
26 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Coupling solid and fluid stresses with brain tumour growth and white matter tract deformations in a neuroimaging-
informed model / Lucci, Giulio; Agosti, Abramo; Ciarletta, Pasquale; Giverso, Chiara. - In: BIOMECHANICS AND
MODELING IN MECHANOBIOLOGY. - ISSN 1617-7959. - 21:(2022), pp. 1483-1509. [10.1007/s10237-022-01602-4]

Original

Coupling solid and fluid stresses with brain tumour growth and white matter tract deformations in a
neuroimaging-informed model

Publisher:

Published
DOI:10.1007/s10237-022-01602-4

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2972673 since: 2022-10-28T11:17:28Z

Springer



Vol.:(0123456789)1 3

Biomechanics and Modeling in Mechanobiology 
https://doi.org/10.1007/s10237-022-01602-4

ORIGINAL PAPER

Coupling solid and fluid stresses with brain tumour growth and white 
matter tract deformations in a neuroimaging‑informed model

Giulio Lucci1 · Abramo Agosti2 · Pasquale Ciarletta3 · Chiara Giverso1 

Received: 22 December 2021 / Accepted: 17 June 2022 
© The Author(s) 2022

Abstract
Brain tumours are among the deadliest types of cancer, since they display a strong ability to invade the surrounding tissues 
and an extensive resistance to common therapeutic treatments. It is therefore important to reproduce the heterogeneity of 
brain microstructure through mathematical and computational models, that can provide powerful instruments to investigate 
cancer progression. However, only a few models include a proper mechanical and constitutive description of brain tissue, 
which instead may be relevant to predict the progression of the pathology and to analyse the reorganization of healthy tissues 
occurring during tumour growth and, possibly, after surgical resection. Motivated by the need to enrich the description of 
brain cancer growth through mechanics, in this paper we present a mathematical multiphase model that explicitly includes 
brain hyperelasticity. We find that our mechanical description allows to evaluate the impact of the growing tumour mass on 
the surrounding healthy tissue, quantifying the displacements, deformations, and stresses induced by its proliferation. At 
the same time, the knowledge of the mechanical variables may be used to model the stress-induced inhibition of growth, as 
well as to properly modify the preferential directions of white matter tracts as a consequence of deformations caused by the 
tumour. Finally, the simulations of our model are implemented in a personalized framework, which allows to incorporate 
the realistic brain geometry, the patient-specific diffusion and permeability tensors reconstructed from imaging data and to 
modify them as a consequence of the mechanical deformation due to cancer growth.

Keywords Brain tumour growth · Cancer modelling · Continuum Mechanics · Mixture theory · Nonlinear elasticity · Finite 
element method

Mathematics Subject Classification 74B20 · 74L15 · 92C50

1 Introduction

The vast majority of brain tumours, such as gliomas (the 
most frequent ones, arising from glial cells), grow along the 
white matter fibre tracts or along vessels, following the phys-
ical structures in the extracellular environment. Therefore, 
they show an irregular evolution and their final shapes can 
substantially differ from the spherical one (Hatzikirou et al. 
2005). As far as treatment is concerned, brain cancers are 
extensively resistant to therapies, especially chemotherapy 
(Carlson 2012), and a complete treatment usually starts with 
surgery and removal of as much of tumour mass as possi-
ble. However, since the tumour might infiltrate and damage 
eloquent areas and structures of the brain, it is generally dif-
ficult and sometimes impossible to fully resect the cancerous 
mass (Hatzikirou et al. 2005).
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For all these reasons, there is a critical need to understand 
and replicate the biological complexity of the brain, in order 
to predict brain tumour evolution and forecast the possibly 
injured areas. To this end, mathematical and computational 
models can provide powerful instruments for investigating 
cancer progression, especially in those cases that are particu-
larly difficult to be treated with current therapeutic protocols, 
such as glioblastoma multiforme (GBM), one of the most 
aggressive and malignant brain tumours, as well as the most 
common ones (Young et al. 2015; Stupp and Hegi 2009; 
Ostrom et al. 2014). In the last decades, several mathemati-
cal models of brain tumour growth have been proposed, with 
the purpose of providing a better understanding of the phe-
nomenon while speeding up the research process through 
the use of computer simulations. At the microscopic and 
mesoscopic level, discrete computational approaches such 
as cellular automata or agent-based models represent useful 
tools to explore invasive migration, phenotypic plasticity, 
and early growth of brain tumours (Kansal et al. 2000; Khain 
et al. 2011; Aubert et al. 2008; Tektonidis et al. 2011; Man-
sury et al. 2002). At the macroscopic scale, continuum mod-
els are more suitable to describe brain tumour cell motility 
and spatial dynamics through advection–reaction–diffusion 
equations (Murray 2003; Tracqui et al. 1995; Swanson et al. 
2000, 2002a, b, 2003a, b; Stein et al. 2007; Swan et al. 2018) 
or kinetic equations (Painter and Hillen 2013), including 
characteristics of brain tissue such as heterogeneity and ani-
sotropy coming from medical imaging (Jbabdi et al. 2005; 
Painter and Hillen 2013; Swan et al. 2018). Another recent 
approach for brain tumour modelling employs diffuse inter-
face multiphase models of Cahn–Hilliard type (Cahn and 
Hilliard 1958), introducing a fourth-order nonlinear advec-
tion–reaction–diffusion equation, which has been success-
fully applied to describe the evolution of GBM (Colombo 
et al. 2015; Agosti et al. 2018a, b).

Despite the ability of these models to qualitatively cap-
ture some peculiar features of the growth of a brain tumour, 
they do not account for some important mechanical aspects, 
such as the influence of the stress exerted by the healthy 
tissue on the tumour mass and vice versa. Indeed, not only 
the growth of the tumour might be limited by the surround-
ing tissue, as observed in many biological experiments 
in vitro (Cheng et al. 2009; Helmlinger et al. 1997; Mon-
tel et al. 2012; Delarue et al. 2014), but also the presence 
of a neoplasm may be a critical clinical issue inside the 
healthy peripheral tissue subject to unnatural displacements. 
Although tumour growth can adversely impact the health of 
any hosting organ, this is especially devastating in the brain. 
As a matter of fact, compared with extracranial organs, the 
brain is unique because of its physical confinement due to 
the skull fixed volume, which can further amplify mechani-
cal force effects. Furthermore, brain functions might be cor-
rupted by mechanical forces: the tumour growth-induced 

deformation and compression is believed to be a major cause 
of the neurological clinical symptoms and severe disabilities 
seen in patients with brain cancer, and represents a negative 
prognostic factor (Gamburg et al. 2000; Kalli et al. 2019; 
Steed et al. 2018). The identification of the importance 
of mechanical cues and their potential regulatory roles in 
the development and maintenance of neuronal structures 
(Motz et al. 2021) has led to the definition of a new field of 
research, named “neuromechanobiology”, dealing with the 
effects of mechanical forces on normal neurophysiology and 
on neurological disorders (Motz et al. 2021; Bouwen et al. 
2018; Amidei and Kushner 2015; Bryniarska-Kubiak et al. 
2021). In this regard, understanding how injured and healthy 
brain fibre tracts deform and re-distribute in response to the 
growing tumour mass is a fundamental issue. In particular, 
mechanical forces could be exerted either by the tumour-
associated oedema or by the solid components of the malig-
nant tissue, such as cells and extracellular matrix (Seano 
et al. 2019). The latter is often referred to as solid stress 
or mass-effect and its origin and biological consequences 
are still poorly understood, with respect to the fluid pres-
sure associated with oedema, a well-known mechanical 
abnormality in brain tumours (Chauhan et al. 2014; Goriely 
et al. 2015; Jain et al. 2014; Seano et al. 2019). Although, 
recently, the origin and neurological effects of the solid 
stress have gained attention, details of their quantification 
in vitro and their biological impact on the physiology of 
the healthy brain surrounding the tumour remain unknown 
(Seano et al. 2019; Kalli et al. 2019). Concerning these lat-
ter aspects, the tumour-generated solid stress consistently 
distorts the micro-anatomy of the neighbouring brain tissue 
and it compresses the blood vessels, generating a vascular 
collapse. Consequently, there is a reduction of peritumoural 
vascular perfusion, contributing to intratumoral hypoxia, 
inducing neuronal loss, and hindering the delivery and effi-
cacy of anti-cancer therapies (Chauhan et al. 2014; Padera 
et al. 2004; Seano et al. 2019; Nia et al. 2020). The tumour-
induced deformation of the healthy tissue is reflected by the 
distortions macroscopically observed in radiological exams 
(e.g. the shift of the cranial midline), which is more evident 
around “nodular” tumours, with well-defined margins, with 
respect to “infiltrative” tumours, that invade into the sur-
rounding tissue as individual cells (Abler et al. 2019; Steed 
et al. 2018; Gamburg et al. 2000; Nia et al. 2020). Since 
tumours of similar imaging volumes have been observed 
to give rise to different amounts and distributions of solid 
stresses (Steed et al. 2018; Nia et al. 2020), it is relevant to 
evaluate deformations, stresses, and displacement caused by 
their progression, in order to properly capture the correct 
area of the brain influenced by the cancer.

In the light of all these observations, from the mathemati-
cal modelling point of view, it is fundamental to account 
for a mechanical and constitutive description of brain tissue 
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and tumour, that has been neglected in the vast majority 
of previous brain cancer growth models. Some attempts to 
include the mechanical aspects have been done  by Clatz 
et  al. (2005), coupling a reaction–diffusion model, for 
simulating the invasion of the tumour in the brain paren-
chyma, with a linear elastic brain constitutive equation, to 
describe the mechanical interaction with the invaded tissue. 
Then, Lang et al. (2015) developed a model for propaga-
tion of damage and oedema in brain tissue using an iterative 
approach and Continuum Mechanics. Ehlers and Wagner 
(2015) proposed a more elaborated model for brain tissues 
and drug delivery, assuming the presence of three phases (an 
hyperelastic and mechanically anisotropic solid skeleton, the 
blood, and the interstitial fluid), but since they do not take 
into account the growth of the solid phase, their model is 
not suitable to describe tumour progression. Indeed, in the 
development of a mathematical model that includes mechan-
ics of a growing mass, some non-trivial difficulties arise: 
cells duplicate and die, the environment is continuously 
modified and remodelled as a result of tumour growth, and 
when dealing with solid tumours it is not clear which refer-
ence configuration should be used to measure deformations, 
since the material is constantly changing (Preziosi and Tosin 
2009; Giverso et al. 2015; Ambrosi et al. 2017; Di Stefano 
et al. 2018; Mascheroni et al. 2018; Grillo et al. 2019; Ehlers 
et al. 2022). In the context of tumour growth and biologi-
cal applications, this problem was tackled in Ambrosi and 
Mollica (2002), Ambrosi and Mollica (2004) by applying 
the concept of “evolving natural configurations” (Raja-
gopal 1995; Lubarda 2004; DiCarlo and Quiligotti 2002), 
which—loosely speaking—consists in splitting the evolution 
in pure elastic deformations and deformations subsequent to 
growth. Some recent works on macroscopic models for brain 
tumour growth have been developed using this framework 
(Mascheroni et al. 2016, 2018; Angeli and Stylianopoulos 
2016; Angeli et al. 2018; Ehlers et al. 2022). Nevertheless, 
in these latter works, the patient-specific anisotropy is not 
included and the effect of fibre deformations subsequent to 
tumour growth, as well as the impact on the diffusion of 
chemical species and on the motion of cells, have not been 
investigated.

Therefore, stimulated by the need to elaborate a more 
refined description of brain tumour mechanical impact, 
in this work we develop a mathematical model for cancer 
growth and proliferation which includes brain hyperelastic-
ity, in order to evaluate the effects of structural changes in 
the white matter and the nonlinear elastic deformations of 
brain tissue. In particular, we propose a macroscopic model 
based on finite deformations and Continuum Mechanics: we 
treat both the tumour and the surrounding tissue as satu-
rated biphasic mixtures, composed by a hyperelastic solid 
phase and an ideal fluid phase. Moreover, we consider the 
tumour as separated from the host tissue through a smooth 

regularization of an indicator function. In order to distin-
guish the elastic deformations from the inelastic distortions 
caused by growth, we employ a multiplicative decomposi-
tion of the deformation gradient (Ambrosi and Mollica 2002; 
DiCarlo and Quiligotti 2002). To test the validity of our 
model as a proof-of-concept, we perform simulations on a 
realistic brain geometry, reconstructed from magnetic reso-
nance imaging (MRI) and diffusion tensor imaging (DTI) 
data. This allows us to introduce patient-specific brain tissue 
anisotropy in our model, by reconstructing spatially depend-
ent diffusion and permeability tensors from medical images. 
Furthermore, after the reconstruction of the starting clinical 
data, we take advantage of the mechanical description to 
progressively modify the mentioned tensors in time. Indeed, 
the knowledge of the mechanical tumour impact allows to 
properly adjust the preferential directions for diffusion and 
fluid motion, following the deformation induced by the mass 
onto the surrounding tissue.

