
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

PyOMA and PyOMA_GUI: A Python module and software for Operational Modal Analysis / Pasquale Pasca, Dag;
Aloisio, Angelo; Rosso, MARCO MARTINO; Sotiropoulos, Stefanos. - In: SOFTWAREX. - ISSN 2352-7110. -
20:101216(2022). [10.1016/j.softx.2022.101216]

Original

PyOMA and PyOMA_GUI: A Python module and software for Operational Modal Analysis

Publisher:

Published
DOI:10.1016/j.softx.2022.101216

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2972668 since: 2022-10-28T10:19:28Z

Elsevier

SoftwareX 20 (2022) 101216

a

b

c

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

PyOMA and PyOMA_GUI: A Pythonmodule and software for
OperationalModal Analysis
Dag Pasquale Pasca a, Angelo Aloisio b, Marco Martino Rosso c,∗, Stefanos Sotiropoulos c

Norsk Treteknisk Institutt, Børrestuveien 3, 0373, Oslo, Norway
Department of Civil, Construction-Architectural and Environmental Engineering, Università degli Studi dell’Aquila, L’Aquila, Italy
Department of Structural, Geotechnical and Building Engineering Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy

a r t i c l e i n f o

Article history:
Received 3 June 2022
Received in revised form 26 August 2022
Accepted 24 September 2022

Keywords:
Operational modal analysis
Ambient vibration test
Structural dynamics
Python
Output-only
Modal testing
Graphical User Interface

a b s t r a c t

In structural health monitoring (SHM) paradigm, operational modal analysis (OMA) comprises several
techniques and algorithms for estimating the dynamic characteristics of a structure in operational
conditions from its vibration response. The OMA method has been spreading in the last years due
to multiple advantages compared to input–output identification methods. In the current work the
authors present the implementation of a Python module named PyOMA and its Graphical User Interface
(GUI) PyOMA_GUI. This software provides a user-friendly framework for the first time in the Python
environment for estimating the experimental modal parameters (natural frequencies, mode shapes,
damping ratios) of a structure from output-only vibration measurements in operational conditions.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Code metadata

Current code version v1.4
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00147
Code Ocean compute capsule None
Legal Code License GPL-3.0 license
Code versioning system used git
Software code languages, tools, and services used Python, PyQt
Compilation requirements, operating environments & dependencies numpy, pandas, scipy, matplotlib, seaborn, mplcursors
If available Link to developer documentation/manual https://github.com/dagghe/PyOMA/wiki
Support email for questions supportPyOMA@polito.it

Software metadata

Current software version 1.0
Permanent link to executables of this version For example:

https://github.com/dagghe/PyOMA/blob/master/PyOMA_GUI/PyOMA_GUI.exe
Legal Software License GPL-3.0 license
Computing platforms/Operating Systems Microsoft Windows
Installation requirements & dependencies None, one single executable file
If available, link to user manual - if formally published include a reference to
the publication in the reference list

https://github.com/dagghe/PyOMA/blob/master/PyOMA_GUI/PyOMA_GUI_user_
manual_v1.0.pdf

Support email for questions supportPyOMA@polito.it
∗ Corresponding author.
E-mail address: marco.rosso@polito.it (Marco Martino Rosso).
ttps://doi.org/10.1016/j.softx.2022.101216
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
1. Motivation and significance

The practice of operational modal analysis (OMA) on civil
structures and infrastructures has been growing significantly in
the last decades [1]. OMA allows estimating the modal proper-
ties (natural frequencies, mode shapes and damping ratios) from
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.101216
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101216&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00147
https://github.com/dagghe/PyOMA/wiki
mailto:supportPyOMA@polito.it
https://github.com/dagghe/PyOMA/blob/master/PyOMA_GUI/PyOMA_GUI.exe
https://github.com/dagghe/PyOMA/blob/master/PyOMA_GUI/PyOMA_GUI_user_manual_v1.0.pdf
https://github.com/dagghe/PyOMA/blob/master/PyOMA_GUI/PyOMA_GUI_user_manual_v1.0.pdf
mailto:supportPyOMA@polito.it
mailto:marco.rosso@polito.it
https://doi.org/10.1016/j.softx.2022.101216
http://creativecommons.org/licenses/by/4.0/

Dag Pasquale Pasca, Angelo Aloisio, Marco Martino Rosso et al. SoftwareX 20 (2022) 101216

o
o
f
c
a
b
t
e
r
o
l
S
p
f
d
f
n
r
i
E
E
t
o
S
a
u

c
C
c
T
a
l
l
d
o
r
t
t
m
f
f
f
m
t
O
M
o
t
d
o
Q
t
c
s
m
S
c
D
T

utput-only ambient vibration tests while the structure is in its
perating conditions. Measuring the input ambient excitations
or a civil engineering structure is nearly impossible. Neither
an it adequately excite them using conventional devices, such
s impact hammers and shakers. On the other hand, output vi-
ration data acquired through accelerometers are relatively easy
o obtain. In OMA, the deterministic knowledge of the input
xcitation is replaced by the assumption that the input is a
ealization of a stochastic process. Accordingly, OMA and output-
nly dynamic identification are considered synonyms. There is a
arge variety of algorithms for OMA. Among them, the Stochastic
ubspace Identification (SSI) and the Frequency Domain Decom-
osition (FDD) have proved to be effective and reliable algorithms
or output-only dynamic identification [1]. The SSI is a time-
omain method that estimates the stochastic state-space model
rom stationary output-only data [2]. Furthermore, to deal with
on-stationary output-only data [3], e.g. free decay vibrational
esponses, a variant of the covariance-based SSI algorithm, which
s equivalent to the Natural Excitation Technique (NExT) with
igensystem Realization Algorithm (ERA) method, named NExT-
RA [4,5] was developed. The FDD is a frequency domain method
hat estimates the modal parameters using the input/output data
f an n degree of freedom (DOF) system stochastic process [6].
o in conclusion, PyOMA is an open-source Python module that
llows the estimation of the modal parameters of a structure
sing six acknowledged techniques derived from SSI and FDD:

1. Frequency Domain Decomposition [6];
2. Enhanced Frequency Domain Decomposition [7];
3. Frequency Spatial Domain Decomposition [8];
4. Covariance driven Stochastic Subspace Identification [2];
5. Data driven Stochastic Subspace Identification [9];

