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We study the transition to turbulence in a flat plate boundary layer by means of visibility analysis of velocity time-series
extracted across the flow domain. By taking into account the mutual visibility of sampled values, visibility graphs are
constructed from each time series. The latter are thus transformed into a geometrical object, whose main features can
be explored using measures typical of network science that provide a reduced order representation of the underlying
flow properties. Using these metrics, we observe the evolution of the flow from laminarity to turbulence and the effects
exerted by the free-stream turbulence. Differently from other methods requiring an extensive amount of spatio-temporal
data (e.g., full velocity field) or a set of parameters and thresholds arbitrarily chosen by the user, the present network-
based approach is able to identify the onset markers for transition by means of the streamwise velocity time-series
alone.

I. INTRODUCTION

Turbulence arises from laminar fluid motion following the
growth of small perturbations of the velocity profile. The in-
terest in the study of transition is well motivated by the physi-
cal and industrial implications associated with the appearance
of turbulence, which are preeminently linked to increased mo-
mentum transfer and drag. Important efforts in this sense
are directed towards understanding, predicting and ultimately
controlling transition.

In this work, we focus our attention onto transition in the
boundary layer of a flat plate with zero pressure gradient. In
this setup, transition usually follows two routes. In one case,
the laminar profile first develops Tollmien-Schlichting waves,
whose secondary instabilities then lead to the breakdown to
turbulence. In contrast to this orderly pathway, the second
case occurs when turbulence in the free stream exerts a verti-
cal forcing on the boundary layer and triggers the transition.
This route is termed bypass transition and will be the focus of
this work. Bypass transition takes place as follows: initially,
the perturbations in the free stream generate large scale per-
turbations of the streamwise velocity, i.e. streaks, inside the
laminar boundary layer. Indeed, while outside the boundary
layer the turbulence spectrum has a broadband nature, inside
the boundary layer only low frequency perturbations appear,
due to shear-sheltering. The secondary instability of streaks
generates turbulent spots that are advected by the mean flow
and grow in size, until their growth and merging results in the
full onset of turbulence1.

While for the orderly transition the onset of turbulence and
its spatial location can be somewhat predicted and a definition
of a critical Reynolds number is usually accepted, in the case
of bypass transition the problem is complicated by the chaotic
nature of the forcing introduced by the free stream turbulence,
so that the onset of turbulence also depends on the turbulent
intensity2,3. In general, the onset of turbulence is influenced
by different key factors, such as the system geometry, the sur-
face roughness, the external flow condition (most notably the

pressure gradient and the already mentioned freestream tur-
bulence). Simplified criteria have been proposed, relying on
determining a critical ratio between the production term inside
streamwise velocity streaks and viscous dissipation. A closely
related problem to the prediction of transition is that of the
determination of the spatiotemporal location of the turbulent-
non turbulent interface (TNTI). The identification of the TNTI
in its simplest forms relies on the observation that certain flow
field quantities usually assume different range of values in tur-
bulent and laminar regimes4–6. As such, providing an indica-
tor function and a threshold value should, in theory, suffice to
accurately discriminate between laminar and turbulent regions
of the domain. Vorticity is a characterizing feature of turbu-
lence, but its use as an indicator function is problematic due
to the presence of free-stream turbulence or laminar regions
where vorticity is present nonetheless, such as the streaks in
the turbulent boundary layer. Other choices for the indica-
tor function rely on the presence of velocity fluctuations to
act as a discriminant between turbulent and laminar flow. A
common choice in flat plate boundary layers is the sum of
the wall-normal and spanwise velocity fluctuations |v′|+ |w′|.
Still, the fact that the intensity of the velocity fluctuations
is strongly dependent on the distance from the wall compli-
cates the choice of an appropriate threshold. Methods such
as Otsu’s7 can be used to determine an appropriate thresh-
old at different wall-normal heights, but the choice can be
prone to error and an extensive knowledge of the flow field
is necessary8.

