\{x0}) there holds

∫

HN
|�HN u|2 dvHN ≥ N 2

4

(
N − 4

2

)2 ∫

HN

u2

r4
dvHN

+ N 2(N − 4)(N − 1)

8

∫

HN

r coth r − 1

r4
u2 dvHN

+ N (N − 1)

2

∫

HN

r coth r − 1

r2
|∇HN u|2 dvHN

+ N 2

4

∫

HN

1

r N−2

∣
∣
∣
∣∇HN

(

r
N−4
2 u

)∣
∣
∣
∣

2

dvHN

+
∫

HN

r N

(sinh r)2(N−1)

∣
∣
∣
∣∇HN

(
(sinh r)N−1 ur

r
N
2

)∣
∣
∣
∣

2

dvHN ,

and the constant N2

4

( N−4
2

)2
appearing in the L.H.S of both equations is the sharp constant.

Instead, by combiningCorollary 2.2with [17, Theorem1.4 andCorollary 3.2], we improve
(1.5) with l = 0, i.e. we complete the second order scenario about Poincaré identities and
inequalities :

Corollary 2.4 For all u ∈ C∞
c (HN\{x0}) there holds

∫

HN
|�r ,HN u|2 dvHN =

(
N − 1

2

)4 ∫

HN
u2 dvHN

+
(
N − 1

4

)2 ∫

HN

u2

r2
dvHN + (N − 1)3(N − 3)

16

∫

HN

u2

sinh2 r
dvHN

+ 1

4

∫

HN

|∇r ,HN u|2
r2

dvHN + N 2 − 1

4

∫

HN

|∇r ,HN u|2
sinh2 r

dvHN

+
[(

N − 1

2

)2

+ 1

]∫

HN

r

(sinh r)N−1

∣
∣
∣
∣∇r ,HN

(
(sinh r)

N−1
2 ur

r
1
2

)∣
∣
∣
∣

2

dvHN .
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Moreover, if N ≥ 5, for all u ∈ C∞
c (HN\{x0}) there holds

∫

HN
|�HN u|2 dvHN ≥

(
N − 1

2

)4 ∫

HN
u2 dvHN

+
(
N − 1

4

)2 ∫

HN

u2

r2
dvHN + (N − 1)3(N − 3)

16

∫

HN

u2

sinh2 r
dvHN

+ 1

4

∫

HN

|∇HN u|2
r2

dvHN + N 2 − 1

4

∫

HN

|∇HN u|2
sinh2 r

dvHN

+
[(

N − 1

2

)2

+ 1

]∫

HN

r

(sinh r)N−1

∣
∣
∣
∣∇HN

(
(sinh r)

N−1
2 ur

r
1
2

)∣
∣
∣
∣

2

dvHN .

The constant
( N−1

2

)4
appearing in the L.H.S of both equations is the sharp constant. More-

over, for N ≥ 5, the constants 1
4 and N2−1

4 in both equations are jointly sharp in the sense
explained in Theorem 2.1.

Remark 2.2 As far as we are aware, improved second order Poincaré and Hardy–Rellich
equalities in H

N were not known in literature. As concerns the Hardy–Rellich and Rellich
inequalities, improved versions were already known from [23, 30, 34] on general manifolds
but with fewer and smaller remainder terms. As amatter of example, if we compare Corollary
2.1 with [30, Theorem 4.2], the improvement of the Hardy–Rellich inequality provided there

reads as 3N (N−1)
2

∫
HN

|∇r,HN u|2
π2+r2

dvHN , therefore it decays more rapidly, both as r → 0+ and

as r → +∞, than the term N (N−1)
2

∫
HN

r coth r−1
r2

|∇r ,HN u|2 dvHN provided in Corollary 2.1.
Similarly, if we compare Corollary 2.2 with [30, Theorem 4.3], again, the corrections of the
Rellich inequality provided there decays more rapidly than ours, either as r → 0+ and as
r → +∞. As concerns the improved second order Poincaré inequalities given by Corollaries
2.3 and 2.4, the gain with respect to the inequalities already known in [6] is in the adding of
a further remainder term.

2.3 Second order Heisenberg–Pauli–Weyl uncertainty principle

Another remarkable consequence of Theorem 2.2 is the following quantitative version of
HPW principle in H

N :

Theorem 2.3 Let N ≥ 5. For all 0 ≤ λ ≤ λ1(H
N ) and all u ∈ C∞

c (HN\{x0}) there holds
(∫

HN

(|�HN u|2 − λ|∇HN u|2) dvHN

) (∫

HN
r2|∇HN u|2 dvHN

)

≥ h2N (λ)

(∫

HN
|∇HN u|2 dvHN

)2

(2.2)

where hN (λ) is as defined as in Theorem 2.1. In particular, for λ = 0, we obtain

(∫

HN
|�HN u|2 dvHN

) (∫

HN
r2|∇HN u|2 dvHN

)

≥ N 2

4

(∫

HN
|∇HN u|2 dvHN

)2

, (2.3)

for all u ∈ C∞
c (HN\{x0}).
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Remark 2.3 In the Euclidean context the second order Heisenberg–Pauli–Weyl uncertainty
principle has been only recently studied in [11, Theorem 2.1–2.2] where it is proved that

the best constant switches from N2

4 to (N+2)2

4 when passing to the second order. Instead, in
[14, Theorem 1.1] a weighted version of inequality (2.3) in R

N is studied together with the
sharpness of the constants and the existence of extremals.

