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Abstract
The capacity to aggregate through chemosensitivemovement forms a paradigmof self-
organisation, with examples spanning cellular and animal systems.A basicmechanism
assumes a phenotypically homogeneous population that secretes its own attractant,
with thewell known system introducedmore than five decades ago byKeller and Segel
proving resolutely popular in modelling studies. The typical assumption of population
phenotypic homogeneity, however, often lies at odds with the heterogeneity of natural
systems, where populations may comprise distinct phenotypes that vary according to
their chemotactic ability, attractant secretion, etc. To initiate an understanding into how
this diversity can impact on autoaggregation, we propose a simple extension to the
classical Keller and Segel model, in which the population is divided into two distinct
phenotypes: those performing chemotaxis and those producing attractant. Using a
combination of linear stability analysis and numerical simulations, we demonstrate
that switching between these phenotypic states alters the capacity of a population
to self-aggregate. Further, we show that switching based on the local environment
(population density or chemoattractant level) leads to diverse patterning and provides
a route through which a population can effectively curb the size and density of an
aggregate. We discuss the results in the context of real world examples of chemotactic
aggregation, as well as theoretical aspects of the model such as global existence and
blow-up of solutions.
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1 Introduction

Chemotaxis describes a motility response in which a cell or organism steers itself
according to the concentration gradient of a chemical orienteering signal, termed a
chemoattractant (repellent) when movement is up (down) the gradient. At the level
of a population, chemotaxis can lead to self-organisation, driving a dispersed popu-
lation into aggregated groups. This process relies on self-reinforcement, for example
a population in which each member secretes its own attractant. Such “autocrine sig-
nalling” allows attraction between near neighbours, leading to localised accumulations
that steadily grow in size. Numerous examples of this collective organisation can be
cited, spanning the natural world from microscopic to macroscopic: in microbiol-
ogy, both bacteria and slime molds use chemotaxis to form multicellular aggregation
mounds (Budrene and Berg 1991, 1995; Bonner 2009); during embryonic develop-
ment, chemotactic self-organisation in the mesenchyme is a key component of hair
and feather morphogenesis in the skin (Lin et al. 2009; Glover et al. 2017; Bailleul
et al. 2019; Ho et al. 2019); during immune responses, activated neutrophils start to
produce chemoattractants that recruit other immune cells (Afonso et al. 2012; Läm-
mermann et al. 2013; Glaser et al. 2021); in the animal world, marine invertebrates
such as starfish (Hall et al. 2017) and sea cucumbers (Marquet et al. 2018) release
water-borne factors to attract neighbours, a prelude to mass spawning. For further
examples, we refer the reader to Painter (2019).

A large modelling literature has, naturally, emerged. At a population level, the
majority of models rely on the partial differential equation (PDE) framework intro-
duced by Keller and Segel (1970), and a “minimal” model can be formulated with
straightforward functional forms and featuring a single (we assume cellular) popu-
lation and its chemoattractant, see Fig. 1a. Following a non-dimensionalisation (see
Appendix A), this minimal model is given by the following PDE system

⎧
⎪⎨

⎪⎩

∂n

∂t
= ∇ · (D∇n − χn∇s) ,

∂s

∂t
= ∇2s + n − s,

x ∈ �. (1)

Here, the real, non-negative functions n ≡ n(x, t) and s ≡ s(x, t) represent, respec-
tively, the density of cells and the concentration of chemoattractant at time t ∈ R+
and at position x ∈ �. The set � is an open and bounded subset of Rd with smooth
boundary ∂� and d ≥ 1 depending on the biological problem under study.

The population dynamics are governed by diffusion (modelling random move-
ment) and chemotactic advection according to the gradient of the attractant, while the
chemoattractant is produced by the population, decays and diffuses. For an initially
dispersed (i.e. spatially uniform) population to aggregate requires that χ > D. This
effectively stipulates that the positive feedback process in which a population secretes
its own attractant must overcome the homogenising tendencies of diffusion. Models
based on (1) have received significant interest for their patterning and mathematical
properties, see the reviews in (Horstmann 2003; Hillen and Painter 2009; Bellomo
et al. 2015; Painter 2019). Mathematical interest has particularly centred on the ques-
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tion of global existence or blow-up (singularity formation), where for the formulation
(1) blow-up has been shown to occur in the biologically relevant case of d ≥ 2.
While indicative of self-aggregation, the formation of singularities is problematic and
artificial in the context of applications, where one naturally expects the growth of
an aggregate to be curbed, for example due to lack of space. Consequently, various
plausible “regularisations” have been proposed (for example see Hillen and Painter
2009).

An implicit assumption underlying (1) and relatedmodels is phenotypic homogene-
ity of the cell population: members are assumed, as a first approximation, identical
with regards to their ability to perform chemotaxis, grow, produce/secrete attractant,
etc. This, however, ignores the typical phenotypic heterogeneity observed within pop-
ulations: for example, a spectrum of phenotypes whereby populationmembers express
different behaviours to different degrees. Chemotactic heterogeneity has been shown
for E. coli populations which, when subjected to an attractant-filled “T-maze” struc-
ture, spatially sort according to chemotactic ability (Salek et al. 2019). Performing
chemotaxis, however, demands energy expenditure and the need to balance energy
expenditure against energy intake leads to the natural conclusion that high activ-
ity in one area must be compensated by lower activity elsewhere, i.e. a trade-off
(Keegstra et al. 2022). The negative relationship between chemotaxis and growth
investment observed for bacteria (Ni et al. 2020) provide one such trade-off, but given
that numerous functions demand significant energy – movement, growth, protein syn-
thesis, internal molecule and organelle transport, signal transduction, etc. – a wide
variety of trade-offs will be necessary (Keegstra et al. 2022).

Intra-population phenotypic heterogeneity can also arise through anti-cooperative
behaviours, exemplified by “cheater” strains within the slime mold D. discoideum.
These “social amoebae” (Bonner 2009) are famous for the multicellular phase to
their lifecycle, starvation inducing auto-aggregation in response to the chemoattrac-
tant cAMP, ultimately manifesting in a differentiated fruiting body in which the
majority of the population are preserved as “spores”, but at the cost of a sacrificed
20% in the supporting “stalk”. Cheater strains aim to minimise their stalk contri-
bution, feasibly through a spectrum of strategies that include limiting or avoiding
the energy-consuming production of cAMP necessary for aggregation (Shaulsky and
Kessin 2007). Intra-population phenotypic heterogeneity also extends to large organ-
isms, where the heterogeneity extends from natural variability to distinctly different
sub-populations, for example males and females. In the context of chemotactic hetero-
geneity, for example, only male sea cucumbers release pheromone attractants during
the aggregation leading to spawning (Marquet et al. 2018).

Motivated by the examples cited above, in this paper we address the following ques-
tion: How does phenotypic heterogeneity impact on autoaggregation of a population?
To this end, we consider a simple extension of the system (1) whereby the population is
subdivided into distinct chemotactic and secreting phenotypes, with the possibility of
switching between them. Following the formulation of the model (Sect. 2), we use lin-
ear stability analysis to derive conditions under which patterning is possible (Sect. 3),
and carry out numerical simulations to determine the patterning properties (Sect. 4).
We conclude with a discussion (Sect. 5), in the process proposing some future model
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Fig. 1 aAssumptions underlying the classical minimal autoaggregation model, whereby a population com-
prises identicalmembers that are both chemosensitive and secrete the chemoattractant signal.bAssumptions
underlying our binary phenotype model. Here the population is subdivided into distinct chemotactic and
secreting phenotypes, with the possibility of switching between these two phenotypic states (Color figure
online)

extensions and speculating on the analytical properties of the model in the context of
global existence and blow-up of solutions.