More recently, and fueled by the increasing availability
of high-resolution flow simulations and experiments, several
data-driven approaches have been proposed, with the main
goal of discerning the various states present in a transitional
boundary layer and the key processes that govern the shift of
the flow field between these states9,10. Machine-learning tech-
niques are a broad category of data analysis tools commonly
employed to analyze and classify large datasets and discover
underlying relations, whose application to fluid mechanics is
gaining traction. Some of the most promising applications in
the field of transitional flows regard the classification of flow
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states using unsupervised deep learning approaches. The main
merit of unsupervised approaches lies in eliminating the need
for a priori defined classifiers and/or threshold values, which
are instead obtained by the learning algorithm itself. On the
other hand, these approaches need extensive training on large
datasets, thus requiring the knowledge of the entire velocity
field and possibly also of reduction techniques to feed the un-
supervised classifiers with treatable data in which the underly-
ing relations are more easily discovered. Moreover, the very
large number of parameters usually contained in a machine
generated model makes somewhat difficult to obtain a clear
physical interpretation of the features of classifiers, which
would be useful to drawn more general conclusions about the
nature of the studied flow.

An alternative to data-driven approaches comes from di-
mensionality reduction techniques that, when applied to tur-
bulent flows, are able to extract key information from an
otherwise extremely complex flow field. Along with more
established methods, such as proper orthogonal decomposi-
tion, the application of techniques derived from graph theory
has seen a wealth of promising applications to fluid dynam-
ics recently11,12. Graphs, or networks, are mathematical ob-
jects composed of a set of nodes and a set of the interactions
entertained by the nodes; they are suited to represent large,
and complex, dynamical systems, of which they can capture
the essential behavior13. Network-based methods have been
applied to fluid flows to investigate the correlation between
the velocity at different points in space14 or at different La-
grangian trajectories15,16, vortical interactions17,18, the prox-
imity of particle trajectories19,20 and their transition probabil-
ity between subsets of the domain21–23.

Time-series analysis in the context of network-based meth-
ods is particularly relevant, as the structure of time-series orig-
inating from highly complex systems is hardly captured by
statistics alone. Several approaches to extract the information
contained in time-series have been proposed24. Network anal-
ysis based on recurrence and on the analysis of cycles has been
employed to study the transition between stable and unsta-
ble states in turbulent combustion25–29. The visibility graph,
which maps the steps of a time-series into the nodes of a net-
work whose connection is determined on the basis of mutual
visibility30, has been employed in the analysis of turbulence,
especially for fully developed channel, boundary layer flows
and jets31–35.

In this work, we apply the visibility graph to time-series
extracted from a numerically simulated transitional flat plate
boundary layer. The visibility graph retains the underlying
structure of the process generating the time-series itself and
highlights the presence of key patterns retained by it. More-
over, the information contained inside the visibility graph can
be condensed into scalar metrics using tools derived from net-
work theory, that we will show to be sensitive to the features
of time-series. Thus, we are able to identify the key elements
that precede and trigger transition, and to provide a thorough
description of the spatial evolution of transition.

The paper is organized as follows. In Section II the nu-
merical simulation is detailed, the visibility graph method and
the relevant network measures are introduced, and the prop-

erties of time-series are correlated with those of the visibil-
ity graph by means of the parametric analysis of a synthetic
time-series. In Section III the results are detailed, including a
discussion on the application of the present method to badly
resolved data. Finally, in Section IV concluding remarks are
given.

II. METHODS

A. Transitional boundary layer dataset description

FIG. 1. Sketch of the fluid domain. The region bounded by the
dashed line indicates the stored portion of the domain.

We apply the visibility graph analysis to velocity time-
series extracted from a numerically simulated transitional
boundary layer. The velocity fields have been made available
through the John Hopkins Turbulence Database. The data is
obtained via a direct numerical simulation of the flow over a
flat plate of thickness 2L with an elliptical leading edge and a
zero mean pressure gradient across the streamwise x direction.
The origin (x = 0) of the domain is located at the leading edge
of the plate; this location is excluded from the stored dataset,
which instead starts at approximately x = 30L. A sketch of the
simulation domain is shown in figure 1. The Reynolds number
ReL based on the half-thickness of the plate, the free-stream
velocity U∞ and the fluid viscosity ν is ReL =U∞L/ν = 800.
The flow at the inlet is fully turbulent and is generated from
a distinct simulation of homogeneous turbulence. The turbu-
lence intensity at the inlet is about 3%, which is enough to
trigger bypass transition. At the lower boundary, which is
a solid wall, the no-slip condition is imposed, while along
the spanwise direction periodicity is used. At the top of
the domain the boundary condition is actively controlled to
satisfy continuity and keep the zero pressure gradient. The
size of the domain, with respect to the plate half-thickness
is Lx×Ly×Lz = (969.8465×26.4844×240)L, with y and z
being the wall-normal and spanwise directions, respectively.
The number of grid points in physical space at which the so-
lution is stored is Nx×Ny×Nz = 3320× 224× 2048. Each
time series is composed of Nt = 4701 time-steps for a to-
tal time stored T = 1175L/U∞; the resulting time step is
∆t = 0.25L/U∞. A snapshot of the streamwise velocity field
at y = 0.43 is shown in figure 2(a). Further details on the nu-
merical procedure employed can be found elsewhere1,36,37.