As far as we know, inequality (2.2) is the first example of second order Heisenberg–Pauli–
Weyl uncertainty principle in the hyperbolic context. For the first order case, we refer to [19,
22] where the authors fully describe the influence of curvature to uncertainty principles in the
Riemannian and Finslerian settings. It’s worthmentioning that a straightforwardmodification
of the proof of Theorem 2.3, by exploiting appropriately Theorem 2.2, yields the improved
version of (2.2) below which supports the conjecture that the sharp constant (2.2) should be
larger than h2N (λ). More precisely, for all 0 ≤ λ ≤ λ1(H

N ) and all u ∈ C∞
c (HN\{x0}), there

holds
(∫

HN

(|�HN u|2 − λ|∇HN u|2) dvHN

)(∫

HN
r2|∇HN u|2dvHN

)

≥ h2N (λ)

(∫

HN
|∇HN u|2dvHN

)2

+
(∫

HN
r2|∇HN u|2dvHN

) { [(
N

2

)2

− h2N (λ)

]

×
∫

HN

|∇HN u|2
sinh2 r

dvHN + γN (λ) hN (λ)

∫

HN

r coth r − 1

r2
|∇HN u|2 dvHN

}

where γN (λ) and hN (λ) are defined as in Theorem 2.1. Therefore, for λ = 0, we obtain the
improved version of (2.3):

(∫

HN
|�HN u|2dvHN

) (∫

HN
r2|∇HN u|2 dvHN

)

≥ N 2

4

(∫

HN
|∇HN u|2 dvHN

)2

+
(∫

HN
r2|∇HN u|2dvHN

)(
N (N − 1)

2

∫

HN

r coth r − 1

r2
|∇HN u|2 dvHN

)

for all u ∈ C∞
c (HN\{x0}). The above inequality should be compared with inequality (3.6)

provided in Sect. 3 which also improves (2.3).

We conclude the section by stating the counterpart of Theorem 2.3 for radial operators:

Theorem 2.4 For all 0 ≤ λ ≤ λ1(H
N ) and all u ∈ C∞

c (HN\{x0}) there holds
(∫

HN

(|�r ,HN u|2 − λ|∇r ,HN u|2) dvHN

) (∫

HN
r2|∇r ,HN u|2dvHN

)

≥ h2N (λ)

(∫

HN
|∇r ,HN u|2dvHN

)2

where hN (λ) is as defined as in Theorem 2.1. In particular, for λ = 0, we obtain

(∫

HN
|�r ,HN u|2dvHN

) (∫

HN
r2|∇r ,HN u|2 dvHN

)

≥ N 2

4

(∫

HN
|∇r ,HN u|2 dvHN

)2

for all u ∈ C∞
c (HN\{x0}).
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3 Abstract Rellich identities and inequalities via Bessel pairs

Ghoussoub-Moradifam in [18] provided a very general framework to obtain various Hardy-
type inequalities and their improvements on the Euclidean space (or bounded domain). Their
approach was based on the notion of Bessel pair that we recall in the following

Definition 3.1 We say that a pair (V ,W ) of C1-functions is a Bessel pair on (0, R) for some
0 < R ≤ ∞ if the ordinary differential equation:

(V y′)′ + Wy = 0

admits a positive solutions f on the interval (0, R).

In [18] the authors proved the following inequality for some positive constant C > 0 :
∫

BR

V (x)|∇u|2 dx ≥ C
∫

BR

W (x) |u|2 dx ∀ u ∈ C∞
c (BR), (3.1)

subject to the constraints that the functions V and W are positive radial functions defined on
the euclidean ball BR and such that: (r N−1V , r N−1W ) is a Bessel pair

∫ R
0

1
r N−1V (r)

dr = ∞
and

∫ R
0 r N−1V (r) dr < ∞ where 0 < R ≤ ∞ is the radius of the ball BR .

In view of (3.1), with particular choices of (V ,W ), the results in [18] improved several
known results concerning Hardy inequalities. Recently, the notion of Bessel pair has been
exploited in [24] to establish improved Hardy inequalities involving general distance func-
tions, in [26] to sharpen several Hardy type inequalities on half spaces, and in [25] to prove
Hardy inequalities on homogeneous groups.

Regarding Cartan-Hadamard manifolds, the notion of Bessel pair has been very recently
emploied to obtain improved Hardy inequalities in [17]; to our future purposes, we recall
their Theorem 3.2 on H

N :

Lemma 3.1 [17, Theorem 3.2] Let (r N−1V , r N−1W ) be a Bessel pair on (0, R)with positive
solution f on (0, R). Then for all u ∈ C∞

c (HN\{x0}), there holds
∫

BR

V (r)|∇HN u|2 dvHN =
∫

BR

W (r)|u|2 dvHN +
∫

BR

V (r)( f (r))2
∣
∣
∣
∣∇HN

(
u

f (r)

)∣
∣
∣
∣

2

dvHN

− (N − 1)
∫

BR

V (r)
f ′(r)
f (r)

(

coth r − 1

r

)

u2 dvHN .

and
∫

BR

V (r)|∇r ,HN u|2 dvHN =
∫

BR

W (r)|u|2 dvHN +
∫

BR

V (r)( f (r))2
∣
∣
∣
∣∇r ,HN

(
u

f (r)

)∣
∣
∣
∣

2

dvHN

− (N − 1)
∫

BR

V (r)
f ′(r)
f (r)

(

coth r − 1

r

)

u2 dvHN .

In view of Lemma 3.1 a subsequent natural issue is to study wether the notion of Bessel
pair can be adopted to treat higher order Hardy type inequalities in H

N . In the Euclidean
space (or in bounded euclidean domains) this topic was faced in [18]. One of their results
read as follows: let 0 < R ≤ ∞, V and W be positive C1-functions on BR\{0} such that
(r N−1V , r N−1W ) forms a Bessel pair; then for all radial functions u ∈ C∞

c (BR) there holds
∫

BR

V (x)|�u|2 dx ≥
∫

B
W (x) |∇u|2 dx + (N − 1)

∫

BR

(
V (x)

|x |2 − Vr (x)

|x |
)

|∇u|2 dx,
(3.2)
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where r = |x |. In addition, if W (x) − 2 V (x)
|x |2 + 2 Vr (x)|x | − Vrr (x) ≥ 0 on (0, R), the above

inequality is true for non radial function as well (we refer [18, Theorem 3.1-3.3] for more
insight). We also refer to [15, 16, 27] for recent results on Hardy–Rellich inequalities and
their improvements on the Euclidean space using the approach of Bessel pairs.