In detail, the paper is organized as follows. In Sect. 2 
we derive our mechanical model and its governing equa-
tions, also providing an estimate for all the relevant param-
eters. Then, in Sect. 3 we discuss the details concerning 
the numerical implementation and computational mesh 
reconstruction from imaging data. Section 4 is dedicated 
to the presentation of numerical simulation results. Finally, 
in Sect. 5 we summarize the main features of the work and 
present possible directions for further research.

2  Theory and calculations

In this section, we derive a continuous mechanical theory 
for modelling the macroscopic brain tumour growth using a 
multiphase approach and the evolving natural configurations 
framework. We consider both the healthy and the tumour 
brain tissue as saturated domains comprising two distinct 
phases, which represent the cell population (labelled with 
subscript “ s ”) and the interstitial fluid (labelled with sub-
script “ �”). Moreover, the cancer and the host tissue are 
localized in different regions, denoted by a smooth approxi-
mation of an indicator function.

2.1  Mathematical model

2.1.1  Kinematics and growth framework

At a given time t, we consider the current configuration of 
the brain as a three-dimensional domain Ω(t) and denote by 
Ωt(t) the subregion occupied by the growing tumour, while 
Ωh(t) stands for the subregion occupied by the healthy tis-
sue, with Ω(t) = Ωt(t) ∪ Ωh(t) . In particular, the tumour 
region is identified by a smooth approximation of the indi-
cator function �Ωt(t)

 of the cancerous domain, which moves 
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at the velocity of diseased cells. The smoothness of �Ωt(t)
 

allows to account for regions of coexistence of tumour cells 
and healthy cells near the cancer mass. Such a descrip-
tion is appropriate to describe solid and low-grade brain 
tumours, that are mostly localized and characterized by a 
superposition of healthy and diseased tissues only around 
the principal mass, without colonies of growing and invad-
ing cancer cells detached from the tumour bulk. In par-
ticular, we identify the tumour domain with the upper 
level set Ωt(t) = {� ∈ ℝ

3 ∶ 𝜒Ωt(t)
(�) > 0.1} , where � is 

the spatial coordinate. Instead, we use the notation Ω∗ , 
Ω∗

t
 and Ω∗

h
 for the reference configurations of the whole 

brain, the tumour and the host tissue, respectively. Coher-
ently, the tumour domain in the reference configuration is 
Ω∗

t
= {� ∈ ℝ

3 ∶ 𝜒Ω∗
t
(�) > 0.1} , where � is the material 

coordinate. We remark that the tumour region Ω∗
t
 in the ref-

erence configuration does not evolve in time. As mentioned 
above, brain tissue (both healthy and unhealthy) is regarded 
as a mixture of two phases: a solid one, with volume frac-
tion �s , that represents the cellular component, and a liq-
uid one, with volume fraction �

�
 , including the interstitial 

fluid  of the brain. The solid and fluid phases are consid-
ered to saturate all the available space, so that the condition 
�s + �

�
= 1 holds at any point in the domain Ω(t) and at 

any time instant. Following standard definitions in mixtures 
theory, by knowing the true density �̂�𝛼 of the material com-
posing the �-phase, with � ∈ {s,�} , it is possible to define 
the partial phase density 𝜌𝛼 = �̂�𝛼𝜙𝛼 . Then, we can introduce 
the displacement vector field �s of the solid phase, which 
defines the deformation of the body mapping the reference 
configuration to the current one, and the related deforma-
tion gradient �s = � + Grad�s , with � being the second-order 
identity tensor and Grad denoting the gradient with respect 
to material coordinates.

Furthermore, it is well known that a tissue undergoing 
growth, such as the one in the tumour region, experiences 
inelastic distortions and residual stresses (Skalak 1981; 
Rodriguez et al. 1994; Goriely 2017). To account for this 
fact from the mechanical point of view, a possible way is 
to employ a multiplicative decomposition of the deforma-
tion gradient (Ambrosi and Mollica 2002; Rajagopal 1995; 
DiCarlo and Quiligotti 2002): the tensor �s of the cellular 
population can therefore be split into two contributions, 
yielding

In Eq. (1), �e is the purely elastic contribution to the over-
all deformation gradient, whereas �g represents the inelastic 
distortions related to growth. The tensor �g determines the 
so-called evolving natural state Ωn(t) of the body undergoing 
growth processes, where each material particle is allowed 
to grow freely and independently of the other ones. Hence, 

(1)�s = �e�g.

the natural state of the material is stress-free: the transition 
between the reference configuration and the natural state 
is then described by tensor �g , while the subsequent elastic 
accommodation is included in �e , because the state defined 
by �g is not in general compatible. We also recall that, 
throughout the path between the natural state and the cur-
rent configuration, mass is assumed to be preserved, so that 
the growth contribution is entirely carried by �g . A sketch of 
the multiplicative decomposition of the deformation gradient 
is reported in Fig. 1.

A consequence of Eq. (1) is that the volumetric part of the 
deformation gradient, Js = det �s , can be written as

with Je ∶= det �e and Jg ∶= det �g . Since the overall deforma-
tion gradient �s is assumed to be non-singular and Jg ≥ 1 , 
since we are considering growth processes, from Eq. (2) it 
follows that each tensor introduced in Eq. (1) is non-singular 
as well. Finally, we introduce the elastic right Cauchy–Green 
deformation tensor ℂe ∶= 𝔽

T
e
𝔽e and its isochoric part 

ℂe ∶= J
−2∕3
e ℂe.

2.1.2  Mass and momentum balances

The multiphase approach we employ to describe tumour 
growth is based on the theory of mixtures and consists of 
a set of mass and momentum balance equations. First of 
all, we assume that the mixture is saturated and that both 
phases of the mixture have constant true densities, so that the 
materials composing the phases are incompressible. Then, 
since cells are mainly composed of water, we assume that 
the true densities of both phases are equal, i.e. �̂�s = �̂�

�
 , and 

that external body forces (such as the gravitational force) as 
well as inertial effects are negligible: these hypotheses are 

(2)Js = JeJg,

Fig. 1  Schematics of the multiplicative decomposition of the defor-
mation gradient
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reasonable when dealing with biological problems (Ambrosi 
and Preziosi 2002; Byrne and Preziosi 2003), since the 
motion of cells and interstitial fluid is very slow. Then, 
we write the balance equations for the cellular phase, with 
volume fraction �s moving with velocity �s , and the liquid 
phase, with volume fraction �

�
 moving with velocity �

�
 . As 

mentioned above, we remark that the boundary between the 
tumour and the healthy domain is advected with the velocity 
of the cell phase �s . We assume that in the tumour region 
Ωt(t) cells proliferate, whereas in the domain occupied by the 
healthy tissue Ωh(t) the proliferation of cells is compensated 
by natural cell death, so that the net rate of growth Γs is equal 
to zero. Finally, assuming that the mixture is closed, the 
mass increase in the cellular phase happens at the expense 
of the liquid phase, so that the mass balances of the cellular 
and fluid phases read

The net rate of tumour growth Γs is influenced by many dif-
ferent factors, such as the availability of nutrients and the 
solid stress (Ambrosi and Mollica 2002, 2004; Ambrosi 
et al. 2017; Mascheroni et al. 2018). In a first approximation, 
one can assume that the amount of nutrients, denoted by its 
concentration cn , along with the availability of space, are the 
main factors regulating cell growth, so that the following 
constitutive equation for the growth term holds

where (⋅)+ denotes the positive part and � is a positive coef-
ficient. That way, the proliferation rate depends affinely on 
the available concentration of nutrients cn , provided that it 
is greater than a hypoxia threshold c0 . Conversely, when 
cn ≤ c0 the growth rate becomes zero and tumour expansion 
arrests. Moreover, in Eq. (5) we have that growth depends on 
the fraction of cells that is already present - which is reason-
able since cell population grows by duplication; finally, we 
have a factor (�max − �s) , whose presence is explained by 
the necessity to decrease the proliferation rate as the cellular 
phase fills all the available space for the solid constituent: 
this accounts for the phenomenon of contact inhibition of 
growth. More complex relations for Γs including explicitly 
the role of stresses may also be considered (Mascheroni 
et al. 2018, 2016; Stylianopoulos et al. 2013). Indeed, sev-
eral studies have dealt with the effect of mechanical stresses 
on tumour growth in vitro, by embedding tumour spheroids 
either in agarose matrices of varying concentrations or in a 
culture medium with biocompatible polymers able to exert 
a mechanical stress, such as Dextran (Cheng et al. 2009; 

(3)
��s

�t
+ ∇ ⋅ (�s�s) = Γs�Ωt(t)

,

(4)
��

𝓁

�t
+ ∇ ⋅ (�

𝓁
�
𝓁
) = Γ

𝓁
�Ωt(t)

= −Γs�Ωt(t)
.

(5)Γs(�s, cn) = ��s(�max − �s)
(
cn − c0

)
+
,

Helmlinger et al. 1997; Montel et al. 2012; Delarue et al. 
2014). These studies showed that tumour growth is impaired 
by the compressive forces generated by the resistance of the 
surrounding tissue/matrix and that the mechanical stress has 
a strong impact on cancer progression. In the light of these 
observations, in the following we will also take into account 
an expression for the tumour proliferation rate that involves 
growth inhibition due to compressive stresses (Mascheroni 
et al. 2018), namely,

where Σ ∶= −tr(�s)∕3 is a measure of compression, related 
to the spherical part of the constitutive Cauchy stress tensor 
of the solid phase. The presence of the positive part means 
that, if the tissue is in compression, then growth is slowed 
down, while traction does not inhibit tumour proliferation. 
The constitutive definition of the stress �s as a function of 
the deformation will be provided in the next Subsection. 
Instead, �1 and �2 are parameters quantifying the inhibition of 
growth: in particular, 𝛿1 < 1 regulates the maximum amount 
of inhibition due to stress, while �2 describes how fast the 
reduction of Γs happens in response to compressive stresses.