The frequency domain methods (No 1–3) are based on the
omputation of the power spectrum density (PSD) matrix [10].
onversely, the time domain methods (No 4–6) are based on
orrelation function or the analysis of response time histories.
he FDD is one of the most popular OMA techniques [6]. It is
n extension of the pick-peaking method based on the singu-
ar value decomposition (SVD) of the PSD matrix. The major
imitation of the FDD is the lack of a reliable method for the
amping ratio estimation. The EFDD [7] represents an extension
f the FDD to overcome this issue and estimate the damping
atios. This method uses inverse discrete Fourier transform (IDFT)
o transform the PSD into time domain impulse responses at
he resonance peaks. Damping is obtained from the logarith-
ic decrement of the corresponding normalized auto-correlation

unction. The EFDD can be used to accurately estimate natural
requencies and closely spaced modes. The FSDD represents a
urther improvement of the FDD based on manipulating the PSD
atrix with the modes estimates from preliminary FDD. Stochas-

ic subspace identification (SSI) is the most typical time domain
MA method. It was developed in 1991 by Van Overschee, and De
oor [11]. SSI allows the identification of the state space model
f dynamic systems under stochastic excitation [2]. There are
wo algorithms of SSI: data-driven SSI (SSI-DAT) and covariance-
riven SSI (SSI-COV). In SSI-COV, the block Hankel matrix is
btained from data correlation. Conversely, in the SSI-DAT, the
R decomposition of the data Hankel matrix is used to project
he row space of future outputs into the row space of past out-
omes [12]. Both SSI-COV and SSI-DAT are capable of estimating
ystem modes and forced oscillations. Nonetheless, SSI-COV is
ore computationally efficient compared to SSI-DAT. In addition,
SI methods allow a high parameter estimation accuracy and high
omputational efficiency compared to other OMA methods [13].
ue to these advantages, SSI has become a standard in OMA.
here are two main limitations of OMA methods:
2

• Unscaled mode shapes: The lack of knowledge on the excit-
ing force does not allow the mode shapes normalization.

• Gaussian white noise: It is assumed that all modes are
equally excited by Gaussian white noise. Nonetheless, this
is never true in practice, and harmonic components, non-
stationary or narrow-band excitation, can bias the outcomes
of OMA. It must be remarked that when dealing with non-
stationary excitation, the above methods cannot be rigor-
ously applicable (seismic response, vehicle–bridge interac-
tion problems, e.g.)

2. Software description

PyOMA module is an open-source Python module that imple-
ments a complete output-only OMA framework for researchers,
engineers and practitioners. Through the implemented functions,
it is possible to estimate the modal parameters of a civil structure
using dynamic identification techniques derived from SSI and
FDD [1], as illustrated in Fig. 1. In addition, the authors provided
a graphical user interface software version of the current module,
called PyOMA_GUI. The PyOMA_GUI aims to improve the appeal
of the existing open-source Python OMA module, which has
already been used in several applications. Not secondarily, the
graphical user interface does not require any Python expertise or
Python coding knowledge prerequisite.

2.1. Software functionalities

PyOMA_GUI is a graphical user interface software developed
in PyQt5, which implements in a single integrated tool the oper-
ational modal analysis of civil structures with output-only mea-
surement data. A general overview of the software functionalities
are depicted in Fig. 2. This software employs the functional-
ities mentioned above offered by the PyOMA python module.
Therefore, PyOMA_GUI provides an exceptionally user-friendly
interface to improve the accessibility of the PyOMA module,
ensuring widespread usage for scientists, researchers, and applied
civil and structural engineers. The main features PyOMA_GUI
provides are listed below:

• Importing data tab;
• Definition of the geometry of the structure and the moni-

toring system (channels and degrees of freedom, DOFs);
• Pre-processing of the acquired signals with detrending and

decimation options;
• Dynamic identification algorithms with visualization of the

results (graphs, modal shapes);
• Post-processing tabs and output export functionalities;

3. Illustrative example

In the present illustrative example, a 5 Degrees of Freedom
(DOFs) shear type frame has been considered with lumped mass
m = 25.91 Ns2/mm at each floor, and same storey stiffness k
= 10000 N/mm to each floor level. The function oma.Exdata()
generates the data needed related to the current example. The
analytical solution to the eigenvalue problem provides the natural
frequencies of the system [14]:

fn =

⎡⎢⎢⎢⎣
f1
f2
f3
f4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0.88995
2.59776
4.09511
5.2607

⎤⎥⎥⎥⎦ [Hz] (1)
f5 6.0001

https://pypi.org/project/PyQt5/
https://github.com/dagghe/PyOMA

Dag Pasquale Pasca, Angelo Aloisio, Marco Martino Rosso et al. SoftwareX 20 (2022) 101216

Fig. 1. ‘‘PyOMA’’ module flowchart.

Fig. 2. ‘‘PyOMA_GUI’’ graphical user interface software general overview.

3

Dag Pasquale Pasca, Angelo Aloisio, Marco Martino Rosso et al. SoftwareX 20 (2022) 101216

a
s

Φ

T
r

t
s
s
p
e

a
r

3

s
c
O
m
I
r
a
a
i

p
a
p
t
S
d o

c
m

nd the normalized mode shapes, retrieved by scaling each mode
hape to set its largest component in absolute value to unity, are:

= [φ1 φ2 φ3 φ4 φ5]

=

⎡⎢⎢⎢⎣
0.28463 −0.763521 1 0.918986 −0.5462
0.5462 −1 0.28463 −0.763521 0.918986

0.763521 −0.5462 −0.918986 −0.28463 −1
0.918986 0.28463 −0.5462 10.763521

1 0.918986 0.763521 −0.5462 −0.28463

⎤⎥⎥⎥⎦
(2)

he damping matrix is calculated assuming a constant damping
atio of 2% for every mode.

Synthetic signals, corresponding to the acceleration time his-
ory at each floor, are generated by the function using scipy’s
ignal.StateSpace class. All the 5 DOFs are excited by a Gaus-
ian white noise input, then the results from each channel are
olluted with a noise source with a signal-to-noise ratio (SNR)
qual to 10%.
The input parameters assumed in each OMA method represent

trade-off between computational efficiency and accuracy of the
esults.

.1. Preliminary operations

First and foremost, it is fundamental to import all the neces-
ary modules, and the input data as an array. In this example a
all to the function oma.Exdata() permits to get the input data.
n the other hand, if the user is importing its own data, he
ay take advantage of pandas module, e.g. pd.read_csv function.

t is worth reminding that the time instant column need to be
emoved by the user, furthermore attention must be paid to the
rguments ‘‘header’’, which locate the spreadsheet’s table header,
nd separator character argument ‘‘sep’’, to correctly read and
mport the data file.

