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1 INTRODUCTION  

A numerical model able to analyze the non-linear 
static response of pre-tensioned cable nets, to be used 
in the feasibility study of an ultra-insulating panel 
with vacuum technique (Fig. 1), is herein introduced. 
For this purpose, the model should have the following 
characteristics: 

- easy to use. 
- requires few input data. 
- reliable. 
In other words, a tool for the conceptual design of 

the panel has to be introduced with the aim of defin-
ing the main structural part: the net. 

Unfortunately, in the current literature these mod-
els cannot be easily found. Indeed, the numerical 
model proposed by Lewis (1989) concerns the analy-
sis of pre-stressed nets and pit-jointed frame struc-
tures. It was based on the principle of minimum en-
ergy and was applied to steel trusses using the linear 
load - displacement constitutive relationship. To sim-
plify the approach, a new numerical procedure, to be 
used for the analysis of pre-tensioned 2D nets, and 
based on the displacement method, is herein pre-
sented.  

The proposed model is then applied to cable nets, 
loaded in parallel planes, having a single degree of 
freedom in each node. As results, the nodal displace-
ments, and the induced stress of each cable, are cal-
culated when a set of nodal forces are applied.  

To validate the proposed approach, the results of a 
case study are compared with those obtained with the 
Lewis’ model (Lewis 1989). 

 

 
Figure 1: Prototype of ultra-insulating panel. 
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ABSTRACT: A new displacement-based approach is proposed herein to predict the behaviour of pre-tensioned 
cable nets subjected to vertical loads. The cables are contained in horizontal plane and have a single degree of 
freedom in each node, where loads are applied. The model is based on the equilibrium equations of an 
infinitesimal cable-element, which are solved by considering the catenary equation under the hypothesis of (a) 
zero bending stiffness, (b) linear elastic behaviour of materials, (c) small deformation, and (d) the existence of 
perfect hinges in each node. More precisely, a finite-difference numerical procedure is introduced in order to 
evaluate nodal displacements related to a set of applied vertical forces. The effectiveness of the proposed 
approach is then assessed by comparing the numerical results with those obtained by other models found in the 
current literature. Finally, the proposed approach is used to design new and more efficient insulating panels for 
the green house technology.  
 



2 ANALYSIS OF PRE-STRESSED CABLE NETS 
USING THE DISPLACEMENT-BASED 
APPROACH 

We consider a generic net structure composed by m 
cable elements connected in n nodes. The structural 
analysis of this structure is based on following as-
sumptions: 

1. the bending stiffness of each cable can be ne-
glected. 

2. cable shows a linear-elastic behavior: instability, 
slackening phenomena, and viscous plastic de-
formations are not considered. 

3. only small deformations of the cable are allowed. 
4. nodes are assumed to be perfect hinges. 
5. cross-section of each cable is constant through-

out its length. 
6. self-weight and variable loads are assumed to be 

concentrated load acting on the nodes. 
The cable net is within a plane (x and y) and each 

node has x, y, z coordinates according to the reference 
system shown in Fig. 2.1. The cable segment between 
the two consecutives nodes is indicated as ij (see 
Fig.2.2), and around the ith node there are four ij seg-
ments (Fig. 2.3) 

In the initial equilibrium configuration (status 0 - 
the undeformed state), the cable net is fully described 
by the following parameters (the subscript k indicates 

the generic node of the net, whereas the suffix 0 is 
related to status 0): 
 the coordinates of nodes grouped in vector {𝑋} : 

{𝑋} =  
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;    (𝑘 = 1, 2, … , 𝑛)  (1) 

 the unstrained initial length of each ij segment 𝑙  
is defined as follows: 

𝑙 =  𝑥 −  𝑥 +  𝑦 − 𝑦 +  𝑧 −  𝑧             (2) 

 the initial stress in each cable is Sij
0 , to which a 

possible prestress may be added; 
 the loads in the unstrained configuration (status 

0) {𝑷}𝟎
𝒊 are acting on each ith node: 

{𝑃} =  

𝑃
𝑃

𝑃
;                    (𝑖 = 1, 2, … , 𝑛);                  (3) 

In addition, the status 0 represents the pure pre-
stress, whereas the weight of the cable and other per-
manent and variable loads are included within {𝑷}𝟎

𝒊. 
After applying external loads, the new equilibrium 

configuration is defined by: 
1. a variation of the node coordinates: 

∆𝑥 =  𝑢 −  𝑢

∆𝑦 =  𝑣 −  𝑣

∆𝑧 =  𝑤 −  𝑤
                                                 (4) 

 

 
 

Figure 2.1: Reference system for the cable net. 
 