In order to insert in the model the growth terms (5) and 
(6), it is necessary to introduce an equation describing the 
evolution of the nutrients in the domain. We assume that 
these chemicals are transported by the fluid phase and can 
diffuse into it; at the same time, they are taken by the grow-
ing tumour and uniformly supplied by the vasculature. 
We introduce the hypothesis that the nutrients uptake by 
the healthy tissue is negligible compared to the one by the 
tumour tissue: biologically, this is equivalent to saying that 
the nutrients absorbed by the host tissue are immediately 
replaced by the vasculature. Hence, if we denote by cn the 
concentration of available nutrients normalized with respect 
to the physiological concentration, so that cn ∈ [0, 1] , the 
mass balance of nutrients in Ω(t) reads

where � is the diffusion tensor, the term Γ
�
cn accounts for 

the variation of the chemical concentration due to absorp-
tion/production of the liquid in which the chemical is dis-
solved, and Gn models the supply of chemicals due to the 
presence of the blood vasculature and the consumption of 
nutrients by the cells in the tissue occurring without net 
variation of the liquid amount. This last term could rep-
resent the transport of nutrients/oxygen through the walls 
of the capillaries either without exchange of fluids, or with 
the possible excess of fluid due to the presence of leaky 
vessels in the tumour region automatically balanced by the 

(6)

Γs(�s, cn,Σ) = ��s(�max − �s)
(
cn − c0

)
+

(
1 −

�1Σ+

Σ+ + �2

)
,

(7)

�

�t
(�

𝓁
cn) + ∇ ⋅ (�

𝓁
cn�𝓁) = ∇ ⋅ (�

𝓁
�∇cn) + Γ

𝓁
cn�Ωt(t)

+ Gn�Ωt(t)
,
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venous capillaries and the lymphatic system (not explicitly 
included in the model). Thus, the exchanged fluid does not 
contribute to the growth/absorption of the constituent and 
the system remains closed with respect to the fluid and solid 
phases (Astanin and Preziosi 2008). Then, Gn is multiplied 
by the indicator function of the tumour region, since this 
term is null in the healthy tissue where the nutrient supply 
is perfectly balanced in the physiological condition, whereas 
in the cancer region we have a higher consumption of nutri-
ents due to the pathological proliferation of cells. The use 
of a tensor in the diffusion term allows to account for the 
structural anisotropy of brain tissue (Jbabdi et al. 2005), that 
induces fluids to diffuse preferentially along certain direc-
tions. Actually, the tensor � , that can be obtained through 
DTI imaging and subsequent modification (see Sect. 2.2), 
describes how water diffuses along specific directions: how-
ever, if we consider that the main nutrient for cells is oxygen 
which is carried by water molecules, we can take the same 
tensor as a descriptor of the diffusion values of nutrients. For 
what concerns the nutrients source term, in this work we will 
consider the following form

This expression describes the fact that nutrients are con-
sumed by the tumour with a constant rate � : the uptake 
depends on the volumetric fractions of cells and liquid in 
the tumour region, as well as on the available concentra-
tion of nutrients. Concurrently, nutrients are supplied by the 
vasculature at a constant rate Sn as long as their concentra-
tion is below the physiological value, i.e. cn < 1 , and they 
are dispersed in the liquid phase. The whole expression is 
multiplied by the tumour indicator function in Eq. (7), since, 
as mentioned above, in the healthy region we assume that 
production and absorption of nutrients are reciprocally bal-
anced. By using standard calculus techniques and recalling 
the mass balance equation of the fluid phase (4) and the 
functional formulation of Gn assumed in (8), Eq. (7) can be 
rephrased as

As regards the momentum balances, we recall that, in a satu-
rated mixture, the partial Cauchy stress tensor associated 
with the �-th phase of the mixture can be written as

where �� is referred to as effective (or extra-) stress, and the 
purely hydrostatic contribution −�� p� indicates the amount 
of pressure sustained by the �-th phase. We underline that, 
in the present theory, p is a Lagrange multiplier related to 
the mixture incompressibility, rather than a constitutively 

(8)Gn(�s,��
, cn) = −��s��

cn + Sn(1 − cn)��
.

(9)

�cn
�t

+ �
𝓁
⋅ ∇cn =

1

�
𝓁

∇ ⋅ (�
𝓁
�∇cn) +

[
−��scn + Sn(1 − cn)

]
�Ωt(t)

.

(10)�̃� = −�� p� + �� ,

determined quantity. Moreover, in the following we will 
neglect both the inertial effects and the momentum exchange 
rates between phases associated with the mass sources/sinks 
Γ� , � ∈ {s,�} . These assumptions are reasonable in the 
context of biological growth, which is a process that takes 
place on long time scales with small velocities for both the 
phases of the mixture (Giverso et al. 2015). Then, taking 
into account these observations, the momentum balance for 
each phase reads

where the term �̃�� represents the force acting on the �-th 
phase due to the other phase � . In particular, following ther-
modynamical prescriptions, the latter can be decomposed as 
�̃�� = p∇�� +��� , highlighting the non-dissipative and 
dissipative contributions, respectively (Giverso et al. 2015; 
Hassanizadeh 1986). Coherently with the hypotheses usu-
ally made to deduce Darcy’s law, we require that the extra-
stress of the fluid phase �

�
 is negligible with respect to the 

pressure gradient and to the dissipative interaction forces 
between fluid and solid phase, that can be assumed in the 
form �

�s = −��2
�
�

−1(�
�
)(�

�
− �s) (Giverso et al. 2015), 

where � is the permeability tensor and μ is the dynamic 
viscosity of the fluid component. As a consequence, from 
Eq. (12) the classical Darcy’s law as a momentum balance 
for the fluid phase is retrieved

Then, the momentum balance for the mixture as a whole can 
be obtained by summing Eqs. (11)–(12), taking into account 
the saturation condition �s + �

�
= 1 and the action–reaction 

principle �s� = −�
�s

We remark that the action–reaction condition applies 
in principle to the interaction forces between phases, i.e. 
�̃s� + �̃

�s = � . However, since the non-dissipative con-
tributions to �̃s� and �̃

�s are given by p∇�s and p∇�
�
 , 

respectively, it follows from the saturation condition that 
the constraint also holds for the dissipative parts, leading to 
�s� +�

�s = �.
To model the presence of white and grey matter fibres in 

the brain tissue and account for the consequent anisotropy in 
fluid motion, we will take the permeability tensor as

where � denotes the tensor of preferential directions 
(Colombo et al. 2015) derived through DTI imaging, whose 

(11)− p∇�s − �s∇p + ∇ ⋅ �s + �̃s𝓁 = �,

(12)− p∇�
𝓁
− �

𝓁
∇p + ∇ ⋅ �

𝓁
+ �̃

𝓁s = �,

(13)�
�
= �s −

�(�
�
)

��
�

∇p.

(14)−∇p + ∇ ⋅ �s = �.

(15)�(𝜙
�
) = 𝜇k̂(𝜙

�
)�,
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construction will be described in Sects. 2.2 and 3. This 
approach allows to model preferential fluid and nutrients 
motion along the fibre tracts in the brain, taking into account 
the anisotropic structure of the tissue. Instead, the coefficient 
k̂(𝜙

�
) is given by the exponential Holmes–Mow expression 

(Holmes and Mow 1990; Mow et al. 1980), as it is often 
done for soft tissues (Guo et al. 2014; Di Stefano et al. 2019)

where �0 and m are model parameters, k0 is a reference value 
for k taken in the natural state, and �sn is the volume frac-
tion of the solid phase in the natural state. An estimate of all 
parameters will be provided in Sect. 2.2.

2.1.3  Constitutive equations for the stress tensors

To close the system of mass and momentum balance equa-
tions, derived in the previous Subsection, it is necessary to 
determine an appropriate evolution law for the Cauchy stress 
tensor �s associated with the cellular population, both in the 
diseased and in the healthy region, i.e.

where � t
s
 is the Cauchy stress tensor associated with the 

tumour cells and � h
s
 is the Cauchy stress tensor associated 

with the healthy cells. This is a relevant part of the math-
ematical model, since our primary aim is to study how brain 
tumour growth influences mechanically the surrounding tis-
sues and to quantify the entity of stress and deformation as 
a consequence of abnormal proliferation. We remark that 
several difficulties arise when dealing with experimental set-
tings involving brain tissue and the definition of a realistic 
constitutive equation is a non-trivial problem that is still 
debated (Budday et al. 2020; Chatelin et al. 2010). Most of 
the brain biomechanical studies performed in the last fifty 
years have been done in vitro on excised samples of brains 
(either from humans, when available, or from animals) 
with different experimental protocols, that make the results 
difficult to be compared. Moreover, in vitro tests need to 
be generalized to in vivo conditions, providing additional 
complications. However, novel techniques and protocols 
have been recently proposed in the literature to carry out 
in vivo non-destructive and non-invasive investigations. In 
particular, magnetic resonance elastography (MRE) emerged 
as the most promising non-invasive imaging technique to 
measure the mechanical parameters of biological soft tis-
sues by coupling a mechanical excitation, which promotes 
elastic wave propagation in the soft medium, to a magnetic 
resonance imaging (MRI) device for visualizing it (Chatelin 
et al. 2010). Several classes of algorithms exist for quanti-
tatively estimating the stiffness from the analysis of wave 

(16)k̂(𝜙
�
) = k(Je) = k0

(
Je − 𝜙sn

1 − 𝜙sn

)𝛼0

em(J
2
e
−1)∕2,

(17)�s = �
t
s
�Ωt(t)

+ �
h
s

(
1 − �Ωt(t)

)
in Ω(t) ,

propagation: the most commonly used are based on time 
points sampling designed to solve the inversion problems 
under the assumption of linear elasticity (Murphy et al. 
2019; Fehlner et al. 2017). The identification of mechani-
cal parameters from MRE using nonlinear elasticity is still 
under investigation. Furthermore, the mechanical proper-
ties obtained from MRE are sensitive to positioning, to the 
method for extracting elastic parameters, and to the excita-
tion frequency. Therefore, nowadays, the use of MRE does 
not offer enough information to establish nonlinear, finite 
strain constitutive models for realistic computational simu-
lations (Budday et al. 2020) and the use of in vitro experi-
ments to characterize the brain and tumour elastic proper-
ties in a nonlinear regime (such as the one occurring during 
tumour growth) is still the most established. In the context 
of in vitro experiments, a first important issue put forward 
by experimental studies (Goriely et al. 2015; Budday et al. 
2017; de Rooij and Kuhl 2016) concerns the anisotropy of 
brain tissue: despite the intrinsic microstructural anisotropy 
due to the presence of nerve tracts, the human brain tissue 
seems nearly isotropic from a mechanical viewpoint and no 
significant directional dependency affecting the mechani-
cal behaviour can be observed, even in highly anisotropic 
regions of the brain. Therefore, the brain can be consid-
ered isotropic as far as mechanics is concerned, whereas 
anisotropy cannot be neglected when dealing with the diffu-
sion of substances and with fluids and cell motion (Budday 
et al. 2017). As regards the constitutive characterization, the 
vast majority of experimental results agree upon the highly 
nonlinear and viscoelastic nature of brain tissue (Goriely 
et al. 2015; Budday et al. 2017; de Rooij and Kuhl 2016), 
under different loading conditions (Rashid et al. 2012, 2014, 
2013; Miller et al. 2000) and even with multiple loading 
modes (Budday et al. 2017). However, for the purposes of 
our work, we are interested in brain response under small 
strain rates induced by cell proliferation: therefore, the rate 
dependent response can be neglected without introducing 
significant errors (Ambrosi and Mollica 2002). To describe 
the elastic response, several models have been proposed in 
the literature (de Rooij and Kuhl 2016) and there is a com-
mon agreement that the generalized Ogden model (Ogden 
1972) is suitable to represent the mechanical behaviour of 
soft brain tissue. In particular, the Mooney–Rivlin model, 
which is a particular case of the generalized Ogden energy, 
turns out to be an appropriate choice from the experimental 
point of view (Mihai et al. 2017; Balbi et al. 2019; Destrade 
et al. 2015). We further remark that the fitting of the experi-
mental data to get a quantitative estimation of the behaviour 
of the brain is generally obtained under the assumption of 
incompressibility of the sample described as a solid, without 
taking into account the contribution of the liquid encapsu-
lated inside it. However, brain tissues have an exception-
ally high water content in vivo (Budday et al. 2020) and are 
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better represented by a mixture of at least two constituents, 
a liquid and a solid phase. As stated before, the constituents 
composing the mixture are said to be incompressible if their 
true densities �̂�𝛼 are constants. The bulk density �� needs 
not be constant even if the �-constituent is incompressible 
and, thus, Je is not constrained to be equal to 1. The vari-
ation of Je leads to a deformation of the pores, that in turn 
induces volumetric solid stresses. To take into account the 
experimental observations on the mechanical behaviour of 
the brain under isochoric conditions and the existence of a 
volumetric stress due to variations of Je , the strain energy 
density function for both the solid tumour mass W t

sn
 and the 

healthy brain tissue W h
sn

 , expressed per unit volume of the 
natural state Ωn(t) , is additively split into an isochoric part, 
Ŵ

�i

sn
 , and a volumetric part, Ŵ

�v

sn
:

with � ∈ {t, h} . We remark that many of the strain energy 
density functions used to represent brain tissues, such as the 
Mooney–Rivlin model used hereafter, can be naturally writ-
ten in the separable form of Eq. (18). Furthermore, even in 
those cases in which the contribution related to Je cannot be 
decoupled from the one related to ℂe , for small variations of 
Je (i.e. in the case of approximately elastically incompress-
ible materials (Gurtin et al. 2010)), it is always possible to 
approximate the strain energy density function with such a 
separable form. Then, even though, in principle, the mechan-
ical model for the tumour tissue might be taken as totally 
different from the one describing the elastic behaviour of 
the healthy tissue (Stewart et al. 2017), in the following we 
assume the same functional form for the strain energy den-
sity functions both in the tumour and in the healthy region, 
with possibly varying mechanical parameters. Specifically, 
following (Balbi et al. 2019; Destrade et al. 2015), we take a 
Mooney–Rivlin model for the isochoric strain energy density 
function, i.e. for � ∈ {t, h}

where I
ℂe

= tr (ℂe) , IIℂe
=

1

2

[(
tr ℂe

)2

− tr
(
ℂ

2

e

)]
 are, 

respectively, the first and second principal invariant of ℂe . 
The material parameters of the cancer tissue, �t

1
 and �t

2
 , are 

in general different from the ones employed to describe the 
healthy brain tissue, �h

1
 and �h

2
 . For what concerns the volu-

metric part Ŵ
�v

sn
 , with � ∈ {t, h} , we take the following form 

(Gurtin et al. 2010; Horgan and Saccomandi 2004; Prevost 
et al. 2011):

(18)W
�
sn
(ℂe) = Ŵ

�

sn
(ℂe, Je) = Ŵ

�i

sn
(ℂe) + Ŵ

�v

sn
(Je) ,

(19)Ŵ
�i

sn
(ℂe) =

1

2
��
1

(
I
ℂe

− 3
)
+

1

2
��
2

(
II
ℂe

− 3
)
,

where �� is the elastic parameter associated with the response of 
the tumour and healthy tissue to volumetric deformations. Other 
functional forms for ̂W

�v

sn
(Je) taking into account the concept of 

the compaction point (Ehlers and Eipper 1999) or the existence 
of a maximum cell volume fraction (Byrne and Preziosi 2003) 
could alternatively be used. Once a proper constitutive form for 
the strain energy density function W�

sn
 is chosen, it is possible 

to compute the constitutive part of the solid phase stress tensor 
inside the tumour and the healthy regions:

where ��
sn

 is the solid phase second Piola–Kirchhoff stress 
tensor associated with the natural state, in the � ∈ {t, h} 
domain.