Import modules
import numpy as np
import pandas as pd
import seaborn as sns
from scipy import signal
import matplotlib.pyplot as plt
import pyOMA as oma
======== PRE-PROCESSING ========
To open a .txt file create a variable with the path to

the file
_file = r"C:<Path to the txt file>\Ex_file.txt"

open the file with pandas and create a dataframe
N.B. whatchout for header, separator and remove time

column(s)
data = pd.read_csv(_file, header=0, sep="\t",

index_col=False)
data = data.to_numpy()

to retrieve the example data
data, (fex, FI_ex, xi_ex) = oma.Exdata()

The user must provide the signals’ sampling frequency, ex-
ressed in Hz. In the preliminary operations, the PyOMA module
llows the user to perform the most common and basic signal
re-processing actions such as detrending, decimation, and fil-
ering procedures, through the standard scypy.signal functions.
ubsequently, the system is ready to execute the output-only
ynamic identification algorithms.

Sampling frequency
fs = 100 # [Hz] Sampling Frequency
 t

4

Fig. 3. SV diagram of the PSD matrix obtained from the FDD algorithm.

Using SciPy’s signal module user can pre-process the
data

e.g. decimation, trend removal and filtering.
Detrend and decimate
data = signal.detrend(data, axis=0) # Trend removal
q = 5 # Decimation factor
data = signal.decimate(data, q, ftype=’fir’, axis=0) #

Decimation
fs = fs/q # [Hz] Decimated sampling frequency

Filter
_b, _a = signal.butter(12, (0.3,6.5), fs=fs,

btype=’bandpass’)
filtdata = signal.filtfilt(_b, _a, data,axis=0) #

filtered data

3.2. Identification — frequency domain

In the current example, the authors focus firstly on
oma.FDDsvp to run the Frequency Domain Decomposition (FDD)
algorithm. This function returns the Singular Values (SV) diagram
of the Power Spectral Density (PSD) matrix, and a dictionary that
contains the results that will be processed later to extract the
modal properties.

Run FDD
FDD = oma.FDDsvp(data, fs)

The peaks in Fig. 3 represent an estimate to the natural fre-
quencies of the system. To help the identification of the peaks,
the user can take advantage of mplcursor module, which enables
the click interactivity with the graphed data which are depicted
in Fig. 3.

Define list/array with the peaks identified from the
plot

FreQ = [0.89, 2.6, 4.1, 5.27, 6] # identified peaks

At this point, it is possible to run the oma.FDDmodEX and/or the
ma.EFDDmodEX functions to extract the modal information ac-
ording to the ‘‘FDD method’’ and/or the ‘‘Enhanced-FDD (EFDD)
ethod’’ respectively. All ‘‘modEX’’ functions return a dictionary

hat contains the results of the identification in terms of modal

Dag Pasquale Pasca, Angelo Aloisio, Marco Martino Rosso et al. SoftwareX 20 (2022) 101216

p
u
a
t
m
t
i
d
s
c
e
T
t
w
f
e
p

b

u

roperties. The oma.FDDmodEX function will only extract the nat-
ral frequency and the mode shape, according to the original FDD
lgorithm as presented in [6]. The oma.EFDDmodEX() function has
wo methods that can be selected. Method ‘‘EFDD’’ extracts the
odal properties (frequencies, mode shapes, damping) according

o the EFDD algorithm as presented in [7]. The method ‘‘FSDD’’
nstead extract the modal properties (frequencies, mode shapes,
amping) according to the Frequency-Spatial Domain Decompo-
ition (FSDD) method [8]. The latter method isolates the modal
oordinates by modal filtering and provides enhanced output PSD
stimates, which in return yield better auto-correlation functions.
he required parameters by the functions are: ‘‘FreQ’’, which is
he list of peaks previously identified in the SV diagram; ‘‘Results’’
hich is the dictionary of results returned by oma.FDDsvp. These

unctions allows the user to customize the return, permitting the
xtraction of the single DOF (SDOF) bells extraction from the PSD
eaks [1], one for each mode, as depicted for instance in Fig. 4.

Extract the modal properties
extracting modal properties using standard FDD
Res_FDD = oma.FDDmodEX(FreQ, FDD[1])
extracting modal properties using Enhanced-FDD
Res_EFDD = oma.EFDDmodEX(FreQ, FDD[1], method=’EFDD’)
extracting modal properties using FSDD with additional

input
arguments to customize the return of function, e.g.

return plot
Res_FSDD = oma.EFDDmodEX(FreQ, FDD[1], method=’FSDD’,

npmax = 35, MAClim=0.95, plot=True)

It is also possible to visualize the results of the identification
y inspecting the returned dictionaries:

Res_FDD[’Frequencies’] = [0.89, 2.6, 4.09, 5.25, 5.99]
Res_EFDD[’Frequencies’] = [0.888922, 2.60223, 4.08213,

5.25452, 6.00018]
Res_FSDD[’Frequencies’] = [0.888299, 2.60237, 4.09628,

5.23675, 6.02448]
Res_EFDD[’Damping’] = [0.0226723, 0.0211802, 0.0221737,

0.0186768, 0.0162947]
Res_FSDD[’Damping’] = [0.0207433, 0.0199027, 0.0214159,

0.0196272, 0.0187716]

Res_FDD[’Mode Shapes’] =
0.25134	0.769842	1	0.885276	0.561732
0.53948	1	0.270606	-0.781869	-0.936679
0.748727	0.567836	-0.892552	-0.262885	1
0.920345	-0.27664	-0.533285	1	-0.785869
1	-0.920871	0.73329	-0.543235	0.253549

Res_EFDD[’Mode Shapes’] =
0.267461	0.761337	1	0.91893	0.528522
0.540725	1	0.283499	-0.762619	-0.89945
0.73491	0.544052	-0.89023	-0.286976	1
0.931503	-0.283387	-0.545335	1	-0.769609
1	-0.874993	0.741409	-0.551697	0.278106

Res_FSDD[’Mode Shapes’] =
0.271745	0.759193	1	0.920024	0.531951
0.542999	1	0.282955	-0.767985	-0.904347
0.741326	0.542259	-0.900547	-0.284978	1
0.932505	-0.280532	-0.544536	1	-0.77068
1	-0.881809	0.745016	-0.552481	0.277287

3.3. Identification — time domain

Regarding to time domain methods, PyOMAmodule allows the
ser to run the stochastic subspace identification (SSI) algorithm,
5

both the data-driven version denoted as ‘‘SSI-dat’’ [9] with the
command oma.SSIdatStaDiag, and even the covariance-based
approach denoted as ‘‘SSI-cov’’ [2] through the command
oma.SSIcovStaDiag. To analyze the data with these time domain
parametric procedures one can run the following functions:

Run SSI
br = 15 # number of block rows (time lags)
running SSI-cov
SSIcov= oma.SSIcovStaDiag(data, fs, br)
running SSI-dat with additional input parameters
SSIdat = oma.SSIdatStaDiag(data, fs, br, ordmax=60,

lim=(0.01, 0.05, 0.02, 0.1))

For these functions, the required parameters are the dataset, the
sampling frequency and the number of block rows (time lags).
The optional parameters allow the user to define the maximum
model order, minimum order, and the limit values to be used
for the stability criteria of the poles in the stabilization dia-
gram, which are depicted in Fig. 5. The scholars can also use
the mplcursor module to identify the stable frequency lines in
a click-based interactive diagram approach.

