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ABSTRACT
State-of-the-art approaches to design, develop and optimize soft-
ware packet-processing programs are based on static compilation:
the compiler’s input is a description of the forwarding plane seman-
tics and the output is a binary that can accommodate any control
plane configuration or input traffic.

In this paper, we demonstrate that tracking control plane actions
and packet-level traffic dynamics at run time opens up new oppor-
tunities for code specialization. We present Morpheus, a system
working alongside static compilers that continuously optimizes the
targeted networking code. We introduce a number of new tech-
niques, from static code analysis to adaptive code instrumentation,
and we implement a toolbox of domain specific optimizations that
are not restricted to a specific data plane framework or program-
ming language. We apply Morpheus to several eBPF and DPDK
programs including Katran, Facebook’s production-grade load bal-
ancer. We compare Morpheus against state-of-the-art optimization
frameworks and show that it can bring up to 2x throughput im-
provement, while halving the 99th percentile latency.

CCS CONCEPTS
• Networks → Middle boxes / network appliances; Data cen-
ter networks; End nodes; • Software and its engineering →
Dynamic compilers; Just-in-time compilers.

KEYWORDS
Data Plane Compilation, LLVM, eBPF, XDP, DPDK

ACM Reference Format:
Sebastiano Miano, Alireza Sanaee, Fulvio Risso, Gábor Rétvári, and Gianni
Antichi. 2022. Domain Specific Run Time Optimization for Software Data
Planes. In Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Software Data Planes, packet processing programs implemented
on commodity servers, are widely adopted in real deployments
[9, 37, 44, 53, 75, 86, 93, 94]. Since data plane programs tend to be
performance-critical, the code is usually transformed through a
sequence of offline optimization steps (e.g., inlining, loop unrolling,
branch elimination, or vectorization [6, 59]) during the compilation
process [39, 57]. These are mainly static transformations, indepen-
dent of the actual input the code will process in operation, as this
is unknown until then [10, 28]. Thus, the resulting code is generic,
as it contains logic for protocols and features that may never be
triggered in a deployment, performs costly memory loads to access
values that are only known at run time, and takes difficult-to-predict
branches conditioned on variable data.

Dynamic compilation, in contrast, enables program optimization
based on invariant data computed at run time and produces code
that is specialized to the input the program is processing [7, 28, 38].
The idea is to continuously collect run time data about program
execution and then re-compile it to improve performance. This is
a well-known practice adopted by generic programming languages
(e.g., Java [28], JavaScript [38], and C/C++ [7]) and often produces
orders of magnitude more efficient code as shown for data-caching
services [74], datamining [21] and databases [55, 97]. Unfortunately,
this is not the case for packet-processing programs [6, 29, 68], since
their performance critically depends on highly dynamic domain-
specific knowledge, such as traffic patterns, match-action table con-
tent, and network configuration (§2). Obtaining and tracking this
knowledge efficiently is extremely challenging: lightweight online
tracing tools (e.g., Linux perf [25]) are restricted to CPU perfor-
mance counters, whereas capturing all domain-specific information
requires tracking packet-level and instruction-level logs which is
prohibitively costly. As an example, GCC FDO instrumentation,
when applied in this context, may easily incur ~900% mean over-
head [54]. Therefore, existing solutions tailored for the networking
domain (Table 2) resort to offline profiling, which requires operators
to collect representative samples of data-plane configuration and
match-action tables from production deployments and still com-
pletely miss out on dynamic traffic-level insights. The main chal-
lengewe tackle in this paper is unsupervised dynamic compilation for
network code, which captures just enough domain-specific knowl-
edge to enable efficient dynamic performance optimization, but
inexpensive enough to be run online, inside the data plane pipeline.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Name Domain
specific

Unsupervised
adaptation to
control plane
actions

Unsupervised
adaptation to
data plane
traffic

Data plane
agnostic Description

Bolt [74] ✗ - - ✓ Offline profile-guided optimizer for generic software code.
AutoFDO [21] ✗ - - ✓ Offline profile-guided optimizer for generic software code.
eSwitch [68] ✓ ✓ ✗ ✗ Policy-driven optimizer for DPDK-based OpenFlow software switches.
P5 [5] ✓ ✗ ✗ ✗ Policy-driven optimizer for P4/RMT packet-processing pipelines.
P2GO [91] ✓ ✗ ✗ ✗ Offline profile-guided optimizer for P4/RMT packet-processing pipelines.
PacketMill [34] ✓ ✗ ✗ ✗ Packet metadata management optimizer for DPDK-based software data planes.
NFReducer [29] ✓ ✗ ✗ ✓ Policy-driven optimizer for network function virtualization.
Morpheus ✓ ✓ ✓ ✓ Run time compiler and optimizer framework for arbitrary networking code.

Table 1: A comparison of some popular dynamic optimization frameworks and Morpheus.

We present Morpheus, a system to optimize network code at
run time using domain-specific dynamic optimization techniques.
Morpheus operates in unsupervised mode: it does not require any
a priori knowledge about control plane configuration or data plane
traffic patterns. We discuss its design challenges (§3), such as auto-
matically tracking highly variable input (e.g., inbound traffic) that
may change tens, or hundreds of millions times per second. We show
that the required profiling and tracing facilities, if implemented
carelessly, can easily nullify the performance benefit of code spe-
cialization. We introduce several novel techniques; we leverage
static code analysis to build an understanding of the program offline
and propose a low-overhead adaptive instrumentation mechanism
to minimize the amount of data collected online. Then, we invoke
several dynamic optimization passes (e.g., dead code elimination,
data-structure specialization, just-in-time compilation, and branch
injection) to specialize the code against control plane actions and
data plane traffic patterns. Finally, we protect the consistency of
the specialized code against changes to input that is considered
invariant by injecting guards (§4).

Our implementation exploits the LLVM JIT compiler toolchain
to apply the above ideas at the LLVM Intermediate Representation
(IR) level in a generic fashion and separates data plane specific
code to several backend plugins to minimize the effort in porting
Morpheus to a new architecture (§5). The code currently contains
an eBPF and a DPDK/C plugin. We apply Morpheus to a number
of packet processing programs, including the production-grade L4
load balancer Katran from Facebook, using synthetic and real-world
traffic traces (§6). Our results show that Morpheus can improve
the performance of the unoptimized (statically compiled) eBPF ap-
plication up to 94%, while reducing packet-processing latency by
up to 123% at the 99th percentile. Applying Morpheus to a DPDK
program, we increase performance by up to 469%. Finally, we mea-
sured Morpheus against state-of-the-art network code optimization
frameworks such as ESwitch [68] and PacketMill [34]: we show
that Morpheus boosts the throughput by up to 80% and 294%, re-
spectively, compared to existing work.
Contributions. In this paper, we:
• demonstrate that tracking packet-level dynamics opens up new
opportunities for network code specialization;

• design and implement Morpheus, a system working with stan-
dard compilers to optimize network code at run time;

• extensively evaluated Morpheus by applying it to two differ-
ent I/O technologies (i.e., DPDK and eBPF), and a number of
programs including production-grade software;

• share the code in open source to foster reproducibility [63]1.