In the present article, we extend (3.2) to H
N by showing first the following:

Theorem 3.1 Let (r N−1V , r N−1W ) be a Bessel pair on (0, R) with positive solution f on
(0, R). Then for all radial function u ∈ C∞

c (BR\{x0}) there holds
∫

BR

V (r)|�HN u|2 dvHN =
∫

BR

W (r)|∇HN u|2 dvHN

+ (N − 1)
∫

BR

(
V (r)

sinh2 r
− Vr (r) cosh r

sinh r

)

|∇HN u|2 dvHN

− (N − 1)
∫

BR

V (r)
f ′

f

(

coth r − 1

r

)

|∇HN u|2 dvHN

+
∫

BR

V (r)( f (r))2
∣
∣
∣
∣∇HN

(
ur
f (r)

)∣
∣
∣
∣

2

dvHN . (3.3)

As a direct consequence of the above result, we tackle the non-radial scenario by the
spherical harmonic method and we prove:

Corollary 3.1 Let (r N−1V , r N−1W ) be a Bessel pair on (0,∞) with positive solution f on
(0,∞). Then for all u ∈ C∞

c (HN\{x0}) there holds
∫

HN
V (r)|�r ,HN u|2 dvHN =

∫

HN
W (r)|∇r ,HN u|2 dvHN

+ (N − 1)
∫

HN

(
V (r)

sinh2 r
− Vr (r) cosh r

sinh r

)

|∇r ,HN u|2 dvHN

− (N − 1)
∫

HN
V (r)

f ′

f

(

coth r − 1

r

)

|∇r ,HN u|2 dvHN

+
∫

HN
V (r)( f (r))2

∣
∣
∣
∣∇r ,HN

(
ur
f (r)

)∣
∣
∣
∣

2

dvHN

In Theorem3.2 belowwe state the counterpart of Theorem3.1 for functions not necessarily
radial, under the extra condition (3.4) below:

Theorem 3.2 Let (r N−1V , r N−1W ) be a Bessel pair on (0,∞) with positive solution f on
(0,∞). Also assume N ≥ 5 and V satisfies

(N − 5)
V (r)

sinh2 r
+ 3

Vr (r) cosh r

sinh r
− Vrr (r) + (N − 4)V (r) ≥ 0. (3.4)

Then for all u ∈ C∞
c (HN\{x0}) there holds

∫

HN
V (r)|�HN u|2 dvHN ≥

∫

HN
W (r)|∇HN u|2 dvHN

+ (N − 1)
∫

HN

(
V (r)

sinh2 r
− Vr (r) cosh r

sinh r

)

|∇HN u|2 dvHN
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− (N − 1)
∫

HN
V (r)

f ′

f

(

coth r − 1

r

)

|∇HN u|2 dvHN

+
∫

HN
V (r)( f (r))2

∣
∣
∣
∣∇HN

(
ur
f (r)

)∣
∣
∣
∣

2

dvHN . (3.5)

Remark 3.1 We remark that assumption (3.4) in Theorem 3.2 is not too restrictive to our
purposes: we shall provide a remarkable family of (V ,W ) for which the assumption holds
true in the proof of Theorem 2.1. On the other hand, an analogous assumption was required
in the Euclidean space as well, see (3.2) and the comments just below.

We conclude the section by stating an abstract version of Heisenberg-Pauli-Weyl uncer-
tainty principle involving Bessel pairs which follows as a corollary from Corollary 3.1 (for
radial operators) and from Theorem 3.2:

Theorem 3.3 Let (r N−1V , r N−1W ) be a Bessel pair on (0,∞) with positive solution f on
(0,∞) and set

W̃ (r) := W (r) + (N − 1)

(
V (r)

sinh2 r
− Vr (r) cosh r

sinh r

)

− (N − 1)V (r)
f ′

f

(

coth r − 1

r

)

.

Assume that W̃ (r) > 0 for all r > 0, then there holds

( ∫

HN
V (r)|�r ,HN u|2 dvHN

)( ∫

HN

|∇r ,HN u|2
W̃ (r)

dvHN

)

≥
( ∫

HN
|∇r ,HN u|2 dvHN

)2

,

for all u ∈ C∞
c (HN\{x0}). Furthermore, if N ≥ 5 and V satisfies (3.4), there holds

( ∫

HN
V (r)|�HN u|2 dvHN

)( ∫

HN

|∇HN u|2
W̃ (r)

dvHN

)

≥
( ∫

HN
|∇HN u|2 dvHN

)2

,

for all u ∈ C∞
c (HN\{x0}).

Remark 3.2 Anon trivial example of pairs satisfying the assumptions of Theorem 3.3 is given
by the family of Bessel pairs (r N−1, r N−1Wλ), for all 0 ≤ λ ≤ λ1(H

N ), defined in (4.1)
below and emploied in the proof of Theorem 2.1. Indeed, they satisfy condition (3.4) and
give the function W̃ below:

W̃λ(r) = λ + h2N (λ)
1

r2
+

((
N

2

)2

− h2N (λ)

)
1

sinh2 r
+ γN (λ) hN (λ)

r

(

coth r − 1

r

)

which is positive in (0,+∞) for all 0 ≤ λ ≤ λ1(H
N ). In particular, with this pair, taking

λ = 0 for simplicity, Theorem 3.3 yields
( ∫

HN
|�HN u|2 dvHN

)(∫

HN

|∇HN u|2
N2

4
1
r2

+ N (N−1)
2r (coth r − 1

r )
dvHN

)

≥
(∫

HN
|∇HN u|2 dvHN

)2

,

(3.6)

for all u ∈ C∞
c (HN\{x0}). The above inequality turns out to be more stringent than (2.3)

thereby confirming the conjecture that N2

4 is not the sharp constant in (2.3).
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4 Proofs of Theorems 2.1, 2.2, 2.3 and Corollaries 2.3,2.4