Once the identified frequencies have been collected, it is pos-
sible to extract the estimates of the modal properties. Therefore,
the user may just run the function SSIModEX(), passing to it
the array/list of frequencies identified in the stabilization dia-
gram. The dictionary of results are returned by either
oma.SSIcovStaDiag() or oma.SSIdatStaDiag().

Extract the modal properties
Res_SSIcov = oma.SSIModEX(FreQ, SSIcov[1])
Res_SSIdat= oma.SSIModEX(FreQ, SSIdat[1])

It is also possible to visualize the identification results by
inspecting the output dictionaries:

3.4. Post-processing

The PyOMA module provides the user with simple functions to
perform post-processing procedures for the results. For instance,
it is possible to evaluate the similarity between mode shapes
of different identified modes by calculating the modal assurance
criterion (MAC) between the eigenvectors. It is also possible to
define a diagram with seabornmodule with the function heatmap
for the cross-MAC indicator, as depicted in Fig. 6.

======
Make some plots
======
MS_FDD = Res_FDD[’Mode Shapes’].real
MS_EFDD = Res_EFDD[’Mode Shapes’].real
MS_FSDD = Res_FSDD[’Mode Shapes’].real
MS_SSIcov = Res_SSIcov[’Mode Shapes’].real
MS_SSIdat = Res_SSIdat[’Mode Shapes’].real
_nch = data.shape[1]

MAC = np.reshape(
[oma.MaC(FI_ex[:,l], MS_FSDD[:,k]).real for k in

range(_nch) for l in range(_nch)], #
(_nch*_nch) list of MAC values

(_nch, _nch)) # new (real) shape (_nch x _nch) of
the MAC matrix

crossMAC = np.reshape(
[oma.MaC(MS_SSIcov[:,l], MS_SSIdat[:,k]).real

for k in range(_nch) for l in range(_nch)], #
(_nch*_nch) list of MAC values

(_nch,_nch)) # new (real) shape (_nch x _nch) of
the MAC matrix

Dag Pasquale Pasca, Angelo Aloisio, Marco Martino Rosso et al. SoftwareX 20 (2022) 101216

c

M
c

f
s

Fig. 4. Single DOF (SDOF) bell extraction from the post-processing of FSDD results.
ol = ["mode I", "mode II", "mode III", "mode IV", "mode V"]

AC = pd.DataFrame(MAC, columns=col, index=col)
rossMAC = pd.DataFrame(crossMAC, columns=col,

index=col)

ig, ax = plt.subplots()
ns.heatmap(MAC,cmap="jet",ax=ax,annot=True, fmt=’.3f’,)
6

fig.tight_layout()
plt.show()

fig, ax1 = plt.subplots()
sns.heatmap(crossMAC,cmap="jet", ax=ax1, annot=True,

fmt=’.3f’,)
fig.tight_layout()
plt.show()

Dag Pasquale Pasca, Angelo Aloisio, Marco Martino Rosso et al. SoftwareX 20 (2022) 101216

Fig. 5. Stabilization diagrams resulting for SSI-dat (a) and SSI-cov (b) methods.

Fig. 6. Representation of MAC (a) among the modes from the same technique and cross-MAC (b) comparing optimal results provided by SSI-cov and SSI-dat
approaches.

Res_SSIcov[’Frequencies’] = [0.888782, 2.5977, 4.09384, 5.25337, 6.00183]
Res_SSIdat[’Frequencies’] = [0.888743, 2.59783, 4.0945, 5.25339, 6.00224]
Res_SSIcov[’Damping’] = [0.0205092, 0.0198478, 0.0211763, 0.0207207, 0.0190943]
Res_SSIdat[’Damping’] = [0.0216251, 0.0198527, 0.0229909, 0.0208779, 0.0200183]

Res_SSIcov[’Mode Shapes’] =
0.265703	0.780006	1	0.911646	0.547661
0.538122	1	0.275115	-0.76086	-0.923849
0.741008	0.56412	-0.899589	-0.280149	1
0.928411	-0.288147	-0.536196	1	-0.774282
1	-0.944359	0.742725	-0.545645	0.275831

Res_SSIdat[’Mode Shapes’] =
0.279095	0.772773	1	0.925599	0.542878
0.53965	1	0.285698	-0.768124	-0.916186
0.742472	0.551479	-0.914432	-0.286194	1
0.937415	-0.282122	-0.550359	1	-0.770326
1	-0.924122	0.754373	-0.555319	0.275067

7

Dag Pasquale Pasca, Angelo Aloisio, Marco Martino Rosso et al. SoftwareX 20 (2022) 101216

o

3

a
t
a
a
t
D
p

3

s
F
d
c
e
b
w
u
p
d
s
s
b
t

e
t
n
t

Fig. 7. PyOMA_GUI 5 DOFs shear type example overview. (a) Initial tab after starting the software execution; (b) Import data tab.
d
f
f
t
r
m
f
w

It is possible to visit the documentation page for further details
n the PyOMA implemented functions.

.5. OMA with the graphical user interface approach

The PyOMA_GUI has been implemented with PyQt5 library,
dopting a notebook-style with tabs that noticeably help every
ype of user follow the right steps to perform OMA in a semi-
ssisted approach. In the following, the main steps in Fig. 2
re briefly described and discussed. However, with the software,
he authors provided the files with the same example of the 5
egrees of Freedom (DOFs) shear-type frame discussed in the
revious sections.

.5.1. Import data
After running the executable PyOMA_GUI file, the user must

elect the first tab to import vibration data, as illustrated in
ig. 7. In the first place, the user must select the current working
irectory, i.e. a folder in which the output files will be stored. It
an be in any location on the user’s machine, and it can be an
xisting folder or a new one that may be created on the dialogue
ox. After that, the user must browse the input data file, which
ill also be displayed in the table to check the success of the data
ploading. At the user’s will, it is possible to customize the im-
orted data table headers’ names with a simple double click. The
ata visualization permits the user to check the number of time
teps and the number of channels. To proceed with the following
tages of the OMA procedure, the user must push the Submit
utton. Furthermore, to start a new analysis, the user may press
he Clear Set-up button to completely reset the PyOMA_GUI
software memory and cleanse the uploaded data.