2 THE CASE FOR DOMAIN-SPECIFIC
OPTIMIZATIONS

State-of-the-art profile guided optimization tools (PGO), such as
Google’s AutoFDO [21, 46] and Facebook’s Bolt [74], can dynami-
cally rewrite the targeted code using execution profiles recorded of-
fline; e.g., by simplifying load instructions or reordering basic blocks
to speed up the most frequently executed code paths. Fig.1a shows
the single-core throughout obtained when applying AutoFDO and
Bolt combined (PGO) to a sample DPDK firewall application [31],
which performs basic L2/L3/L4 packet processing followed by a
lookup into an access control list (ACL), over a stream of 64-byte
packets at 40Gb line rate (see §6 for the details of the configuration).
In line with the expectations [21, 54, 74], we managed to improve
the performance of the targeted code by a mere 4.2%.

The behavior of packet-processing code can, however, be deeply
influenced by specific metrics (e.g., match-action table access pat-
terns, table sizes and content) that cannot be tracked with generic
profiling mechanisms (i.e., Linux perf) used by standard PGO tools.
Lacking such domain-specific insight, meaningful only in the packet
processing context, generic purpose PGO tools cannot be fully ex-
ploited for dynamically optimizing network code [6, 29, 34, 68, 79].

To understand the potential of domain-specific optimizations, we
present a series of preliminary benchmarks using real network code.
We consider two applications: the DPDK sample firewall discussed
above and Katran [44], Facebook’s open-source L4 eBPF/XDP load
balancer.
The promise of policy-driven optimizations.Most data-plane
programs are developed as a single monolithic block containing
various features that might be activated depending on the specific
network configuration in use at any instance of time. For example,
many large-scale cloud deployments still run on pure IPv4 and so
the hypervisor switches would never have to process IPv6 packets
[48] or adopt a single virtualization technology (VLAN/VxLAN/
GRE/Geneve/GTP) and so switches would never see other encap-
sulations in operation [53, 73]. This implies that, depending on
dynamic input that is unknown at compile time, a huge body of

1A working version with latest updates is also available here: https://github.com/
Morpheus-compiler/Morpheus

https://github.com/Morpheus-compiler/Morpheus
https://github.com/Morpheus-compiler/Morpheus
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unused code gets assembled into the program, boosting code size
and causing excess branch prediction misses, negatively impacting
the overall performance [6, 29, 60, 66].

Removing unused code based on run time configuration can have
a profound effect on software performance. To show this, we con-
figured our firewall as a TCP signature-based Intrusion Detection
System (IDS), with only TCP wildcard rules generated with Class-
Bench [90]. This opens up an opportunity for optimization: all
non-TCP packets can bypass the ACL table, avoiding a wasteful
lookup. Fig. 1b shows the run time benefit of this optimization (un-
der the Run time configuration bar) for a synthetic input traffic trace
where only about 10% of the packets are UDP. Although around
90% of the traffic still has to undergo an ACL lookup, just avoid-
ing this costly operation for a small percentage of traffic increases
performance with about 4.7%, without changing the semantic in
any way. In many practical scenarios, like DDoS blocking, security
groups [45, 71] or whitelist-based access control, most firewall rules
are fully-specified; for instance, in the official Stanford ruleset [52]
on average ~45% of the rules are purely exact-matching. This opens
up another dynamic optimization opportunity: add in front of the
ACL an exact-matching lookup table to sidestep the costly wildcard
lookup. The result in Fig. 1b (under the Table specialization bar)
shows a further ~8% performance improvement with this simple
modification.

A similar effect is visible with the load-balancer (Fig. 1c): configur-
ing Katran as an HTTP load balancer [14, 70] allows to dynamically
remove all the branches and code unrelated to IPv4/TCP processing,
which reduces the number of instructions by ~58% (as reported by
the Linux perf tool), yielding ~17,1% decrease in the number of
L1 instruction cache-load misses. Better cache locality then trans-
lates into ~12% performance improvement (from 4.09 Mpps to 4.69
Mpps).
Takeaway #1: Specializing networking code for slowly changing input,
like flow-rules, ACLs and control plane policies, substantially improves
the performance of software data planes.

The need for tracking packet-level dynamics. The potential to
optimize code for specific network configurations has been explored
in prior work, for OpenFlow [68], P4 software [79, 91] and hardware
targets [5], network functions [29], and programmable switches
[34] (see Table 1). In order to maximize performance, however, we
need to go beyond specializing the code for relatively stable run
time configuration and apply optimizations at the packet level.

Consider the DPDK firewall application. We installed 1000 wild-
card rules and generated highly skewed traffic, so that from the
thousand active unique 5-tuple flows only 5% accounts for 95% of
the traffic. This opens up the opportunity to inline the match-action
logic for the recurring rules. As the results show (Fig. 1b, under the
Fast Path bar), we obtain ~42% performance improvement with this
simple traffic-dependent optimization. With the eBPF load balancer
the effect is also visible: configuring 10 Virtual IPs (VIP) (both TCP
and UDP), each with hundred different back-end servers, a similarly
skewed input traffic trace presents the same opportunity to inline
code, yielding ~24% performance edge (Fig.1c).
Takeaway #2: For maximum performance, networking code must be
specialized with respect to inbound traffic patterns, despite the poten-
tially daunting packet-level dynamics.
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Figure 1: (a) Impact of AutoFDO+Bolt (PGO) and performance
breakdown when applying a set of domain specific optimiza-
tions to both (b) the DPDK firewall and (c) the Facebook’s
Katran eBPF load balancer. We were unable to run PGO on
the latter, since existing tools do not support eBPF targets.

3 CHALLENGES
Static compilation performs optimizations that depend only on
compile-time constants: it does not optimize variables whose value
is invariant during the execution of the program but remain un-
known until then. Dynamic compilation, in contrast, enables spe-
cializing the code with respect to invariant run time data [7]. This
opens up a broad toolbox of optimization opportunities, to propa-
gate, fold and inline constants, remove branches and eliminate code
never triggered in operation, or even to completely sidestep costly
match-action table processing. The unsupervised optimization of
networking code, however, presents a number of unique challenges:
Challenge #1: Low-overhead run time instrumentation. Un-
supervised dynamic optimization rests on the assumption that pro-
gram variables remaining invariant for an extended period of time
are promptly detected. This is the job of profiling tools. Although
low-overhead solutions exist [25, 26, 40, 58], they track high-level
code behavior information such as cache events, branch misses or
memory accesses which is not enough for packet-processing code
(§2). Less lightweight andmore accurate tools [8, 19, 27], instead, are
not practical to be used at data-plane time scales: recording at run
time instruction-level logs for code that processes potentially tens
of millions of packets per second can introduce an overhead that
makes the subsequent optimization pointless. For example, GCC
FDO instrumentation can easily incur ~900% mean overhead [54].
We tackle this challenge in Morpheus by using static code analy-
sis to understand the structure of the program offline (§4.1) and
leveraging an adaptive instrumentation mechanism to minimize the
amount of data that is collected online (§4.2).
Challenge #2: Dynamic code generation. Once run time profil-
ing information is available, the dynamic compiler applies domain-
specific optimizations to specialize the code for that profile. Here,
code generationmust integrate seamlessly into the compiler toolchain,
to avoid interference with the built-in optimizations. Furthermore,
a toolbox of domain-specific optimization passes must be identi-
fied, which, when applied to networking code, promise significant
speedup (§4.3).
Challenge #3: Consistency. The dynamically optimized data
plane is contingent on the assumption that the data considered
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Figure 2: The Morpheus compiler pipeline.

invariant during the compilation indeed remains so: any update to
such data would immediately invalidate the specialized code. Here,
the challenge is to guarantee data plane consistency under any
modification to the invariants on which the specialized code relies.
We tackle this challenge by injecting guards at critical points in
the code that allow the execution to fall back to the generic unopti-
mized path whenever an invariant changes. Since the performance
burden on each packet, possibly taking several guards during its
journey, can be taxing, we introduce a guard elision heuristic to
sidestep useless guards (§4.3). To do so, our static code analysis
tool must have enough understanding of the program to separate
stateless from stateful code (§4.3). Finally, mechanisms are needed
to atomically update the data plane once the code is re-optimized
for the new invariants (§4.4).