2 Model Formulation

We investigate an extension of the basic model (1) such that, based on the idea of a
trade-off between chemotactic sensitivity and attractant secretion, a binary variable
p ∈ {0, 1} is introduced to describe the cell phenotypic state: cells in the phenotypic
state p = 0 produce the chemoattractant but have negligible chemotactic sensitivity,
whereas cells in the phenotypic state p = 1 do not produce the chemoattractant but are
chemotactically sensitive, see Fig. 1b. As a result, denoting the chemotactic sensitivity
of cells in the phenotypic state p as χp and the rate of attractant production of cells in
the phenotypic state p as αp, we assume

χ0 = 0, χ1 ∈ R
∗+, α0 ∈ R

∗+, α1 = 0 ,

where R∗+ is the set of positive real numbers.
The dynamics of the density of cells in the phenotypic state p ∈ {0, 1} at time

t ≥ 0, n p ≡ n p(x, t), and the local concentration of chemoattractant, s ≡ s(x, t), are
governed by the following system of partial differential equations (PDEs)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂n0
∂t

= Dn∇2n0 − γ01(ρ, s) n0 + γ10(ρ, s) n1,

∂n1
∂t

= ∇ · (Dn∇n1 − χ1n1∇s) + γ01(ρ, s) n0 − γ10(ρ, s) n1,

ρ(x, t) := n0(x, t) + n1(x, t),
∂s

∂t
= Ds∇2s + α0 n0 − η s,

x ∈ �. (2)

Here, Dn ∈ R
∗+ is the rate of randommotion of the cells, Ds ∈ R

∗+ is the diffusion rate
of the chemoattractant, and η ∈ R

∗+ is the decay rate of the chemoattractant. Gener-
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ally, eukaryotic cells utilise membrane extensions (pseudopods) to move, whereby the
pseudopods anchor the cell to the substrate (or other cells) and permit traction. In the
absence of signals promoting directed motion, these pseudopods typically extend in
random directions (VanHaastert and Devreotes 2004) and the inherent randommotion
is often described using diffusion terms in mathematical models of chemotaxing pop-
ulations (Painter 2019). To account for this, we have assumed that while cells in the
phenotypic state p = 0 do not undergo directed motion, they still undergo a degree of
random motion and are not completely stationary. For convenience, we assume this
inherent degree of randomness is the same for the two phenotypic states, however this
could be relaxed at the cost of an additional parameter. The additional kinetic terms
on the right-hand sides of the PDEs (2) for n0 and n1 describe potential switching
between phenotypes, that is, the functions

γ01 : R2+ → R
∗+ and γ10 : R2+ → R

∗+

represent the rate of switching from phenotypic state 0 (state 1) to phenotypic state 1
(state 0). A switching dependence according to the total cell densityρ could result from
a cell changing phenotype following direct contacts at the cell surface, or mediated
through a secreted quorum-sensing factor (Striednig and Hilbi 2022) that provides
cell density information. To maximise the generality of the modelling framework, we
do not make specific assumptions on these functions and will utilise classical forms
based on Hill functions, thus ensuring that switching rates remain bounded.

For the analysis and numerical simulations that follow, we will assume zero-flux
conditions at the boundary ∂�, i.e.

u · ∇n0 = 0, u · ∇n1 = 0, u · ∇s = 0, x ∈ ∂� (3)

where u is the unit normal to ∂� that points outwards from �. Moreover, initially we
simply assume

n0(x, 0) ≥ 0, n1(x, 0) ≥ 0, s(x, 0) ≥ 0 ∀ x ∈ �.

We remark that, when subject to boundary conditions (3), the PDE system (2) is
such that the total cell number is conserved, i.e.

∫

�

ρ(x, t) dx =
∫

�

ρ(x, 0) dx ∀ t ≥ 0. (4)

Thus, also the mean of the total cell density over� is conserved. This leads to a further
notable quantity σ ∈ R+ with

1

|�|
∫

�

ρ(x, 0) dx =: σ, (5)

where |�| is the measure of the set �.
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2.1 Dimensionless Model

As detailed in Appendix B, the PDE system (2) subject to boundary conditions (3)
can be rewritten in the following dimensionless form

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂n0
∂t

= D∇2n0−μ01(ρ, s) n0 + μ10(ρ, s) n1,

∂n1
∂t

= D∇2n1 − χ∇ · (n1∇s) +μ01(ρ, s) n0 − μ10(ρ, s) n1,

ρ(x, t) := n0(x, t) + n1(x, t),
∂s

∂t
= ∇2s + n0 − s,

x ∈ � (6)

subject to boundary conditions (3).
Here, D ∈ R

∗+ is the dimensionless rate of random motion of the cells, χ ∈ R
∗+ is

the dimensionless chemotactic sensitivity, and

μ01 : R2+ → R
∗+ and μ10 : R2+ → R

∗+ (7)

are the dimensionless phenotypic switching functions. Furthermore, upon nondimen-
sionalisation, the conservation relation (5) reduces to

1

|�|
∫

�

ρ(x, 0) dx = 1. (8)

2.2 Definitions of Phenotypic Switching Functions

The definitions of the the phenotypic switching functions, μ01 and μ10, considered
here are listed in Table 1. Case A corresponds to environment-independent phenotypic
switching, with an identical (constant) switching rate, μ ∈ R

∗+, in either direction (i.e.
from phenotypic state 0 to phenotypic state 1, and vice versa). Cases B1 and B2 each
describe density-dependent phenotypic switching: in Case B1 the rate of switching
from phenotypic state 0 (state 1) to phenotypic state 1 (state 0) increases (decreases)
with the total cell density; in Case B2 these relationships are reversed. Cases C1 and C2
are equivalent to B1 and B2, but where the switching rate now depends on the attractant
concentration. In Cases B and C, the parameter μ ∈ R

∗+ denotes the maximum rate of
switching, while the parameter q ∈ R

∗+ determines the steepness of the step for the
Hill function forms that are used to define μ01 and μ10.

3 Linear Stability Analysis of Positive Uniform Steady States

In this section, we summarise the results of linear stability analysis of the positive
uniform steady states of the PDE system (6), complemented with definition

G(n0, n1, ρ, s) := −μ01(ρ, s) n0 + μ10(ρ, s) n1, (9)
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and subject to boundary conditions (3) and condition (8), which we carried out to
identify conditions under which patterning (i.e. formation of cell aggregates) is pos-
sible. The parameter regimes that lead to aggregations of the cell population in the
minimal model (1) have been identified through performing linear stability analysis
at the homogeneous steady state of the system and this method can also be applied to
investigate patterning in similar chemotactic systems.We explore the conditions under
which diffusion/chemotaxis-driven patterning is possible, that is, that the positive uni-
form steady states of (6) are stable to small spatially homogeneous perturbations but
unstable to small spatially nonhomogeneous perturbations due to the presence of dif-
fusion/chemotaxis (Murray 2001).To distil the essence of the problem, we focus on
the case where the spatial domain is a 1D interval of length L ∈ R

∗+, i.e. � := (0, L)

and x ≡ x . Extension to higher spatial dimensions is straightforward, but adds lit-
tle in terms of insight into the mechanisms that underpin the formation of cellular
aggregates. The full details of the analysis are provided in Appendix C.

When phenotypic switching does not occur (i.e. when μ01 ≡ 0 and μ10 ≡ 0),
positive uniform steady states are of the form

(n

0, n



1, s


) = (n, 1 − n, n), 0 < n = 1

|�|
∫

�

n0(x, 0) dx < 1, (10)

whereas when phenotypic switching occurs (i.e. when assumptions (7) hold) for all the
definitions of the functions μ01 and μ10 given in Table 1, the unique positive uniform
steady state is

(n

0, n



1, s


) = (n, 1 − n, n), n = 0.5. (11)

In the former case, the positive uniform steady states (10) cannot be driven unstable
by small spatially nonhomogeneous perturbations and, therefore, cell aggregates are
not expected to form.

On the other hand, in the latter case, we introduce the definitions

H0 :=
[

∂G

∂n0

]

ss
, H1 :=

[
∂G

∂n1

]

ss
, Hs :=

[
∂G

∂s

]

ss
, (12)

where []ss indicates that the functions inside the square brackets are evaluated at the
steady state (11). Note that, under assumptions (7), we have H1 − H0 > 0. Further-
more, for the positive uniform steady state (11) to be stable with respect to small
spatially homogeneous perturbations, we require that

H1 − H0 − Hs ≥ 0. (13)

Then the conditions for the positive uniform steady state (11) to be driven unstable
by small spatially nonhomogeneous perturbations (i.e. for the formation of cell aggre-
gates to occur) depend on the form of the function H1 and the value of the parameter
χ . In more detail:
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• If μ01 and μ10 are such that H1 < 0 then a sufficient condition for the formation
of cell aggregates to occur is that

χ >
D(H1 − H0 − Hs)

H1(1 − n)
, (14)

then the perturbation modes labelled by the indices m ∈ N such that the following
condition on the domain size is satisfied

L >

√
√
√
√

2Dm2π2

− [(H1 − H0) + D] +
√

[(H1 − H0) − D]2 + 4H1χ(1 − n) + 4HsD

(15)

can grow into aggregation patterns.
• On the other hand, if μ01 and μ10 are such that H1 > 0, the following condition
holds

χ >

[
(H1 − H0 − Hs) + (H1 − H0)

2
]
(D + 1) + (3D + 1)(H1 − H0) + 2D

(−H1)(1 − n)
.

(16)

Note, in this case the conditions on domain size are less easily calculated, and have
therefore been omitted.