3.5.2. Geometry
The geometry definition is fundamental to provide the user

with a simplified visualization of the identified mode shapes
according to the monitored DOFs and the available measurement
channels, as depicted in Fig. 8(a). The user must browse a text
file which contains the nodes’ coordinates and connectivity to
visualize a starting undeformed scheme of the structure under
study according to the monitored DOFs only. Pushing the button
Create Geometry a wire-frame graph of the structure appears.
In the table Assign Channels to DOF, the user must insert the
xact index of the table (Channel_x, Channel_y, Channel_z) and
he precise name of the monitored channel/DOF. Those identical
ames are shown in the combo-box Channels’ name to remind
he user, preventing him from returning to the previous imported
8

data tab tediously. In the combo box, the exact assignments of the
channels are provided.

3.5.3. Pre-processing and peak-peaking approach
The PyOMA_GUI allows the user to perform signal basic pre-

processing procedures in the same manner as the PyOMAmodule,
illustrated in Fig. 8(b). The user must select the parameters of the
problem, e.g. the sampling frequency and decimation factor and
some default values are provided if the user does not set them
explicitly. Thereafter, it is possible to run the FDD_svp function.
In the SV graph figure, it is possible to perform the peak-peaking
approach to select the peak of interest, and with the button
Add, they are added to the list of the identified peaks. The other
buttons close to the list permits customizing the identified peaks
list, e.g. deleting a single item or clearing the whole list. With the
Submit button, the user confirms the selection of the identified
peaks, and it is possible to proceed with analyzing the results of
the FDD approaches.

3.5.4. FDD, SSI and their implemented variants with PyOMA_GUI
Passing to the next tab of the notebook, it is possible to run the

FDD, SSI and their implemented variants in the PyOMA module
with the graphical user interface software. In the FDD tab, the
user can choose in the checkboxes the methods of interest among
FDD, EFDD and FSDD. Pushing the button Run FDD, the results
are illustrated in terms of SDOF bell extraction for each mode.
The available diagrams are listed in the dropdown menu in the
bottom-left part of the window, and the above figure refreshes
the user anytime to modify its selection. In the FDD_res tab, the
user may explore all the frequency domain algorithms’ results
in tabular form. All the results (figures included) are automati-
cally stored in the working directory previously selected. In the
FDD_geom tab, the final mode shape deformations are presented in
several forms, as depicted in Fig. 9. By selecting the desired mode,
the figure is updated. In the table, the deformation on each node
is presented, while extra functionalities for the plot are provided.
The checkbox Deformed shape illustrates in the same figure the
eformed structure, and the checkbox Show values activates the
unctionality to show the information of the table directly on the
igure. At the same time, four scaling factors are also provided
o adjust and customize the mode shape appearance. The last
emaining tabs are related to the SSI method, which working
echanisms are similar and equivalent to the so-far illustrated

requency-domain methods. The stabilization diagram obtained
ith the PyOMA_GUI software is illustrated in Fig. 10.

https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description

Dag Pasquale Pasca, Angelo Aloisio, Marco Martino Rosso et al. SoftwareX 20 (2022) 101216

a
A
M
t
a
O
P
a
m
b
a
F
t
g
i
g
T
d

Fig. 8. PyOMA_GUI 5 DOFs shear type example overview. (a) geometry definition; (b) Preprocessing and FDD algorithm execution with SV decomposition diagram
for peak-peaking identification.
Fig. 9. PyOMA_GUI 5 DOFs shear type example overview. (a) geometry definition; (b) Preprocessing and FDD algorithm execution with SV decomposition diagram
for peak-peaking identification.
4. Impact

To this date, a few commercial software implements the two
lgorithms mentioned above. The most known presumably are
RTeMIS [15], by Structural Vibration Solutions, and MACEC, a
atlab toolbox for modal testing and OMA [16]. However, to

he author’s best knowledge, there is no Python module nor
ny other open-source complete toolbox to perform output-only
MA. For this reason, the authors have developed the present
yOMA module. The API for PyOMA provides a set of functions for
quick and straightforward estimation of the natural frequencies,
ode shapes and damping using the experimental data recorded
y the user. Specifically, the user needs to specify only a minimal
mount of input parameters in addition to the measurement data.
or a complete description of the functionalities, please refer
o the documentation page. The flowchart in Fig. 1 shows the
eneral architecture of PyOMA. Furthermore, the greatest impact
s provided by the development of the PyOMA_GUI, for which a
eneral overview of the main functionalities is depicted in Fig. 2.
he software provides a graphical user interface (GUI) approach
esigned to be adopted by both researchers, civil engineers and
9

practitioners without requiring any Python expertise or Python
coding knowledge prerequisite. The PyOMA_GUI aims at increas-
ing the impact of the current open-source Python OMA module,
which has already been used in several applications, as proved by
several scientific publications: [17–26].

5. Conclusions

The authors developed a new python module and open-source
software, PyOMA and PyOMA-GUI, respectively, to perform dy-
namic identification of structures from output-only vibration
measurements. To the authors’ knowledge, there are no cur-
rently structured python modules for Operational Modal Analysis
(OMA). OMA represents a standard practice in the diagnosis phase
of structures within any structural health monitoring paradigm.
By providing a structured open-source software and framework
to perform OMA, the authors hope to provide the scientific
community and practitioners with a fundamental tool. For this
reason, the authors developed a graphical user interface version
of this python module to increase the impact of the software
among users without particular expertise in python coding.

https://svibs.com/
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description
https://github.com/dagghe/PyOMA/wiki/Function-Description

Dag Pasquale Pasca, Angelo Aloisio, Marco Martino Rosso et al. SoftwareX 20 (2022) 101216
Fig. 10. PyOMA_GUI 5 DOFs shear type example overview. Stabilization diagram
retrieved with SSI algorithm.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The authors acknowledge the meaningful contribution of Pro-
fessor Rocco Alaggio from Università degli Studi dell’Aquila, who
encouraged the authors to study and develop these topics. The
authors acknowledge the meaningful contribution of Professor
Giuseppe Carlo Marano from Politecnico di Torino for promoting
the Graphical User Interface programming and coordinating the
team activities.

Appendix. Function’s description

• MaC(Fi1, Fi2):
This function returns the Modal Assurance Criterion (MAC)
for two mode shape vectors. If the input arrays are in the
form (n,) (1D arrays) the output is a scalar, if the input are
in the form (n,m) the output is a (m,m) matrix (MAC matrix).
Parameters

– Fi1: array (1D or 2D)
First mode shape vector (or matrix).

– Fi2: array (1D or 2D)
Second mode shape vector (or matrix).

Returns

– MAC : float or (2D array)
Modal Assurance Criterion.