4 MORPHEUS COMPILATION PIPELINE
We designed Morpheus with an ambitious goal: to build a portable
dynamic software data plane compilation and optimization tool-
box. The system architecture is shown in Fig. 2. Morpheus accepts
the input code at the Intermediate Representation (IR) level. The
pipeline is triggered periodically at given time slots to readjust the
code for possibly changed traffic patterns and control plane updates.
At each invocation, the compiler performs an extensive offline code
analysis to understand the program control/data flow (see §4.1) and
then reads a comprehensive set of instrumentation tables to extract
run time match-action table access patterns (see §4.2). Finally, Mor-
pheus invokes a set of dynamic compilation passes to specialize the
code (see §4.3) and then replaces the running data plane with the
new, optimized code on the fly (see §4.4).

Below, we review the above steps in more detail. We use the
simplified main loop of the Katran XDP/eBPF load balancer [44]
as a running example (see Listing 1). The main loop is invoked by
the Linux XDP datapath for each packet. It starts by parsing the
L3 (line 4) and the L4 (line 5) header fields, using a special case for
QUIC traffic as this is not trivial to identify [56]. In particular, QUIC
flows are marked by a flag stored in the VIP record (line 12); if the
flag is set, then a special function is called to deal with the QUIC
protocol. Otherwise, a lookup in the connection table (line 17) is
done: in case of a match, the ID of the backend assigned to the
flow is returned; if no connection tracking information is found, a
new backend is allocated and written back to the connection table
(line 20). Finally, the IP address of the backend associated with
the packet is read from the backend pool (line 24), the packet is
encapsulated (line 25) and sent out (line 26).

4.1 Code Analysis
To be able to specialize code, we need to have a good understanding
of the possible inputs it may receive during run time. Networking
code tends to be fairly simplistic in this regard: commonly, the input
consists of the context, which in eBPF/XDP corresponds to the raw

Listing 1: Simplified Katran main loop
1 i n t p r o c e s s _ p a c k e t ( pa cke t pkt ) {
2 u32 backend_ idx ;
3
4 p a r s e _ l 3 _ h e a d e r s ( pkt ) ;
5 p a r s e _ l 4 _ h e a d e r s ( pkt ) ;
6
7 v ip . v ip = pkt . d s t I P ;
8 v ip . po r t = pkt . d s t P o r t ;
9 v ip . p ro to = pkt . p ro to ;
10 v i p _ i n f o = vip_map . lookup ( v ip ) ;
11
12 i f ( v i p _ i n f o −> f l a g s & F_QUIC_VIP ) {
13 backend_ idx = hand l e_qu i c ( ) ;
14 goto send ;
15 }
16
17 backend_ idx = conn_ t ab l e . lookup ( pkt ) ;
18 i f ( ! backend_ idx ) {
19 backend_ idx = a s s i gn_ t o_ba ckend ( pkt )
20 conn_ t ab l e . update ( pkt , backend_ idx ) ;
21 }
22
23 send :
24 backend = backend_poo l . lookup ( backend_ idx ) ;
25 en c a p s u l a t e _ pk t ( backend −> ip ) ;
26 r e t u r n XDP_TX ;
27 }

packet buffers, and the content of match-action tables named maps
in the eBPF world (Listing 1). Since input traffic may be highly
variable and provides limited visibility into program operation,
Morpheus does not monitor this input directly [6]. Rather, it relies
on tracking the map access patterns and uses this information
to indirectly reconstruct aggregate traffic dynamics and identify
invariants along frequently taken control flow branches.

In the first pass, Morpheus uses comprehensive statement-level
static code analysis to identify all map access sites in the code, un-
derstand whether a particular access is a read or a write operation,
and reason about the way the result is used later in the code. In
particular, signature-based call site analysis is used to track map
lookup and update calls, and then a combination of memory de-
pendency analysis [4] and alias analysis [3] is performed to match
map lookups to map updates. Maps that are never modified from
within the data plane are marked as read-only (RO) and the rest
as read-write (RW). Note that RO maps may still be modified from
user space, but such control-plane actions tend to occur at a coarser
timescale compared to RW maps, which may be updated with each
packet. This observation will then allow to apply more aggressive
optimizations to stateless code, which interacts only with relatively
stable RO maps, and resort to conservative optimization strategies
when specializing stateful code, which depend on potentially highly
variable RW maps.
Running example. Consider the Katran main loop (Listing 1).
Morpheus leverages the domain-specific knowledge, provided by
the eBPF data-plane plugin (§5.1), to identify map reads by the
map.lookup eBPF helper signature and map writes either via map.-
update calls or a direct pointer dereference. Thus, map backend_-
pool is marked as RO and conn_table as RW. For vip_map, mem-
ory dependency analysis finds an access via a pointer (line 12), but
since this conditional statement does not modify the entry and no
other alias is found, vip_map is marked as RO as well.



Domain Specific Run Time Optimization for Software Data Planes Conference’17, July 2017, Washington, DC, USA

Optimization Description Small RO maps Large RO maps RWmaps Traffic-dependent
JIT (§4.3.1) inline frequently hit table entries into the code ✓ ✓ ✓ ✓

Table Elimination (§4.3.1) remove empty tables ✓ ✓ ✗ ✗

Constant Propagation (§4.3.2) substitute run time constants into expressions ✓ ✓ ✗ ✓

Dead Code Elimination (§4.3.3) remove branches that are not being used ✓ ✓ ✗ ✓

Data Structure Specialization (§4.3.4) adapt map implementation to the entries stored ✓ ✓ ✓ ✗

Branch Injection (§4.3.5) prevent table lookup for select inputs ✓ ✓ ✗ ✗

Guard Elision (§4.3.6) eliminate useless guards ✓ ✓ ✗ ✗

Table 2: Dynamic optimizations in Morpheus. Applicability of each optimization depends on the map size, access profile
(RO/RW), and availability of instrumentation information. Note that optimizations marked as "traffic-dependent" can also be
applied, at least partially, without packet-level information (e.g., small RO maps can always just-in-time compiled). For full
efficiency, these passes rely on timely instrumentation information (e.g., to JIT heavy hitters from a large map as a fast-path).