B. Visibility graph and network measures

The natural visibility graph maps a discrete time-series (or
an univariate function, in general) into a graph30. A graph
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FIG. 2. (a) top view of the boundary layer at y = 0.48, t = 0, streamwise velocity; (b) construction of the visibility graph from a time-series
and network measures. Blue points mark the sampled velocity values u(ti) and orange segments highlight the visibility links between pairs of
connected nodes. Links connected to the node t11 are colored in green, to show an example of the degree centrality k11, while the path between
node t1 and node t15 is highlighted in red, to highlight an example of a shortest path, d1,15; finally, the links of the subgraph induced by nodes
t1, t2 and t3 is shown in light blue color, to show an example of the local clustering coefficient c2.

G (N ,E ) is an object comprising of a set of nodes N =
{n1, . . . ,nN} and a set of links E , each one connecting a pair
of nodes of the graph. A common representation of a graph is
the adjacency matrix A ∈ RN×N , whose entries Ai j are equal
to one if there is a connection between nodes ni and n j and
is zero otherwise13. The visibility method transforms a time-
series u(ti) into a graph by assigning each time step ti to a
node and establishing a link if there is a direct line of sight
between the two nodes. More specifically, two nodes i and j
corresponding to time steps ti and t j are connected if

u(tk)6 (u(t j)−u(ti))
tk− ti
t j− ti

, ∀k = i . . . j (1)

where i < j without loss of generality. The procedure by
which links are formed between nodes is shown schemati-
cally in figure 2(b). Geometrically, this corresponds to cre-
ating a link between two nodes if and only if an uninterrupted
straight line can be traced between the corresponding data
points, without intersecting any intermediate point of the time-
series. This criterion is found to preserve the properties of the
time-series and to translate its features into recognizable topo-
logical structures contained in the visibility graph30.

The resulting graph is fully connected (there is a path be-
tween all pair of nodes), undirected (thus having a symmetric
adjacency matrix) and has a number Nt of nodes, equal to the
number of steps in the time-series. The visibility graph is in-
variant to scale transformations of the time-series, since its
links are defined following only a convexity criterion. More-
over, unlike methods such as recurrence networks, the visibil-
ity approach does not rely on parameters set by the user (such
as the phase-space threshold distance in recurrence networks).

Network science adopts several metrics that, when applied
to complex graphs (i.e. graphs with a large number of nodes
and a nontrivial interconnection pattern), give a quick glance
on the network properties. We will now enumerate the rel-
evant network measures employed in this work and, subse-
quently, explain their relevance in the context of visibility
analysis.

The degree centrality ki of a node is the number of links
incident to that node. Using the adjacency matrix, the degree
normalized by its maximum attainable value (that is the num-
ber of nodes N) is

ki =
N

∑
j=1

Ai j

N−1
(2)

The degree centrality is one of the most straightforward mea-
sures of centrality of a node, i.e. of its importance in the over-
all network structure. In figure 2(b), the degree centrality of
two nodes is computed.

The clustering coefficient ci is, instead, a measure of the
local density of links around a node. More specifically, it ex-
presses the probability that two neighbors of node i are them-
selves connected, thus that a connected triple of nodes is also
a triangle38. It can be calculated as

ci =
∑ j,m Ai jA jmAmi

ki (ki−1)
. (3)

In figure 2(b) the computation of the clustering coefficient of
the second node, c2, is exemplified; as its immediate neigh-
bors form a complete graph, its clustering coefficient is equal
to 1.
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In order to measure the likeliness of connected nodes, it
may be useful to consider the similarity of certain properties
of each node of a link, i.e. the assortativity of the network.
In its most basic form, the assortativity r can be measured as
the Pearson correlation coefficient of the degree of the two
nodes at the ends of a link, computed for all connected node
pairs39,40. The value of r ranges from -1, indicating a fully
disassortative network, to 1 for fully assortative networks in
which connections take place only between similar (with re-
spect to the degree centrality) nodes. As an example, nodes
11 and 12 in figure 2(b) (which are marked by their respective
time steps, t11 and t12) have largely different degree centrali-
ties, thus they contribute to make the network disassortative.