• Exdata():
This function generates a time history of acceleration for a
5 DOF system. The function returns a (360001,5) array and
a tuple containing: the natural frequencies of the system
(fn = (5,) array); the unity displacement normalized mode
10
shapes matrix (FI1 = (5,5) array); and the damping ratios
(xi = float).
Returns

– acc : 2D array
Time histories of the 5 DOF of the system.

– (fn, FI1, xi) : tuple
Tuple containing the natural frequencies (fn), the mode
shape matrix (FI1), and the damping ratio (xi) of the
system.

• SSIcovStaDiag(data, fs, br, [ordmax = [None], lim =
[(0.01,0.05,0.02,0.1)], method = [’1’]])
This function perform the covariance-driven Stochastic sub-
Space Identification algorithm. The function returns the Sta-
bilization Diagram (Plot) for the given data. Furthermore it
returns a dictionary that contains the results needed by the
function SSImodEX().
Parameters

– data: 2D array
The time history records (N◦ data points x N◦ chan-
nels).

– fs: float
Sampling frequency of the time series.

– br: int
Number of block rows.

– ordmax: None or int, optional
The maximum model order to use in the construction
of the stabilization diagram. None (default) is equiva-
lent to the maximum allowable model order equal to
br*data.shape[1].

– lim: tuple, optional
Limit values to use for the stability requirements of
the poles. The first three values are used to check the
stability of the poles.

– lim: tuple, optional
Limit values to use for the stability requirements of
the poles. The first three values are used to check the
stability of the poles.
Frequency: (f(n)-f(n+1))/f(n) < lim[0] (default to 0.01)
Damping: (xi(n)-xi(n+1))/xi(n) < lim[1] (default to
0.05)
Mode shape: 1-MAC((phi(n),phi(n+1)) < lim[2] (de-
fault to 0.02)
The last value (lim[3]) is used to remove all the poles
that have a higher damping ratio (default to 0.1, N.B.
in structural dynamics we usually deal with under-
damped system)

– method: ‘1’, ‘2’, optional
Method to use in the estimation of the state matrix A:
method ‘‘1’’ (default) : the first method takes advan-
tages of the shift structure of the observability matrix.
method ‘‘2’’ : the second method is based on the de-
composition property of the one-lag shifted Toeplitz
matrix.

Returns

– fig1 : matplotlib figure
Stabilization diagram. Take advantage of the mplcur-
sors module to identify the stable poles.

– Results : dictionary
Dictionary of results. This dictionary will be passed as
argument to the SSImodEX() function.

• SSIdatStaDiag(data, fs, br, [ordmax = [None], lim =
[(0.01,0.05,0.02,0.1)], method = [’1’]])

Dag Pasquale Pasca, Angelo Aloisio, Marco Martino Rosso et al. SoftwareX 20 (2022) 101216
This function perform the Data-driven Stochastic sub-Space
Identification algorithm. The function returns the Stabiliza-
tion Diagram (Plot) for the given data. Furthermore it re-
turns a dictionary that contains the results needed by the
function SSImodEX().
Parameters

– data: 2D array
The time history records (N◦ data points x N◦ chan-
nels).

– fs: float
Sampling frequency of the time series.

– br: int
Number of block rows.

– ordmax: None or int, optional
The maximum model order to use in the construction
of the stabilization diagram. None (default) is equiva-
lent to the maximum allowable model order equal to
br*data.shape[1].

– lim: tuple, optional
Limit values to use for the stability requirements of
the poles. The first three values are used to check the
stability of the poles.

– lim: tuple, optional
Limit values to use for the stability requirements of
the poles. The first three values are used to check the
stability of the poles.
Frequency: (f(n)-f(n+1))/f(n) < lim[0] (default to 0.01)
Damping: (xi(n)-xi(n+1))/xi(n) < lim[1] (default to
0.05)
Mode shape: 1-MAC((phi(n),phi(n+1)) < lim[2] (de-
fault to 0.02)
The last value (lim[3]) is used to remove all the poles
that have a higher damping ratio (default to 0.1, N.B.
in structural dynamics we usually deal with under-
damped system)

– method: ‘1’, ‘2’, optional
Method to use in the estimation of the state matrix A:
method ‘‘1’’ (default) : the first method uses the
kalman state sequence S(i+1)
method ‘‘2’’ : the second method takes advantages of
the shift of the observability matrix

Returns

– fig1 : matplotlib figure
Stabilization diagram. Take advantage of the mplcur-
sors module to identify the stable poles.

– Results : dictionary
Dictionary of results. This dictionary will be passed as
argument to the SSImodEX() function.

• SSIModEX(FreQ, Results, [deltaf = [0.05], aMaClim =
[0.95]]):
This function extracts the modal properties (frequencies,
damping ratios, mode shapes) and returns the results or-
ganized in a dictionary. This function takes as second argu-
ment the results from either SSIdatStaDia() or SSIcovStaDia()
functions.
Parameters

– FreQ: array (or list)
Array containing the frequencies, identified from the
stabilization diagram, which we want to extract.

– Results: dict
Dictionary of results (returned by either SSIcovStaDiag
or SSIdatStaDiag).
11
– deltaf: float, optional
Tolerance to use when searching for FreQ[i] in the
results. Default to 0.05.

– aMaClim: float, optional
Modal Assurance Criterion limit value. The poles which
have a MAC value less than aMaClim are excluded from
the calculation of the statistics of the modal properties.

Returns

– Results: dictionary
Dictionary containing the modal properties (frequen-
cies, damping ratios, mode shapes) of the system.

• FDDsvp(data, fs, [df = [0.01], pov = [0.5], window =
[’hann’]]):
This function perform the Frequency Domain Decomposi-
tion algorithm. The function return the plot of the singular
values of the power spectral density. The cross power spec-
tral density is estimated using scipy.signal.csd() function,
which in turn is based on Welch’s method. Furthermore it
returns a dictionary that contains the results needed by the
function FDDmodEX().
Parameters

– data: array
The time history records (Ndata x Nchannels).

– fs: float
Sampling frequency of the time series.

– df: float, optional
Desired frequency resolution. Default to 0.01 (Hz).

– pov: float, optional
Percentage of overlap between segments. Default to
50%.

– window: str or tuple or array like, optional
Desired window to use. Window is passed to
scipy.signal’s get window function (see SciPy.org for
more info). Default to ‘‘hann’’ which stands for a ‘‘Han-
ning’’ window.

Returns

– fig1: Figure
Plot of the singular values of the power spectral matrix.

– Results: dictionary
Dictionary of results to be passed to FDDmodEX().

• FDDmodEX(FreQ, Results, [ndf = [2]]):
This function returns the modal parameters estimated ac-
cording to the Frequency Domain Decomposition method.
Parameters

– FreQ: array (or list)
Array containing the frequencies, identified from the
singular values plot, which we want to extract.