Explicit forms of conditions (14)–(16) for the particular choices of the phenotypic
switching functions considered here are summarised in Table 1.

Remark 1 Commenting on the constant switching function case (Case A in Table 1)
for its simplicity, we note that the condition placed on the chemotactic sensitivity is
more stringent than under the minimal formulation of the model (see Sect. 1). This
is logical, given the division into separate chemotacting and secreting phenotypes:
population members actively performing chemotaxis do not reinforce the signal until
transitioning into the secreting phenotype, at which point they are no longer actively
climbing the attractant gradient. Notably, the rate of phenotypic transition does not
impact on the minimal chemotactic sensitivity condition, but it can alter whether
self-aggregation will occur through the domain size condition: slow transitioning
phenotypes will demand larger domains for pattern formation to occur. The above
observations generally hold for the more complicated switching functions, although
greater subtleties can arise.

4 Numerical Simulations

We carry out numerical simulations of the PDE system (6), complemented with defi-
nition (9) and subject to boundary conditions (3) and condition (8). We consider both
one- and two-dimensional spatial domains. The full details of the initial conditions and
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Fig. 2 Comparing the effects of different phenotypic switching functions in 1D. Top row: Each panel
displays the spatial distributions of the cell density n1 over time. Bottom row: Each panel displays the
spatial distributions of the cell densities n0 (black) and n1 (blue) at the end of simulations, i.e. at t = T
with T := 500. Each column displays the results of simulations carried out using the definitions of the
functions μ01 and μ10 given in Table 1, with μ = 1 and q = 1. The values of the parameter χ used to
perform simulations are such that the conditions for pattern formation provided in Table 1 are satisfied, that
is, χ = 10 (Case A), 15 (Case B1), 5 (Case B2), 10 (Case C1), 10 (Case C2). The full details of the initial
conditions and numerical simulation set-up are provided in Appendix D.1 (Color figure online)

the set-up of numerical simulations are provided in Appendix D. We investigate the
various forms for the phenotypic switching functions, μ01 and μ10, listed in Table 1.

4.1 Autoaggregation in 1D

We first consider a one-dimensional setting, i.e. x ≡ x , and study the patterns that
emerge under each choice of the functions μ01 and μ10 defined in Table 1. The corre-
sponding results of numerical simulations are summarised in Fig. 2, where the top row
of panels displays the plot of the cell density n1(x, t), for the same choice of initial
conditions and parameter values, except for the functionsμ01 andμ10 and the chemo-
tactic sensitivity, χ . In the bottom row of panels we display the corresponding cell
densities after a simulation time t = 500, i.e. n0(x, 500) and n1(x, 500). The value
of χ is chosen in each case so as to ensure that the conditions for pattern formation
listed in Table 1 are satisfied.

In all cases we observe the formation of cell density aggregations, where the height
and width of peaks varies with the choice of phenotypic switching functions. These
results support the idea that phenotypic switching naturally curbs the density of aggre-
gates. Generally, the chemotactic phenotype forms a concentrated group at the core of
the aggregate, while the secreting phenotype is more diffusely spread about the centre.

To further investigate the role of model parameters, we consider the constant phe-
notypic switching case (i.e. Case A in Table 1) and perform simulations while varying
one parameter at a time; the results are displayed in Fig. 3. This confirms the results
of linear stability analysis summarised in Sect. 3, in particular the instability condition
and minimum domain length provided in Table 1 for Case A. As expected from the
characteristic wavelength associated with the fastest growing mode, increasing the
domain length L leads to the emergence of a larger number of aggregates, Fig. 3 (top
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Fig. 3 Investigating the role of the model parameters in 1D. Each panel displays the spatial distribution of
the cell density n1 over time. The functions μ01 and μ10 are taken to be those of Case A in Table 1, that
is, μ01 ≡ μ10 ≡ μ. For each panel we have the general parameter setting L = 40, D = 1, μ = 1, and
χ = 10, while the value of one of these parameters is varied in each case as highlighted by the panel titles.
The full details of the initial conditions and numerical simulation set-up are provided in Appendix D.1
(Color figure online)

row). Increasing the random cell movement parameter D both reduces the number of
peaks that form and increases the time taken for patterns to emerge from the uniform
initial distribution of cells, Fig. 3 (second row). Too large a value of D leads to the elim-
ination of pattern formation, since the value of D determines the counter-aggregation
diffusion and thereby influences the minimal condition for χ to have pattern forma-
tion. Although the instability condition on χ is independent of the value of μ, altering
μ does impact on the minimum domain length and, consequently, we observe a loss
of pattern formation when the rate of switching becomes too low, Fig. 3 (third row).
Changing the rate of phenotypic switching also impacts on the timescale of pattern
formation, with slower switching leading to slower evolution towards the aggregated
state. Finally, we investigate the role of χ , where from the linear stability analysis we
expect pattern formation beyond a critical χ . This is again confirmed by the simulation
results, Fig. 3 (bottom row). We note that while the linear stability analysis predicts
the dynamics when close to the uniform steady state, it becomes less relevant when
patterns have formed. Here, numerical simulations indicate dynamics in which nearby
aggregates, consisting of both cell phenotypes, merge leading over time to a reduction
in the number of aggregates. This behaviour is well known within chemotaxis-type
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Fig. 4 Comparing the effects of different step-like phenotypic switching functions in 1D. Top row: Each
panel displays the spatial distribution of the cell density n1 over time. Bottom row: Each panel displays the
spatial distributions of the cell densities n0 (black) and n1 (blue) at three simulation times, i.e. t = 498,
t = 499, and t = 500 or t = 1, t = 3, and t = 500. Each column displays the results of simulations
carried out using the definitions of the functions μ01 and μ10 given in Table 1 (Cases B and C), with μ = 1
and q = 30. The values of the parameter χ used to perform simulations are such that the conditions for
pattern formation provided in Table 1 are satisfied, that is, χ is equal to 15 (Case B1), 5 (Case B2), 75 (Case
C1), 10 (Case C2). The full details of the initial conditions and numerical simulation set-up are provided
in Appendix D.1. The full time evolution of the cell densities for each case are provided in Supplementary
Material video SM1 (Color figure online)

models, for example see (Potapov and Hillen 2005). Overall, the results of Fig. 3
corroborate the conditions for patterning established via linear stability analysis.

4.2 Oscillating Patterns and Extinction Scenarios in 1D

We investigate further the cases of environment-dependent phenotypic switching func-
tions given in Table 1 for step-like changes from a negligible rate of switching to a
maximum rate of switching, as some threshold in total cell density (Cases B) or attrac-
tant concentration (Cases C) is breached. Specifically, we consider the same general
parameter setting as for Fig. 2, but with q increased (from q = 1 to q = 30) to gener-
ate the step-like change and χ chosen to satisfy conditions for instability provided in
Table 1. Results are displayed in Fig. 4.

Introducing step-like switching with respect to the total population density (Cases
B) can profoundly impact on the form and nature of aggregates. For the setting inwhich
high total cell densities trigger a switch from the chemotactic to secreting state (Case
B2), we observe a significant flattening of the peaks: the maximum density within each
aggregate decreases and the peak broadens. This suggests that controlling the balance
of secreting and chemotactic cells according to the total population level can be used
as an effective means of balancing the density of aggregates. In the reverse setting,
where high total densities trigger a switch from the secreting state to the chemotactic
state (Case B1), we find evidence of novel patterning. Specifically, non-stationary pat-
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terning in which complementary aggregates of each individual cell phenotype undergo
(apparently) sustained oscillations in time. Spatio-temporal oscillations often arise in
situations in which the corresponding linear stability analysis indicates the presence
of eigenvalues with both a positive real part and non-zero imaginary components (for
example see Tania et al. 2012). To understand whether this is the case here, we calcu-
late the eigenvalues for this setting. Specifically, we calculate the eigenvalues, i.e. the
roots of (C6), for various values of μ and χ , under Case B1 with other parameters as
listed in Fig. 4. As shown in Fig. 9, as the values of χ and μ are altered we do indeed
observe complex eigenvalues that switch from a negative to positive real part.

Introducing a step-like switching according to the chemoattractant concentration
(Cases C) reveals the possibility of further dynamics. For the setting in which higher
attractant concentrations trigger a switch from secreting to chemotactic (CaseC1), self-
organisation occurs as previously, but again with relatively low aggregate densities and
a secreting phenotype spread almost uniformly through space. Case C2, where a higher
attractant concentration triggers a switch from chemotactic to secreting, demonstrates
the possibility of extinction scenarios: rapid evolution to a population dominated by
the chemotaxis phenotype. Here a feedback loop is formed, in which as the number
of cells with secreting phenotype drops, so does the overall level of attractant and
phenotypic switching is increasingly weighted towards the chemotactic state.