Finally, the average (or characteristic) path length L is the
average length of the shortest paths connecting all pair of
nodes, that is

L =
1

N(N−1) ∑
i, j,i6= j

di j, (4)

where di j is the topological length of the shortest path between
nodes i and j. The average path length is a measure of the typ-
ical distance between nodes in a graph and can be used as a
way to determine the effectiveness of a network in transfer-
ring information between nodes. In figure 2(b) the shortest
path between nodes 1 and 15 is made of four links, so that
d1,15 = 4; in this case, the presence of a clear peak in the time-
series makes topological connection between temporally dis-
tant nodes shorter. We note that if disconnected components
are present in the network, the average path length diverges; as
the visibility graph is fully connected, in our case L is always
bounded.

C. Visibility analysis of time-series

The application of the visibility graph formalism to time-
series is known to preserve their structure, in the sense that a
relation between time-series properties and those of the visi-
bility graph can be found. As an example, periodic time-series
result in regular visibility graphs, random series in random
graphs, and fractal series result in graphs where scale-free fea-
tures are present30. More recently, and with application to
fluid dynamics, the relation between the time-series structure
and network measures (as those presented before) has been
explored in the context of the visibility graph31–34,41,42. The
main rationale behind these approaches stems from the need
to provide a treatable insight on turbulent or transitional time-
series, which are highly complex and need a very fine tempo-
ral resolution to be adequately represented (especially at high
Reynolds numbers). By construction, the visibility graph is
invariant under horizontal and vertical rescaling of the time-
series; as such, the overall amplitude of the time-series has
no effect on the derived network measures. On the contrary,
the visibility analysis is highly sensitive to the interplay of
different scales inside the time-series. As will be detailed in
the following, the network measures applied to the visibility
graph have the ability to convey the entity of this interplay. Fi-
nally, the visibility graph can be computed from a time-series

with fast algorithms (in O(N logN) time, N being the number
of nodes43), which makes it suitable for use in large datasets.

To establish the properties of the visibility analysis, we now
aim to show the behavior of network measures in response to
the features of the time-series. To do so, we synthetically gen-
erated a time-series by superimposing three out of phase sinu-
soidal components of different frequency fi and amplitude φi,
a small-scale Gaussian noise and a larger amplitude Gaussian
noise that has a discontinuous support (in order to mimic the
intermittent behavior typical of transitional time-series). The
synthetic time-series has the expression

u(t) = ∑
i=low,mid,high

Ai sin( fit +φi)+Anoisew1(t)+Aburstw2(t),

(5)
where w1 and w2 are white Gaussian noises and w2 is nonzero
only on a fraction I of the duration of the time-series, which
corresponds to the intermittency of the signal. The support for
the intermittent regions of the synthetic time-series is chosen
at random.

In a visibility graph, the nodes situated in large, convex por-
tion of the time-series have a direct line of sight with a larger
number of other nodes, thus having large degree. Overall, the
mean degree

K =
1
N

N

∑
i=1

ki =
1

N(N−1) ∑
i, j

Ai j (6)

of the visibility graph is tightly connected to the amplitude
Alow of the lowest frequency components in the time-series,
i.e., those with the largest scale. All the panels in figure 3
show some of the synthetic time-series used to compute the
visibility graph measures. Figure 3(a) shows how the degree
grows as the low-frequency component becomes more impor-
tant. Indeed, the preminence of peaks spaced far apart in-
creases the overall number of links and thus the mean degree;
also, we found that the mean degree is inversely proportional
to the frequency flow.

The clustering coefficient also depends strongly on the local
convexity of the time-series around a given node. Differently
from the degree centrality, the amount of connected triples and
triangles is mostly determined by the time-steps immediately
adjacent to the one considered, as it is far more frequent to find
connections in triples of temporally close nodes. As such, the
global average

C =
1
N

N

∑
i=1

ci ∈ [0, 1] (7)

of the clustering coefficient quantifies the importance of the
small-scale components of the time-series31. In particular, we
observe that the clustering coefficient increases as the ampli-
tude of the small-scale Gaussian noise Anoise in the synthetic
time-series increases (see figure 3(b)).