Proofs of Theorems 2.1 and 2.2. The proof follows, respectively, by applying Corollary 3.1
and Theorem 3.2 with the family of Bessel pairs (r N−1, r N−1Wλ) with 0 ≤ λ ≤ λ1(H

N )

and

Wλ(r) := λ + h2N (λ)
1

r2
+

((
N − 2

2

)2

− h2N (λ)

)
1

sinh2 r

+
(

γN (λ) hN (λ)

r
+ (N − 1)

� ′
λ(r)

�λ(r)

) (

coth r − 1

r

)

(r > 0) , (4.1)

where γN (λ) and hN (λ) are as defined in the statement of Theorem 3.1 and

�λ(r) := r− N−2
2

(
sinh r

r

)− N−1+γN (λ)

2

(r > 0) .

In particular, by noticing that

� ′
λ(r) = �λ(r)

[
hN (λ)

r
+ 1 − N − γN (λ)

2
coth r

]

,

� ′′
λ(r) = �λ(r)

[ (1 − N − γN (λ))2

4
+ γ 2

N (λ) − 1

r2

− (1 − N − γN (λ))(1 + N + γN (λ))

4 sinh2 r
+ (1 − N − γN (λ))hN (λ) coth r

r

]

and recalling the definition of γN (λ), it follows that �λ(r) satisfies

(r N−1� ′
λ(r))

′ + r N−1Wλ(r)�λ(r) = 0 for r > 0 ,

namely (r N−1, r N−1Wλ) is a Bessel pair with positive solution �λ(r). See also [5, Lemma
6.2] where the functions�λ were originally introduced but exploited with different purposes.
Finally, from Corollary 3.1 we deduce that, for all function u ∈ C∞

c (BR\{x0}), there holds
∫

BR

|�HN u|2 dvHN =
∫

BR

Wλ(r)|∇HN u|2 dvHN

+ (N − 1)
∫

BR

(
1

sinh2 r

)

|∇HN u|2 dvHN

− (N − 1)
∫

BR

� ′
λ(r)

�λ(r)

(

coth r − 1

r

)

|∇HN u|2 dvHN

+
∫

BR

(�λ(r))
2
∣
∣
∣
∣∇HN

(
ur

�λ(r)

)∣
∣
∣
∣

2

dvHN .

By this, recalling (4.1), the proof of Theorem 2.1 follows. The proof of Theorem 2.2
works similarly by applying Theorem 3.2 since condition (3.4) holds for the Bessel pair
(r N−1, r N−1Wλ) if N ≥ 5.

As concerns the proof of the fact that the constants h2N (λ) and
[( N

2

)2 − h2N (λ)
]
are jointly

sharp when N ≥ 5, this follows by noticing that as r → 0 we have

h2N (λ)

∫

HN

|∇
HN u|2
r2

dv
HN +

[(
N

2

)2
− h2N (λ)

] ∫

HN

|∇
HN u|2

sinh2 r
dv

HN ∼ N2

4

∫

HN

|∇
HN u|2
r2

dv
HN .
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Therefore, locally, we recover inequality (1.6) for l = 1; by this we readily infer that, for

h2N (λ) fixed, any larger constant in front of the term
|∇

HN u|2
sinh2 r

would contradict the optimality

of the constant N2

4 in (1.6) (when l = 1).

Proof of Corollary 2.3 The proof follows from Corollary 2.1 by evaluating the term
∫
HN

|∇
HN u|2
r2

dvHN with the aid of [17, Corollary 3.2] from which we know that

∫

HN

|∇HN u|2
r2

dvHN =
(
N − 4

2

)2 ∫

HN

u2

r4
dvHN

+ (N − 4)(N − 1)

2

∫

HN

r coth r − 1

r4
u2 dvHN

+
∫

HN

1

r N−2

∣
∣
∣
∣∇HN

(

r
N−4
2 u

)∣
∣
∣
∣

2

dvHN .

for all u ∈ C∞
c (HN\{x0}). The proof for radial operators follows similarly since the above

identity holds with the same constants for radial operators too. 
�

Proof of Corollary 2.4 Here the proof follows by combining Corollary 2.2 with [17, Theorem
1.4] according to which we know that

∫

HN
|∇HN u|2 dvHN =

(
N − 1

2

)2 ∫

HN
u2 dvHN

+ 1

4

∫

HN

u2

r2
dvHN + (N − 1)(N − 3)

4

∫

HN

u2

sinh2 r
dvHN

+
∫

HN

r

(sinh r)N−1

∣
∣
∣
∣∇HN

(
(sinh r)

N−1
2 ur

r
1
2

)∣
∣
∣
∣

2

dvHN .

for all u ∈ C∞
c (HN\{x0}) and similarly for radial operators since the above identity holds

with the same constants for radial operators too. 
�

Proof of Theorem 2.3 The proof is a simple application of Cauchy-Schwartz inequality com-
bined with Theorem 2.2:

∫

HN
|∇HN u|2 dvHN =

∫

HN
r |∇HN u| |∇HN u|

r
dvHN

≤
(∫

HN
r2|∇HN u|2 dvHN

) 1
2
(∫

HN

|∇HN u|2
r2

dvHN

) 1
2

︸ ︷︷ ︸
UsingTheorem2.2
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≤ 1

hN (λ)

(∫

HN

(|�HN u|2 − λ|∇HN u|2) dvHN

) 1
2

×
(∫

HN
r2|∇HN u|2dvHN

) 1
2

.


�

5 Proofs of Theorem 3.1, Corollary 3.1, Theorem 3.2 and Theorem 3.3

We shall begin with the proof of Theorem 3.1.