By classical computations (Gurtin et al. 2010) one obtains

where � is the symmetric fourth-order identity tensor, with 
components �

ijkl
=

1

2

(
�ik�jl + �il�jk

)
 , and the tensor product 

�⊗ � of two second-order tensors is defined by 
(𝔸⊗ 𝔹) ∶ ℍ = (𝔹 ∶ ℍ)𝔸 . From (22) it is possible to define 
the fourth-order elasticity tensor of the solid phase

As a consequence of Eqs. (18) and (21), the Cauchy stress 
tensor of the solid phase is decomposed into a deviatoric 
part ��d

s
 , for which we have tr (��d

s
) = 0 , and a spherical 

component ��v
s

 , with � ∈ {t, h} , i.e.

(20)Ŵ
�v

sn
(Je) =

1

2
�ω (ln Je)

2 ,

(21)𝕋
�
s
= 2J−1

e
𝔽e

�Ŵ
�

sn
(ℂe, Je)

�ℂe

𝔽
T
e
= J−1

e
𝔽e𝕊

�
sn
𝔽
T
e
,

(22)

𝕊
𝜔
sn
= 2

𝜕�W
𝜔

sn
(ℂe, Je)

𝜕ℂe

= 2J−2∕3
e

(
𝕀 −

1

3
ℂ

−1

e
⊗ ℂe

)
∶
𝜕�W

𝜔

sn
(ℂe, Je)

𝜕ℂe

+ Je
𝜕�W

𝜔

sn
(ℂe, Je)

𝜕Je
ℂ

−1
e

= 2J−2∕3
e

(
𝕀 −

1

3
ℂ

−1

e
⊗ ℂe

)
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𝜕�W

𝜔i

sn
(ℂe)

𝜕ℂe

+ Je
𝜕�W

𝜔v

sn
(Je)

𝜕Je
ℂ

−1
e

,

ℂ
�

sn
= 2

�𝕊�
sn

�ℂe

, � ∈ {t, h} .

(23)

𝕋
�
s
= 2J

−1
e

⎡
⎢⎢⎣
J
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e

𝔽e

�Ŵ
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sn
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�Je
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.
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The constitutive expressions of the Cauchy stress tensors � t
s
 

and � h
s
 must be accompanied by equations defining �s and 

�g . However, the deformation gradient tensor �s , which is 
entirely determined by the motion of the cell phase, is not 
an additional unknown for the model, whereas �g has to be 
determined by solving appropriate evolution equations. The 
evolution of �g can be obtained self-consistently by working 
out Eq. (3) (Giverso et al. 2015; Mascheroni et al. 2018; 
Grillo et al. 2012). In particular, we assume that the orienta-
tion of the mitotic spindle of cell division, which could be 
affected by external mechanical cues and by the mechanical 
behaviour of the tissue (here taken as isotropic), is not influ-
enced by brain fibre alignment, so that growth deformations 
are isotropic as well. Therefore, the inelastic tensor can be 
written as

with g a scalar field whose evolution is given by an ordinary 
differential equation (Ambrosi and Mollica 2002; Grillo 
et al. 2012):

We remark that, even if the multiplicative decomposition 
of the deformation gradient is actually needed only inside 
the tumour region, for simplicity we assume its validity 
everywhere in the domain. Thus, as a consequence of Eqs. 
(24)–(25), we will have �g = � outside the cancer domain.

2.2  Parameters estimation

A fundamental passage to complete the mathematical 
model and focus on its numerical implementation consists 
in assessing the values of the parameters that appear in the 
system. This is both a challenging and delicate task: since 
our goal is to simulate tumour progression and its mechani-
cal impact, the choice of the parameters is crucial to have 
a realistic and reliable outcome. At the same time, when 
working in the field of mathematical biology, accurate esti-
mations of the parameters are often difficult to obtain: this 
is particularly true for the brain, which is very difficult to 
be investigated experimentally (Goriely et al. 2015). In this 
Section, we review the literature so as to assign a value, or 
at least a range of values, to the parameters introduced in our 
model, in order to test its qualitative behaviour.

First of all, we deal with the material parameters �t
1
 , �t

2
 , 

�h
1
 , �h

2
 that appear in the Mooney–Rivlin energy densities. 

We take as a reference the work by Balbi et al. (2019), who 
analysed the constitutive behaviour of brain matter consider-
ing a Mooney–Rivlin-type energy, for which they propose 
as mean values for the material parameters �h

1
= 153 Pa and 

�h
2
= 297 Pa. We consider these values as references for the 

(24)�g = g�,

(25)
ġ

g
=

1

3

Γs

𝜙s

𝜒Ω∗
t

in Ω∗.

healthy tissue mechanics. As regards tumour tissue, sev-
eral experimental studies have assessed that it is in general 
stiffer than the healthy one: Stewart et al. (2017) showed 
that human brain tumours like gliomas and meningiomas are 
two to five times stiffer than normal brain tissue; Chauvet 
et al. (2016) and Miroshnikova et al. (2016) proved a sig-
nificant increase in stiffness for high-grade gliomas, more 
than ten times the healthy reference value (Clatz et al. 2005; 
Agosti et al. 2020). Therefore, for our main simulations we 
take the material parameters in the tumour region as ten 
times greater than the ones in the healthy region. However, 
some works estimate the stiffness of brain tumours to be 
either the same order as the healthy tissue or even softer 
(Nia et al. 2017; Svensson et al. 2022). Hence, to compare 
the growth velocities, we will also consider a case in which 
the parameters differ by four times and a case in which the 
tumour and the host tissue are assigned the same mechani-
cal parameters, equal to the ones of the normal brain. For 
what concerns the volumetric moduli � t and �h , as men-
tioned above they penalize volumetric changes in the solid 
skeleton. However, their estimation is difficult, since most 
of the experimental works and subsequent modelling do not 
consider the brain as a mixture. In some previous works 
on biological tissues considered as porous media, the coef-
ficient related to the volume excess stress is evaluated using 
the Young modulus (Byrne and Preziosi 2003; Agosti et al. 
2018a; Colombo et al. 2015), which is very low for the brain 
(Clatz et al. 2005; Agosti et al. 2020; Budday et al. 2020). 
The work by Prevost et al. (2011), using a volumetric brain 
tissue response comparable to the one used in the present 
work, estimates a range of 2 × 102 − 2 × 104 Pa for the volu-
metric modulus. Therefore, following these observations and 
taking into account that the brain is very soft, we choose 
� t = 1.4 × 10−3 MPa and �h = 1.4 × 10−4 MPa, looking for-
ward to further experimental confirmation.

As regards the parameters involved in the growth rate 
Γs proposed in Eq. (5), we estimate them as done in other 
recent works on brain tumours (Colombo et al. 2015; Ago-
sti et al. 2018a). In particular, the cell proliferation con-
stant � is taken as the inverse of typical doubling times 
for in vitro glioma cells, that vary from 24 to 48 hours: 
then, a range 0.5 − 1 day−1 can be considered appropriate 
for � (Frieboes et al. 2007). Since proliferation depends 
significantly on nutrients availability, also smaller values 
seem however admissible (Colombo et al. 2015): for this 
reason, in the following we will consider the minimum 
value inside the mentioned interval, i.e. � = 0.5 day−1 . The 
hypoxia threshold c0 is estimated in the literature as rang-
ing from 0.15 to 0.5 (Gerlee and Anderson 2007; Frie-
boes et al. 2007; Tanaka et al. 2009): we will consider 
an intermediate value of c0 = 0.3 in simulations. Moreo-
ver, we need to estimate the nutrients consumption rate � 
and the nutrients supply rate Sn appearing in Eq. (8): as 
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far as the former is concerned, following the approach 
by Colombo et al. (2015), it can be estimated indirectly 
through biological measurements of the oxygen diffusion 
coefficient in the human brain Dn and the distance covered 
by an oxygen molecule before it is uptaken by a cancer 
cell ln . The mean value for Dn reported in the literature 
is Dn = 86.4 mm2∕day (Colombo et  al. 2015; Frieboes 
et al. 2007), while ln is estimated to be about ln = 10−1 
mm (Frieboes et al. 2007). Hence, we can take a value of 
� = Dn∕l

2
n
= 8640 days−1 . The parameter Sn is instead quite 

difficult to estimate: as done in Colombo et al. (2015), 
Agosti et al. (2018) we refer to the value of 104 days−1 
proposed in Chatelain et al. (2011).

When we consider the stress-inhibited proliferation rate 
defined in Eq. (6), the parameters governing the impair-
ment of growth due to compression �1 and �2 have to be 
estimated as well. Referring to Mascheroni et al. (2018), in 
our simulations we will consider �1 = 0.8 − 0.9 , while we 
will choose �2 = 10−3 − 10−4 MPa to investigate different 
sensitivities to growth inhibition.

Regarding the estimate of �sn , that is, the cell volumet-
ric fraction in the natural state, it is usually assumed to be 
a constant given from the outset (Ambrosi and Mollica 
2002; Grillo et al. 2012). Different values appear in the 
literature: Colombo et al. (2015) and Agosti et al. (2018a) 
in their model for GBM considered a value of �sn = 0.39 , 
which they derived as the complementary value of the 
extracellular space studied in Bruehlmeier et al. (2003) 
and amounting at up to 61% . In our simulations, coherently 

with the constraint �max = 0.85 lower than 1, we set 
�sn = 0.3.

Finally, it remains to estimate the parameters which 
appear in the permeability tensor expression from Eq. 
(16), and in particular inside k̂(𝜙

�
) . Given its definition 

and the spatial and temporal scales we employ in our 
model, this function has units mm2/(MPa ⋅ day). As usu-
ally done for the Holmes–Mow permeability in soft tis-
sues (Guo et al. 2014; Di Stefano et al. 2019), the values 
�0 = 0.0848 and m = 4.638 are considered. Concerning the 
reference permeability k0 , values found in the literature for 
the brain cover a range of 104 − 105 mm2∕(MPa ⋅ day) : for  
instance, Mascheroni et al. (2018) consider a value of 
4.2 × 104 mm2/(MPa ⋅ day) for the fluid phase in GBM 
tumour spheroids, modelled as mixtures. Instead, Basser 
(1992) proposed values of 4.31 × 105 − 6.47 × 105 mm2/
(MPa ⋅ day) for the permeability of white and grey mat-
ter, respectively. Coherently, Smith and Humphrey (2007) 
reported a range of 1.47 × 105 − 2.67 × 105 mm2/(MPa ⋅ 
day), while a conversion of the value used by Jin et al. 
(2016) leads to 7.8 × 104 mm2/(MPa ⋅ day). Finally, in 
Asgari et al. (2016) a value of 1.72 × 105 mm2/(MPa ⋅ day) 
was employed. Therefore, we choose to consider an inter-
mediate value of k0 = 2.17 × 105 mm2/(MPa ⋅ day).