The visibility graph is also suited towards the analysis of
the vertical separation, i.e., the presence of components whose
amplitude is markedly different in adjacent regions of the
time-series. Iacobello et al. 32 gave an extended discussion re-
garding the ability of the assortativity coefficient r to discern
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FIG. 3. Visibility parameters of the synthetic time-series: a) average degree K with respect to the amplitude of the lowest frequency com-
ponent of the time-series Alow; b) clustering coefficient C with respect to the amplitude of noise Anoise; c) assortativity r with respect to the
intermittency I; d) average path length L with respect to the amplitude Aburst of localized bursts (I = 0.33). Relevant time-series are plotted as
insets.

between time-series whose amplitude is homogeneous over
time and those that are not. In particular, when the amplitude
of the time-series is homogeneous and there are no outliers,
it is more probable that similar nodes are connected, leading
to highly assortative networks. This behavior is of outstand-
ing importance in the study of transitional time-series, which
are strongly characterized by their intermittent behavior in
the region where turbulence is not fully developed. Varying
the intermittence in the synthetic time-series (that is the per-
centage of time, chosen at random, in which large-amplitude
Gaussian noise is present) allowed us to study the behavior of
the assortativity, as is shown in figure 3(c). The "turbulent"
component is highly fluctuating, but is still somewhat homo-
geneous with respect to the underlying laminar component;
accordingly, the assortativity is high. As the intermittency
grows the network becomes increasingly assortative until the
intermittency reaches unity (the series becomes fully turbu-
lent), where the assortativity drops significantly. As already
stated, the visibility graph is highly sensitive to the interplay
of the different scales rather than to their actual amplitude.
When the intermittency reaches unity, the laminar component
disappears from the time-series and the heterogeneity of the
turbulent component leads to a decrease of the assortativity.

Finally, the average path length is a measure of the topolog-
ical distance between nodes; it follows easily from this con-
sideration that the presence of localized peaks determines a
decrease of the value of L, as long-distance nodes are more

easily connected. As shown in figure 3(d), the average path
length decreases when the amplitude of the temporally local-
ized Gaussian noise in the synthetic time-series increases.

III. RESULTS

A. Network measures

We computed the visibility graph from time-series of the
streamwise velocity u from a set of points in the flow domain.
In particular, for each (x, y) coordinate, we considered time-
series from Nz = 120 equally spaced points across the homo-
geneous z direction of the domain. For each visibility graph,
we computed the relevant network measures; in the following,
we will provide results averaged along z.

Figures 3(a)-(d) show the four visibility graph measures (K,
C, r and L) over a grid of (x,y) points that encompass the
regions of the boundary layer where bypass transition takes
place. Taking into account the significance of network mea-
sures in the context of the visibility graph, some features of
the boundary layer can be readily identified. As stated be-
fore, the turbulent fluctuations in the boundary layer induces
low-frequency, high-amplitude fluctuations of the streamwise
velocity in the inner portion of the boundary layer. The
degree centrality (figure 4(a)), which is sensitive to these
low-frequency components, has a marked peak near (x, y) =
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FIG. 4. Visibility graph measures in the transitional boundary layer: a) Average degree, b) clustering coefficient, c) assortativity and d) average
path length. The boundary layer height δ99 is shown in black, while the average position of the TNTI x̄TNTI(y) is shown in red. Panel e) shows
three time-series sampled at the corresponding, color-coded points of the domain; the spanwise coordinate is z = 13.95 for all time-series.
Below each time-series, the corresponding visibility graph is drawn by a force-directed algorithm.

(200, 0.2)L, where the low-frequency amplification induced
by shear-sheltering appears to be at a maximum. As transi-
tion spatially progresses, the low frequency streaks encounter
secondary instabilities which effectively enable the transfer of
energy to smaller scales, initiating the breakdown to turbu-
lence. Using the clustering coefficient (figure 4(b)), we are
able to locate the start of this process at around x = 300L in
the innermost portion of the boundary layer, while at higher y
values the high-frequency components of the time-series ac-
quire stronger importance at higher x. Transition appears to be

initiated in the innermost portion of the boundary layer. We
also note that, in the region where streaks are generated, the
clustering coefficient is at a minimum, as the high-frequency
components of the freestream turbulence are filtered out and
do not exert forcing on the boundary layer flow. Additionally,
the clustering coefficient in the turbulent region of the bound-
ary layer is slightly higher than in the free-stream, indicating
some difference in the structure of turbulence (regardless of
the amplitude, which is neglected by the visibility graph).