Proof of Theorem 3.1 Let u ∈ C∞
c (BR\{x0}) be a radial function, in terms of polar coordi-

nates we have
∫

BR

V (r)|�HN u|2 dvHN = NωN

[ ∫ R

0
V (r)u2rr (sinh r)

N−1 dr

+ (N − 1)2
∫ R

0
V (r)(coth r)2u2r (sinh r)

N−1 dr

+ 2(N − 1)
∫ R

0
V (r)urr ur (coth r)(sinh r)

N−1 dr

]

.

Now, applying integration by parts in the last term and setting ν = ur , we deduce
∫

BR

V (r)|�HN u|2 dvHN =
∫

BR

V (r)|∇HN ν|2 dvHN

+ (N − 1)
∫

BR

(
V (r)

sinh2 r
− Vr (r) cosh r

sinh r

)

|ν|2 dvHN . (5.1)

On the other hand, from Lemma 3.1 for the function ν we have
∫

BR

V (r)|∇HN ν|2 dvHN =
∫

BR

W (r)|ν|2 dvHN +
∫

BR

V (r)( f (r))2
∣
∣
∣
∣∇HN

(
ν

f (r)

)∣
∣
∣
∣

2

dvHN

− (N − 1)
∫

BR

V (r)
f ′

f

(

coth r − 1

r

)

|ν|2 dvHN .

By using this identity into (5.1) and writing back in terms of u we deduce (3.3). 
�
Spherical harmonics.
Before going to prove Corollary 3.1 and Theorem 3.2, we shall mention some useful facts

about spherical harmonics, see [28, Lemma 2.1] and [33, Ch. 4].
Let u(x) = u(r ,�) ∈ C∞

c (HN ), r ∈ (0,∞) and � ∈ S
N−1, we can write

u(r ,�) =
∞∑

n=0

an(r)Pn(�) (5.2)

in L2(HN ), where {Pn} is an orthonormal system of spherical harmonics and

an(r) =
∫

SN−1
u(r ,�)Pn(�) d� .
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A spherical harmonic Pn of order n is the restriction to S
N−1 of a homogeneous harmonic

polynomial of degree n. Moreover, it satisfies

−�SN−1 Pn = λn Pn

for all n ∈ N ∪ {0}, where λn = (n2 + (N − 2)n) are the eigenvalues of Laplace Beltrami
operator −�SN−1 on S

N−1 with corresponding eigenspace dimension cn . We note that λn ≥
N − 1 for n ≥ 1, λ0 = 0, c0 = 1, c1 = N and for n ≥ 2

cn =
(
N + n − 1

n

)

−
(
N + n − 3

n − 2

)

.

In a continuation let us also describe the Gradient and Laplace Beltrami operator in this
setting. Now onward, to shorten the notations, we will use the notation ψ(r) = sinh r . The
following identities hold:

|∇HN u|2 =
∞∑

n=0

a′
n
2P2

n + a2n
ψ2 |∇SN−1 Pn |2

and

(�HN u)2 =
∞∑

n=0

(

a′′
n + (N − 1)

ψ ′

ψ
a′
n

)2

P2
n +

∞∑

n=0

a2n
ψ4 (�SN−1 Pn)

2 (5.3)

+ 2
∞∑

n=0

(

a′′
n + (N − 1)

ψ ′

ψ
a′
n

)
an
ψ2 (�SN−1 Pn)Pn .

Along with this the radial contribution of the operators will be:

|∇r ,HN u|2 =
∞∑

n=0

a′
n
2P2

n

and

(�r ,HN u)2 =
∞∑

n=0

(

a′′
n + (N − 1)

ψ ′

ψ
a′
n

)2

P2
n .

Proof of Corollary 3.1 By spherical harmonics, we decompose u as in (5.2). Now, exploiting
Theorem 3.1 for each an , we deduce

∫

HN
V (r)|�r ,HN u|2 dvHN =

∞∑

n=0

∫ ∞

0
V (r)

(

a′′
n + (N − 1)

ψ ′

ψ
a′
n

)2

ψN−1 dr

=
∞∑

n=0

[ ∫ ∞

0
Wa′

n
2
ψN−1 dr +

∫ ∞

0
V f 2

[(
a′
n

f

)′]2
ψN−1 dr

− (N − 1)
∫ ∞

0
V

f ′

f

(

coth r − 1

r

)

(a′
n)

2ψN−1 dr

+ (N − 1)
∫ ∞

0
Va′

n
2
ψN−3 dr − (N − 1)

∫ ∞

0
Vrψ

′(a′
n)

2ψN−2 dr

]

=
∫

HN
W (r)|∇r ,HN u|2 dvHN +

∫

HN
V (r)( f (r))2

∣
∣
∣
∣∇r ,HN

(
ur
f (r)

)∣
∣
∣
∣

2

dvHN
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− (N − 1)
∫

HN
V (r)

f ′

f

(

coth r − 1

r

)

|∇r ,HN u|2 dvHN

+ (N − 1)
∫

HN

(
V (r)

sinh2 r
− Vr (r) cosh r

sinh r

)

|∇r ,HN u|2 dvHN .

This completes the proof. 
�
Proof of Theorem 3.2 Again, by spherical decomposition we can write u as in (5.2). Having
defined ψ(r) = sinh r , the following identities hold:

ψ ′2(r)
ψ2(r)

= 1 + 1

ψ2(r)
and ψ ′(r)2 = 1 + ψ2(r) for all r > 0; (5.4)

we shall use them in the proof frequently.
Step 1. In this step we decompose the l.h.s. of (3.5) and, using (5.3), we get:
∫

HN
V (r)|�HN u|2 dvHN =

∞∑

n=0

[ ∫ ∞

0
V (r)

(

a′′
n + (N − 1)

ψ ′

ψ
a′
n

)2

ψN−1 dr

+ λ2n

∫ ∞

0
V (r)

a2n
ψ4 ψN−1 dr − 2 λn

∫ ∞

0
V (r)

(

a′′
n + (N − 1)

ψ ′

ψ
a′
n

)
an
ψ2 ψN−1 dr

]

.