We report the complete list of parameters, along with 
their description, their values, and the main references, in 
Table 1.

To complete the parameters overview, we need to provide 
a definition for the diffusion tensor � and for the tensor of 
preferential directions � , influencing the permeability � . 

Table 1  Values of model parameters

Parameter Description Value Reference

�t
1

Mooney–Rivlin parameter (tumour) 1.53 × 10−3 MPa Chauvet et al. (2016); Miroshnikova et al. (2016)
�t
2

Mooney–Rivlin parameter (tumour) 2.97 × 10−3 MPa Chauvet et al. (2016); Miroshnikova et al. (2016)
� t  Volumetric modulus (tumour)  1.40 × 10−3 MPa Prevost et al. (2011)
�h
1

Mooney–Rivlin parameter (healthy) 1.53 × 10−4 MPa Balbi et al. (2019)

�h
2

Mooney–Rivlin parameter (healthy) 2.97 × 10−4 MPa Balbi et al. (2019)
�h  Volumetric modulus (healthy)  1.40 × 10−4 MPa Prevost et al. (2011)
� Cell proliferation constant 0.5 day−1 Frieboes et al. (2007)
c0 Hypoxia threshold 0.3 Gerlee and Anderson (2007)
� Nutrients consumption rate 8640 day−1 Frieboes et al. (2007)
S
n

Nutrients supply rate 104 day−1 Colombo et al. (2015)
�1 Parameter related to growth inhibition 0.8 − 0.9 Mascheroni et al. (2018)
�2 Parameter related to growth inhibition 10−3 − 10−4 MPa Mascheroni et al. (2018)
�sn Cell volume fraction (natural state) 0.3 Giverso et al. (2015)
�max Maximum cell volume fraction 0.85 –
�0 Holmes–Mow permeability parameter 0.0848 Guo et al. (2014); Di Stefano et al. (2019)
m Holmes–Mow permeability parameter 4.638 Guo et al. (2014); Di Stefano et al. (2019)
k0 Reference permeability 2.17 × 105 mm2 MPa−1 day−1 Basser (1992); Smith and Humphrey (2007); Jin 

et al. (2016); Asgari et al. (2016)
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To do so, we take advantage of the mechanical description 
included in the present model to progressively modify these 
tensors as time evolves. Indeed, the unnatural displacement 
induced by the neoplasm alters the direction of brain fibres 
in the surroundings, which should be taken into account in 
the description of both diffusion and fluid motion. It has 
been experimentally observed, by analysing both the DTI 
and the MRI scans of glioma patients, that volumetric and 
diffusion alterations can be recorded not only in the tumour 
region, but also in the surrounding healthy tissue, confirming 
structural and connectivity abrasions of brain areas distant 
from the brain tumour, and providing insights into the patho-
genesis of diverse neurological symptoms in glioma patients 
(Bouwen et al. 2018). Since our model explicitly evaluates 
the deformation and the displacement caused by the tumour, 
we are able to track these changes and to exploit them to 
modify tissue anisotropy.

In detail, we start from a diffusion tensor �0 considered at 
the initial time instant, which can be inferred directly from 
DTI imaging data after a proper computational processing 
described in Sect. 3. Since we consider oxygen as the main 
nutrients source, it seems appropriate to employ these data 
in the nutrients balance equation, given that the DTI scan 
actually quantifies the diffusion of water inside the brain. 
Then, we can write

where we have put in evidence the descending order eigen-
values 𝜆1 > 𝜆2 > 𝜆3 and the corresponding orthogonal eigen-
vectors �0

1
, �0

2
, �0

3
.

Concerning �0 , i.e. the initial value of tensor � , its con-
struction is also performed using DTI data, to evaluate the 
preferential directions identified by the presence of white 
matter tracts. In particular, it is assumed that �0 has the same 
eigenvectors as the diffusion tensor, but increased anisotropy 
along the preferential directions of motion inside the brain, 
as described in Jbabdi et al. (2005), Agosti et al. (2018a, b). 
To enhance anisotropy without altering the preferred direc-
tions, a control parameter r is introduced and �0 is defined as 

 In the previous expressions, r is the tuning parameter of 
anisotropy and ai(r) are functions of r given by

(26)�0 = 𝜆1�
0
1
⊗ �

0
1
+ 𝜆2�

0
2
⊗ �

0
2
+ 𝜆3�

0
3
⊗ �

0
3
,

(27)

��0 = a1(r)𝜆1�
0
1
⊗ �

0
1
+ a2(r)𝜆2�

0
2
⊗ �

0
2
+ 𝜆3�

0
3
⊗ �

0
3
,

�0 =
1

A0
av

��0 , A0
av
=

1

3
tr (��0).

(28)
a1(r) = ral + rap + as ,

a2(r) = al + rap + as ,

where the coefficients al , ap , as are the linear, planar and 
spherical anisotropy indices, respectively, defined as (Jbabdi 
et al. 2005; Westin et al. 2002; Painter and Hillen 2013):

with �k , k = 1, 2, 3 , being the eigenvalues of the diffusion 
tensor considered in decreasing order. The definition of 
these coefficients stems from the three simplest modes of 
diffusion: indeed, when 𝜆1 ≫ 𝜆2 ≈ 𝜆3 , then al ≈ 1 and dif-
fusion preferentially happens linearly along the direction of 
�
0
1
 . On the other hand, if 𝜆1 ≈ 𝜆2 ≫ 𝜆3 , the diffusion process 

is mainly confined into the plane spanned by �0
1
 and �0

2
 , lead-

ing to the planar coefficient ap ≈ 1 . Finally, in the case of 
spherical diffusion, all the eigenvalues of �0 have the same 
order of magnitude and as ≈ 1 . Since, in general, the diffu-
sion tensor will feature a combination of all these modes, it 
can be decomposed (Westin et al. 2002) as 

whe re  �l ∶= �
0
1
⊗ �

0
1
 ,  �p ∶= �

0
1
⊗ �

0
1
+ �

0
2
⊗ �

0
2
 and 

�s ∶= �
0
1
⊗ �

0
1
+ �

0
2
⊗ �

0
2
+ �

0
3
⊗ �

0
3
 . Therefore, the coeffi-

cients al , ap , as are related to the components of �0 with 
respect to the tensor basis {�l,�p,�s} : the scaling factors 
and trace normalization are introduced to guarantee that the 
coefficients range between 0 and 1, while keeping their sum 
equal to one. Concerning the definition of the anisotropy 
coefficients appearing in Eq. (28), they are employed to 
introduce changes in anisotropy through the parameter r, as 
done in Jbabdi et al. (2005). In particular, the case r = 1 cor-
responds to no increase in anisotropy, since al + ap + as = 1 , 
while r > 1 enhances anisotropy along the directions of the 
eigenvectors according to the values of the coefficients of 
anisotropy.

Once we have built the starting tensors �0 and �0 , their 
modification subsequent to growth and deformation is done 
taking into account that, as far as diffusion is concerned, it 
is relevant to consider just the reorientation of the preferen-
tial directions and not their extension or compression that, in 
principle, does not affect nutrients diffusion and cell motility. 
Therefore, we deform the eigenvectors according to the defor-
mation gradient �s , but we normalize them to account for the 
fact that only the direction of the fibres is changing (see Fig. 2). 
Hence, for the modified diffusion tensor we write

where we observe that

(29)

al =
�1 − �2

�1 + �2 + �3
, ap =

2(�2 − �3)

�1 + �2 + �3
, as =

3�3
�1 + �2 + �3

,

�0 = (�1 − �2)�l + (�2 − �3)�p + �3�s ,

(30)

� = 𝜆1
�s�

0
1
⊗ �s�

0
1

|�s�01|2
+ 𝜆2

�s�
0
2
⊗ �s�

0
2

|�s�02|2
+ 𝜆3

�s�
0
3
⊗ �s�

0
3

|�s�03|2
,
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We remark that, in defining the modified diffusion tensor, we 
choose to keep unchanged the trace of the initial tensor, and 
therefore the mean diffusivity along the principal directions. 
As a consequence of these assumptions, the pullback �∗ of 
the modified diffusion tensor � to the reference configuration 
does not coincide with �0 and the volume of the diffusion 
ellipsoid is not preserved, in general (see Fig. 2).

The modified tensor of preferential directions � can be 
defined using the same procedure as

3  Materials and methods

To perform simulations and solve our equations numeri-
cally, we need to introduce a spatially and temporally dis-
crete formulation of the continuous problem. Therefore, 
in this Section we describe the procedures to generate the 
patient-specific mesh used for the computation and the 
additional meshes containing the values of the components 

|||𝔽s�
0
i

|||
2

= 𝔽s�
0
i
⋅ 𝔽s�

0
i
= �

0
i
⋅ ℂs�

0
i
, i = 1, 2, 3, ℂs = 𝔽

T
s
𝔽s.

(31)
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1
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0
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⋅ ℂs�

0
1

+ a2(r)𝜆2
𝔽s�

0
2
⊗ 𝔽s�

0
2
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⋅ ℂs�

0
2
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𝔽s�

0
3
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0
3

�
0
3
⋅ ℂs�

0
3

,

𝔸 =
1

Aav

�𝔸 , Aav =
1

3
tr (�𝔸).

of the diffusion tensor �0 and of the tensor of preferential 
directions �0 , built starting from MRI and DTI clinical data 
of a patient affected by a brain tumour (a GBM, specifi-
cally), gently provided by the Istituto Neurologico Carlo 
Besta (Milan, Italy). We then introduce the Lagrangian for-
mulation of the model, that allows to solve the problem in 
the reference configuration, and finally we report the finite 
element and time discretization of the problem.

3.1  Mesh creation and preprocessing

A mesh generation pipeline is constructed using the analy-
sis tools provided by the FSL software library (Woolrich 
et al. 2009) for image processing and segmentation and by 
the VMTK software library (Antiga et al. 2008) for mesh 
generation. In particular, starting from a T1-w MR image 
at 1 mm × 1 mm × 1 mm spatial resolution, which provides 
the structural anatomy of the patient’s brain, the following 
preprocessing and computational steps are performed:

• brain extraction by intensity thresholding, in order to 
remove non-brain tissues, and bias-field correction;

• segmentation of the brain tissues and the background 
using the FAST algorithm (Zhang et al. 2001), based on 
a hidden Markov random field model and an associated 
expectation–maximization algorithm to estimate the seg-
mentation maps;

Fig. 2  Computational reconstruction and modification of the compo-
nents of the diffusion tensor taken from DTI data. The initial tensor 
�

0
 is built using medical imaging data (as explained in Sect. 3) and 

the values of the six components of the symmetric diffusion tensor 
are assigned to each mesh cell. In particular, on the left we show a 
sample of the components of the tensor �

0
 as they appear on a trans-

verse (horizontal) brain section, with higher values of the diffusion 
coefficients plotted in red. For a fixed representative cell sketched by 
the red triangle, on the right, we draw the red ellipsoid representing 

the preferential directions and values of diffusion at the initial time 
instant, i.e. the eigenvectors and eigenvalues of �

0
 , respectively. The 

initial eigenvectors are modified according to the deformation of 
the tissue, in order to obtain the time and spatially dependent ten-
sor � , given by Eq. (30). In the figure, we report �

0
 and the pullback 

�
∗ ∶= Js�

−1
s

��
−T
s

 of the modified diffusion tensor (in yellow), which 
are both defined in the reference configuration. We observe that �∗ 
has the same eigenvectors as �

0
 but different eigenvalues, due to the 

normalization and volumetric changes
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• extraction of a polygonal mesh of the isosurface repre-
senting the external brain boundary from the segmenta-
tion maps, using the marching cubes algorithm (Lorensen 
and Cline 1987). Further application of surface smooth-
ing, using Taubin’s algorithm (Taubin 1995), and refine-
ment steps to the isosurface mesh are implemented.

• Generation of the 3D mesh using a constrained Delau-
nay tetrahedralization of the brain domain defined by its 
boundary using the TetGen library (Si 2015), with proper 
refinement by smooth sizing functions in the area sur-
rounding the tumour centre.