4.3 Emergence of Patterns in 2D

To consider a more biologically relevant situation, we now turn to a two dimen-
sional setting, i.e. x ≡ (x, y). We note that the transition into two spatial dimensions
raises immediate (analytical) questions regarding global existence and blow-up of
solutions: for the corresponding minimal model (A1), blow-up typically occurs in two
dimensions for scenarios in which autoaggregation is predicted (e.g. see the reviews
(Horstmann 2003; Hillen and Painter 2009; Bellomo et al. 2015)). In the 2D setting,
we again investigate the emergence of patterns under each definition of the pheno-
typic switching functions listed in Table 1. Results are displayed in Fig. 5, where in
each column from top to bottom we plot the spatial distributions of n0 and n1 for each
phenotypic switching case at the same time-step (t = 500). Parameters are as in Fig. 2.

As predicted from the linear stability analysis, if parameters are selected to sat-
isfy the instability conditions, we observe pattern formation. Specifically, we see the
emergence of a spot-like pattern of aggregates, although the size and sharpness of
aggregates varies with the form of phenotypic switching. Comparing the distribution
of the densities of cells in the two phenotypic states, we observe that the distribution
of the chemotactic state is generally concentrated in a sharper peak at the core of each
aggregate, with the secreting state more dispersed about the centre.

In comparison to the constant switching form, total cell density dependent and
chemoattractant dependent switching forms lead to reduced densitieswithin cell aggre-
gates, clearest within Case B1. Notably, none of the switching cases that have been
considered here lead to numerical blow-up phenomena, defined as instances in which
the numerical solutions form densities and/or gradients that lead to numerical insta-
bility and simulation failure. This hints that the introduction of switching between
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Fig. 5 Comparing the effects of different phenotypic switching functions in 2D. Top row: Each panel
displays the 2D spatial distribution of the cell density n0 at the time t = T with T := 500. Bottom row:
Each panel displays the 2D spatial distribution of the cell density n1 at the time t = T with T := 500.
Each column displays the results of simulations carried out using the definitions of the functions μ01 and
μ10 given in Table 1, with μ = 1 and q = 1. The values of the parameter χ used to perform simulations
are such that the conditions for pattern formation provided in Table 1 are satisfied, that is, χ is equal to 10
(Case A), 15 (Case B1), 5 (Case B2), 10 (Case C1), 10 (Case C2). The full details of the initial conditions
and numerical simulation set-up are provided in Appendix D.2. The full time evolution corresponding to
each panel is provided in Supplementary Material video SM2 (Color figure online)

chemotactic and secreting phenotypic states may lead to global existence of solutions,
although caution is noted given the numerical nature of the study. We return to this
in the discussion, where we also exploit radial symmetry scenarios to perform more
refined simulations.

We also consider two dimensional equivalents for the results displayed in Fig. 4, i.e.
where step-like phenotypic switching functions were selected. The results are shown
in Fig. 6, where again each column displays the density of the two phenotypes, n1 and
n2, at t = 500. For comparison, we additionally plot the density of n1 at t = 490,
i.e. the density at an earlier time instant. Similar phenomena to those observed in
one dimension are observed. For Case B1 we see a two-dimensional analogue to
the oscillating pattern, with aggregated single cell phenotype structures that undergo
sustained temporal dynamics. For Case B2 we observe the evolution to relatively low-
density cell aggregates, in which the peak density at the core of the aggregate remains
bounded at a relatively low level with respect to the uniform density. In this scenario
there is a notable distribution of the two phenotypes, with the secreting phenotype
centered at the core of an aggregate and encapsulated by a chemotaxing ring at the
periphery. This is distinct from the standard arrangement (chemotactic phenotype
concentrated in a high density peak at the centre) and arises through a transition from
chemotaxis to secretion behaviour as an individual reaches the higher density at the
centre of an aggregate. For Case C1 we see the emergence of low-density aggregates
where, as in the one-dimensional setting, the secreting phenotype is spread almost
uniformly in space while the chemotactic phenotype forms spot-like patterns.

The two sets of simulation results under Case B2 (displayed in Figs. 5 and 6) suggest
that this form of phenotypic switching is particularly effective for controlling the
density and width of cell aggregates: for example, leading to densities only a few
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Fig. 6 Comparing the effects of different step-like phenotypic switching functions in 2D. Top row: Each
panel displays the 2D spatial distribution of the cell density n0 at the time t = T with T := 500. Middle
row: Each panel displays the 2D spatial distribution of the cell density n1 at the time t = T . Bottom
row Each panel displays the 2D spatial distribution of the cell density n1 at a previous time instant, i.e.
t = T − 10 = 490. Each column displays the results of simulations carried out using the definitions of
the functions μ01 and μ10 given in Table 1 (Cases B and C), with μ = 1 and q = 30. The values of the
parameter χ used to perform simulations are such that the conditions for pattern formation provided in
Table 1 are satisfied, that is, χ equal to 15 (Case B1), 5 (Case B2), 75 (Case C1). The full details of the
initial conditions and numerical simulation set-up are provided in Appendix D.2. The full time evolution
corresponding to each panel is provided in Supplementary Material video SM3 (Color figure online)

times larger than the uniform steady state density, as compared to several hundred
times under constant switching forms (Fig. 5). We investigate this further, considering
a range of parameter settings for CaseB2. Results are shown in Fig. 7, where each panel
displays the density n1 obtained under a distinct parameter setting (cf. panel titles).
Note that we have omitted here the figures for the corresponding densities n0, where in
all cases the aggregates consist of cells of both phenotypes. The top row explores the
impact of increasing the chemotactic sensitivity, where we observe a transition from
low-density stripe-like patterns at low χ , to ring-like structures with a peaked centre
for moderate values of χ , and to sharp high-density peaks at higher χ . The transitions
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Fig. 7 Investigating the role of the model parameters in 2D. Each panel displays the 2D spatial distribution
of the cell density n1 at the time t = T with T := 500. The functions μ01 and μ10 are taken to be those
of Case B2 in Table 1. For each panel, the parameter setting investigated is highlighted by the panel titles.
The full details of the initial conditions and numerical simulation set-up are provided in Appendix D.2. The
full time evolution corresponding to each panel is provided in Supplementary Material video SM4 (Color
figure online)

under increasing μ (middle row) or q (bottom row) show this patterning in reverse,
with the transition from high-density spots to lower-density rings and/or stripes as
the parameters are increased. Overall, these results indicate that density-dependent
phenotypic switching functions can lead to a broad spectrum of spatial patterning,
with regimes of spatio-temporal patterning for certain functional forms, or allow for
a spectrum between stripe-like and spot-like patterns.

5 Discussion and Conclusions

Overview of results We have developed a simple model to describe the dynamics of
a phenotypically heterogeneous population of cells that interacts with some chemoat-
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tractant. Intra-population phenotypic heterogeneity is incorporated into the model by
assuming the population to be composed of individuals in two distinct phenotypic
states, with the possibility of switching between these states. Individuals in one phe-
notypic state perform chemotaxis but do not secrete attractant, whilst individuals in
the other phenotypic state secrete attractant but do not display chemotaxis.

Using a combination of linear stability analysis and numerical simulations, we have
shown that pattern formation can occur in the form of cell density aggregates that
contain a mixture of the two phenotypic states. Moreover, when the rate of switching
between these phenotypic states depends on the local environment – the total cell
density or the attractant concentration – a range of dynamical behaviours can be
observed, including oscillations in space and time, pattern structures that range from
stripes to spots, or “phenotype extinction” scenarios in which the cell population
evolves to one in which all members occupy the same phenotypic state.

Discussion of results in the context of chemotactic aggregation Notably, our results
indicate that a level of transitioning between phenotypic states is an essential criterion
for autoaggregation within the system: when switching is negligible, aggregation is
not possible. Certain systems, however, may preclude this transitioning: for exam-
ple, an ecological population featuring a division into male and female members.
In the context of aggregation scenarios, many marine invertebrates employ chemi-
cal aggregation to achieve higher population densities prior to broadcast swarming
(simultaneous release of gametes into the water column). Recent studies in certain sea
cucumbers suggest that only the males release the aggregating pheromones, but that
these attract nearby members of both sexes (Marquet et al. 2018). In this respect, the
modelling here suggests that male to male attraction is essential for aggregation to
occur in this system.