– Results: dict
Dictionary of results obtained from FDDsvp().

– ndf: float, optional
Number of spectral lines in the proximity of FreQ[i]
where the peak is searched.

Returns

– Results: dictionary
Dictionary of results

• EFDDmodEX(FreQ, Results, [ndf = [2], MAClim = [0.85],
sppk = [3], npmax = [20], method = [’FSDD’], plot =
[False]):

Dag Pasquale Pasca, Angelo Aloisio, Marco Martino Rosso et al. SoftwareX 20 (2022) 101216

R

This function returns the modal parameters estimated ac-
cording to the enhanced version of the Frequency Domain
Decomposition method.
Parameters

– FreQ: array (or list)
Array containing the frequencies, identified from the
singular values plot, which we want to extract.

– Results: dict
Dictionary of results obtained from FDDsvp().

– ndf: float, optional
Number of spectral lines in the proximity of FreQ[i]
where the peak is searched.

– MaClim: float, optional
MAC rejection level for the extraction of the SDOF bell
function.

– sppk: int, optional
Number of peaks to skip at the beginning of the au-
tocorrelation function when calculating the damping
ratio (through the fit on the log decrement)

– npmax: int, optional
Number of (consecutive) points to use in the autocor-
relation function calculating the damping ratio
(through the fit on the log decrement)

– method: ‘FSDD’, ‘EFDD’, optional
Method used to extract the SDOF bell function. Default
to ‘‘FSDD’’, uses the Frequency Spatial Domain Decom-
position algorithm. Method ‘‘EFDD’’ uses the classi-
cal Enhanced Frequency Domain Decomposition algo-
rithm.

– plot : True or False, optional
Whether to plot or not the results. Default to False.

Returns

– Figure:
Figures with spectral density, corr. funct., fit on results

– Results: dictionary
Dictionary of results

eferences

[1] Rainieri C, Fabbrocino G. Operational modal analysis of civil engineering
structures. Vol. 142, Springer, New York; 2014, p. 143. http://dx.doi.org/
10.1007/978-1-4939-0767-0.

[2] Peeters B, De Roeck G. Reference-based stochastic subspace iden-
tification for output-only modal analysis. Mech Syst Signal Process
1999;13(6):855–78. http://dx.doi.org/10.1006/mssp.1999.1249, URL https:
//www.sciencedirect.com/science/article/pii/S0888327099912499.

[3] Doebling SW, Farrar CR, Prime MB, Shevitz DW. Damage identification and
health monitoring of structural and mechanical systems from changes in
their vibration characteristics: a literature review. 1996.

[4] James GH, Carne TG, Lauffer JP, Nord AR. Modal testing using natural
excitation. In: Proceedings of the international modal analysis conference.
Sem Society for Experimental Mechanics Inc; 1992, p. 1208.

[5] Juang J-N, Pappa RS. An eigensystem realization algorithm for modal
parameter identification and model reduction. J Guid Control Dyn
1985;8(5):620–7.

[6] Brincker R, Zhang L, Andersen P. Modal identification of output-only
systems using frequency domain decomposition. Smart Mater Struct
2001;10(3):441. http://dx.doi.org/10.1088/0964-1726/10/3/303.

[7] Brincker R, Ventura CE, Andersen P. Damping estimation by frequency
domain decomposition. In: Proceedings of IMAC 19: A conference on
structural dynamics: Februar 5-8, 2001, Hyatt Orlando, Kissimmee, Florida,
2001. Society for Experimental Mechanics; 2001, p. 698–703.
12
[8] Zhang L, Wang T, Tamura Y. A frequency–spatial domain decomposition
(FSDD) method for operational modal analysis. Mech Syst Signal Process
2010;24(5):1227–39. http://dx.doi.org/10.1016/j.ymssp.2009.10.024, URL
https://www.sciencedirect.com/science/article/pii/S0888327009003744.

[9] Van Overschee P, De Moor B. Subspace identification for linear systems:
theory—implementation—applications. Springer Science & Business Media;
2012.

[10] Bendat J, Piersol A. Engineering applications of correlation and spectral
analysis. 1980, cited By 2739.

[11] Van Overschee P, De Moor B, Suykens J. Subspace algorithms for system
identification and stochastic realization. In: Proc. of the international
symposium MTNS-91. 1991, p. 589–95, cited By 10.

[12] Zhang L, Brincker R, Andersen P. An overview of operational modal analy-
sis: Major development and issues. In: Proceedings of the 1st international
operational modal analysis conference, IOMAC 2005. 2005, cited By 174.

[13] Reynders E. System identification methods for (operational) modal anal-
ysis: Review and comparison. Arch Comput Methods Eng 2012;19(1):51–
124. http://dx.doi.org/10.1007/s11831-012-9069-x, cited By 461.

[14] Chopra AK. Dynamics of structures. Pearson Prentice Hall; 1975.
[15] Solutions Structural Vibration. Artemis extractor: Ambient response testing

and modal identification software, user’s manual. 2001.
[16] Reynders E, Schevenels M, De Roeck G. MACEC 3.2: A matlab toolbox

for experimental and operational modal analysis. Department of Civil
Engineering, KU Leuven; 2014.

[17] Alaggio R, Aloisio A, Antonacci E, Cirella R. Two-years static and
dynamic monitoring of the santa maria di collemaggio basilica. Constr
Build Mater 2021;268:121069. http://dx.doi.org/10.1016/j.conbuildmat.
2020.121069, URL https://www.sciencedirect.com/science/article/pii/
S0950061820330737.

[18] Aloisio A, Di Pasquale A, Alaggio R, Fragiacomo M. Assessment of seis-
mic retrofitting interventions of a masonry palace using operational
modal analysis. Int J Archit Heritage 2020;1–13. http://dx.doi.org/10.1080/
15583058.2020.1836531.

[19] Aloisio A, Battista LD, Alaggio R, Antonacci E, Fragiacomo M. Assessment of
structural interventions using Bayesian updating and subspace-based fault
detection methods: The case study of S. Maria di collemaggio basilica,
L’Aquila, Italy. Struct Infrastruct Eng 2021;17(2):141–55. http://dx.doi.org/
10.1080/15732479.2020.1731559.

[20] Aloisio A, Pasca DP, Alaggio R, Fragiacomo M. Bayesian estimate of the
elastic modulus of concrete box girders from dynamic identification: A
statistical framework for the A24 motorway in Italy. Struct Infrast Eng
2020;1–13. http://dx.doi.org/10.1080/15732479.2020.1819343.