4.2 Instrumentation
In the second pass, Morpheus profiles the dynamics of the input
traffic by generating heatmaps of the maps’ access patterns, so that
the collected statistics can then be used to drive the subsequent
optimization passes. Specifically, Morpheus uses a sketch to keep
track of map accesses, by storing instrumentation data in a LRU
(least-recently-used) cache alongside each map and adapting the
sampling rate along several dimensions to control the run time cost
of profiling. The dimensions of adaptation are as follows. (1) Size:
small maps are unconditionally inlined into the code and hence
instrumentation is disabled for these maps. (2) Dynamics:Morpheus
does not record each map access, but rather it samples just enough
information to reliably detect heavy hitters [33]. (3) Locality: in-
strumentation caches are per-CPU and hence track the local traffic
conditions at each execution thread separately, i.e., specific to the
RSS context. This improves per-core heavy hitter detection in pres-
ence of highly asymmetric traffic. (4) Scope: after identifying heavy
hitters in the CPU context, local instrumentation caches are run
together to identify global heavy hitters. (5) Context: if a map is
accessed from multiple call sites then each one is instrumented
separately, so that profiling information is specific to the calling
context. (6) Application-specific insight: the operator can manually
disable instrumentation for a map if it is clear from operational
context that access patterns prohibit any traffic-dependent opti-
mization (see Table 2). Traffic-independent optimizations are still
applied by Morpheus in such cases.
Running example. Consider the vip_map in our sample program,
identified as an RO map in the first pass. In addition, suppose that
there are hundreds of VIPs associated with TCP services stored
in the vip_map and only a single one is running QUIC, but the
QUIC service receives the vast majority of run time hits. Then,
instrumentation will identify the QUIC VIP as a heavy hitter and
Morpheus will seize the opportunity to specialize the subsequent
QUIC call-path explicitly. Note that this comes without direct traf-
fic monitoring, only using indirect traffic-specific instrumentation
information.

4.3 Optimization Passes
The third step of the compilation pipeline is where all online code
transformations are applied. Before deploying any code transforma-
tion, Morpheus has to protect the consistency of the new specialized
code against changes to the invariants the optimizations depend

on. To do this, Morpheus uses guards, a standard mechanism used
by dynamic compilers to guarantee code consistency by injecting
simple run time version checks at specific points in the code [43].
When the control flow reaches a guard, it atomically checks if the
version of the guard is the same as the version of the optimized
code; if yes, execution jumps to the optimized version, otherwise
it falls back to the original code (“deoptimization”). Below, we de-
scribe all the various run time optimizations currently applied by
Morpheus; see Table 2 for a summary.

4.3.1 Just-in-time compilation (JIT). Empirical evidence (see §2)
suggests that table lookup is a particularly taxing operation for
software data planes. This is because certain match-action table
types (e.g., LPM or wildcard), that are relatively simple in hardware,
are notoriously expensive to implement in software [35]. Therefore,
Morpheus specializes tables at run timewith respect to their content
and dynamic access patterns, as learned in the instrumentation pass.
Specifically, empty maps are completely removed, small maps are
unconditionally just-in-time (JIT) compiled into equivalent code,
and larger maps are preceded by a similar JIT compiled fast-path
cache, which is in charge of handling the heavy hitters. Note that the
consistency of the the fast-path cache must be carefully protected
against potential changes made to the specialized map entries;
Morpheus places guards into the code to ensure this (see later).
Running example. Consider again Listing 1 and suppose that
there are only two VIPs configured in the vip_map. Being an exact-
matching hash it is trivial to compile the vip_map into an “if-then-
else” statement, representing each distinct map key as a separate
branch. To do so, Morpheus uses the insights from the code analysis
phase to discover that relevant fields in the lookup are the destina-
tion address (pkt.dstIP), port (pkt.dstPort) and the IP protocol
(pkt.proto). Then, for each entry in the map, it builds a separate
“if” conditional to compare the entry’s fields against the relevant
packet header fields and chains these with “else” blocks. Since the
instrumentation and the just-in-time compiled map are specific
to unique combinations of destination address/port and protocol,
the lookup semantics is correctly preserved even for longest prefix
matching (LPM) caches and wildcard lookup.

4.3.2 Constant propagation. Specializing a table does not only ben-
efit the performance of the lookup process but has far reaching
consequences for the rest of the code. This is because a specialized
table contains all the constants (keys and values) inlined, which
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Figure 3: Morpheus handles the optimizations and provide code consistency mechanisms that are table-dependent.

makes it possible to propagate these constants to the surrounding
code so to inline memory accesses. In Morpheus, constant prop-
agation opportunistically extends to larger maps that cannot be
wholly just-in-time compiled: if a certain table field is found to
be constant across all entries, then it is also inlined into the sur-
rounding code. This optimization is thereby two-faceted: it can
be used to specialize the code with respect to the inbound traffic
(traffic-dependent, former case) but can also be applied without
packet-level information (traffic-independent, the latter case). Mor-
pheus does not implement constant propagation itself; rather, it
relies on the underlying compiler toolchain to perform this pass.
Running example. Suppose there are only two backends in the
backend_pool. Here, the map lookup (line 24) is rewritten into
an “if-then-else” statement, with two branches for each backend.
Correspondingly, in each branch the value of the backend variable
is constant, which allows to save the costly memory dereference
backend->ip (line 25) by inlining the backend IP address right into
the specialized code.

4.3.3 Dead code elimination. Depending on the specific configu-
ration, a large portion of code may sit unused in memory at any
point in time. Such “dead code” can be found using a combination of
static code analysis and the instrumentation information obtained
from the previous pass. Upon detection, Morpheus removes all dead
code on the optimized code path. As previously, this operation is
outsourced to the compiler.
Running example. Consider the vip_map lookup site (line 10)
and suppose that there are no QUIC services configured. As a con-
sequence, the vip_info->flags is identical across all the entries
in the vip_map and the constant propagation pass inlines this con-
stant into the subsequent conditional (line 10). Thus, the condition
vip_info->flags & F_QUIC_VIP always evaluates to false and
the subsequent branch can be safely removed.

4.3.4 Data Structure Specialization. Morpheus adapts the layout,
size and lookup algorithm of a table against its content at run time.
For example, if all entries share the same prefix length in an LPM
map, then amuch faster exact-matching cache [68] can be used. This
is done by first associating a backend-specific cost function with
each applicable representation (this can be automatically inferred
using static analysis and symbolic execution [74, 76]), generate the

expected cost of each candidate, and finally implement the table
that minimizes the cost.

4.3.5 Branch Injection. This pass applies to the cases when certain
fields take only few possible values in a table, which makes it
possible to eliminate subsequent code that handles the rest of the
values. This optimization was used in §2 to sidestep the ACL lookup
for UDP packets in the firewall use case: if we observe that the “IP
protocol” field can have only a single value in the ACL (e.g., TCP),
then we can inject a conditional statement before the ACL lookup
to check if the IP protocol field in a packet is TCP, use symbolic
execution to track the use of this value throughout the resultant
branch, and invoke dead code elimination to remove the useless
ACL lookup on the non-TCP “else” branch.