The inherent cost attached to some labour (movement, protein synthesis, etc.) leads
naturally to the question of energy balance, i.e. that individuals must balance their
energy expenditure with the rate at which energy can be generated. Intra-population
phenotypic diversity may then results from a trade-off: individuals in a phenotypic
state that allows them to perform one task at a high level have less energy for other
tasks (Keegstra et al. 2022). The trade-off considered here is between performing
chemotaxis and both producing and secreting an attractant. In particular, we have
shown that a division of labour between the time spent in the phenotypic state enabling
individuals to perform chemotaxis and the time spent in the phenotypic state enabling
individuals to produce and secrete the attractant can still lead to successful aggregation
of the population, provided there is a non-negligible degree of transition between these
phenotypic states. Here, we have concentrated on energy trade-offs related to the
chemoattractant secretion and chemotactic movement of cells. However, we should
note that the approach taken here has been phenomenological in spirit and a plausible
future extension would be to explicitly account for energetics. One way to do this
would be to initially formulate a model at the discrete level, for example through a
randomwalk for an individual cell, but in which its movement and secretion behaviour
depend on an internal variable that represents its energy reserve. Accounting for a
dependency on the state of an internal variable has a rich history in the modelling of
chemotaxis behaviour (e.g. Erban and Othmer 2004) and, using similar methods that
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we have employed before (Bubba et al. 2020; Macfarlane et al. 2020; Chaplain et al.
2020; Macfarlane et al. 2022), we could then derive the continuum limit as a PDE
model that can further be analysed. We considered here the trade-off to be between
cell motility and chemoattractant secretion, however, other trade-offs could exist in
the population such as proliferation-migrations trade-offs. Such trade-offs have been
observed in cancer growth, that is the “go-or-grow” hypothesis, and have been studied
extensively both experimentally and theoretically (Corcoran and Del Maestro 2003;
Gallaher et al. 2019; Giese et al. 1996; Hatzikirou et al. 2012; Hoek et al. 2008; Pham
et al. 2012; Stepien et al. 2018; Vittadello et al. 2020; Zhigun et al. 2018; Stinner
et al. 2016; Dhruv et al. 2013; Giese et al. 2003; Wang et al. 2012; Xie et al. 2014). In
fact, mathematical models of the form developed in this manuscript can also be used
to study these proliferation-migration trade-offs (Macfarlane et al. 2022; Lorenzi and
Painter 2022). In this work, we considered that cells in the phenotypic state p = 0
would still undergo a degree of random motion, however, an alternative model would
be to consider a phenotypic transition into a sessile population (i.e. with neither random
or directed movement terms). An investigation into the effects that this would have on
the solutions to the system would be of interest.

Acquiring an aggregated state can be essential for many populations, whether as
a prelude to tissue morphogenesis during embryonic development or as a key stage
within the life-cycle of some unicellular or multicellular organisms. Yet aggregating
can also be risky: within an ecological context, as an example, reaching a high density
state could lead to the depletion of local resources and starvation. Consequently, while
a mechanism for aggregating may be crucial, it may be similarly important to have
some counter-aggregation mechanism in place, preventing the population from over-
accumulating at a location. An upper bound to the density of individuals can certainly
arise from considerations of “volume-filling” (i.e. individuals being unable to occupy
the same space) (Hillen and Painter 2009), but for many aggregates the density lies
far below such extreme conditions, see, for instance, Mittal et al. (2003). Our results
support the idea that allowing individuals in the population to transition between
chemotactic and secreting phenotypes according to the local environment provides an
effectivemeans of controlling the density of aggregates. The greatest controlwas found
in the case of responses to total density, specifically whereby individuals transition
from performing chemotaxis to performing secretion as the local density surpasses
some threshold. Under this scenario, low density aggregates are readily achieved, as
well as the capacity to arrange into a diversity of two-dimensional structures from
spots to labyrinthine stripes.

Discussion of results in the context of PDE models for chemotaxis PDE models for
chemotaxis that comprise two or more populations have been extensively explored by
numerous authors, from both applied and theoretical perspectives. Avoiding a detailed
discussion, we restrict to highlighting a few particularly relevant examples. From an
applied perspective, the study presented in Tania et al. (2012) features two populations
of forager and scrounger type, where foragers follow (and consume) a nutrient, and
scroungers follow the foragers. “Behavioural switching” analogous to the population
transition terms considered here were employed to describe shifting between these
two behaviour types and, despite the absence of an autocrine relationship between
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Fig. 8 Investigating the possibility of having no numerical blow-up in the radially symmetric case. Top
row: Each panel displays the 2D radial distance of the cell density n1 at four increasing time instants, as
described by the legend. Bottom row: Each panel displays the 2D radial distance of the cell density n0
at four increasing time instants, as described by the legend. In each case, phenotypic switching is of the
form of Case A given in Table 1, and each column displays the simulation results obtained for different
value of μ ∈ R

∗+. The full details of the initial conditions and numerical simulation set-up are provided in
Appendix D.3 (Color figure online)

the foragers and the attractant, spatio-temporal oscillations were observed. Two pop-
ulation systems have also been considered in the context of “autocrine-paracrine”
relationships, where two populations can produce and respond to their own attrac-
tant (autocrine), but also respond to the attractant produced by the other population
(paracrine): see (Painter 2009) in the context of differential-chemotaxis induced sort-
ing, or Knútsdóttir et al. (2014) in the context of tumour-macrophage signalling.

From a more theoretical perspective, the model (2) sits closely to the general
“p-populations, q-chemicals” models that were described in Wolansky (2002): the
addition in the model here lies in the possibility to switch between populations. A
substantial literature has emerged on the analytical properties, particularly regarding
blow-up of solutions, for example see (Espejo et al. 2012; Tello and Winkler 2012;
Kurganov and Lukáčová-Medvidová 2014; Fu et al. 2016; Wang et al. 2017). These
studies raise the question of blow-up in this system, and we briefly comment on the
numerically-obtained insights from the present study. For the minimal model (1),
blow-up is dimensionally-dependent: in one space dimension, solutions exist glob-
ally, but in two or more dimensions finite-time blow-up can occur (e.g. see the reviews
in Horstmann 2003; Hillen and Painter 2009; Bellomo et al. 2015). The studies con-
ducted here, however, suggest that switching between secreting and chemotactic states
curbs the rate at which aggregates accumulate, leading to the question as to whether
the model permits global existence. To explore this in further depth, we exploit the
convenience of a radially symmetric (two dimensions) setting, thereby reducing to
an effectively one-dimensional structure for numerical simulations, which permits
computation for a highly refined spatial discretisation (see Appendix D.3 for details).
Concentrating on the case of constant rate of phenotypic switching (i.e. Case A given
in Table 1 whereby μ01 ≡ μ10 ≡ μ with μ ∈ R

∗+), we track the cell densities over
time, computing until there is negligible change to the solution profile or, if relevant,
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numerical blow-up occurs. The results are displayed in Fig. 8, under a range of values
of μ. In all cases solutions are found to evolve to smooth profiles and no numerical
blow-up was observed. Increasing μ generates a sharper profile, however the maxi-
mum density remains bounded. A similar boundedness to the computed solutions was
found to occur in a spherically symmetric (three dimensional) setting (data not shown).
While exercising caution given the numerical nature of this study, these results suggest
that the model studied here may admit globally existing non-uniform solutions.

Possible generalisations of the model The mathematical model defined by the PDE
system (2) subject to the boundary conditions (3) relies on the assumption that the
cell phenotypic state is binary. Hence, as a first generalisation of this model, we could
consider the case in which the population is subdivided into a discrete spectrum of
P + 1 phenotypes, labelled by the index p ∈ P := {0, . . . , P}, which vary according
to both their chemotactic ability and their rate of attractant production. The generalised
model would then comprise the following PDE system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂n p

∂t
= ∇ · (Dn∇n p − χpn p∇s

) +
∑

q∈P,q 
=p

(
γqp(ρ, s)nq − γpq (ρ, s)n p

)
,

ρ(x, t) :=
∑

p∈P
n p(x, t),

∂s

∂t
= Ds∇2s +

∑

p∈P
αpn p − η s,

x ∈ �,

(17)

subject to the following zero-flux boundary conditions

u · ∇n p = 0, u · ∇s = 0, x ∈ ∂�, p = 0, . . . ,P.

In analogy with the case of model (2), the function γqp(ρ, s), with γqp : R2+ → R+,
models the rate at which cells switch from phenotype p to phenotype q 
= p.

