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Abstract ─ The presented paper shows a new method for 

modeling of a physical system in a rational expression. 

The method is based on a hybrid combination of the 

conventional least square method (LSM) and a robust 

recursive procedure. In the first step of the method, a 

sampling function is employed to establish a system of 

linear equations. Then, the QR decomposition method 

and a very fast iterative technique are simultaneously 

used to determine the unknown parameters. Also, it is 

shown that by regarding a scalar gain parameter, the 

stability of the final model can be controlled. To verify 

the performance of the presented method, several 

theoretical and practical examples are examined and the 

obtained results are compared with the simulation and 

measurement data. 

 

Index Terms ─ Least square method, rational 

approximation, recursive regression 

 

I. INTRODUCTION 
Most of the time, analysis of many practical 

problems in engineering is very difficult based on the 

first principle [1-2]. On the other hand, simulation of 

physical structures using the full-wave simulators is 

commonly time-consuming, due to the complexity of 

them [3]. Moreover, to study of a complex structure in 

the presence of nonlinear components, a hybrid 

combination of frequency and time domain are necessary 

[4]. Hence, a helpful intuitive concept for understanding 

the properties of a complicated structures is its 

equivalent circuit model. Commonly, a frequency 

domain response of these structures is available. So, it is 

desired to consider an equivalent circuit for them [5-6]. 

There are two types of modeling techniques for the 

theoretical and practical systems, including the white-

box and black-box modeling. In a white-box modeling 

approach, some features of the under-studying system 

are known. Unlike the first one, in black-box modeling, 

only the input and output responses of the under-

studying system are available. It is clear that the black-

box modeling is more difficult. So far, several black-box 

modeling approaches of a physical system are introduced 

in literature. Some of them include brute force lumped 

segmentation modeling [7], the Loewner method [8, 9], 

passive reduced-order interconnect modeling algorithm 

(PRIMA) [10], vector fitting (VF) algorithm [11, 12], 

hybrid combination of data integration and least square 

method [13], matrix rational approximation (MRA) 

technique [14, 15], compact difference (CD) method 

[16], integral congruent transformation (ICT) [17, 18], 

etc. The efficiency, accuracy and complexity of each of 

these methods are different. Therefore, the pros and cons 

of the currently available techniques in the literature 

show that the modeling of a system is still a 

challengeable problem. 

In this work, combination of the conventional least 

square method (LSM) and a robust recursive regression 

procedure is employed for modeling of a theoretical and 

physical system. For this purpose, using a sampling 

function, the data of a dynamic system is expressed into 

a system of linear equations. In the converting process, a 

scalar gain parameter is employed to guarantee the 

stability of the final model. Since, the equation system 

itself is biased and due to the sensitivity of the final 

model with respect to the computational errors, the 

accuracy of the conventional LSM technique is low. 

Therefore, the QR factorization method with a recursive 

regression technique is simultaneously employed to 

conquer the mentioned problems. Also, it is shown that 

the proposed method converges rapidly for a very small 

number of iterations. To assess the performance of the 

introduced method, several theoretical and practical 

cases are examined. 

The organization of the presented work is as 

follows. In section II, the theoretical of the proposed 

method is mathematically described. In section III, 

several test cases are studied, and the acquired results are 



compared with those obtained by the simulation and 

measurement data. Finally, section IV concludes the 

paper. 

 

II. MATHEMATIC DESCRIPTION 
The frequency response of any physical system can 

be expressed as the following rational function. 
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where N, rn, pn, r0, H(s) and s are the number of 

poles, residues, poles, constant term, response of the 

system and Laplace variable defined by s=jω, in which 

ω is the angular frequency. It is common to show H(s) as 

the ratio of two polynomials as follows. 
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In the present form, it is assumed that the degree of 

numerator and denominator polynomials are equal. For 

practical applications, the real parts of poles must be 

negative due to stability condition. Therefore, the 

following closed-loop system (Figure 1) can be 

considered for the under-studying system. 

 
 

Fig. 1. Block diagram of a closed-loop system 

The forward, backward and scalar gain of the system 

are shown with G(s), F(s) and kp≥1, respectively. The 

closed-loop transfer function (TF) is as follows. 
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Typically, the location of transfer function’s poles is 

changed by varying values of the scalar gain kp [19]. 