[21] Aloisio A, Capanna I, Cirella R, Alaggio R, Di Fabio F, Fragiacomo M.
Identification and model update of the dynamic properties of the san
silvestro belfry in l’aquila and estimation of bell’s dynamic actions. Appl
Sci 2020;10(12):4289. http://dx.doi.org/10.3390/app10124289, URL https:
//www.mdpi.com/2076-3417/10/12/4289.

[22] Aloisio A, Antonacci E, Fragiacomo M, Alaggio R. The recorded seismic
response of the Santa Maria di Collemaggio basilica to low-intensity
earthquakes. Int J Archit Heritage 2020;1–19. http://dx.doi.org/10.1080/
15583058.2020.1802533.

[23] Aloisio A, Alaggio R, Fragiacomo M. Dynamic identification and model
updating of full-scale concrete box girders based on the experimental
torsional response. Constr Build Mater 2020;264:120146. http://dx.doi.org/
10.1016/j.conbuildmat.2020.120146, URL https://www.sciencedirect.com/
science/article/pii/S0950061820321516.

[24] Aloisio A, Alaggio R, Fragiacomo M. Time-domain identification of the elas-
tic modulus of simply supported box girders under moving loads: Method
and full-scale validation. Eng Struct 2020;215:110619. http://dx.doi.org/10.
1016/j.engstruct.2020.110619, URL https://www.sciencedirect.com/science/
article/pii/S014102961934101X.

[25] Capanna I, Cirella R, Aloisio A, Alaggio R, Di Fabio F, Fragia-
como M. Operational modal analysis, model update and fragility
curves estimation, through truncated incremental dynamic analysis, of
a masonry belfry. Buildings 2021;11(3):120. http://dx.doi.org/10.3390/
buildings11030120, URL https://www.mdpi.com/2075-5309/11/3/120.

[26] Aloisio A, Pasca DP, Battista LD, Rosso MM, Cucuzza R, Marano GC, et al.
Indirect assessment of concrete resistance from FE model updating and
Young’s modulus estimation of a multi-span PSC viaduct: Experimental
tests and validation. Structures 2022;37:686–97. http://dx.doi.org/10.1016/
j.istruc.2022.01.045, URL https://www.sciencedirect.com/science/article/pii/
S2352012422000455.

http://dx.doi.org/10.1007/978-1-4939-0767-0
http://dx.doi.org/10.1007/978-1-4939-0767-0
http://dx.doi.org/10.1007/978-1-4939-0767-0
http://dx.doi.org/10.1006/mssp.1999.1249
https://www.sciencedirect.com/science/article/pii/S0888327099912499
https://www.sciencedirect.com/science/article/pii/S0888327099912499
https://www.sciencedirect.com/science/article/pii/S0888327099912499
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb3
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb3
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb3
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb3
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb3
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb5
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb5
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb5
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb5
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb5
http://dx.doi.org/10.1088/0964-1726/10/3/303
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb7
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb7
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb7
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb7
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb7
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb7
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb7
http://dx.doi.org/10.1016/j.ymssp.2009.10.024
https://www.sciencedirect.com/science/article/pii/S0888327009003744
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb9
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb9
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb9
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb9
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb9
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb10
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb10
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb10
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb11
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb11
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb11
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb11
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb11
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb12
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb12
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb12
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb12
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb12
http://dx.doi.org/10.1007/s11831-012-9069-x
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb14
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb15
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb15
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb15
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb16
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb16
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb16
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb16
http://refhub.elsevier.com/S2352-7110(22)00134-0/sb16
http://dx.doi.org/10.1016/j.conbuildmat.2020.121069
http://dx.doi.org/10.1016/j.conbuildmat.2020.121069
http://dx.doi.org/10.1016/j.conbuildmat.2020.121069
https://www.sciencedirect.com/science/article/pii/S0950061820330737
https://www.sciencedirect.com/science/article/pii/S0950061820330737
https://www.sciencedirect.com/science/article/pii/S0950061820330737
http://dx.doi.org/10.1080/15583058.2020.1836531
http://dx.doi.org/10.1080/15583058.2020.1836531
http://dx.doi.org/10.1080/15583058.2020.1836531
http://dx.doi.org/10.1080/15732479.2020.1731559
http://dx.doi.org/10.1080/15732479.2020.1731559
http://dx.doi.org/10.1080/15732479.2020.1731559
http://dx.doi.org/10.1080/15732479.2020.1819343
http://dx.doi.org/10.3390/app10124289
https://www.mdpi.com/2076-3417/10/12/4289
https://www.mdpi.com/2076-3417/10/12/4289
https://www.mdpi.com/2076-3417/10/12/4289
http://dx.doi.org/10.1080/15583058.2020.1802533
http://dx.doi.org/10.1080/15583058.2020.1802533
http://dx.doi.org/10.1080/15583058.2020.1802533
http://dx.doi.org/10.1016/j.conbuildmat.2020.120146
http://dx.doi.org/10.1016/j.conbuildmat.2020.120146
http://dx.doi.org/10.1016/j.conbuildmat.2020.120146
https://www.sciencedirect.com/science/article/pii/S0950061820321516
https://www.sciencedirect.com/science/article/pii/S0950061820321516
https://www.sciencedirect.com/science/article/pii/S0950061820321516
http://dx.doi.org/10.1016/j.engstruct.2020.110619
http://dx.doi.org/10.1016/j.engstruct.2020.110619
http://dx.doi.org/10.1016/j.engstruct.2020.110619
https://www.sciencedirect.com/science/article/pii/S014102961934101X
https://www.sciencedirect.com/science/article/pii/S014102961934101X
https://www.sciencedirect.com/science/article/pii/S014102961934101X
http://dx.doi.org/10.3390/buildings11030120
http://dx.doi.org/10.3390/buildings11030120
http://dx.doi.org/10.3390/buildings11030120
https://www.mdpi.com/2075-5309/11/3/120
http://dx.doi.org/10.1016/j.istruc.2022.01.045
http://dx.doi.org/10.1016/j.istruc.2022.01.045
http://dx.doi.org/10.1016/j.istruc.2022.01.045
https://www.sciencedirect.com/science/article/pii/S2352012422000455
https://www.sciencedirect.com/science/article/pii/S2352012422000455
https://www.sciencedirect.com/science/article/pii/S2352012422000455

	PyOMA and PyOMA_GUI: A Python module and software for Operational Modal Analysis
	Motivation and significance
	Software description
	Software functionalities

	Illustrative example
	Preliminary operations
	Identification — frequency domain
	Identification — time domain
	Post-processing
	OMA with the graphical user interface approach
	Import data
	Geometry
	Pre-processing and peak-peaking approach
	FDD, SSI and their implemented variants with PyOMAGUI

	Impact
	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Function's description
	References