As a further generalisation, in the vein of Macfarlane et al. (2022), Lorenzi and
Painter (2022), Lorenzi et al. (2021), we could also consider the case where the cell
phenotypic state varies along a continuum and is thus described by a continuous
variable θ ∈ R. In this case, the dynamics of the density of cells in the phenotypic
state θ at time t ≥ 0, n ≡ n(θ, x, t), and the local concentration of the chemoattractant
would be governed by the following system of partial integro-differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂n

∂t
= ∇x · (Dn∇xn − χ(y)n∇xs)

+
∫

R

γ (θ, θ ′, ρ, s) n(θ ′, x, t) dθ ′ − n
∫

R

γ (θ ′, θ, ρ, s) dθ ′,

ρ ≡ ρ(x, t) :=
∫

R

n(θ, x, t) dθ,

∂s

∂t
= Ds∇2

x s +
∫

R

α(θ) n(θ, x, t) dθ − η s,

x ∈ �, (18)
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subject to the following zero-flux boundary conditions

u · ∇xn = 0, u · ∇xs = 0, x ∈ ∂�.

Here, the functions χ : R → R
∗+ and α : R → R

∗+ model, respectively, the chemo-
tactic sensitivity and the rate of attractant production of cells in the phenotypic state
θ . Moreover, the function γ (θ, θ ′, ρ, s), with γ : R2 × R

2+ → R+, models the rate
of switching from the phenotypic state θ ′ to the phenotypic state θ .

Analysis and numerical simulation of the generalised models (17) and (18), which
are expected to pose a series of analytical and numerical challenges that make these
models interestingmathematical objects per se, will allow for further investigation into
how phenotypic heterogeneity shapes the emergence of chemotactic self-organisation
in different biological contexts.
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Appendix A: TheMinimal Model

In dimensional form, the minimal model is given by

⎧
⎪⎨

⎪⎩

∂n

∂t
= ∇ · (Dn∇n − χn∇s) ,

∂s

∂t
= Ds∇2s + αn − ηs,

x ∈ �. (A1)

The real, non-negative functions n ≡ n(x, t) and s ≡ s(x, t) represent, respectively,
the density of cells and the concentration of chemoattractant at time t ∈ R+ and at
position x ∈ �. The set� is an open and bounded subset ofRd with smooth boundary
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∂� and d ≥ 1 depending on the biological problem under study. The parameters
Dn ∈ R

∗+ and Ds ∈ R
∗+ denote the cell and chemoattractant diffusion coefficients,

respectively. The parameter α ∈ R
∗+ denotes the chemoattractant production rate per

cell, while η ∈ R
∗+ is the decay rate. The chemotactic sensitivity coefficient, χ , is

positive for an attractant response, i.e. χ ∈ R
∗+. Under lossless boundary conditions

(for example, zero flux) it is straightforward to observe that the positive uniform steady
state to (A1) is given by (n, αn/η), where n ∈ R

∗+ represents themean initial dispersed
density of cells, that is,

n := 1

|�|
∫

�

n(x, 0) dx.

A nondimensionalisation according to

x̂ :=
√

η

Ds
x, t̂ := ηt, n̂ := n

n
, ŝ := η

αn
s, D := Dn

Ds
, χ̂ = χαn

ηDs
,

leads (after dropping the hats) to the system (1), with the positive uniform steady state
rescaled to (1, 1).

Appendix B: Nondimensionalisation of the PDE System (2)

Without loss of generality, focussing on the case of a 1D spatial domain (i.e. x ≡ x),
we introduce the following dimensionless variables

x̂ := x

X
, t̂ := t

T
, ŝ := s

S
, n̂0 := n0

N
, n̂1 := n1

N
, ρ̂ := ρ

N

along with the following dimensionless forms of the phenotypic switching functions

γ̂1 ≡ γ̂1(ρ̂, ŝ) := γ1(ρ, s)


1
, γ̂2 ≡ γ̂2(ρ̂, ŝ) := γ2(ρ, s)


2
,

where X , T , S, N , 
1, and 
2 are scale factors. Substituting these into the PDE
system (2) posed on a a 1D spatial domain yields

N

T

∂ n̂0
∂ t̂

= Dn
N

X2

∂2n̂0
∂ x̂2

− N 
1γ̂1n̂0 + N 
2γ̂2n̂1

N

T

∂ n̂1
∂ t̂

= Dn
N

X2

∂2n̂1
∂ x̂2

− χ1NS

X2

∂

∂ x̂

(

n̂1
∂ ŝ

∂ x̂

)

+ N 
1γ̂1n̂0 − N 
2γ̂2n̂1

S

T

∂ ŝ

∂ t̂
= Ds

S

X2

∂2ŝ

∂ x̂2
+ α0Nn̂0 − ηSŝ.
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Next, isolating the time-derivatives, we find

∂ n̂0
∂ t̂

= Dn
T

X2

∂2n̂0
∂ x̂2

− 
1T γ̂1n̂0 + 
2T γ̂2n̂1

∂ n̂1
∂ t̂

= Dn
T

X2

∂2n̂1
∂ x̂2

− χ1ST

X2

∂

∂ x̂

(

n̂1
∂ ŝ

∂ x̂

)

+ 
1T γ̂1n̂0 − 
2T γ̂2n̂1

∂ ŝ

∂ t̂
= Ds

T

X2

∂2s̄

∂ x̂2
+ α0NT

S
n̂0 − ηT ŝ.

Then, we choose

T := 1

η
, X :=

√
Ds

η
, S := α0N

η
,

in order to remove the coefficients in the chemoattractant equation. In so doing, we
obtain

∂ n̂0
∂ t̂

= Dn

Ds

∂2n̂0
∂ x̂2

− 
1

η
γ̂1n̂0 + 
2

η
γ̂2n̂1

∂ n̂1
∂ t̂

= Dn

Ds

∂2n̂1
∂ x̂2

− χ1α0N

ηDs

∂

∂ x̂

(

n̂1
∂ ŝ

∂ x̂

)

+ 
1

η
γ̂1n̂0 − 
2

η
γ̂2n̂1

∂ ŝ

∂ t̂
= ∂2ŝ

∂ x̂2
+ n̂0 − ŝ.

Finally, introducing the dimensionless parameters and functions

D := Dn

Ds
, χ := χ1α0N

ηDs
, μ01 := 
1

η
γ̂1, μ10 := 
2

η
γ̂2

and then removing the hats we obtain the dimensionless PDE system (6) with rescaled
phenotypic switching terms defined via (9) as provided in the main text. Note that in
the above we have not yet needed to specify the scaling of the cell densities, i.e. set the
choice of N . Here we can take advantage of the conservation of the total cell number
(cf. conservation relation (4)), choosing N = σ with σ defined via relation (5), such
that, in the framework of the dimensionless PDE system (6), we have condition (8).

Appendix C: Positive Uniform Steady States of the PDE System (6) and
Linear Stability Analysis

We perform linear stability analysis of the positive uniform steady states of the PDE
system (6) complemented with definition (9) and subject to boundary conditions (3)
and condition (8).
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C.1 Positive Uniform Steady States

When phenotypic switching does not occur (i.e. if μ01 ≡ 0 and μ10 ≡ 0), the positive
uniform steady states (n


0, n


1, s


) of the PDE system (6) complemented with defini-
tion (9) and subject to the zero-flux boundary conditions (3) and condition (8) are of
the form

(n

0, n



1, s


) = (n, 1 − n, n), 0 < n = 1

|�|
∫

�

n0(x, 0) dx < 1. (C2)

On the other hand, when there is phenotypic switching (i.e. when assumptions (7)
hold), the positive uniform steady states (n


0, n


1, s


) of the PDE system (6) comple-
mented with definition (9) and subject to the zero-flux boundary conditions (3) and
condition (8) are of the form

n

0 = n, n


1 = 1 − n

0, s
 = n


0,

where n ∈ R
∗+ is given by the following algebraic equation

n = μ10(1, n)

μ01(1, n) + μ10(1, n)
.