The resulting computational brain mesh and its quality 
evaluated in terms of aspect ratio are reported in Fig. 3. In 
particular, we verified that almost all elements ( > 95% ) had 
an aspect ratio smaller than five.

A diffusion reconstruction pipeline is further defined 
using the ANIMA toolbox. In particular, starting from raw 
diffusion data from a DTI sequence comprising a set of 
140 diffusion-weighted images at 2 mm × 2 mm × 2 mm 
spatial resolution with anterior–posterior phase encoding 
direction with different b-values and diffusion-sensitizing 
directions, with an additional image acquired with reversed 
phase encoding direction, the following preprocessing and 
reconstruction steps are performed:

• correction of the eddy current distortion (i.e. the artefacts 
in the DTI images due to the electrical currents induced 
by the rapid switching of the magnetic field gradients 
during DTI acquisition) by nonlinear registration, com-
puted in the phase encoding direction, of the diffusion 
images onto a single diffusion image;

• estimation of the susceptibility distortion field from the 
forward and backward phase encoding images, with 
correction of the susceptibility-induced deformations 
by symmetric block-matching nonlinear registration 
(Hédouin et al. 2017);

• denoising of each diffusion image by blockwise non-local 
means filtering (Coupe et al. 2008);

• brain masking, obtained by block-matching rigid registra-
tion of the brain mask extracted from the T1–w image;

• estimation of the tensor �0 of water diffusion in each 
voxel from the diffusion images by matrix inversion using 
the log-signals, assuming that water diffuses according 
to a Gaussian process with zero mean and covariance 
proportional to the diffusion tensor (Arsigny et al. 2006);

• projection of the estimated tensor onto the space of the 
T1-w image by affine block-matching registration.

We finally generate six additional meshes, each one with 
a piecewise constant field associated with one independ-
ent component of the tensor �0 , by assigning to each cell 
the value of the tensor component of the voxel containing 
the cell barycentre, as shown in Fig. 2. At the same time, 
additional six meshes are also associated with each inde-
pendent component of the tensor of preferential directions 
�0 , expressed in terms of the eigenvalues and eigenvectors 
of the diffusion tensor �0 as explained in Sect. 2.2.

3.2  Numerical implementation

3.2.1  Lagrangian formulation

Since we solve our equations in the reference configura-
tion, we rewrite the model in material coordinates. In the 
following, unless otherwise specified, we will use the same 
symbols to denote the variables in the spatial and material 
description, and also omit the explicit spatial dependence. 
Instead, we decide to employ a different notation to dis-
tinguish between differential operators acting on differ-
ent configurations: henceforth, Grad and Div will be used 
to denote the material gradient and material divergence, 
respectively, i.e. gradient and divergence with respect to 
the material point � in the reference configuration.

Fig. 3  a Tetrahedral mesh gen-
erated within the brain domain, 
reconstructed from neuroimag-
ing data, and properly refined 
in the tumour region; b mesh 
quality in terms of tetrahedral 
aspect ratio
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By classical computations (Ambrosi and Mollica 2002; 
Grillo et al. 2012; Mascheroni et al. 2018; Giverso and 
Preziosi 2019), using a superimposed dot to denote the 
material time derivative, it is possible to derive the follow-
ing complete set of equations, holding in the fixed refer-
ence domain Ω∗ : 

 where �∗ ∶= Js�k(Je)�
−1
s

��
−T
s

 , �∗ ∶= Js�
−1
s

��
−T
s

 and � , 
� are the tensors modified according to the deformation, 
as reported in Eqs. (30)-(31). We remark that the pull-
backs �∗ and �∗ = Js�

−1
��

−T of � and � have the same 
eigenvectors as their initial counterparts �0 and �0 , but 
the eigenvalues are rescaled because of the normalization 
of the deformed eigenvectors and volumetric changes (see 
Eq. (30–31) and Fig. 2). Instead, ℙs is the constitutive part 
of the first Piola–Kirchhoff stress tensor of the solid phase, 
ℙs = Js𝕋s𝔽

−T
s

 . We notice that the system (32) is closed, since 
it constitutes a set of eight scalar equations (32b)-(32f) and 
features eight scalar unknowns, namely the displacement 
vector field of the solid phase �s(�, t) and the scalar fields 
�s(�, t) , ��

(�, t) , g(�, t) , cn(�, t) and p(�, t) . The fluid 
velocity �

�
(�, t) can be derived using Eq. (13). We remark 

that, since all the equations are pulled back on the reference 
configuration using the deformation field of the solid phase, 
the indicator function �Ω∗

t
 does not evolve in space and time, 

so it is not an additional unknown for the model and an evo-
lution equation is not needed.

The system of equations (32) allows therefore to determine 
all the unknown fields, ∀� ∈ Ω∗ and ∀t ∈ (0, T) , provided that 
proper initial and boundary conditions are prescribed. Since in 
our simulations the external boundary �Ω∗ stands for the cranial 
skull, we consider the following set of boundary conditions: 

(32a)Js = det �s , �s = � + Grad �s ,

(32b)Js�s = Jg�sn , �s + �
�
= 1 ,

(32c)J̇s = Div

[
�

∗

𝜇
Grad p

]
,

(32d)Div
[
−Jsp𝔽

−T
s

+ ℙs

]
= � ,

(32e)ġ = g
Γs

3𝜙s

𝜒Ω∗
t
,

(32f)

Js𝜙𝓁
ċn −

�
∗

𝜇
Grad p ⋅ Grad cn − Div

[
𝜙
𝓁
�

∗ Grad cn
]
= JsGn𝜒Ω∗

t
,

(33a)�s = � on �Ω∗,∀ t ∈ (0, T) ,

(33b)p = 0 on �Ω∗,∀ t ∈ (0, T) ,

 In detail, we impose a null Dirichlet boundary condition for 
the displacement �s and for the pressure p at the boundary of 
the cranial skull. As regards the nutrients concentration, we 
suppose that the brain boundary is sufficiently far from the 
tumour: we can then assume that, on the boundary, the oxy-
gen concentration is maintained constant at the physiologi-
cal value of 1. When the cancer grows close to the skull, as 
shown for instance in Supplementary Figures S1–S5, zero-
flux boundary conditions for the pressure and for the nutri-
ents concentration might be more appropriate. For a more 
detailed discussion, we refer the reader to the Supplementary 
Material of the article.

Concerning initial conditions, at the beginning of the 
tumour growth process it is reasonable to assume that the 
displacement and the pressure are equal to zero everywhere 
in the domain; meanwhile, we take the scalar field g related 
to the growth component of the deformation gradient as 
equal to 1 everywhere in the domain at t = 0.

Enforcing the condition that the variation of body mass 
is due to cell proliferation, it is possible to show (Ambrosi 
and Mollica 2002; Grillo et al. 2012) that the solid volu-
metric fraction in the natural state �sn is constant in time 
and, thus, equal to the �s(�, 0) . In particular, in the follow-
ing we will consider �sn homogeneous in space. Finally the 
initial nutrients concentration is uniformly set to cn = 1 
everywhere. To sum up, we have the following set of initial 
conditions: 

3.2.2  Finite element discretization

To perform numerical simulations, we here introduce the 
spatially discrete formulation of a proper continuous vari-
ational formulation of the system (32). We make use of lin-
ear tetrahedron ℙ1 elements, so we introduce the following 
finite element spaces:

(33c)cn = 1 on �Ω∗,∀ t ∈ (0, T) .

(34a)�s(�, 0) = � ∀� ∈ Ω∗ ,

(34b)p(�, 0) = 0 ∀� ∈ Ω∗ ,

(34c)g(�, 0) = 1 ∀� ∈ Ω∗ ,

(34d)�s(�, 0) = �sn ∀� ∈ Ω∗ ,

(34e)cn(�, 0) = 1 ∀� ∈ Ω∗ .

(35)
V

h
∶ = {q

h
∈
[
C
0(Ω∗)

]3
∶ q

h
|
K
∈
[
ℙ
1
(K)

]3

∀K ∈ T
h
, q

h
|𝜕Ω∗ = 0} ⊂ H1

0
(Ω∗) ,
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where Th is a conforming decomposition of the domain 
Ω∗ into tetrahedra K. Then, we are able to define 
our fully discrete variational problem as follows: for 
k = 1,… ,N  , given (�k

h
, pk

h
, ck

h
) ∈ Vh ×Wh0 ×Wh1 find 

(�h, ph, ch) ∈ Vh ×Wh0 ×Wh1 such that ∀ (vh,wh, qh) ∈

V
h
×W

h0
×W

h0

where, in order to have a lighter notation, we have dropped 
the unnecessary superscripts and denoted by the same sym-
bol (⋅, ⋅) the standard scalar product on the spaces L2(Ω∗) , 
L2(Ω∗;ℝ3) and L2(Ω∗;ℝ3×3) . Finally, we have indicated 
by ℙ = −Jsp𝔽

−T
s

+ ℙs the first Piola–Kirchhoff stress ten-
sor. We remark that, since we are working in a Lagrangian 
configuration, also the tensors �∗ and �∗ depend on �h . 
Moreover, the time discretization in Eqs. (38)–(40) con-
sists in a semi-implicit Euler scheme, which is solved by 
a Newton’s method. Since it is not evident how to define a 
single CFL condition (Courant et al. 1967) for the whole 
numerical problem, we chose a sufficiently small time step 
of Δt = 0.1 days and we checked, in the numerical code, that 
our choice guarantees the fulfilment of the CFL condition 
at each iteration.

Once we have obtained the discrete formulation of the 
partial differential equations, the last step is to introduce 
a proper discretization of the other equations involved, 
namely the ordinary differential equation for g (32e) and 
the relations (32b).

Regarding (32e), it can be easily discretized in time 
using the explicit Euler method. Then, we have

(36)
Wh0 ∶ = {qh ∈ C0(Ω∗) ∶ qh|K ∈ ℙ

1
(K)

∀K ∈ Th , qh|𝜕Ω∗ = 0} ⊂ H1

0
(Ω∗) ,

(37)
Wh1 ∶ = {qh ∈ C0(Ω∗) ∶ qh|K ∈ ℙ

1
(K)

∀K ∈ Th , qh|𝜕Ω∗ = 1} ⊂ H1(Ω∗) ,

(38)

(
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Gradwh,
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�
Grad ph

)
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Jk
s
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h
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)
,

(39)−
(
ℙ(�h, ph), Grad vh

)
= 0 ,

(40)

(
Js(�h)ch, qh

)
− Δt

(
�

∗

��
𝓁

Grad ph ⋅ Grad ch, qh

)

+ Δt
(
Grad qh,�

∗ Grad ch
)

=
(
Js(�h)c

k
h
, qh

)
+ Δt

(
Js(�h)

Gn(ch)

�
𝓁

, qh

)
,

(41)

gk+1(�j) = gk(�j)

(
1 + Δt

Γk
s
(�j)

3�k
s
(�j)

�Ω∗
t

)
j = 1,… ,M

where �j are the grid nodes and M is the number of spatial 
nodes in the discretization. The first equation of (32b) is 
simply discretized as follows

Given the discretized form of all the necessary equations, 
we are now able to run numerical simulations of the model. 
To this end, we implemented our code using the open source 
computing software for solving partial differential equations 
called FEniCS (The FEniCS Project 2021; Alnaes et al. 
2015; Logg et al. 2012). Such a software provides a high-
level Python and C++ interface for solving PDEs through 
the finite element method: in particular, FEniCS code is 
attractive since it remains very close to the mathematical for-
mulation, allowing the user to write down a program which 
closely resembles the variational form of equations. For 
instance, in FEniCS it is possible to choose the finite element 
of interest, define function spaces for test and trial functions, 
import external meshes easily and define a variational prob-
lem. It also comes with built-in classes specifically dedicated 
to the resolution of nonlinear variational problems, which in 
our case is an important feature. In particular, to solve the 
nonlinear variational problem defined by Eqs. (38)-(40), we 
employ the FEniCS built-in Newton’s method.

4  Results

To test the model and its implementation, we perform some 
numerical simulations on a realistic brain geometry, con-
structed from medical imaging data following the procedure 
described in Sect. 3. As specified before, we use the finite 
element method to solve the equations: in particular, we con-
sider an initial tumour radius of about 7 mm and simulate 
tumour progression for 45 days. In particular, in Sect. 4.1 
we compare the results of tumour evolution using both the 
growth laws given in Eqs. (5) and (6), the latter including the 
effect of solid stress inhibition on cell proliferation. Then, in 
Sect. 4.2 we report the results concerning the modification of 
DTI data as a consequence of growth-induced deformations.