 
 

Figure 2.3: Reference geometry in initial unstrained state (where 
u, v and w indicate the displacements of each single node, ac-
cording to the reference system x, y, z, respectively, as shown in 
Figure 2.4). 

 
 

Figure 2.2: Definition of ij cable in the undeformed state (status 
0). 

 

 
Figure 2.4: Displacements of each node in x, y, z directions. 



2. increment of the length of each ij segment: 

∆𝑙 =  ∆𝑥 +  ∆𝑦 +  ∆𝑧                        (5) 

3. increment of the stress in each ij segment: 
∆𝑆 =  (𝐸𝐴)  

∆
                                    (6) 

where E and A represent the elastic modulus 
and the cross-sectional area of the ij segment, 
respectively. Considering Eq. (5), Eq. (6) can 
be re-written as: 
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                                      (7) 

and the final stress of single cable can be writ-
ten as  {𝑆} =  𝑆 +   ∆𝑆 . 

4. Increment of the loads applied in each ith 
node: 

{𝑃} =  {𝑃 +  ∆𝑃}                                  (8) 
where ΔP represents the load increment with 
respect to the previous state. 

 
To define the final state (and therefore ΔP), the 

equilibrium and compatibility equations are included 
in the matrix relationship: 
{𝑃} =  [𝐾] ∙  {𝑋}                                                         (9) 

where: 
{𝑃} = vector (2n × 1) of the load on the net node. 
[𝐾] = global stiffness matrix (2n × 2n). 
{𝑋} = vector (2n × 1) of the displacements in a  
         net node. 
The stress variation in each single cable is defined 

by the Equilibrium equations considering the applied 
loads, according to the reference system:  
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    (10) 

By analyzing the structure, it is necessary to write 
three equilibrium equations for each node, leading to 
3n system of equations. Thus Eq. (9) becomes: 
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Considering the terms of Eqs. (4) written in the 

Taylor-McLaurin Series (we neglect the terms be-
yond the 1st order because of the hypothesis of small 
deformations), Eq.(5) and Eq.(9) can be written as in 
Eq.(12) (see the box). 

If αij is the relative extension of the cable: 

𝛼 =  
     

                               (13) 

the loading state variation system of the generic ith 
node can be written as:  
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As the net is made with a single material, having a 
constant elastic modulus (E), for each ith node, it is 
possible to write: 
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By considering: 
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the Equilibrium of the net (composed by 9 equations) 
can be re-written as: 
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Accordingly, the displacements of each ith node 

can be calculated as: 
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From the analytical model previously described , a 

simple numerical algorithm has been developed to 
calculate displacements and stresses induced by the 
deformation of the cable net. 

 
 

3 VALIDATION OF THE NUMERICAL MODEL 

To validate the proposed algorithm, it is applied to 
ideal nets of simple geometry (i.e., those reported in 
Lewis 1989). Each net is in the plane (x, y) and the 
displacements are in the z direction. The cables are 
developed in x or y direction, at equidistant spacing, 
whereas only the central internal nodes are loaded 
with the forces Pz. The displacement will be calcu-
lated in these nodes. According to Table 1 (Lewis 
1989), the following examples are analyzed: 
 Example 1: simple net. The net consists of only 

two cables (one in x direction and one in y direc-
tion) with three degrees of freedom. Thus, there 
are 4 square meshes, whereas a single load is ap-
plied in the central node (Fig. 3a). 

 Example 2: cable net 2 × 1. A net with a rectan-
gular mesh loaded in the two internal central 
nodes (Fig.4a). The net is built with three cables 

(two in x direction and one in y direction), with 
six degrees of freedom (Buchholdt 1985). 

 Example 3: cable net 2 × 2. A net with square 
mesh and load applied in the central nodes (sym-
metrical load). The net is built with four cables 
(two in x direction and two in y direction), with 
twelve degrees of freedom (see Fig.5a). 
 

Table 2 shows the results obtained with proposed 
model and by Lewis (1989) in terms of z-displace-
ment of the central nodes. Moreover, the total dis-
placements of the net computed by the numerical al-
gorithm is shown in Figg.3b, 4b and 5b. 