For all the definitions of μ01 and μ10 given in Table 1, this algebraic equation admits
a unique solution, that is, n = 0.5. Hence, there is a unique positive uniform steady
state

(n

0, n



1, s


) = (n, 1 − n, n), n = 0.5. (C3)

C.2 Linear Stability Analysis of Positive Uniform Steady States

In order to study the linear stability of the positive uniform steady states to small
perturbations, we focus on the 1D case where the spatial domain is a 1D interval of
length L ∈ R

∗+, i.e. � := (0, L). We make the ansatz

n0(x, t) = n + ñ0 exp (λt) ϕk(x),

n1(x, t) = (1 − n) + ñ1 exp (λt) ϕk(x),

s(x, t) = n + s̃ exp (λt) ϕk(x),

where ñ0, ñ1, s̃ ∈ R∗ with |ñ0| � 1, |ñ1| � 1 and |s̃| � 1, λ ∈ C and {ϕk}k≥1 are
the eigenfunctions of the Laplace operator, acting on functions defined on (0, L) and
subject to zero Neumann boundary conditions, indexed by the wavenumber k, i.e.

k = mπ

L
, m ∈ N. (C4)
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Linearising the PDE system (6) posed on (0, L) about a positive uniform steady
state (n, 1 − n, n) and using the above ansatz yields the following matrix equation

⎡

⎣
λ + k2D − H0 −H1 −Hs

H0 λ + k2D + H1 −χ(1 − n)k2 + Hs

−1 0 λ + k2 + 1

⎤

⎦

⎡

⎣
ñ0
ñ1
s̃

⎤

⎦ = 0. (C5)

For the above matrix equation to admit a solution (ñ0, ñ1, s̃) ∈ R
3∗, we need

λ3 + A(k2)λ2 + B(k2)λ + C(k2) = 0, (C6)

where

A(k2) := (2D + 1) k2 + (H1 − H0 + 1) , (C7)

B(k2) := D (D + 2) k4 + [(H1 − H0 + 2)D + (H1 − H0)] k
2+

+ (H1 − H0 − Hs) , (C8)

C(k2) := D2k6 +
[
D(H1 − H0) + D2

]
k4+

+ [D(H1 − H0 − Hs) − H1χ(1 − n)] k2. (C9)

Here,

H0 :=
[

∂G

∂n0

]

ss
H1 :=

[
∂G

∂n1

]

ss
and Hs :=

[
∂G

∂s

]

ss
, (C10)

where G ≡ G(n0, n1, ρ, s) is defined via (9), that is,

G(n0, n1, ρ, s) := −μ01(ρ, s) n0 + μ10(ρ, s) n1,

and []ss indicates that the functions inside the square brackets are evaluated at the
positive uniform steady state.

C.2.1 Stability w.r.t Spatially Homogeneous Perturbations

We see that when small spatially homogeneous perturbations are considered (i.e. when
k2 = 0) we have that the characteristic equation becomes

λ3 + A(0)λ2 + B(0)λ + C(0) = 0,

where,

A(0) = (H1 − H0 + 1) , B(0) = (H1 − H0 − Hs) and C(0) = 0.
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For a cubic polynomial of the form λ3 + aλ2 + bλ + c, the Routh-Hurwitz criterion
ensures that Re(λ) < 0 if and only if a > 0, b > 0, c > 0, and ab − c > 0. We begin
by noting that, since ρ := n0 + n1,

∂G

∂n0
= −∂μ01

∂ρ
n0 − μ01 + ∂μ10

∂ρ
n1,

∂G

∂n1
= −∂μ01

∂ρ
n0 + μ10 + ∂μ10

∂ρ
n1.

Hence,

H1 − H0 =
[

∂G

∂n1

]

ss
−
[

∂G

∂n0

]

ss
= [μ01 + μ10]ss > 0. (C11)

Therefore A(0) > 0 and for a positive uniform steady state (n, 1 − n, n) to be stable
with respect to small spatially homogeneous perturbations we require B(0) > 0, that
is,

(H1 − H0 − Hs) ≥ 0. (C12)

C.2.2 Stability w.r.t Spatially Nonhomogeneous Perturbations

A positive uniform state (n, 1−n, n)will be driven unstable by small spatially nonho-
mogeneous perturbations (i.e. spatial patterns will emerge) if there exists at least one
k2 ∈ R

∗+ for which Re(λ) > 0. For a cubic polynomial of the form λ3 +aλ2 +bλ+ c,
the Routh-Hurwitz criterion ensures that Re(λ) < 0 if and only if a > 0, b > 0,
c > 0, and ab − c > 0. Therefore, for patterns to emerge we need at least one of the
following conditions

A(k2) > 0, B(k2) > 0, C(k2) > 0, A(k2)B(k2) − C(k2) > 0 (C13)

not to be satisfied for some k2 ∈ R
∗+.

Remark 2 From definitions (C7) and (C8), we have that

A(k2)B(k2)

= [D (D + 2) (2D + 1)] k6

+
[
(2D + 1) ((H1 − H0 + 2)D + (H1 − H0)) + (H1 − H0 + 1)

(
D2 + 2D

)]
k4

+ [(H1 − H0 − Hs) (2D + 1) + (H1 − H0 + 1) ((H1 − H0 + 2)D + (H1 − H0))] k
2

+ [H1 − H0 + 1] [H1 − H0 − Hs ] .

Using this along with definition (C9), we calculate A(k2)B(k2) − C(k2). A little
algebra yields

A(k2)B(k2) − C(k2) =
[
2D (D + 1)2

]
k6

+ [(3D + 1)(H1 − H0)(D + 1) + 2D(2D + 1)] k4
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+
{[

(H1 − H0 − Hs) + (H1 − H0)
2
]
(D + 1)

}
k2

+ [(3D + 1)(H1 − H0) + 2D + H1χ(1 − n)] k2

+ (H1 − H0 + 1) (H1 − H0 − Hs) . (C14)

C.2.3 Case Without Phenotypic Switching

When phenotypic switching does not occur (i.e. if μ01 ≡ 0 and μ10 ≡ 0) then

G(n0, n1, ρ, s) ≡ 0 
⇒ H0 = H1 = Hs = 0.

Under definitions (C7)-(C9), this implies that

A(k2) := (2D + 1) k2 + 1, B(k2) := D (D + 2) k4 + 2Dk2,

C(k2) := D2k6 + D2k4,

and expression (C14) implies that

A(k2)B(k2) − C(k2) = 2Dk2
[
(D + 1)2k4 + 2(D + 1)k2 + 1

]
.

Hence, conditions (C13) will be satisfied for all k2 ∈ R
∗+ and, therefore, we do not

expect spatial patterns to emerge.

C.2.4 Case with Phenotypic Switching

Wenow turn to the case where phenotypic switching occurs (i.e. when assumptions (7)
hold).

Under assumptions (7) and using (C11), definition (C7) gives

A(k2) = (2D + 1) k2 + [μ01 + μ10]ss + 1 > 0 ∀k2 ∈ R
∗+,

that is, A(k2) will satisfy condition (C13) for all k2 ∈ R
∗+. As a result, for pattern

formation to occur we need one of the remaining conditions (C13) to be violated.
Since calculations are rather tedious, here we will be limiting ourselves to deriving
some conditions on the functions μ01 and μ10 and the parameter χ that are required
to have A(k2)B(k2) − C(k2) < 0 for some k2 ∈ R

∗+ or required to have C(k2) < 0
for a certain range of values of k2. Recall that for the positive uniform steady states to
be stable with respect to homogeneous perturbations we require that condition (C12)
holds. Hence, we require the functions μ01 and μ10 to be such that condition (C12) is
satisfied. Since H1 − H0 > 0 (cf. relation (C11)), under assumption (C12) we have
that:

• Due to expression (C14), to have A(k2)B(k2)−C(k2) < 0 for some k2 ∈ R
∗+, it is

necessary that the functions μ01 and μ10 are such that H1 < 0 and the parameter
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Table 2 Values of H0, H1 and Hs defined via (C10), alongwith the values of the notable quantities H1−H0
and H1 − H0 − Hs , for the phenotypic switching functions given in Table 1. Here, n = 0.5

Case H0 H1 Hs H1 − H0 H1 − H0 − Hs

A −μ μ 0 2μ 2μ

B1
−μ(2+q)

4
μ(2−q)

4 0 μ μ

B2
μ(q−2)

4
μ(2+q)

4 0 μ μ

C1 −μ
2

μ
2 −μq

4n μ μ + μq
4n

C2 −μ
2

μ
2

μq
4n μ μ − μq

4n

χ must satisfy the following condition

χ >

[
(H1 − H0 − Hs) + (H1 − H0)

2
]
(D + 1) + (3D + 1)(H1 − H0) + 2D

(−H1)(1 − n)
;

(C15)

• Due to definition (C9), if the functions μ01 and μ10 are such that H1 > 0 and the
parameter χ satisfies the following condition

χ >
D(H1 − H0 − Hs)

H1(1 − n)
, (C16)

then the condition C(k2) < 0 is satisfied for k2 ∈ R
∗+ within the following range

of unstable modes

0 < k2 <
− [(H1 − H0) + D] +

√

[(H1 − H0) − D]2 + 4H1χ(1 − n) + 4HsD

2D
.

(C17)

Moreover, substituting (C4) into (C17) we find that, when assumptions (C12), H1 > 0
and (C16) hold, the unstable modes are those that are labelled by the wave numbers
m ∈ N such that the following condition on the domain size is satisfied

L >

√
√
√
√

2Dm2π2

− [(H1 − H0) + D] +
√

[(H1 − H0) − D]2 + 4H1χ(1 − n) + 4HsD
.