4.1  Tumour evolution with and without stress 
inhibition

Results in terms of displacements, cell volume fraction, 
pressure, and the chosen measure of the stress are shown in 
Figs. 4, 5 and 6 along three sagittal, axial and coronal planes 
centred within the tumour. Specifically, in order to highlight 
the displacement induced by the growing mass, in Fig. 4 we 

(42)

Jk+1
s

(�j)�
k+1
s

(�j) = Jk+1
g

(�j)�sn

⇒ �k+1
s

(�j) =
Jk+1
g

(�j)

Jk+1
s

(�j)
�sn , j = 1,… ,M.
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report the magnitude |�s| of the displacement vector �s . The 
comparison between the case without stress inhibition, in 
which the rate of proliferation is taken as defined in Eq. (5), 
and the stress-inhibited case using Eq. (6) is put in evidence. 
It can be observed that, in the case without stress inhibition, 
the maximum value of the displacement amounts at 3.1 mm; 
moreover, such a value is not uniform around the tumour and 
along the three cutting planes: in the XZ-plane, for instance, 
the maximum displacement is about 2.9 mm. This is a con-
sequence of the patient-specific anisotropy included in the 
model thanks to the diffusion and permeability tensors: the 
presence of fibres influences the movement of fluid and 
nutrients diffusion, which in turn affect the growth, leading 
to a displacement around the tumour mass which is greater 
along certain directions. The second row of Fig. 4 shows 
instead the displacement magnitude in the stress-inhibited 
case, i.e. when the proliferation term (6) is chosen with 
parameters �1 = 0.8 and �2 = 10−4 MPa. It can be noticed 
that compression strongly inhibits the growth of the tumour, 
reducing therefore the amount of deformation around its 
placement; in particular, the maximum displacement is 
about 1.7 mm, which is almost a half of the one attained 
in the case without stress inhibition. This result highlights 

once more the importance of having a model which is able 
to include mechanical features of tumour growth, both to 
evaluate the impact of the mass on the healthy tissue and to 
correctly predict tumour evolution.

Moreover, the cellular proliferation inside the tumour 
region leads to an increase in the volumetric fraction of 
the solid phase, as shown in the first row of Fig. 5. After a 
month and a half of growth without stress inhibition, �s has 
almost reached the saturation value of 0.85 inside the tumour 
domain, and it starts to substantially increase also in the 
surrounding healthy region, due to the compression exerted 
by the growing mass. On the other hand, if growth becomes 
sensitive to compressive stresses, the value achieved by the 
solid fraction is much smaller after the same period of simu-
lation and the changes in volume fraction around the tumour 
are slightly perceivable. This is consistent with the fact that 
stress is slowing down tumour proliferation, as observed also 
in biological experiments (Cheng et al. 2009; Helmlinger 
et al. 1997; Montel et al. 2012; Delarue et al. 2014).

Concerning some other relevant variables of the model, 
in the first row of Fig. 6 we show the final values of the 
fluid pressure p, which is negative inside the cancer region, 
since the fluid is consumed during the uncontrolled cellular 

Plane YZ XZ XY

Without
stress-

inhibition

With
stress-

inhibition

Fig. 4  Comparison between the displacement magnitude |�s| after 
t = 45 days of tumour growth in the brain, clipped along a sagittal 
(first column), an axial (second column), and a coronal (third column) 
plane centred within the tumour. In the first row, the case without 

stress inhibition is reported, while the second row shows a case of 
stress-inhibited growth. After a month and a half, the maximum dis-
placement induced by the tumour without any inhibition due to stress 
amounts at 3.1 mm, while in the inhibited case it is about 1.7 mm
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proliferation. In the second row of Fig. 6 we plot the value of 
Σ = −

1

3
tr (�s) , that coincides with the trace of the volumet-

ric solid Cauchy stress, recalling Eq. (23), and it is a stress 
measure of the compression used in our model to account 
for stress inhibition of growth. As expected, it is positive 
inside the tumour, meaning that there is a compression in 
this area, and negative in zones around the tumour boundary, 
where the tissue is in traction. The existence of gradients of 
compression and tension, moving from the tumour towards 
the surrounding brain tissue is confirmed by biological tests 
combined with a simple finite element model (Seano et al. 
2019; Nia et al. 2017).

Finally, as regards the concentration of nutrients (not 
shown in the figures), it is almost maintained at the physi-
ological value of 1 in the whole healthy region of the brain, 
while it substantially decreases inside the tumour, where 
proliferating neoplastic cells are consuming the nutrients 
faster than they are supplied.

In addition to the  plots representing the relevant vari-
ables on the three-dimensional brain domain, in Fig. 7 we 
report the line plots along three representative rays originat-
ing from the tumour centre and lying in different orthogonal 
planes. This allows to evaluate spatial evolutions of the vari-
ables: it can be seen that the displacement magnitude pre-
sents a peak at the tumour boundary and then vanishes as we 

move away from the cancer domain. Moreover, as already 
shown before, the solid volume fraction �s displays a non-
monotonic behaviour along some rays, due to the fact that 
the solid phase is growing and compressing the surrounding 
healthy tissue. Instead, the pressure increases when moving 
from the tumour centre to the healthy tissue, while the bulk 
solid stress decreases, coherently with the observation that 
the maximum compression is experienced inside the cancer 
proliferation domain.

To compare our results with biological data, we computed 
the tumour volume evolution for three different values of its 
elastic parameters: results are shown in Fig. 8a. It can be 
seen that there is an initial stage where the tumour volume 
grows approximately linearly: then, growth starts to slow 
down due to saturation. In detail, when the tumour is ten 
times stiffer than the healthy tissue, the final volume after 
45 days amounts at 3.5 cm3 . Moreover, we observe a volume 
doubling time (VDT) of about 25 days and a specific growth 
rate (SGR, defined as (ln 2)∕VDT ) of 2.8% per day. These 
results are indicative of a very fast growth and are in the 
range of experimental data by Stensjøen et al. (2015), who 
reported a median VDT of 29.8 days, and by Ellingson et al. 
(2016) where a median VDT of 21.1 days (with average of 
41.0 ± 28.2 days) is found. Additionally, the SGR ranges 
from a median of 1.2–2.2% per day in Stensjøen et al. (2015) 

Plane YZ XZ XY

Without
stress-

inhibition

With
stress-

inhibition

Fig. 5  Comparison between the solid volume fraction �s after t = 45 
days of tumour growth in the brain, clipped along a sagittal (first col-
umn), an axial (second column), and a coronal (third column) plane 

centred within the tumour. In the first row, the case without stress 
inhibition is reported, while the second row shows a case of stress-
inhibited growth
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to an average of 5.9 ± 2.0% per day in Ellingson et  al. 
(2016). We remark however that these quantities are usually 
obtained in medical assays by assuming that growth is expo-
nential, which in some cases might be an oversimplification.

Moreover, even if the tumour in our simulations is highly 
non-spherical due to anisotropy as discussed before, we 
computed an average velocity of radial expansion (VRE) 
to make a comparison with other experimental results. In 
detail, starting from the tumour volume, we computed its 
equivalent radius considering it as a sphere and evaluated the 
expansion velocity along the radial coordinate. Our simula-
tions suggest an average VRE of approximately vr ≈ 18.4 
mm/year, which is biologically feasible (Stensjøen et al. 
2015; Ellingson et al. 2016; Wang et al. 2009; Swanson 
et al. 2008) even if there is a high clinical variability from 
patient to patient and in some cases the VRE is even greater. 
In particular, growth is faster in the first period, when the 
tumour is still localized and the cell volume fraction is far 
from the saturation limit. Instead, if we consider a softer 
tumour, which is only four times stiffer than the surround-
ing brain tissue, its growth is significantly slower: over the 
same time span of 45 days, the final cancer volume is about 

2.2 cm3 , with a relative change in volume of 49%. In this 
case, the average VRE amounts at vr ≈ 8 mm/year, indica-
tive of a slower growth. In the case in which the mechanical 
parameters inside the tumour region are equal to the ones 
of the healthy tissue (Nia et al. 2017; Svensson et al. 2022), 
it can be seen that volume growth is very slow compared to 
the other situations: the final volume of the mass amounts 
at 1.7 cm3 and the relative volume change is less than 15%. 
For each choice of the mechanical parameters, in Fig. 8a we 
report as dashed lines the corresponding simulation with 
stress inhibition of growth, setting �1 = 0.8 and �2 = 10−4 
MPa. As expected, the sensitivity of volume growth to com-
pressive stresses increases with the difference in mechanical 
parameters between the tumour and the host tissue. Overall, 
the results underline the importance of accounting for the 
mechanical features of tumour growth, since stiffer cancer 
masses are more effective in displacing the surrounding 
healthy tissue and can progress faster.

Furthermore, we compare our model outcomes with 
experimental data provided in Nia et  al. (2017), Seano 
et al. (2019), Stylianopoulos et al. (2013). In particular, 

Plane YZ XZ XY

p

Σ

Fig. 6  Comparison between variables during tumour growth in the 
brain, clipped along a sagittal (first column), an axial (second col-
umn), and a coronal (third column) plane centred within the tumour, 

at time t = 45 days. In the first row the fluid pressure p is reported, 
while the second row shows the stress measure Σ = −

1

3
tr(�s)
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the profiles of the Cauchy stress component Tzz across the 
tumour diameter and the surrounding tissue, reported in 
Fig. 8b are in qualitative agreement with the experimental 
results and finite element estimates provided in Nia et al. 
(2017). It can be observed that the stress has a peak near the 
interface between the tumour and the healthy tissue, where 
tension accumulates. Then, there is a high compression 
zone inside the tumour, with a slight decrease at the tumour 
centre. Moreover, if the tumour is ten times stiffer than the 
host tissue, the modulus of the considered component of the 
Cauchy stress is significantly higher compared with the case 
in which the two tissues are mechanically equivalent. In spite 
of this, the tension and compression values for both Tzz and Σ 
predicted by our model are overall higher when we consider 
the mechanical parameters of the tumour ten times greater 
than the ones of the healthy tissue. On the other hand, if 
we take equal material parameters we obtain results both 

qualitatively and quantitatively comparable with the ones 
reported in Nia et al. (2017), Seano et al. (2019), where 
stresses between − 0.1 and 0.1 kPa are recorded for tumours 
on mice. These discrepancies may be due to the fact that the 
stress values are highly dependent on the material model 
and on the chosen constitutive characterization, and most 
experimental and computational models, including (Nia 
et al. 2017; Seano et al. 2019), are based on linear elasticity, 
while we employ a nonlinear elastic framework. Moreover, 
in our case we deal with a tumour that has a radius of about 
7 mm, which is almost twice as much as the one used in the 
experimental setup of Nia et al. (2017). Since it has been 
shown that solid stress increases with tumour radius (Nia 
et al. 2017), our stress results may be feasible from a biologi-
cal viewpoint, though further investigation about stress for 
in vivo tumours is needed as well as an accurate estimation 
of the mechanical parameters and tumour stiffness. We also 

Fig. 7  Comparison between variables during tumour growth in the 
brain, along three representative rays in different planes originating 
from the tumour centre, at time t = 45 days. In the insets, the chosen 

rays are depicted on the 3D brain mesh. a Displacement magnitude 
|�s| ; b solid volume fraction �s ; c pressure p; d bulk solid stress Σ
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find that the tumour solid stress predicted by our model is 
within the range of residual stresses estimated for cancer 
spheroids in Stylianopoulos et al. (2013), namely between 
1.3 and 13.3 kPa, though these results are not brain specific. 
In addition, solid stress values are again shown to be higher 
in modulus in the tumour interior, where there is a consist-
ent amount of compression that slows down the growth of 
the cancer. Notwithstanding Stylianopoulos et al. (2013) 
reported that the interstitial fluid pressure increases inside 
the tumour bulk as a consequence of vascular collapse (not 
modelled in our framework), our predictions suggest that the 

pressure is decreased, in accordance with other works using 
mixture models (Giverso et al. 2015; Giverso and Preziosi 
2019). Moreover, in the present work we did not take into 
account the possibility of reduced perfusion due to cancer 
growth, which is an effect often reported in the literature 
(Seano et al. 2019; Stylianopoulos et al. 2013), but it would 
be interesting to consider it in future research.