Hence, the stability of the system can be controlled by 

the parameter kp. The new expression of Eq. (2) can be 

obtained by comparing (2) with (3). 
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Multiplying both sides of Eq. (4) by D(s), leading to 

the following expression. 
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It is well-known from the sampling theory that the 

transfer function H(s) can be reconstructed using only M 

samples [20]. 
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where Hr(s) is the reconstructed transfer function, 

and S(x) is a sampling function described by. 
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The samples of the transfer function are taken at M 

points. It is shown in [13] that the minimum value of M 

can be determined as. 
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So, Eq. (5) can be expressed in matrix form as. 
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where, 
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where m denotes the m-th data sample. The 

unknown vector X can be determined using the 

conventional least square method (LSM) as follows [21]. 
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In (13), it is supposed that the importance of each 

equation is the same. Since, H(s) is multiplied with D(s) 

in (4), the system equation (9) itself is biased [22]. 

Moreover, it is shown in [13] that the conventional LSM 

provides a low accuracy solution, due to the sensitivity 

of solution with respect to the numerical errors. To 

mitigate the mentioned problem, several techniques are 

proposed such as Iteratively Reweighted Least Squares 

(IRLS), the Sanathanan-Koerner (SK) method and the 

Noda (Noda) technique [22]. Although, these techniques 

have been able to solve this problem to some extent, but 

the high computational cost and sometimes low accuracy 

of the final solution have not been solved so far. On the 

other hand, these approaches does not prevent the ill-

conditioning of the system [13]. Additionally, in these 

techniques, it is assumed that kp=1, and these methods do 

not guarantee the stability of the final model. To 

overcome the mentioned challenges, first, the system 

equation (9) is rewritten as. 
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Also, in order to decrease the numerical errors, a QR 

decomposition is used as [23]. 
=G QR  (17) 

where Q, R are the orthogonal and upper triangular 

matrix of the new coefficient matrix G, respectively. 

Using Q and R, the system equation (14) is converted to 

the new expression [23]. 
T

=RX Q C  (18) 

The objective function that should be minimized can 

be considered as. 
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where ||.||2 is the norm-2. It is worth noting that F(X) 

is a convex function [23]. So, the following equation is a 

sufficient condition for optimality. 
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Since RTR is a positive semi-definite matrix, so it 

has only positive eigenvalues [23]. As a result, the 

solution of (20) can be regarded as the following 

recursive expression. 
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Substituting the gradient of F(X(t)) into (21) gives 
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where t, T and ζ>0 are the iteration index, total 

number of iterations and relation parameter, 

respectively. It is clear that Eq. (22) has the correct fixed 

points X(t+1)=X(t), and X(t) is an approximate solution 

of (18). By defining the error E(t)=X(t)-X, in which X is 

the exact solution, the recursive expression of the error 

can be found as follows. 

( ) ( ) ( )1t t+ = −E 1 R E  (23) 

in which 1 is the identity matrix. The norm-2 of 

E(t+1) can be calculated as. 
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It is obvious that if ||1- ζR||2<1, the method will be 

convergent. If R is a symmetric positive definite matrix, 

the error tends to zero if |1- ζλi|<1, in which λi’s are the 

eigenvalues of R [24]. Nevertheless, in general case, it 

can be mathematically proved that the solution of (22) 

will be converges if and only if [24]. 
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where λmin and λmax are the minimum and maximum 

eigenvalues of R, respectively. For the cases that 

λmin(R)+λmax(R) is zero, the best value of ζ is 1/||R||2. Our 

studies show that for the practical applications, a high 

accuracy solution can be achieved by choosing T≤3. So, 

the proposed method is very fast. 

As mentioned before, by changing the scalar gain kp, 

the stability condition could be met. For this purpose, 

first, the poles are calculated by assuming kp=1. Then, by 

plotting the root locus diagram, the acceptable value of 

it can be determined, in which guarantees the stability 

condition. 

Our studies show that for most of the practical 

applications, when a stability condition is met, the 

passivity is also established. However, for other cases, 

the passivity condition can be acquired through the 

conventional two-step methods introduced in [22]. 

Moreover, the proposed method can be easily developed 

for Multi-Input-Multi-Output systems (MIMO) using the 

similar procedure introduced in [22]. 

 

III. RESULTS VERIFICATION AND 

DISCUSSION 
In this section, several test cases are examined to 

verify the performance of the proposed method. 

A. Noisy Data 

In the first case, a synthetic transfer function H(s) is 

considered. This function has 16 poles, which are 

reported in Table 1. The magnitude and phase of the 

reconstructed function Hr(s) using the proposed method 

are compared with the prescribed function H(s) in 

Figures (2) and (3), respectively. It is worth noting that 

Hr(s) is only synthesized with 12 poles, and the accuracy 

of the obtained results is good over a wide frequency 

range 2GHz≤ f ≤30GHz. 