The assortativity (figure 4(c)) and the average path length
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(figure 4(d)) allow us to investigate the intermittent behavior
of the time-series just before full transition occurs. As already
stated, these time-series are characterized by the passage, in
fixed points of the domain, of turbulent spots. As x grows, the
size and frequency of spots grows and, accordingly, the in-
termittency of the time-series grows. The remarkable ability
of the assortativity to distinguish between intermittent time-
series (even with high intermittency values) and fully turbu-
lent ones allows us to identify a region, located prior to the
fully developed turbulent boundary layer, where intermittency
is at a maximum (but still not unity). This region with high
assortativity presents itself as an almost vertical front located
at around x = 380L, which is followed by a decrease in as-
sortativity. We hypothesize that the region of maximum as-
sortativity is the region which hosts the turbulent-non turbu-
lent interface. The average path length has a maximum in
the streaky region, where the low-frequency fluctuations of
the streamwise velocity present no clear, localized peak. In-
stead, there is a minimum at around x = 300L and very low y
values. The minimum indicates that time-series in this region
present localized peaks and a somewhat reduced intermittency
(the assortativity is also very low in the same region, indicat-
ing a strongly heterogeneous time-series). It is interesting to
note that at slightly higher x coordinates the strong increase of
the clustering coefficient takes place; indeed, it is the expan-
sion and coalescence of localized spots that generates com-
plete transition to turbulence.

Figure 4(e) shows three time-series extracted from the cor-
responding, color-coded, points indicated in figures 4(a)-(d)
and at z= 13.95 and, below, the corresponding visibility graph
plotted with a force-directed algorithm44. The leftmost time-
series is taken from the region of the domain in which tur-
bulent spots are present. Here the presence of peaks, which
are also evident in the graph plot as single nodes connected
with large, separate clusters, contributes to the low value of
L, while the presence of laminar regions determines the high
value of K. To better identify these large clusters we applied
the Louvain partitioning algorithm45 and computed the aver-
age size of communities. In the case of the leftmost time-
series, the average cluster comprises 522 nodes. In the central
time-series and in its corresponding graph plot, taken near the
turbulent-non turbulent interface where the assortativity r is at
a maximum, the hub-spoke organization typical of the spotty
time-series is less evident, but clusters still appear visibly
larger than in the fully turbulent case due to the contribution
of persistent low frequency components (the average cluster
size is 204); consequently, the degree is also slightly larger
with respect to that of the fully turbulent time-series. Finally,
in the rightmost time-series, taken from a region where turbu-
lence is fully developed, the size of clusters is much smaller
(on average, they comprise 130 nodes). Conversely, here the
clustering coefficient is at a maximum as the high-frequency
components are predominant.

To further complement our results, we added to the plots in
figure 4 the boundary layer height δ99 (black curves), which
is the y coordinate at which the streamwise average velocity is
99% the freestream velocity, and an approximate location of
the TNTI (red curves). To find the location of the turbulent-

non turbulent interface across the wall-normal coordinate y we
used the procedure proposed by Nolan and Zaki 8 . In partic-
ular, for each time step of the boundary layer simulation data
and at each wall-normal height, we applied Otsu’s method7 to
the sum of the wall-normal and spanwise velocity fluctuations
|v′|+ |w′| in order to obtain a threshold value (as a function
of y and t). Otsu’s method is an image segmentation tech-
nique that identifies the optimal threshold of a scalar value
(the grayscale in images or |v′|+ |w′| in the boundary layer).
In particular, the method achieves the objective of minimiz-
ing the intra-class variance within the turbulent and the lam-
inar regions, and does so by maximizing the inter-class vari-
ance between the laminar and turbulent regions. Because of
the dependence on y of the wall-normal velocity fluctuations,
a global (y-independent) threshold cannot be provided and
Otsu’s procedure has to be applied to isolated vertical slices
of the boundary layer flow, as prescribed by Nolan and Zaki 8 .
After we obtained the spatial profile of the TNTI as a surface
xTNTI(y,z, t) at different times we averaged the results along
time and along z to obtain an expected average profile of the
TNTI, x̄TNTI(y).