Finally, we investigated the role of cancer cell sensitivity 
to stress inhibition in the progression of the disease. To do 
so, in Fig. 9 we compare the evolution of the tumour vol-
ume for different grades of stress inhibition (regulated by 

(a) (b)

Fig. 8  a Tumour volume evolution over time, for different values of 
the elastic parameters in the tumour region. In particular, the tumour 
is taken as ten times stiffer than the host tissue (grey curves), four 
times stiffer (red curves), and equal to the healthy tissue (yellow 
curves). Solid lines correspond to the cases without stress inhibition 

on growth, while dashed lines refer to the simulations with stress 
inhibition ( �

1
= 0.8 , �

2
= 10−4 MPa). b Tzz component of the solid 

Cauchy stress tensor along a ray that crosses the tumour diameter, for 
the case of a tumour which is ten times stiffer (grey curves) and as 
stiff as the healthy tissue (yellow curve)

(a) (b)

Fig. 9  a Tumour volume evolution, as a function of time, in the case 
with and without stress inhibition of growth, for different values of 
the parameters �

1
 and �

2
 appearing in Eq. (6). The red marker identi-

fies the initial volume of the tumour. b Initial tumour configuration 

(red), corresponding to the volume at t = 0 ; final configuration for the 
case without stress inhibition (grey) and for the stress-inhibited case 
with �

1
= 0.8 , �

2
= 10−4 MPa (blue), corresponding to the final vol-

umes in the line plot (a)
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the parameters �1 and �2 ), with respect to the case without 
stress inhibition. In particular, in Fig. 9a we show the vol-
ume evolution of the cancer in the case without stress inhi-
bition and in three stress-inhibited cases, varying both the 
parameters �1 and �2 . Specifically, if we increase the impact 
of compression by decreasing �2 while keeping �1 = 0.8 
fixed, the volume growth becomes consistently slower and 
reduces the velocity of cancer expansion. This can be also 
seen in Fig. 9b, where the three-dimensional configuration 
of the tumour is shown at the initial time instant and at t = 45 
days, for the case without stress inhibition and for a strongly 
stress-inhibited case. An evaluation of the velocities of radial 
expansion yields vr = 15.1 mm/year if �1 = 0.8 , �2 = 10−3 
MPa and vr = 11.2 mm/year if �1 = 0.8 , �2 = 10−4 MPa. 
Instead, keeping �2 = 10−4 MPa fixed and increasing �1 also 
leads to a slower growth, even if the volume reduction due 
to inhibition is smaller.

4.2  Modification of DTI data

Lastly, we show some results related to the DTI data modi-
fication due to tumour growth: indeed, the expansion of the 
mass and the induced displacement alter the fibre tracts in 
the surroundings, leading to changes in diffusion and prefer-
ential directions. To quantify these changes, we recall that, 
given 𝜆1 > 𝜆2 > 𝜆3 the descending order eigenvalues of the 
diffusion tensor, the fractional anisotropy (FA) is a scalar 
parameter defined by:

(43)FA ∶=

√
1

2

(�1 − �2)
2 + (�2 − �3)

2 + (�1 − �3)
2

�2
1
+ �2

2
+ �2

3

.

A fractional anisotropy of 0 identifies an isotropic medium, 
where the eigenvalues are all coincident and the diffusion 
ellipsoid is actually a sphere, with no preferential direc-
tion. Instead, a FA value of 1 indicates the existence of a 
totally preferred direction, making diffusion to occur only 
along one of the eigenvectors. In order to provide an esti-
mate of how the diffusion tensor is changed in time as a 
consequence of the tumour-induced deformation, in Fig. 10 
we report the difference ΔFA = FAf − FAi of fractional 
anisotropy between the final and initial diffusion tensors. 
It can be noted that, in the region surrounding the grow-
ing cancer, there is an increase in diffusive anisotropy up to 
60%. Variations in FA are also non-uniform in the tumour 
area, highlighting zones which are significantly affected by 
changes in anisotropy and others which instead maintain 
their initial preferential directions. It is also worth to observe 
that most of the tumour bulk displays no change in FA with 
respect to the initial value, computed from medical images. 
Indeed, DTI data extracted from patients are often altered 
by the tumour, which displaces or even destroys the fibres 
as it grows, reducing anisotropy inside the tumour bulk, as 
pointed out in other works (Swan et al. 2018). Since at the 
beginning of the simulations the tumour has already a size 
of some millimetres, the most significant changes in anisot-
ropy happen around the tumour domain, where the cancer 
mass dislocates the surrounding white matter fibres and the 
displacements are higher.

Since the fractional anisotropy only gives a scalar meas-
ure related to the eigenvalues, we also investigated the 
variation in the eigenvector direction �0

1
 associated with 

the greatest eigenvalue �1 of the diffusion tensor �0 . To do 
so, first of all we computed in each mesh cell the direction 

YXZXZY

Fig. 10  Variation of the fractional anisotropy (FA) after 45 days of tumour growth. It can be noted that, around the tumour zone, there is an 
increase in the tissue anisotropy
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of the eigenvector �f
1
 associated with the greatest eigen-

value of the diffusion tensor � at the final time step. In 
fact, thanks to the modification of the initial tensor �0 , we 
can keep track of the preferential directions of diffusion, 
which may vary in each cell due to tumour growth and 
subsequent deformation. Then, we calculated the value of

that is a measure related to the scalar product between the 
initial and final eigenvectors. In particular, s = 0 denotes 
zones where the eigenvector does not change as a conse-
quence of the deformation, while s = 1 identifies regions 
with the greatest modifications in the direction of �0

1
 due to 

tumour growth. As shown in Fig. 11, the greatest variations 
occur in cells located at the border of the tumour region and 
in the surrounding healthy area. However, the scalar index 
s does not provide details about the change in orientation of 
the eigenvectors. Therefore, we expressed the eigenvectors �0

1
 

and �f
1
 using spherical coordinates (r, �,�) , where r > 0 is the 

distance from the origin, � ∈ (−�,�] is the azimuthal angle 
and � ∈ (0,�] is the polar angle, so that �0

1
= (r0, �0,�0) and 

�
f

1
= (rf , �f ,�f ) , and we calculated the absolute differences 

|Δ�| = |�f − �0| and |Δ�| = |�f − �0| between the angles � 
and � , respectively, at final and initial time instants. Since 
we are interested in the preferential axis of diffusion and not 
in its orientation, we identified azimuthal angles and polar 
angles differing by multiples of � and rescaled the angles 
variation between 0 and �∕2 . These variations were only 
computed in anisotropic regions, where � is not spherical 
and therefore it is meaningful to evaluate changes in the 
eigenvector associated with the greatest eigenvalue. Results 
for |Δ�| and |Δ�| are shown in Fig. 11: there are regions, 

s ∶= 1 − |�0
1
⋅ �

f

1
| ,

both inside and outside the tumour domain, in which the 
two angles defining the spherical coordinates of �0

1
 vary, 

leading therefore to changes in the preferential direction of 
nutrients diffusion, in qualitative agreement with medical 
observations (Bouwen et al. 2018). Finally, we remark that 
the results shown in Figs. 10 and 11 have been obtained after 
a postprocessing, by elaborating differences between initial 
and final data on each cell of the mesh.

5  Conclusions

Mechanical compression is a common abnormality of brain 
tumours that has been shown to be responsible for the severe 
neurological defects of brain cancer patients and to represent 
a negative prognostic factor (Gamburg et al. 2000; Kalli et al. 
2019). To refine previous mathematical descriptions of brain 
tumour growth and account for this mechanical impact, we 
proposed a model that explicitly features hyperelastic defor-
mations of brain tissue and incorporates medical imaging 
data coming from DTI and MRI. Using the well-established 
framework of Continuum Mechanics, we described the brain 
and the cancer mass as saturated biphasic mixtures, com-
prising a solid and a fluid phase, which are both relevant 
in a hydrated soft tissue like the brain. This enables us to 
evaluate deformations and stresses caused by the proliferation 
of tumour cells, as well as the displacement induced on the 
surrounding healthy tissue. In particular, thanks to the mul-
tiphase approach, the model is able to distinguish the stress 
contribution associated with the fluid from the one associ-
ated with the solid mass, and therefore it could be useful in 
understanding the biological implications and the extent of 
the so-called mass-effect (Chauhan et al. 2014; Goriely et al. 

Fig. 11  Variation during tumour growth (from t = 0 to t = 45 days) 
of the eigenvector associated with the greatest eigenvalue of the dif-
fusion tensor � , quantified in terms of the scalar index s (left) and 

the absolute variations of the azimuthal angle |Δ�| (centre) and polar 
angle |Δ�| (right)
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2015; Jain et al. 2014; Seano et al. 2019; Kalli et al. 2019). 
The mechanical description included in the present model 
allows to account for growth inhibition due to excessive 
compression, thanks to the definition of a proliferation term 
embedding a proper stress measure. Moreover, by numeri-
cally computing the deformation field, it is possible to modify 
the diffusion and permeability tensors, taking into account 
the displacement of the brain tissue. This is a clear advantage 
for simulations of brain tumour growth, since it allows to 
consider changes in the DTI data without the need of repeat-
ing the clinical screening exams multiple times.

Our results and outcomes show the possibility of using 
our model as a proof-of-concept to make a step forward in 
the realistic description of cancer in the brain. Specifically, 
we highlighted the unnatural displacement caused by the 
tumour, as well as the increase in volume depending on both 
the mechanical properties of the tumour itself and on the 
amount of stress inhibition. We were also able to quantify 
changes in the fractional anisotropy of the tissue and in the 
orientation of preferential directions.

The model therefore suggests the relevance of a realistic 
mechanical description of brain cancer growth. However, 
there are still some limitations in our approach which should 
be addressed in future improvements. For instance, it should 
be appropriate to overcome the choice of a continuous and 
regularized indicator function for the tumour region. Even 
though the infiltration of tumours like GBM into the sur-
rounding tissues justifies its description using an interface 
that is not totally sharp, for solid tumours it would be prob-
ably more realistic to implement a discontinuous separa-
tion between the diseased and healthy areas. In addition, 
the inclusion of an anisotropic growth tensor should be 
evaluated: in this work we consider the influence of anisot-
ropy by defining patient-specific diffusion and permeability 
tensors, but it would be interesting to treat growth distor-
tions as anisotropic as well. The problem of reconstructing 
DTI coefficients and therefore realistic anisotropy inside 
the tumour region is also not trivial, since medical imaging 
data are often isotropic inside the cancer bulk because of 
fibres disruption. Thus, the modelling of anisotropy changes 
may require further research efforts, by using for instance a 
reflected DTI approximation (Swan et al. 2018) or solving an 
inverse problem to quantify the relevant DTI parameters in 
zones where the imaging is altered by the cancer. The dam-
age of white matter fibres due to the growth of the tumour 
could also be taken into account, by introducing an explicit 
description of the amount of healthy fibres in the tissue.

Then, future works should also be dedicated to the accu-
rate estimation of all the relevant parameters of the model. 
Specifically, the present framework can be easily extended 
to incorporate patient-specific mechanical data, obtained by 
MRE. Indeed, thanks to the improvements attained in the 
last years to optimize high-resolution multifrequency MRE 

acquisition protocols and preprocessing tools, it is now pos-
sible to have 3D MRE data with 2 mm isotropic resolution 
and strong repeatability. Anyhow, the commonly used pro-
cessing tools for parameters identification in MRE are based 
on inversion analysis for wave propagation in a linear vis-
coelastic medium (Murphy et al. 2019; Fehlner et al. 2017), 
therefore future studies are still needed to reconstruct the 
inherently nonlinear mechanical response of brain tissues. 
In addition to the mechanical parameters, other constants 
like the densities of the solid and fluid phase in the brain 
could be evaluated more precisely to improve the multiphase 
framework, in accordance with recent findings (Ehlers et al. 
2022). Finally, the model should be validated on a real set 
of data, to test its predictive capability.

Further developments of the proposed model might 
include also the simulation of therapies, like radiotherapy 
effects, and surgical removal of the tumour mass. With 
regard to the latter, the rearrangement of tissue after resec-
tion strongly depends on the mechanical forces and on the 
tumour-induced reorganization of healthy tissues and fibres 
in the region around the cancer, that has been included in the 
presented mechanical perspective.
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