4.3.6 Guard elision. As discussed before, Morpheus uses guards to
protect the consistency of the optimized code. Since each packet
may need to pass multiple checks while traversing the datapath,
guards may introduce non trivial run time overhead [92]. To mit-
igate this, Morpheus heuristically eliminates as many guards as
possible; this is achieved by using different schemes depending
if changes to the code are made from the control plane or from
the data-plane itself, as in the case when a program implements a
stateful network function.
Handling control plane updates. Theoretically, each table should
be protected by a guard when the contents are modified from the
control plane. This would require packets to perform one costly
guard check for each table. To reduce this overhead, Morpheus
collapses all table-specific guards protecting against control plane
updates into a single program-level guard, injected at the program
entry point. Once an RO map gets updated by the control plane,
the program-level guard directs all incoming packets to the original
(unoptimized) datapath until the next compilation cycle kicks in to
re-optimize the code with respect to the new table content.
Handling updates within the data plane. The optimized dat-
apath must be protected from data-plane updates as well, which
requires an explicit guard at all access sites for RW maps. If the
guard tests valid then a query is made into the just-in-time com-
piled fast-path map cache and, on cache hit, the result is used in
the subsequent code. Once a modification is made to the map from
inside the data plane, the guard is invalidated and map lookup falls
back to the original map.
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Fig. 3 presents a breakdown of the strategies Morpheus uses to
protect the consistency of optimized code. For RW maps (Fig. 3a),
first an instrumentation cache is inlined at the access sites, fol-
lowed by a guard that protects the just-in-time compiled fast-path
against data-plane updates. Note that the constant propagation and
dead code elimination passes are suppressed, since these passes
may modify the code after the map lookup and the guard does not
protect these optimizations. In contrast, RO map lookups (Fig. 3b
and Fig. 3c) elide the guard, because only control-plane updates
could invalidate the optimizations in this case but these are cov-
ered by the program-level guard. RO maps are specialized more
aggressively than RW maps, by enabling all optimization passes.
Finally, additional overhead can be shaved off for small RO tables
by removing the fall-back map all together (Fig. 4c).
Running example. Once static code analysis confirms that the
vip_map and backend_pool maps are RO, Morpheus opportunis-
tically eliminates the corresponding guards at the call site. This
then implies that, as long as the VIPs and the backend pool are
invariant, the optimized code elides the guard. Since the conn_-
table map is RW, it is protected with a specific guard at the call
site (line 17). Thus, the specialized map is used only as long as the
connection tracking module’s state remains constant; once a new
flow is introduced into conn_table (line 20) the specialized code is
immediately invalidated by bumping the data-plane version. This
does not invalidate all optimizations: as long as the rest of the (RO)
maps are not updated by the control plane, the program-level guard
remains valid and the corresponding RO map specializations still
apply.

4.4 Update
Upon invocation, Morpheus executes the above passes to create
the optimized datapath and uses the native compiler toolchain to
transform the optimized code to target native code. Meanwhile,
control plane updates are temporarily queued without being pro-
cessed. This allows the “old” code to process packets without any
disruption while the optimization takes place. Once compilation
is finished, the optimized code is injected into the data path, the
program-level guard is updated [41] and the outstanding table up-
dates are executed.

5 IMPLEMENTATION
Morpheus is implemented in about 6000 lines of C++ code and
it is openly available at https://github.com/Morpheus-compiler/
Morpheus, with the artifacts archived on Zenodo [63]. The code is
separated into a data plane independent portable core, containing
the compiler passes, and technology-specific plugins to interact
with the underlying technology (i.e., eBPF, DPDK).

The Morpheus core extends the LLVM [57] compiler toolchain
(v10.0.1) for code manipulation and run time code generation. We
opted to implement Morpheus at the intermediate representation (IR)
level as it allows to reason about the running code using a relatively
high-level language framework without compromising on code
generation time. Moreover, this also makes the Morpheus core
portable across different data plane frameworks and programming
languages [85].

The data plane plugins are abstracted via a backend API. This API
exports a set of functions for the core to identify match-action table
access sites based on data-plane specific call signatures; compute
cost functions for data structure specialization; rewrite data plane
dependent code using templates; and provide an interface to in-
ject guards. Additionally, the backend can channel instrumentation
data from the data plane to the compiler core, implement the data
plane dependent parts of the pipeline update mechanism, and pro-
vide a mechanism for the Morpheus core to intercept, inspect, and
queue any update made by the control plane. The latter allows the
compilation pipeline to be triggered when Morpheus intercepts a
control plane event, e.g., an update to a table. Currently, only eBPF
(fully) and DPDK (partially) are supported, but the architecture is
generic enough to be extended to essentially any I/O framework,
like netmap [81] or AF_XDP [2].

5.1 The eBPF Plugin
Morpheus leverages the Polycube [65] framework as an eBPF back-
end to manage chains of in-kernel packet processing programs.
Polycube readily delivers almost all the needed components for
an eBPF backend. We added a mechanism for updating the data
plane program on-the-fly and defined templates to inject guards.
We discuss these components next.
Pipeline update. Once the optimized program is built, Morpheus
calls the eBPF LLVM backend to generate the final eBPF native
code, loads the new program into the kernel using the bpf() system
call, and directs execution to the new code. In Polycube, a generic
data plane program is usually realized as a chain of small eBPF
programs connected via the eBPF tail-call mechanism, using a
BPF_PROG_ARRAY map to get the address of the entry point of the
next eBPF program to execute. Thus, injecting a new version of
an eBPF program boils down to atomically update the BPF_PROG_-
ARRAY map entry pointing to it with the address of the new code.
Guards. Morpheus relies on guards to protect the specialized code
against map updates. The program-level guard is implemented
as a simple run time version check [41]. For stateful processing,
Morpheus installs a guard at each map lookup site and injects a
guard update pre-handler at the instruction address corresponding
to the map update eBPF function (map_update_elem). This handler
will then safely invalidate the guard before executing the map
update.

5.2 The DPDK Plugin
Morpheus leverages FastClick [13], a framework to manage packet-
processing applications based on DPDK. FastClick makes imple-
menting most components of the backend API trivial; below we
report only on pipeline updates and guards.
Pipeline update. A FastClick program is assembled from primi-
tive network functions, called elements, connected into a dataflow
graph. Every FastClick element holds a pointer to the next element
along the processing chain. To switch between different element
implementations at run time, Morpheus adds a level of indirection
to the FastClick pipeline: every time an element would pass execu-
tion to the next one, the corresponding function call is conveyed
through a trampoline, which stores the real address of the next
element to be called. Then, atomic pipeline update simplifies into

https://github.com/Morpheus-compiler/Morpheus
https://github.com/Morpheus-compiler/Morpheus
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rewriting the corresponding trampoline to the address of the new
code. In contrast to eBPF, which explicitly externalizes into sepa-
rate maps all program data intended to survive a single packet’s
context, a FastClick element can hold non-trivial internal state,
which would need to be tediously copied into the new element. As
a workaround, our DPDK plugin disables dynamic optimizations
for stateful FastClick elements.
Guards. Since stateful FastClick elements are never optimized in
Morpheus and RO elements always elide the guard, our DPDK
plugin currently does not implement guards, except a program-
level version check at the entry point.

6 EVALUATION
Our testbed includes two servers connected back-to-back with a
dual-port Intel XL710 40Gbps NIC. The first, a 2x10-core Intel Xeon
Silver 4210R CPU @2.40GHz with support for Intel’s Data Direct
I/O (DDIO) [1] and 27.5 MB of L3 cache, runs the various appli-
cations under consideration. The second, a 2x10 Intel Xeon Silver
4114 CPU @2.20GHz with 13.75MB of L3 cache, is used as packet
generator. Both servers are installed with Ubuntu 20.04.2, with the
former running kernel 5.10.9 and the latter kernel 4.15.0-112. We
also configured the NIC Receive-Side Scaling (RSS) to redirect all
flows to a single receive queue, forcing the applications to be exe-
cuted on a single CPU core, while Morpheus was pinned to another
CPU core on the device-under-test (DUT).

