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Abstract—We propose a Convolutional Neural Network (CNN)
to learn the mapping between the 2D power profiles, (distance
and frequency), and the Raman pumps. Using the CNN, the
pump powers and wavelengths for arbitrary 2D profiles can be
determined with high accuracy.

I. INTRODUCTION

Recently, Raman amplifiers have been extensively re-
searched for optical wideband communication scenarios due to
their high flexibility for gain and power profile design, and for
their low noise figure because of the distributed amplification
[1], [2].

The main research focus for Raman amplifiers has been
on optimizing the pumping configuration to achieve a desired
gain spectrum at the amplifier output. This is a complex opti-
mization problem and requires solving a system of nonlinear
differential equations. Several methods based on either genetic
algorithms [3] or neural networks (NNs) [4]–[6] have aimed
at solving the inverse mapping between the desired spectral
gain profile and the pump parameters.

However, Raman amplifiers, in addition to enabling spectral
shaping of the signal gain by controlling the pump parameters,
also allow to control the signal power evolution along the
fiber. Controlling the power evolution jointly in frequency
(spectral) and distance (spatial) domain can be beneficial in
terms of noise reduction and thus yield improved transmission
performance. For instance, approaching a lossless transmission
has been a clear goal for optical communication systems
but that presents itself as a challenging task. A lossless
transmission not only minimizes the amplified spontaneous
emission (ASE) noise level [7], [8], it would also help several
of the Kerr nonlinearity mitigation techniques currently being
investigated. The nonlinear Fourier transform theory ideally
enables nonlinear distortion free transmission, however only
under the strong assumption of a lossless transmission [9],
[10]. Furthermore, nonlinearity mitigation using mid-link op-
tical phase conjugation which requires a symmetric power
distribution is not possible without having a precise control
over the power evolution along the span [11]. A significant
effort has been already devoted to numerical or experimental
demonstrations of a uniform [13] or symmetric [12] signal
power evolution along the distance. Impressive results have
been reported, with power variations below 3 dB/100 km [7],
by combining second-order Raman pumping with grating
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Fig. 1. Diagram of the proposed CNN-based model.

mirrors creating a ultra-long fiber cavity for the first-order
Raman pump. However, the complexity of the problem, and
the challenge in terms of grating mirrors allowed considering
only a few pump wavelengths, limiting the frequency band
over which quasi-lossless transmission could be demonstrated.

In this paper, we focus on standard distributed amplifiers,
relying on simpler first and second-order pumping but without
additional components (grating) and we review our recent
contribution for inverse designing Raman power evolution
jointly in frequency and distance along the fiber using a
Convolutional Neural Network (CNN) model [14].

II. CNN-BASED RAMAN AMPLIFIER DESIGN

Considering an 100-km long single-mode fiber (SMF) link,
we design a Raman amplification scheme by finding the pump
powers and wavelengths of the amplifier which provide a
target signal power evolution Ps(f, z) jointly in frequency (f)
and distance (z) along the fiber. We propose a CNN-based
architecture due to its outstanding performance in various
pattern recognition problems by capturing correlations within
2D data forms, like images. With this in mind, we resemble
the input power profile to the network as a 2D image and
propose this modelling as two cascaded learning stages, a
feature extraction and a regression problem, as shown in Fig.1.

First, a point-wise normalization is performed on the input
power profile as a pre-processing step and afterwards, the
normalized profile is passed through the feature extraction
network which consists of three CNN layers. Each CNN layer
is followed by a rectified linear unit (ReLU) as an activation
function and an average pooling layer. The role of the pooling
layers is to reduce the dimension of the input feature maps
resulting in lower amount of parameters and computations in
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Fig. 2. Schematic of the proposed pumping set-up for the fiber span.

the network. The output of the last CNN layer is flattened
and passed to the regression network. The objective of this
network, modeled as a deep fully-connected, is to map the
extracted features to the pumping setup. This network has
four layers including the flatten layer, two hidden layers of
size Nh1 and Nh2 and the last layer of size 2Np, representing
the pumping configuration vector. The values of Nh1 and Nh2

are optimized depending on the proposed pump configuration.

III. SIMULATION RESULTS

In this section the simulation results are presented for
Raman amplifier design based on the CNN-based architecture
presented in the previous section. We consider a single span
and analyze the evolution of the power profile jointly over
the distance and the entire C-band (40 100-GHz spaced
channels). Moreover, three propagation cases are deployed
for the evaluation of the proposed method: two counter-
propagating cases with 2 and 3 pumps and a bidirectional
propagating case with 4 pumps (2co+2counter). A schematic
of the proposed pumping configuration is shown in Fig. 2 and
it includes both co and counter-propagating pumps launched
from opposite ends of the span made up of a 100-km SMF.
For each pumping case, the data-sets for the training and
evaluation of the proposed method are generated by solving
the Raman differential equations with the GNPy framework
[15]. After training the network for each case, the trained
model is evaluated based on the maximum absolute error
(Errormax) between the input test power profile and the
reconstructed one which has been generated using GNPy with
the predicted pump parameters by the network. Fig.3 indicates
the probability density function (pdf) of Errormax beside its
mean (µ) and standard deviation (σ) for all pumping cases.
Reported results assert that the proposed method is highly
accurate for designing Raman amplifiers based on the signal
power profile over a wide band and along the span.

IV. CONCLUSION

The problem of designing a distributed Raman amplifier
both in distance and frequency is addressed by presenting a
machine learning framework based on the desired 2-D (fiber
distance×frequency) power profile as the input. The inverse
mapping is modeled as a cascade of two networks trained
end-to-end. The first network is a CNN-based architecture pro-
posed for feature extraction of the power profile, followed by a
fully-connected network, aiming at finding the pump powers
and wavelengths based on the extracted features. Numerical
simulations show that the proposed framework provide high
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Fig. 3. Probability density function (pdf) of the Errormax. Mean µ and
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accuracy in terms of predicting the pump parameters for both
counter and bidirectional propagating pumps in C-band.
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