On the other hand, exploiting Corollary 3.1 for each an , we deduce
∫

HN
V (r)|�HN an |2 dvHN = NωN

∫ ∞

0
V (r)

(

a′′
n + (N − 1)

ψ ′

ψ
a′
n

)2

ψN−1 dr

= NωN

[ ∫ ∞

0
Wa′

n
2
ψN−1 dr +

∫ ∞

0
V f 2

[(
a′
n

f

)′]2
ψN−1 dr

− (N − 1)
∫ ∞

0
V

f ′

f

(

coth r − 1

r

)

(a′
n)

2ψN−1 dr

+ (N − 1)
∫ ∞

0
Va′

n
2
ψN−3 dr − (N − 1)

∫ ∞

0
Vrψ

′(a′
n)

2ψN−2 dr

]

.

Step 2. In this step we compute the r.h.s of inequality (3.5):
∫

HN
W (r)|∇HN u|2 dvHN +

∫

HN
V (r)( f (r))2

∣
∣
∣
∣∇HN

(
ur
f (r)

)∣
∣
∣
∣

2

dvHN

− (N − 1)
∫

HN
V (r)

f ′

f

(

coth r − 1

r

)

|∇HN u|2 dvHN

+ (N − 1)
∫

HN

(
V (r)

sinh2 r
− Vr (r) cosh r

sinh r

)

|∇HN u|2 dvHN

=
∞∑

n=0

[ ∫ ∞

0
Wa′

n
2
ψN−1 dr + λn

∫ ∞

0
Wa2nψ

N−3 dr +
∫ ∞

0
V f 2

[(
a′
n

f

)′]2
ψN−1 dr

+ λn

∫ ∞

0
Va′

n
2
ψN−3 dr − (N − 1)

∫ ∞

0
V

f ′

f

(

coth r − 1

r

)

a′
n
2
ψN−1 dr

− (N − 1)λn

∫ ∞

0
V

f ′

f

(

coth r − 1

r

)

a2nψ
N−3 dr

+ (N − 1)
∫ ∞

0

(
V (r)

ψ2 − ψ ′

ψ
Vr (r)

)

(a′
n)

2ψN−1 dr
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+ (N − 1)λn

∫ ∞

0

(
V (r)

ψ2 − ψ ′

ψ
Vr (r)

)
a2n
ψ2 ψN−1 dr

]

.

Step 3. Subtracting the r.h.s. of the identities obtained in Step 1 and Step 2 we obtain the
expression below that we denote by B the following quantity:

B :=
∞∑

n=0

[

λ2n

∫ ∞

0
V (r)

a2n
ψ4 ψN−1 dr − 2 λn

∫ ∞

0
V (r)

(

a′′
n + (N − 1)

ψ ′

ψ
a′
n

)
an
ψ2 ψN−1 dr

(5.5)

− λn

∫ ∞

0
W (r)

a2n
ψ2 ψN−1 dr − (N − 1)λn

∫ ∞

0

(
V (r)

ψ2 − ψ ′

ψ
Vr (r)

)
a2n
ψ2 ψN−1 dr

− λn

∫ ∞

0
V (a′

n)
2ψN−3 dr + (N − 1)λn

∫ ∞

0
V

f ′

f

(

coth r − 1

r

)

a2nψ
N−3 dr

]

.

In the steps below we shall show that B is non-negative, this will prove inequality (3.5). To
this aim, we establish some preliminary identities.

Step 4. Set

I1 :=
∫ ∞

0
Va′

n
2
ψN−3 dr

and define bn(r) := an(r)
ψ(r) , by Leibniz rule we have a′

n = b′
nψ + bnψ ′. Using this and by

parts formula, we obtain

I1 =
∫ ∞

0
Vb′

n
2
ψN−1 dr − (N − 3)

∫ ∞

0
Vb2nψ

N−3 dr (5.6)

−
∫ ∞

0
Vrb

2
nψ

′ψN−2 dr − (N − 2)
∫ ∞

0
Vb2nψ

N−1 dr .

Then applying Lemma 3.1 for bn , we deduce

∫ ∞

0
Vb′

n
2
ψN−1 dr =

∫ ∞

0
Wb2nψ

N−1 dr +
∫ ∞

0
V f 2

[(
bn
f

)′]2
ψN−1 dr

− (N − 1)
∫ ∞

0
V

f ′

f

(

coth r − 1

r

)

b2nψ
N−1 dr .

Using this estimate into (5.6) and writing bn in terms of an , we have

I1 =
∫ ∞

0
Wa2nψ

N−3 dr +
∫ ∞

0
V f 2

[(
an
f ψ

)′]2
ψN−1 dr − (N − 1)I

− (N − 3)
∫ ∞

0
Va2nψ

N−5 dr −
∫ ∞

0
Vra

2
nψ

′ψN−4 dr

− (N − 2)
∫ ∞

0
Va2nψ

N−3 dr , (5.7)

where I = ∫ ∞
0 V f ′

f

(
coth r − 1

r

)
a2nψ

N−3 dr .
Step 5. In this step we evaluate the terms

I2 :=
∫ ∞

0
Va′′

nanψ
N−3 dr and I3 :=

∫ ∞

0
Va′

nanψ
′ψN−4 dr
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by means of integration by parts formula. Recalling (5.7), a computation provides

I2 = 1

2

∫ ∞

0
Vrra

2
nψ

N−3 dr + (N − 3)

2

∫ ∞

0
Vra

2
nψ

′ψN−4 dr − I1 − (N − 3)I3, (5.8)

furthermore we have

I3 = −1

2

∫ ∞

0
Vra

2
nψ

′ψN−4 dr − (N − 4)

2

∫ ∞

0
Va2nψ

N−5 dr

− (N − 3)

2

∫ ∞

0
Va2nψ

N−3 dr . (5.9)

Step 6. Next using (5.8) into (5.5) we rewrite B as follows:

B =
∞∑

n=0

[

λ2n

∫ ∞

0
Va2nψ

N−5 dr − 2λnI2 − 2(N − 1)λnI3 − λn

∫ ∞

0
Wa2nψ

N−3 dr

− (N − 1)λn

∫ ∞

0
Va2nψ

N−5 dr + (N − 1)λn

∫ ∞

0
Vra

2
nψ

′ψN−4 dr − λnI1

+ (N − 1)λnI
]

=
∞∑

n=0

[

λ2n

∫ ∞

0
Va2nψ

N−5 dr − 2λn

{
1

2

∫ ∞

0
Vrra

2
nψ

N−3 dr

+ (N − 3)

2

∫ ∞

0
Vra

2
nψ

′ψN−4 dr − I1 − (N − 3)I3
}

− 2(N − 1)λnI3

− λn

∫ ∞

0
Wa2nψ

N−3 dr − (N − 1)λn

∫ ∞

0
Va2nψ

N−5 dr

+ (N − 1)λn

∫ ∞

0
Vra

2
nψ

′ψN−4 dr − λnI1 + (N − 1)λnI
]

.

Simplifying the identity obtained above and recalling (5.9), we get

B =
∞∑

n=0

[

λ2n

∫ ∞

0
Va2nψ

N−5 dr − λn

∫ ∞

0
Vrra

2
nψ

N−3 dr + 2λn

∫ ∞

0
Vra

2
nψ

′ψN−4 dr

+ λnI1 − 4λnI3 − λn

∫ ∞

0
Wa2nψ

N−3 dr

− (N − 1)λn

∫ ∞

0
Va2nψ

N−5 dr + (N − 1)λnI
]

=
∞∑

n=0

[

λ2n

∫ ∞

0
Va2nψ

N−5 dr − λn

∫ ∞

0
Vrra

2
nψ

N−3 dr + 2λn

∫ ∞

0
Vra

2
nψ

′ψN−4 dr

+ λnI1 − 4λn

{

−1

2

∫ ∞

0
Vra

2
nψ

′ψN−4 dr − (N − 4)

2

∫ ∞

0
Va2nψ

N−5 dr

− (N − 3)

2

∫ ∞

0
Va2nψ

N−3 dr

}

− λn

∫ ∞

0
Wa2nψ

N−3 dr

− (N − 1)λn

∫ ∞

0
Va2nψ

N−5 dr + (N − 1)λnI
]

.
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By means of a further simplification we obtain

B =
∞∑

n=0

[

λn(λn + N − 7)
∫ ∞

0
Va2nψ

N−5 dr − λn

∫ ∞

0
Vrra

2
nψ

N−3 dr

+ 4λn

∫ ∞

0
Vra

2
nψ

′ψN−4 dr + 2λn(N − 3)
∫ ∞

0
Va2nψ

N−3 dr

− λn

∫ ∞

0
Wa2nψ

N−3 dr + λnI1 + (N − 1)λnI
]

=
∞∑

n=0

[

λn(λn + N − 7)
∫ ∞

0
Va2nψ

N−5 dr − λn

∫ ∞

0
Vrra

2
nψ

N−3 dr

+ 4λn

∫ ∞

0
Vra

2
nψ

′ψN−4 dr + 2λn(N − 3)
∫ ∞

0
Va2nψ

N−3 dr − λn

∫ ∞

0
Wa2nψ

N−3 dr

+ λn

{∫ ∞

0
Wa2nψ

N−3 dr+
∫ ∞

0
V f 2

[(
an
f ψ

)′]2
ψN−1 dr−(N − 3)

∫ ∞

0
Va2nψ

N−5 dr

−
∫ ∞

0
Vra

2
nψ

′ψN−4 dr − (N − 2)
∫ ∞

0
Va2nψ

N−3 dr

}]

,

where in the last line we have exploited the definitions of I and I1.
Step 7. We conclude the proof by estimating B:

B =
∞∑

n=0

[

λn(λn − 4)
∫ ∞

0
Va2nψ

N−5 dr − λn

∫ ∞

0
Vrra

2
nψ

N−3 dr

+ 3λn

∫ ∞

0
Vra

2
nψ

′ψN−4 dr + λn(N − 4)
∫ ∞

0
Va2nψ

N−3 dr

+ λn

∫ ∞

0
V f 2

[(
an
f ψ

)′]2
ψN−1 dr

]

=
∞∑

n=0

λn

[

(λn − 4)
∫ ∞

0
Va2nψ

N−5 dr +
∫ ∞

0

{
3Vrψ ′

ψ
− Vrr

}

a2nψ
N−3 dr

+ (N − 4)
∫ ∞

0
Va2nψ

N−3 dr +
∫ ∞

0
V f 2

[(
an
f ψ

)′]2
ψN−1 dr

]

≥
∞∑

n=0

λn

[ ∫ ∞

0

{

(N − 5)
V

ψ2 + 3
Vrψ ′

ψ
− Vrr + (N − 4)V

}

a2nψ
N−3 dr

+
∫ ∞

0
V f 2

[(
an
f ψ

)′]2
ψN−1 dr

]

,

where in the last line we have used λn ≥ N − 1 for all n ≥ 1. Hence, B eventually turns
out to be non-negative due to the hypothesis (3.4) and the non negativity of the last term.
This concludes the proof. 
�

Proof of Theorem 3.3 We give the proof in the general case, the proof for radial operators
follows with the same argument but by exploiting Corollary 3.1 instead of Theorem 3.2.
First, under the assumptions of Theorem 3.3, from Theorem 3.2 we deduce that for all
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u ∈ C∞
c (HN\{x0}) there holds

∫

HN
V (r)|�HN u|2 dvHN ≥

∫

HN
W̃ (r)|∇HN u|2 dvHN .