In our tests, we used pktgen [30] with DPDK v20.11.0 to generate
traffic and report the throughput results, and the DPDK burst replay
tool [80] to replay the different packet traces. Unless otherwise
stated, we report the average single-core throughput across five
different runs of each benchmark, measured at the minimum packet
size (64-bytes). For latency tests, we used Moongen [32] to estimate
the round-trip-time of a packet from the generator to the DUT
and back. Finally, we used perf v5.10 to characterize the micro-
architectural metrics of the DUT (e.g., cache misses, cycles, number
of instructions).

In order to benchmark Morpheus on real applications, we chose
four eBPF/XDP-based packet processing programs from the open-
source eBPF/XDP reference network function virtualization frame-
work Polycube [67], plus Facebook’s Katran load-balancer used
earlier as a running example [44].

The L2 switch, the Router and the NAT applications were taken
from Polycube [67]. The L2 switch use case is a functional Ethernet
switch supporting 802.1Q VLAN and STP, with STP and flooding
delegated to the control plane while learning and forwarding im-
plemented entirely in eBPF, using an exact-matching MAC table
supporting up to 4K entries. The Router use case implements a
standard IP router, with RFC-1812 header checks, next-hop pro-
cessing and checksum rewriting, configured with an LPM table
taken from the Stanford routing tables [52]. The NAT is an eBPF
re-implementation of the corresponding Linux Netfilter application,
configured with a single two-way SNAT/masquerading rule: the
source IP of every packet is replaced with the IP of the outgoing
NAT port and a separate L4 source port is allocated for each new
flow. BPF-iptables is an eBPF/XDP clone [64] of the well-known
Linux iptables framework, configured with 5-tuple rules generated
by Classbench [90]. We used the Classbench trace generator [89]
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to generate packets matching the created rule set using a Pareto
cumulative density function to control the locality of reference. We
used the same default parameters suggested by the ClassBench
paper [90] to generate traces of varying locality, in particular the
no-locality trace uses 𝛼 = 1, 𝛽 = 0 as Pareto parameters, the low lo-
cality uses 𝛼 = 1, 𝛽 = 0.0001, and the high locality uses 𝛼 = 1, 𝛽 = 1.
Finally, Katran [44] was configured as a web-frontend, with 10 TCP
services/VIPs and 100 backend servers for each VIP.

For each benchmark, we generated 3 traffic traces with varying
locality, to demonstrate the ability of Morpheus to track packet-
level dynamics and optimize the programs accordingly. In particular,
we created a high-locality traffic trace, where few flows account
for most of the traffic, a no-locality trace with flows generated at
random by a uniform distribution and a low-locality trace that sits
in the middle between the two previous cases.

6.1 Benefits of Optimizations
We first show the impact of Morpheus on the mentioned programs,
when attached to the XDP hook of the ingress interface.
Morpheus improves packet-processing throughput. In Fig. 4,
we show the impact of Morpheus under different traffic conditions.
Throughput is defined as the maximum packet-rate sustained by
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Figure 6: 99th percentile (P99) latency with Morpheus. The
graph shows both the latency for the optimized and non-
optimized code paths, under small load (10pps) and heavy
load (highest rate without packet drop).

a program without experiencing packet loss. When a small subset
of flows sends the majority of traffic (high-locality), Morpheus
consistently provides more than 50% throughput improvement over
the baseline, with a 2× speed-up for the Router. This is because
it can track heavy flows and optimize the code accordingly. To
confirm the benefit of packet-level optimizations in Morpheus, we
compared it to a faithful eBPF/XDP re-implementation of ESwitch, a
dynamic compiler that does not consider traffic dynamics [68]. The
results (Fig 4) show that Morpheus delivers 5–10× the improvement
compared to ESwitch for high-locality traces, while it falls back to
ESwitch for uniform traffic.
Morpheus benefits at the micro-architectural scale. In Fig. 5,
we show that Morpheus reduces the last-level CPU cache misses
by up to 96% and halves the instructions and branches executed
per packet. At low or no traffic locality, the effects of packet-level
optimizations diminish, but Morpheus can still bring considerable
performance improvement: we see ∼ 30% margin for BPF-iptables
even for the no-locality trace. This is because the optimization
passes in Morpheus are carefully selected to be applicable indepen-
dently from packet-level dynamics (see Table 2).
Morpheus reduces packet-processing latency. In Fig. 6, we
compared the 99th percentile baseline latency for each application
against the one obtained with Morpheus, both in a best-case scenario
when all packets travel through the optimized code path (e.g., the
right branch in Fig. 3a), and a worst-case scenario with all packets
falling back to the default branch instead of taking the fast-patch
cache for each map (the left branch in Fig. 3a). The left panel in
Fig. 6 shows the latency measured at low packet rate (10pps) so
to avoid queuing effects [16], whereas the right panel shows la-
tency under the maximum sustained load without packet drops [17].
First, we observe that Morpheus never increases latency, despite the
considerable additional logic it injects dynamically into the code
(guards, instrumentation; see below); in fact, it generally reduces
it even in the worst case scenario. Notably, it reduces Katran’s
packet-processing latency by about 123%.

6.2 What is the cost of code instrumentation?
Clearly, the price for performance improvements is the additional
logic, most prominently, instrumentation, injected by Morpheus
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into the fast packet-processing path. To understand this price, we
compared our adaptive instrumentation scheme (§4.2) against a
naive approach where all map lookups are explicitly recorded.
Fig. 7 shows that instrumentation involves visible overhead: the
instrumented code performs worse than the baseline. The naive
approach imposes a hefty 14–23% overhead, but adaptive instru-
mentation reduces this to just 0.9%–9%. Most importantly, this
reduction does not come at a prohibitive cost: adaptive instrumen-
tation provides enough insight to Morpheus to make up for the
performance penalty imposed by it and still attain a considerable
throughput improvement on top (see the green stacked barplots).
In contrast, the performance tax of naive instrumentation may very
well nullify optimization benefits, even despite full visibility into
run time dynamics (e.g., for the L2 switch or Katran).

We also studied the impact of packet sampling rate on instru-
mentation. Indeed, Morpheus collects information on packet-level
dynamics only on a subset of input traffic in order to minimize
the overhead. Fig. 8 highlights that Morpheus can strike a balance
between overhead and efficiency by adapting the sampling rate. At
a low sampling rate (e.g., recording every 100th packet) Morpheus
does not have enough visibility into dynamics, which renders traffic-
dependent optimizations less effective (but the traffic-invariant
optimizations still apply). Higher sampling rates provide better visi-
bility but also impose higher overhead. At the extreme (BPF-iptables,
100% instrumentation rate), optimization is just enough to offset
the price of instrumentation. In conclusion, we found that setting
the sampling rate at 5%–25% represents the best compromise.
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Table 3: Time (in ms) to execute the entire Morpheus com-
pilation pipeline and install the optimized datapath. LOC is
calculated using cloc (v1.82) excluding comments and blank
lines while instruction count is measured with bpftool v5.9.