To give a quantitative rate of the model, the follow-
ing parameters are computed: 
 percentage of the maximum deflection (at the 

central nodes of the net) of the cable: 

∆𝑙% = 100 − 𝑙 − ∆𝑙
𝑙 ∗ 100            (20) 

 the deviation of the calculated deflection from 
that of Lewis (1989): 
∆𝑙 − ∆𝑙                      (21) 

 percentage of deviation from Lewis’ (1989) dis-
placement: 

𝐷𝑒𝑣% =
∆ ∆  

∆
∗ 100               (22) 

 
As shown in Table 2, we note that the deflection 

given by the proposed numerical model and those 
computed by Lewis (1989) are coincided in nets of 
Example 1 and 3. Only for the net of the Example 2, 
the deflection of the central nodes given by the pro-
posed numerical model differ from the values com-
puted by Lewis (1989) of about 7%. The latter error 
can be acceptable, because the model is used to the 
feasibility study of the panel illustrated in Fig.1.  

 
  

  
 

Table 1. Geometric and material characteristics of three ideal nets (Lewis 1989). _______________________________________________________________________________________________________ 
                          Example 1     Example 2     Example 3                              ___________    ____________     ____________ 

                         simple net   2 × 1 cable net  2 × 2 cable net  _______________________________________________________________________________________________________ 
Size of the net (cm × cm)                 80 × 80    600 × 800    120 × 120    
Cross-section area of cables A (mm2)             0.785     2.00      0.785     
Young’s modulus E (GPa)                 124.80    110.0      124.80    
Pretension load in the cables S0 (kN)             0.2      0.5      0.2     
External load applied on the internal node P0 (kN)         0.015      0.200     0.015     
Diameter of the cable d (mm)                1      1.596      1     
Cable initial length l0 (mm)                 400     2.000      400     
Total number of nodes                   5      8       12     
Number of nodes on the perimeter              4      6       8     
Number of internal nodes                 1      2       4     

 _______________________________________________________________________________________________________ 
 
 
 



Table 2. Comparison between the results obtained with the proposed model and those computed by Lewis (1989). _______________________________________________________________ 
        Deflection   l%     Dev%   
        (mm)    (%)     (%)         _______________________________________________________________ 
Example 1  
Proposed model   6.98    +1.745    +0.01        
Lewis (1989)    6.97    +1.743    +0.14         _______________________________________________________________ 
Example 2  
Proposed model   184.78   +9.24    +14.92          
Lewis (1989)    199.70   +9.99    +7.47 %       _______________________________________________________________ 
Example 3  
Proposed model   12.78    +3.20    -0.56          
Lewis (1989)    12.22    +3.06    +5.75 %       _______________________________________________________________ 
 
 
 

              
 

Figure 3. (a) Geometric scheme of the 2 × 2 cable net with total dimension equal to 80 cm × 80 cm and cable length 
of 400 mm (Example 1 - Lewis 1989) and (b) the vertical displacements (along the z axis) of the nodes. 

 
 
 

         
                                                        (a)                                                                                              (b) 
 

Figure 4. (a) Geometric scheme of the 2 × 1 cable net with total dimension equal to 6 m × 8 m and cable length of 
2.000 mm (Example 2 - Lewis 1989) and (b) the vertical displacements (along the z axis) of the nodes. 

 
 
 

         
 

Figure 5. (a) Geometric scheme of the 2 × 2 cable net with total dimension equal to 120 cm × 120 cm and cable length 
of 400 mm (Example 3 - Lewis 1989) and (b) the vertical displacements (along the z axis) of the nodes. 

 
 
 



4 CONCLUSIONS  

Based on the results of a simplified nonlinear proce-
dure for the analysis of cable nets, the following con-
clusion can be drawn: 
 the equations of the dynamic equilibrium of a 

body in motion (the D’Alembert principle), leads 
to the formulation of the dynamic relaxation al-
gorithm, as obtained by Lewis (1989). 

 in the same way, in the proposed model the linear 
load- displacement relationship can be obtained 
by means of a stiffness matrix algorithm. 

 both the models calculate approximately the 
same maximum vertical displacement of the nets 
made with cables. 

 Thus, the proposed simplified can be effectively 
used to design the nets made with steel cables. 
 

Future paper will be devoted to use the proposed 
model for the feasibility analysis of prototype of a 
vacuum ultra-high insulating panel.  
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