First, we note that the variation of the network measures
takes place inside the boundary layer, at y coordinates lower
than δ99, while in the free-stream the measures remain mostly
stationary. Moreover, the expected position of the turbulent-
non turbulent interface using Otsu’s thresholding is clearly
superimposable to the regions where network measures sig-
nal the transition to fully developed turbulence. In particular,
the region of maximum assortativity and the TNTI intersect
in a wide range of y coordinates, indicating that the assortativ-
ity measures, as was hypothesized before, incipient transition.
It is also worth noting that the spike of the clustering coeffi-
cient in the innermost region of the boundary layer is located
slightly before the expected location of the interface, possibly
indicating that to some extent the transfer of energy to smaller
scales precedes full transition.

B. Sensitivity analysis

We now aim to assess the response of the visibility analysis
to the decrease of spatial and temporal resolution. In particu-
lar, we will provide results that are averaged along a reduced
number of points along z and results obtained using subsam-
pled time-series. The analysis of subsampled time-series is
relevant because it may provide useful insight in the analy-
sis of data with lower resolution, such as experiments having
sparser data acquisition setup or LES simulations over com-
plex 3D geometries.

Panels from figure 5(a) show the network measures aver-
aged using only 10 points along z (instead of Nz = 120 used
precedently); we also plotted the location of the TNTI com-
puted using Otsu’s method and its standard deviation along z
(dashed lines). The overall trends of the measures across the
domain are preserved. In particular, a peak of the assortativity
is still present near the transition region, making this mea-
sure suitable for a local determination of the TNTI. Network
properties do not change significantly along the homogeneous
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FIG. 5. a) Degree, clustering coefficient, assortativity and average path length of the visibility graph at a fixed spanwise coordinate (z = 13.95);
black lines indicate the values of δ99, while the red lines the average position of the TNTI and the dashed red lines its standard deviation along
z. b) Measures for networks obtained from subsampled time-series with ∆ = 5 (results are now averaged along Nz = 120 points in the spanwise
direction). c) Network measures from the subsampled time-series at y = 0.98 with different values of the subsampling parameter ∆ (again,
results are averaged along Nz = 120 points)

direction of the domain.
Figures 5(b)-(c) show the network measures obtained from

subsampled time-series. Starting from the full time-series,
comprising of Nt time-steps, we constructed the subsampled
time-series by taking one out of ∆ points, so that u∆

i = u∆i. We
thus obtained subsampled time-series which are effectively
deprived of the highest frequency components. The effect of
the subsampling from the perspective of the visibility graph
is a result of both the elimination of a fraction of the original
data and of the reduction in the number of nodes.

In figure 5(b), the four network measures (K, C, r and L) ob-

tained from a subsampled time-series with ∆ = 5 are shown.
The degree centrality has been normalized with the correct
number of nodes, which is Nt/∆. Even if 80% of the origi-
nal information contained in the time-series is lost, the visi-
bility measures of the subsampled time-series are tightly re-
lated to those of the full ones. All the previously identified
spatial patterns are preserved through the subsampling. The
degree centrality is left mostly unchanged, as the subsam-
pling procedure affects only slightly the larger timescale in
the time-series (which are the ones that influence the degree
centrality); moreover, the decrease of the number of nodes



Visibility analysis of boundary layer transition 9

can be fully accounted for by normalization. The clustering
coefficient, while retaining the previously found spatial trends
(most notably, the presence of a minimum around x = 200),
increases everywhere in the domain. While the removal of the
high-frequency components triggers a decrease of the clus-
tering coefficient at a fixed number of time-steps (see figure
3(b)), this seems to not be the case when the number of time-
steps is decreased. Moreover, it appears that the increase of
the clustering coefficient has the same magnitude in regions
of the domain where the time-series are dominated by either
low- or high-frequency components, indicating that the reduc-
tion of the number of nodes has the most prominent effect on
the visibility graph structure. The assortativity appears to be
slightly reduced everywhere, although not by much. More-
over, the spatial location of its maximum, which we corre-
lated to the location of the TNTI, appears to be located at
slightly lower x coordinates. We hypothesize that this is due to
the loss of information occurring because of the subsampling,
which makes it impossible to distinguish a time-series with a
high value of the intermittency I from a fully turbulent one.
Finally, the average path length L diminishes everywhere as
the lesser number of nodes is correlated to a reduction of the
shortest path lengths. Around x = 200 the average path length
of the full time-series presents a peak, which is progressively
smoothed as the subsampling parameter ∆ increases. In that
region of the domain the dynamics of the flow is dominated
by low-frequency streaks and turbulent spots are mostly yet to
appear, which, in the fully sampled case, leads to high values
of L. It appears that fine-structure changes like those induced
by the subsampling considerably affect the structure of the
visibility graph obtained from time-series of streaky flow.