Table 1. Poles and residues of TF of the first case 

Poles (GHz) Residues (GHz) 

-0.6132±j3.4551 -0.9877±j0.0809 

-0.3940±j7.3758 -0.2067±j0.0131 

-0.0880±j14.3024 -0.1382±j0.0145 

-0.4097±j17.7864 -0.1182±j0.0166 

-0.2991±j28.4622 -0.2426±j0.0145 

-0.6447±j35.2669 -0.4043±j0.0297 

-1.0135±j37.9655 -0.6787±j0.1465 

-0.5711±j57.4748 -0.2626±j0.1037 

r0=0.1 

 

 

 

 



 
 

Fig. 2. The magnitude of synthesized TF with 12 poles. 

 
 

Fig. 3. The phase of synthesized TF with 12 poles. 

 
 

Fig. 4. The magnitude of synthesized TF in presence of 

noise. 

 

 
 

Fig. 5. The phase of synthesized TF in presence of noise. 

Now, we want to investigate the performance of the 

method in the presence of noise. For this purpose, both 

real and imaginary parts of H(s) are infected by white 

Gaussian noise with signal to noise ratio (SNR) about 20 

dB. The proposed method is applied to the noise-infected 

data, and the obtained results are depicted in Figures (4), 

(5). Several fluctuations are seen in the lower frequency 

bands. For the proposed and other methods which are 

established based on the Least Square (LS) technique, 

the noisy data worsens the biasing effect of the LS 

solution. This is due to the fact that, noise perturbs the 

original position of the poles. To overcome this problem, 

it may require additional iterations to converge. But, 

additional iteration does not guarantee increased 

accuracy. Although, the accuracy of the method is low 

for the lower frequencies, but it is acceptable over the 

higher frequencies range. Hence, similar to the other 

techniques, the proposed method may be vulnerable in 

the presence of noise. 

B. Smalls Spherical Helix Antenna 

Electrically small antennas are widely used in 

electromagnetic compatibility (EMC) applications. The 

target of the second case is to equate an equivalent circuit 

model for a small spherical helix antenna over a ground 

plane. The number of arms, number of turns and total 

length of antenna are 3, 1.58 and 64.07cm, respectively. 

More details of the antenna can be found in [25]. The 

proposed method is applied to the measurement data of 

input impedance of the antenna. The synthesized results 

of real and imaginary parts of the under-studying antenna 

are depicted in Figure (6). The obtained model is 

synthesized using 6 poles. A very good agreement is seen 

between the measured and synthesized impedance of the 

antenna. After determining the equivalent model, return 

loss of the antenna can be calculated. In other words, 

after fitting the data of input impedance of the antenna in 

rational form, the equivalent circuit can be derived, and 



the other required parameters, such as return loss, can be 

easily determined. The synthesizing procedure can be 

done using well-known software like ADS or microwave 

office. 

Figure (7) shows a comparison between the 

calculated return loss using the model and those obtained 

by measurement. A very small frequency shift is seen. 

However, the accuracy of the proposed model is very 

good. 

 
 

Fig. 6. The obtained real and imaginary parts of input 

impedance of the small antenna. 

  
 

Fig. 7. The obtained return loss of the small antenna. 

 

C. Tschebyscheff Band-Pass Filter 

Filters are extensively used in the electronic and 

communications systems. In the third case, a band-pass 

Tschebyscheff filter over a frequency range 0≤ f ≤3GHz 

is regarded. The frequency response of the filter is 

generated using Advanced Design System (ADS). The 

lower, upper passband corners frequency, and the lower, 

upper stopband frequency edges of the desired response 

are 1GHz, 2GHz, 0.5GHz and 2.5GHz, respectively. 

Also, passband and stopband attenuation are 3dB and 20 

dB, respectively. After applying the proposed method, 

the synthesized results, including the input impedance 

and scattering parameters, are plotted in Figures (8), (9). 

The synthesizing procedure of the filter response is done 

using 6 poles. It is seen that the accuracy of the method 

is very well. 

 

 

 
 

Fig. 8. The obtained real and imaginary parts of 

input impedance of the passband filter. 

 
 

Fig. 9. The obtained frequency response of the 

passband filter. 

D. Substrate Integrated Waveguide Modeling 

Waveguides, including substrate integrated 

waveguide (SIW), are typically used in various 

applications in microwave engineering. Determining an 

equivalent circuit of a waveguide is complicated. In this 

example, the scattering responses of a non-uniform SIW 

over a high frequency range 14GHz≤ f ≤18GHz, 

including S11 and S21, are considered as the input data. 