(C18)

The values of H0, H1 and Hs , along with the values of the notable quantities
H1−H0 and H1−H0 −Hs , for the phenotypic switching functions defined in Table 1
are provided in Table 2.

123



The Impact of Phenotypic Heterogeneity... Page 29 of 35   143 

Appendix D: Numerical Simulation Set-Up

In this section, we describe the methods and the parameter settings that we used to
carry out numerical simulations of themodel. All numerical simulations are performed
inMatlab.

D.1 Set-Up of 1D Simulations

To obtain the results displayed in Figs. 2, 3 and 4, we solved numerically the PDE
system (6) with x ≡ x ∈ (0, L), complemented with definition (9), and subject to
boundary conditions (3) and condition (8). Unless stated otherwise in the article, we
set L = 40. Numerical simulations were carried out using the Matlab function
pdepe. A uniform discretisation of the spatial domain with step �x = 0.1 was used.
Note that pdepe uses an adaptive time-step to obtain a solution. As an initial condition,
we chose the following perturbed version of the uniform steady state (C3)

n0(x, 0) = n, n1(x, 0) = 1 − n, s(x, 0) = n + 0.01 exp

[

−A

(

x − L

2

)2
]

,

(D19)

where n = 0.5 and A = 1×104.We note that, under the initial data defined via (D19),
condition (8) is satisfied. Unless stated otherwise in the article, we set D = 1. All the
other parameter values are given in the captions of Figs. 2, 3 and 4.

D.2 Set-Up of 2D Simulations

To obtain the results displayed in Figs. 5, 6 and 7, we solved numerically the PDE
system (6) with x ≡ (x, y) ∈ (0, L) × (0, L), complemented with definition (9), and
subject to boundary conditions (3) and condition (8). Unless stated otherwise in the
article, we set L = 40. Numerical simulations were carried out using the finite volume
scheme described in Appendix E. A uniform discretisation of the spatial domain with
steps�x = �y = 0.5was used alongwith a uniform discretisation of the time domain
with step τ = 1 × 10−3.

As an initial condition, we chose the following perturbed version of the uniform
steady state (C3)

n0(x, y, 0) = n, n1(x, y, 0) = 1 − n, s(x, y, 0) = n + 0.01R(x, y), (D20)

where n = 0.5 and the values attained by the function R are random numbers in [0, 1].
We note that, under the initial data defined via (D20), condition (8) is satisfied. Unless
stated otherwise in the article, we set D = 1. All the other parameter values are given
in the captions of Figs. 5, 6 and 7.
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D.3 Set-Up of 2D Radially-Symmetric Simulations

Toobtain the results displayed inFig. 8,we solved numerically a 2D radially symmetric
version of the PDE system (6) with radial coordinate r ∈ (0, 10) and t ∈ (0, 10000],
complementedwith definition (9) and subject to boundary conditions (3). Unless stated
otherwise in the article, we set L = 10. Numerical simulations were carried out using
the Matlab function pdepe, with uniform discretisation of the spatial domain with
step�r = 5×10−3. As an initial condition, we chose the following perturbed version
of the uniform steady state (C3)

n0(0, r) = n, n1(0, r) = 1 − n, s(0, r) = n + 0.01 e−r2 , (D21)

where n = 0.5. We note that, under the initial data defined via (D21), condition (8) is
satisfied. We set D = 1 and χ = 8, and choose to investigate different values of μ as
specified in the titles of the panels of Fig. 8.

Appendix E: Numerical Scheme Employed in 2D Simulations

The method for constructing 2D numerical solutions of the system (6) complemented
with definition (9), and subject to boundary conditions (3) and condition (8) is based
on a modified version of the finite volume scheme employed in Bubba et al. (2020).
The discretised dependent variables are

uki, j := n0(xi , y j , tk), vki, j := n1(xi , y j , tk), and wk
i, j := s(xi , y j , tk).

First, we solve numerically the equation for the chemoattractant concentration, w,
using the following scheme

wk+1
i, j − wk

i, j

τ
= wk

i+1, j − 2wk
i, j + wk

i−1, j

(�x )
2 + wk

i, j+1 − 2wk
i, j + wk

i, j−1
(
�y

)2

+ uki, j − wk
i, j , i, j = 1, . . . ,N ,

and impose zero-flux boundary conditions by letting

wk+1
0, j = wk+1

1, j , wk+1
N+1, j = wk+1

N , j , j = 1, . . . ,N ,

wk+1
i,0 = wk+1

i,1 , wk+1
i,N+1 = wk+1

i,N , i = 1, . . . ,N .

Similarly, we solve numerically the equation for the density of cells in the non-
chemotactic phenotypic state 0, u, using the following scheme
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uk+1
i, j − uki, j

τ
= D

uki+1, j − 2uki, j + uki−1, j

(�x )
2 + D

uki, j+1 − 2uki, j + uki, j−1
(
�y

)2

− μ01(u
k
i, j , v

k
i, j , w

k
i, j )u

k
i, j + μ10(u

k
i, j , v

k
i, j , w

k
i, j )v

k
i, j , i, j = 1, . . . ,N ,

and impose zero-flux boundary conditions by letting

uk+1
0, j = uk+1

1, j , uk+1
N+1, j = uk+1

N , j , j = 1, . . . ,N ,

uk+1
i,0 = uk+1

i,1 , uk+1
i,N+1 = uk+1

i,N , i = 1, . . . ,N .

Then, we solve numerically the equation for the density of cells in the chemotactic
phenotypic state 1, v, using the following scheme

vk+1
i, j − vki, j

τ
=

Fk
i+ 1

2 , j
− Fk

i− 1
2 , j

�x
+

Fk
i, j+ 1

2
− Fk

i, j− 1
2

�y

+ μ01(u
k
i, j , v

k
i, j , w

k
i, j )u

k
i, j − μ10(u

k
i, j , v

k
i, j , w

k
i, j )v

k
i, j ,

i, j = 1, . . . ,N ,

where

Fk
i+ 1

2 , j
= D

vki+1, j − vki, j

�x
− bk,+

i+ 1
2 , j

vki, j + bk,−
i+ 1

2 , j
vki+1, j ,

i = 1, . . . ,N − 1, j = 1, . . . ,N ,

Fk
i, j+ 1

2
= D

vki, j+1 − vki, j

�y
− bk,+

i, j+ 1
2
vki, j + bk,−

i, j+ 1
2
vki, j+1,

i = 1, . . . ,N , j = 1, . . . ,N − 1,

with

bk
i+ 1

2 , j
= χ

wk
i+1, j − wk

i, j

�x
, bk,+

i+ 1
2 , j

= max

(

0, bk
i+ 1

2 , j

)

,

bk,−
i+ 1

2 , j
= max

(

0,−bk
i+ 1

2 , j

)

,

and

bk
i, j+ 1

2
= χ

wn
i, j+1 − wn

i, j

�y
, bk,+

i, j+ 1
2

= max

(

0, bk
i, j+ 1

2

)

,

bk,−
i, j+ 1

2
= max

(

0,−bk
i, j+ 1

2

)

.
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The discrete fluxes Fk
i− 1

2 , j
for i = 2, . . . ,N , j = 1, . . . ,N and Fk

i, j− 1
2
for i =

1, . . . ,N , j = 2, . . . ,N are defined in analogous ways, and we impose zero-flux
boundary conditions by using the definitions

Fk
1− 1

2 , j
:= 0, Fk

N+ 1
2 , j

:= 0, j = 1, . . . ,N ,

Fk
i,1− 1

2
:= 0, Fk

i,N+ 1
2

:= 0, i = 1, . . . ,N .

Notice that we employ a fully explicit scheme to avoid Newton sub-iterations that
could be computationally expensive. Computational times of simulations could be
reduced by using more efficient numerical schemes, such as implicit-explicit schemes
whereby diffusion terms are discretised implicitly but all other terms are discretised
explicitly (Hundsdorfer et al. 2003).

Appendix F: Further Figures for the Cases Where We Observe Non-
Stationary Spatial Patterns

See (Fig. 9)

Fig. 9 Investigating the eigenvalues for cases where we observe non-stationary spatial patterns. Here, the
phenotypic switching functions are defined as Case B1 given in Table 1 and the parameter setting is L = 40,
n = 0.5, D = 1, q = 30. We compare the eigenvalues, i.e. the roots of (C6), for values of χ ∈ [1, 20] and
μ ∈ [0.01, 10]. Top row: We display the maximum value across all perturbation modes m of the real part
of each eigenvalue. Bottom row: We display the maximum absolute value across all perturbation modes m
of the imaginary part of each eigenvalue (Color figure online)
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