Finally, we use Hölder inequality and the above inequality to get:
( ∫

HN
|∇HN u|2 dvHN

)2

=
( ∫

HN

√
W̃ (r)|∇HN u| |∇HN u|

√
W̃ (r)

dvHN

)2

≤
( ∫

HN

|∇HN u|2
W̃ (r)

dvHN

)( ∫

HN
W̃ (r)|∇HN u|2 dvHN

)

≤
( ∫

HN

|∇HN u|2
W̃ (r)

dvHN

)( ∫

HN
V (r)|�HN u|2 dvHN

)

which is the thesis. 
�

6 Concluding remarks

In this sectionwe briefly discuss possibile extensions of our proofs and results tomore general
manifolds under appropriate curvature bounds.

The methods exploited in this article are in principle applicable to obtain Hardy–Rellich
and Poincaré type identities, and inequalities on Riemannian models. An N -dimensional
Riemannian model (M, g) is an N -dimensional Riemannian manifold admitting a pole o ∈
M and whose metric g is given in spherical coordinates around o by

ds2 = dr2 + ψ2(r) dω2,

where dω2 denotes the canonical metric on the unit sphere S
N−1 and ψ satisfies:

ψ is a C∞ nonnegative function on [0,+∞), positive on (0,+∞)

such that ψ ′(0) = 1 and ψ(2k)(0) = 0 for all k ≥ 0 .

These conditions on ψ ensure that the manifold is smooth and the metric at the pole o is
given by the euclidean metric. The coordinate r , by construction, represents the Riemannian
distance from the pole o. In particular, all the assumptions above are satisfied by ψ(r) = r
and by ψ(r) = sinh(r): in the first case M coincides with the euclidean space R

N , in the
latter with the hyperbolic space H

N .
We stress that our arguments relies on the careful analysis of the radial part of the Laplace-

Beltrami operator on the hyperbolic space and exploiting the spectral analysis of−�Sn along
with the notion of Bessel pair. In fact the Laplace-Beltrami operator on Riemannian models
is given by:

�g = ∂2

∂ r2
+ (N − 1)

ψ ′(r)
ψ(r)

∂

∂ r
︸ ︷︷ ︸
Radial part of the Laplacian

+ 1

ψ2 �SN

which coincides with (2.1) for ψ(r) = sinh(r). Therefore, one can handle the radial part
of the Laplace-Beltrami operator on M as done in the previous sections for H

N , taking into
account appropriately the terms involving the radial functions ψ,ψ ′. Clearly, if M �= H

N ,
one cannot take advantage of the fundamental identities (5.4) which hold forψ(r) = sinh(r);
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in fact, we expect some of the improved terms in the resulting inequalities (identities) would
involve curvature terms depending on the functionsψ andψ ′, as it happens for the analogous
of (1.3) on more general manifolds, including Riemannian models as particular cases, see [4,
Theorem 2.5]. Although, it’s worth noticing that the passage from models to more general
manifolds is not obvious in this higher order setting due to the lack of comparison principles.
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Appendix: A family of improved Hardy–Poincaré equalities

In this appendix we present a family of improved Hardy–Poincaré equalities which follows
as a corollary from [17, Theorem 3.2], i.e. Lemma 3.1 above, by exploiting the family of
Bessel pairs (r N−1, r N−1Wλ) introduced in Sect. 4 for all 0 ≤ λ ≤ λ1(H

N ). If λ = λ1(H
N )

the identity we got is already known from [17, Theorem 3.2] while for 0 ≤ λ < λ1(H
N ) it is

new and improves (1.2), i.e. [5, Theorem 2.1], with the presence of an exact remainder term.
The precise statement of the result reads as follows:

Theorem 6.1 Let N ≥ 2. For all 0 ≤ λ ≤ λ1(H
N ) = ( N−1

2

)2
and for all u ∈ C∞

c (HN\{x0})
there holds

∫

HN
|∇HN u|2 dvHN = λ

∫

HN
u2 dvHN + h2N (λ)

∫

HN

u2

r2
dvHN

+
[

(N − 2)2

4
− h2N (λ)

] ∫

HN

u2

sinh2 r
dvHN

+ γN (λ)hN (λ)

∫

HN

r coth r − 1

r2
u2 dvHN

+
∫

HN
(�λ(r))

2
∣
∣
∣
∣∇HN

(
u

�λ(r)

)∣
∣
∣
∣

2

dvHN

and for the radial operator we have
∫

HN
|∇r ,HN u|2 dvHN = λ

∫

HN
u2 dvHN + h2N (λ)

∫

HN

u2

r2
dvHN

+
[

(N − 2)2

4
− h2N (λ)

] ∫

HN

u2

sinh2 r
dvHN
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+ γN (λ)hN (λ)

∫

HN

r coth r − 1

r2
u2 dvHN

+
∫

HN
(�λ(r))

2
∣
∣
∣
∣∇r ,HN

(
u

�λ(r)

)∣
∣
∣
∣

2

dvHN ,

where γN (λ) :=√
(N−1)2 − 4λ, hN (λ) := γN (λ)+1

2 and �λ(r) :=r− N−2
2

( sinh r
r

)− N−1+γN (λ)

2 .

Proof The proof follows by applying [17, Theorem 3.2], i.e. Lemma 3.1 above, with the
Bessel pairs (r N−1, r N−1Wλ), where Wλ is as given in (4.1). 
�

In particular, for λ = N −2 Theorem 6.1 yields the Hardy identity below which improves
(1.4):

Corollary 6.1 Let N ≥ 3. For all u ∈ C∞
c (HN\{x0}) there holds

∫

HN
|∇HN u|2 dvHN =

(
N − 2

2

)2 ∫

HN

u2

r2
dvHN + (N − 2)

∫

HN
u2 dvHN

+ (N − 2)(N − 3)

2

∫

HN

r coth r − 1

r2
u2 dvHN

+
∫

HN

(
r1/2

sinh r

)2(N−2) ∣
∣
∣
∣∇HN

(
(sinh r)N−2u

r (N−2)/2

)∣
∣
∣
∣

2

dvHN .
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