The dielectric permittivity, loss tangent, substrate 

thickness, length of substrate, load and source 

impedances, diameter of vias, distance between vias and 

the minimum and maximum width of SIW are 3.66, 

0.0037, 0.254 mm, 44 mm, 50 Ω, 1mm, 2mm, 10mm and 



20 mm, respectively. In Figure (10), the synthesized 

results using the introduced method and measured data 

reported in [26] are compared. The accuracy of S21 is 

very good. A deviation is seen in the magnitude of S11 in 

the minimal frequencies. The reflection coefficient 

shows two resonances around frequencies 14.8 GHz and 

16.7 GHz. This is probably due to the fact that, the one 

or more zeros of the fitted H(s) in Eq. (2) are not properly 

matched in the modeling procedure. To improve the 

accuracy, the order of the model (N) in Eq. (1) or (2) can 

be increased. However, it can be seen that the obtained 

results are in a reasonable agreement. 

 

 
 

Fig. 10. The synthesized frequency response of the 

SIW. 

Table 2. The important parameters of all studied 

cases 

Case# 
I 

II III IV 
Noise-free Noisy 

N 12 15 6 6 8 

kp 1 1 1 1 1 

MSE 2.6e-3 2.4e-2 1.1e-3 4.5e-6 3.4e-4 

τ 2.0e9 1.0e6 7.9e3 3.41e2 2.3e5 

ζ 0.29 0.26 0.42 0.43 0.42 

time 

(ms) 
29 47 9.5 9.1 13.8 

T 1 3 1 1 1 

 

The important parameters of all studied cases, 

including the number of poles, scalar gain kp, mean 

square error (MSE), condition number (τ), relation 

parameter (ζ), required time and the total number of 

iterations (T), are reported in Table 2. In all examples, 

the stability condition is met for kp=1. For all studied 

cases, accuracy of the proposed method are very good. 

However, the error of the noisy data is a little high. It 

should be noted that the condition number shows the 

sensitivity of the proposed method with respect to the 

computational error (i.e., ill-conditioning). It is seen that 

for all examples, the condition number is an acceptable 

range in comparison to the conventional LSM [13]. The 

condition number required by the conventional LSM 

technique for the first to last example are 3.46e163, 

2.34e63, 1.73e62 and 1.67e94 respectively. It is seen that 

the condition number of the proposed method is very 

lower than the conventional LSM technique. Since, the 

total number of iteration for all cases is low, the running 

time is also low. Hence, the method is very fast. 

Table 3 contains a comparison of the proposed 

method and other introduced techniques in the literature, 

including Levy Method (LM), Weighted Least Square 

(WLS), Sanathanan Koerner (SK), Noda Iteration (NI), 

Levenberg-Marquardt method (LMM), and Data 

Integration (DI). The first five techniques are described 

in [22] and the last one is introduced in [13]. Comparison 

factors include the complexity, accuracy, efficiency, and 

noise resistance. 

Table 3. The comparison of the introduced and 

other methods 

 

 Complexity Accuracy Efficiency 
Noise 

Resistance 

This 

Work 
middle high high no 

LM low middle high no 

WLS middle middle low no 

SK high middle middle no 

NI high middle middle no 

LMM high low low no 

DI middle middle high yes 

 

It is obvious that any iterative technique like WLS, SK, 

NI and LMM are complex. Although the proposed 

approach is an iterative technique, but the number of 

iterations is very low (lower than three iterations) in 

comparison to the other ones. The computational cost of 

the non-iterative methods or the iterative methods with 

low iterations like the proposed method, LM and DI 

techniques, are very low. So, the efficiency of these 

methods will be high. The accuracy of each mentioned 

methods in this table can be concluded by the presented 

examples of each technique [13], [22]. It is directly 

expressed in [13], [22] that only DI method can be used 

for modeling of the noise-infected data. The performance 

of the other ones is weak in the presence of noisy data. 

 

IV. CONCLUSION 
In the presented work, a new method is proposed for 

modeling of a prescribed data in a rational 

approximation. This method is developed based on a 

hybrid combination of the conventional LSM, QR 

factorization and a very fast recursive regression 

technique. In the modeling procedure, a scalar gain 

parameter is defined to control the stability of the final 

model. Several theoretical and practical examples are 

investigated. Comparison of the obtained results shows 



that the introduced method is efficient, which provide a 

reasonable model with a very good accuracy. 
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