Application
C

LOC
BPF
Insn

Compilation (ms) Injection (ms)
Best Worst

Best Worst
t1 t2 t1 t2

L2 Switch 243 464 81 62 140 78 0.5 0.9
Router 331 458 87 65 196 91 1.1 1.3
BPF-iptables* 220 358 95 62 105 87 0.6 0.5
Katran 494 905 287 115 569 151 3.4 6.1

* Uses a chain of eBPF programs; since Morpheus optimizes every eBPF program separately,
values shown refer to the most complex program in the chain.
t1 Time to analyze the program, instrument it and read the maps.
t2 Time to generate the final eBPF code.

6.3 How fast is the compilation?
In Table 3, we indicate with t1 the time to analyze, instrument and
optimize the LLVM IR code, and with t2 the time to generate the
final eBPF code, starting from the LLVM IR. Note that t1 is highly
dependent on table size: the bigger the table, the more time needed
to read and analyze it. We show the results for high-locality and no-
locality traffic. The former is the best case since Morpheus needs to
track fewer flows, thus requiring lighter instrumentation tables that
are faster to analyze. The latter is the worst case. Generally, table
read time (i.e., t1) dominates over compilation time, consistently
staying below 100ms and reaching only for Katran in the worst-case
scenario almost 600ms. This is because Katran uses huge static maps
with tens of thousands of entries to implement consistent hashing.
Recent advances in the Linux kernel allow to read maps in batches,
which would cut down this time by as much as 80% [95], reducing
recompilation time for Katran below 100ms. Furthermore, the time
needed to inject the optimized datapath into the kernel depends
on the complexity of the program, since all eBPF code must pass
the in-kernel verifier for a safety check before being activated. This
also ensures that a mistaken Morpheus optimization pass will never
break the data plane. In our tests, injection time varies between
0.5 to 3.4ms in the best case and at most 6.1ms in the worst case.
Finally, in all the tests we run the Morpheus compilation pipeline
on a separate core with respect to the data plane application, and
we noticed that in most of the case it consumes, on average, ~5% of
CPU, with a peak of 15% for applications that consist of a pipeline
of multiple programs chained together (e.g., BPF-iptables) and with
lot of table entries to be analyzed (e.g., Katran).

6.4 Morpheus in action
To test the ability of Morpheus to track highly dynamic inputs, we
fed the Router application with time-varying traffic and observed
the throughput over the time (Fig. 9a). Recompilation period was
conservatively set to 1 second. In the first 5 seconds we generate
uniform traffic; here, the traffic-independent optimizations applied
by Morpheus yield roughly 15% performance improvement over
the baseline. At the 5th second, the traffic changes to a high-locality
profile: after a quick learning period Morpheus specializes the code,
essentially doubling the throughput. We see the same effect from
the 10th second, when we switch to another high-locality trace with
a new set of heavy-hitters: after a brief training period Morpheus
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Figure 9: (a) Single core throughput over time withMorpheus
on the Router use case, with dynamically changing traffic
patterns, and (b) with a CAIDA [20] trace.
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Figure 10: Multicore application (router) with Morpheus.

dynamically adapts the optimized datapath to the new profile and
attains 60–100% performance improvement. We also repeated the
same test using a real-world traffic trace (CAIDA 2019 dataset,
equinix-nyc [20]), counting 30M packets with an average size of
910B. The trace experiences also a low degree of traffic locality,
with the most hit entry matched around 0.4% overall. In Figure 9b,
we show how Morpheus consistently improves the throughput of
the router by factor of ~10%.

Finally, in Figure 10, we report the multi-core scaling of Mor-
pheus. Here, we still used the router when processing input traffic
characterized by low-locality. The constant performance increase is
enabled mainly by our adaptive instrumentation mechanism, which
is able to track the flow states across the different cores, i.e., specific
to the RSS context and, depending on their distribution optimize
the code accordingly.

6.5 What can go wrong?
The flip side of dynamic optimization is the potential for a mis-
guided run time code transformation to harm performance. With
generic languages this can happen when the dynamic compiler
steals CPU cycles from the running code [28, 87]; in such cases care-
ful manual compiler parameter tuning and deep application-specific
knowledge is needed to make up for the lost performance [72]. Sim-
ilar issues may arise with dynamically optimizing network code, as
we show below on the NAT use case [67]. The NAT is organized as a
single large connection tracking table, updated fromwithin the data
plane on each new flow. This represents a worst-case scenario for
Morpheus: fully stateful code, so that guards cannot be opportunis-
tically elided, coupled with potentially high traffic dynamics. Yet,
since traffic-independent optimizations can still be applied (Table 2)
Morpheus can improve throughput by around 5% (from 4.36 to 4.58
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Figure 11: Comparison between vanilla FastClick, PacketMill
and Morpheus for the Router FastClick (DPDK) application
with 20 and 500 rules.

Mpps) in the presence of high-locality traffic. However, for low-
locality traffic we see about 6% performance degradation compared
to the baseline. Intuitively, Morpheus just keeps on recompiling the
conntrack fast-path with another set of potential heavy hitters, just
to immediately remove this optimization as a new flow arrives. Our
tests mark micro-architectural reasons behind this: the number of
branch misses and instruction cache loads increases by 90% and
75%, respectively, both clear symptoms of frequent code changes.
The rest of the stateful applications (L2 switch and Katran) exhibit a
similar pattern, but the speed-up enabled by dead code elimination,
constant propagation and branch-injection can make up for this.
As with Java, such cases require human intervention; manually
disabling optimization for the connection tracking module’s table
safely eliminates the performance degradation on the NAT use case.

6.6 Morpheus with DPDK programs
We applied Morpheus to a DPDK program, the FastClick [13] ver-
sion of the eBPF Router application, the same one used in Pack-
etMill’s paper [34]. We configured it with either 20 or 500 rules
from the Stanford routing tables [52] and generated traffic with
different levels of locality. We compared the throughput and the
latency of the baseline code, the Morpheus optimized and its ver-
sion transformed with PacketMill, state-of-the-art DPDK packet-
processing optimizer. In our tests PacketMill uses the following
optimizations: removing virtual function calls, inlining variables,
and allocating/defining the elements’ objects in the source code.

Fig. 11a reports the average throughput results. For only 20
prefix rules and with low locality traffic, PacketMill outperforms
Morpheus by about 9%, whereas for high-locality traffic and larger
forwarding tables Morpheus produces a whopping 469% improve-
ment over PacketMill. The reason for the large performance drop
from 20 rules to 500 rules is that LPM lookup is particularly expen-
sive in FastClick (linear search), but Morpheus can largely avoid this
costly lookup by inlining heavy hitters. The 99th percentile latency

results (Fig. 11b) confirm this finding, with Morpheus decreasing
latency 5-fold compared to PacketMill with high-locality traffic.

On the other hand, the reason for the lower performance of
Morpheus in the low/no locality case (20 rules) can be found in the
main difference between the two systems. First, Morpheus requires
instrumentation to track table access patters, which produces some
run time overhead, while PacketMill does not apply online opti-
mizations and so it does not need instrumentation at all. Second,
PacketMill implements some optimizations that Morpheus does not
(although nothing prevents us from implementing them), but in
most cases the effect of these additional optimizations is masked by
the speedup brought by the Morpheus traffic-level optimizations.