The panels of figure 5(c) show the network measures at a
fixed wall-normal coordinate (y= 0.98) and two different sub-
sampling parameters, ∆ = 2 and 5. With ∆ = 2, even if half
the information of the original time-series is lost, the network
properties behave in a similar manner to the fully sampled
ones. In particular, we note that the assortativity r is mostly
unchanged and the peak is located at the same x-location as in
the fully sampled case. Moreover, a peak of L in the streaky
region is still present, indicating that the effects of the subsam-
pling with ∆ = 2 are mostly due to the halving of the number
of nodes.

We performed the same analysis at higher values of ∆ (up to
∆ = 20) obtaining a progressive loss of quality in the network
measures. This is indeed expected, as the loss of information
due to the subsampling inevitably reflects on the quality of the
visibility graph analysis. Nonetheless, if the sampling guar-
antees that all the relevant scales of the flow are retained, the
qualitative behavior of the results obtained through the visibil-
ity graph is independent from the exact value of the sampling
rate.

IV. CONCLUSIONS

We performed a visibility analysis on time-series obtained
from a numerically simulated transitional boundary layer. Af-
ter characterizing the behavior of network measures using

a parametric time-series, we computed these measures for
the visibility graphs obtained from streamwise velocity time-
series extracted from the flow domain. The four metrics,
namely the degree centrality K, the clustering coefficient C,
the assortativity r and the average path length L are together
able to accurately provide a view on the spatial evolution of
the bypass transition from laminar to turbulent flow, as they
encode the interplay of scales and the transformations occur-
ring due to the onset of turbulence.

Most notably, we found that the assortativity r, i.e. the
Pearson correlation coefficient between the degree of linked
pair of nodes, has a peak in the region of the domain im-
mediately preceding the rise of developed turbulence and is
thus able to act as a reliable onset marker for transition. This
finding is noteworthy since the visibility analysis does not re-
quire any a priori parameter and, most importantly, because
an extensive knowledge of the velocity field is not needed.
Indeed, our results are obtained from the streamwise compo-
nent u of the velocity and from single point measurements
only. To identify a time-averaged location of the TNTI us-
ing the present approach, one would only need to compute
the assortativity coefficient of visibility graph from different
x coordinates at a fixed wall-normal height y and spanwise
coordinate z and find the location of the peak of r. Our ap-
proach provides results in agreement with more established
methods, such as those based on thresholding physical quan-
tities through Otsu’s algorithm, but does not need the same
extensive knowledge of the flow field of these methods. Al-
though the thresholding of the indicator function |v′|+ |w′|
provides a time-instantaneous location of the TNTI, it requires
the knowledge of the velocity field on at least a slab of the
domain at constant wall-normal height with reasonable reso-
lution. Moreover, we found that similar results are obtained
using subsampled time-series, confirming the robustness of
the method with incomplete data.

The visibility graph methodology appears suited towards
the analysis of flows with abrupt changes in their dynamics.
Accordingly, the current approach can be applied in future
works to investigate the influence of key factors influencing
transition to turbulence (such as geometry, wall roughness,
pressure gradient). Moreover, the visibility approach could
be extended to respect temporal causality by including a di-
rectional information into the link definition, thus creating
a directed graph. Past research has shown how this allows
the visibility graph to detect time-series generated by irre-
versible process and could be useful to identify and quantify
the arising of irreversibility due to transition to turbulence46.
Overall, network-based methods have an interesting outlook
with regard to application in fluid dynamics, as they are able
to capture the interplay of scales typical of turbulent, highly
complex flows and provide meaningful and consistent results
when applied to highly different cases, such as the laminar,
intermittent and turbulent portions of a transitional boundary
layer flow.
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