7 DISCUSSIONS
Add other optimizations to Morpheus compilation pipeline.
Morpheus is orthogonal to most optimizations proposed in recent
literature and can be extended to support them. For example, Pack-
etMill optimizations [34], such as the reordering of metadata fields,
could be easily integrated into Morpheus with the added benefit
that, having access to the number of accesses to a given variable
thanks to Morpheus’s instrumentation, we could obtain a more
accurate reordering compared to PacketMill, which only estimates
access patterns. Finally, traditional PGO optimizations can be used
with Morpheus too, allowing the compiler to optimize the code
on-the-fly, as opposed to traditional PGO approaches where the
profile is collected offline.
Extend Morpheus to other data plane technologies.Morpheus
comprises a data plane-independent core implementing the bulk of
the optimization passes, and separate data plane-specific plugins.
This makes it relatively easy to port Morpheus to new dataplanes
that usewell definedAPIs (e.g, for table lookups or packet reception).
This is the case of eBPF/XDP and DPDK FastClick, but any data
plane with a clear API can be potentially used with Morpheus. To
do this, the developer would need to write a new data plane plugin,
providing the function signatures for the relevant API calls as well
as some simple operators for Morpheus to read match-action table
content and manipulate the underlying code (e.g., inject a guard).
The choice of working at the IR level. In Morpheus, all the
optimizations are directly applied at the LLVM IR level. A major
drawback of this approach is that by doing so we lose direct access
to the low-level machine code, making certain optimizations impos-
sible: peephole, vectorization/SIMD, or other micro-architectural
optimizations [12, 22, 49, 88, 96]. Nevertheless, this choice provides
also a series of benefits: (i) IR code is in the Static Single Assignment
(SSA) form and SSA simplifies the use of different compiler opti-
mization algorithms; (ii) Morpheus optimization passes can exploit
flow information performed in the compiler itself to gather infor-
mation about the code under consideration: for instance, we use
LLVM MemorySSA analysis to retrieve information about variable
and load/store dependencies; (iii) working at the IR level allows
Morpheus to re-use part of the other optimizations already available
in the compiler suite; (iv) finally, it allows to keep the optimization
passes as generic as possible with respect to the language in which
the data plane is written.
It is not all about table lookups. Morpheus heavily optimizes
also the code surrounding the table lookups using the insights it
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obtains during code analysis. It separates table lookup code into a
fast-path, with the lookup results specialized for the heavy hitters,
and a generic slow-path. It uses the table lookup code to also gather
information about the table’s content, and how it is used in the
rest of the code. This allows for optimizing the entire fast-path
code after the table lookup without affecting the slow path in any
way. For example, constants are folded from the JITted lookup
code (effectively a set of nested if-then-else statements) into the
surrounding code (i.e., each branch of the if-then-else is specific to
a certain value of the conditional), unreachable code is removed or
tables are specialized depending on their run time entries.

Because of this, caching/JITting table lookups is just one, albeit
very important, optimization that Morpheus performs. As shown
in Figure 4, the results with the “no locality” trace demonstrate the
combined benefits of all the optimizations that are independent
from the input traffic, such as dead code elimination, constant
propagation and data structure specialization, while the rest of
the cases (“low/high-locality”) show the additional effect of traffic-
dependent optimizations. Note that some optimizations cannot
be directly measured since they are the results of a combination
of other passes; e.g., the contribution of dead code elimination is
dependent on constant propagation.
Morpheus dependence on compilation periodicity. The perfor-
mance of Morpheus depend on how fast Morpheus can recompile
the targeted code (see Table 3). In the presence of traffic changes
that are faster than that, then traffic-dependent optimizations be-
come less effective. Nevertheless, Morpheus can still speedup the
original function, since other traffic-independent optimizations are
still valid (Figure 4). Potentially, we could disable traffic-level op-
timizations when Morpheus discovers highly variable traffic that
goes under the recompilation period (Section 6.5); this would reduce
the impact of guards and instrumentation and increase the benefits
of traffic-independent optimizations. Examining these techniques
remains as future work.

8 RELATEDWORK
Generic code optimization has a long-standing stream of research
and prototypes [12, 21, 46, 49, 69, 74, 77, 82]. In the context of net-
working, domain-specific data-plane optimization has also gained
substantial interest lately.
Static optimization of data-plane programs. Several packet
I/O frameworks present specific APIs for developers to optimize
network code [23, 24, 36, 42, 75], or implement different paradigms
to efficiently execute packet-processing programs sequentially or
in parallel [11, 50, 60, 62, 83, 88, 96]. Other proposals aim to remove
redundant logic or merge different elements together [18, 51, 84].
Theseworks provide static optimizations;Morpheus, on top of these,
also considers run time insight to specialize generic network code.
Dynamic optimization of packet-processing programs. ESwit-
ch [68, 79] was the first functional framework for the unsuper-
vised dynamic optimization of software data planes with respect
to the packet-processing program, specified in OpenFlow, being
executed. PacketMill [34] and NFReducer [29] leverage the LLVM
toolchain [57] instead of OpenFlow: PacketMill targets the FastClick

datapath by exploiting the DPDK packet I/O framework and NFRe-
ducer aims to eliminate redundant logic from generic packet pro-
cessing programs using symbolic execution. Morpheus is strictly
complementary to these works: (1) it applies some of the same
optimizations but it also introduces a toolbox of new ones (e.g.,
branch injection or constant propagation for stable table entries);
(2) Morpheus can detect packet-level dynamics and apply more
aggressive optimizations depending on the specific traffic patterns;
and (3) Morpheus is data-plane agnostic, in that it performs the
optimizations at the IR-level using a portable compiler core and
relies on the built-in compiler toolchain to generate machine code
and a data-plane plugin to inject it into the datapath.
Profile-guided optimization for packet-processing hardware.
P2GO [91] and P5 [5] apply several profile-driven optimizations to
improve the resource utilization of programmable P4 hardware tar-
gets. Some of the ideas presented in this work can also be used with
programmable P4 hardware, provided it is possible to re-synthesize
the packet processing pipeline without traffic disruption, with a
notable difference: P2GO and P5 require a priori knowledge (i.e.,
the profiles) while Morpheus aims at unsupervised dynamic opti-
mization.

9 CONCLUSIONS & FUTUREWORK
We presented Morpheus, a run time compiler and optimizer frame-
work for arbitrary networking code. We demonstrated the impor-
tance of tracking packet-level dynamics and how they open up
opportunities for a number of domain-specific optimizations. We
proposed a solution, Morpheus, capable of applying them without
any a priori information on the running program and implemented
on top of the LLVM JIT compiler toolchain at the IR level. This
allows to decouple our system from the specific framework used by
the underlying data plane as much as possible. Finally, we demon-
strated the effectiveness of Morpheus on a number of programs
written in eBPF and DPDK and released the code in open-source to
foster reproducibility of our results.

We consider Morpheus only as a first step towards more intel-
ligent systems that can adapt to network conditions. As future
work, we intend to integrate a run time performance prediction
model [15, 47, 61, 76, 78] into Morpheus, enabling the compiler
to reason about the effect of each different dynamic optimization
pass. This would allow for selecting the most efficient subset of
optimizations and adapt the recompilation timescales to the current
network conditions.
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