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Closed 1/2-Elasticae in the 2-Sphere

E. Musso and A. Pámpano

October 2, 2022

Abstract

We study critical trajectories in the sphere for the 1/2-Bernoulli’s bending functional with

length constraint. For every Lagrange multiplier encoding the conservation of the length during

the variation, we show the existence of infinitely many closed trajectories which depend on a pair

of relatively prime natural numbers. A geometric description of these numbers and the relation

with the shape of the corresponding critical trajectories is also given.

Keywords: Bernoulli’s Bending Functionals, Closed Trajectories, Critical Curves, p-Elastic Curves.

Mathematics Subject Classification: 53A04, 49Q10.

1 Introduction

Functionals on curves depending on the curvatures are ubiquitous in differential geometry, analysis,

mathematical physics and biomathematics. Their study dates back to the days of the Bernoulli family

and Euler. Indeed, the problem of determining the bending deformation of rods was first formulated

by J. Bernoulli in 1691 ([42]) and the possible qualitative types for untwisted plane configurations

were completely described by L. Euler ([21]), although some particular cases were already known to

J. Bernoulli ([7]). More generally, in a letter to L. Euler in 1738 ([59]), D. Bernoulli proposed to

investigate the extrema of the functionals

Bp,λ : γ 7−→
∫
γ
(|κ|p + λ)

where κ is the curvature of the curve γ and λ is a Lagrange multiplier, encoding the conservation of

the length during the variation.1 Despite the ancient origin, these variational problems are still a very

vital field of research. In the current literature, critical curves of these functionals are usually called

p-elasticae (or, free p-elasticae when λ = 0).

Leaving aside many technical aspects, we now describe some general heuristic ideas which will guide

us in dealing with the problems studied in this paper. Consider a functional for immersed curves in a

2-dimensional Riemannian space form M2
c of constant curvature c, with Lagrangian P (κ) + λ, where

P is a function of class C2, λ is a Lagrange multiplier and κ is the geodesic curvature of the curve.

The functional is acting on curves of class C4 parameterized by the arc-length, belonging to the open

1Actually, D. Bernoulli considered the unconstrained case, that is, λ = 0.
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set in the Whitney’s topology, defined by the condition that κ takes values in the domain of P . We

denote by Gc the isometry group of M2
c . From standard computations for functionals depending on

the curvature (see, for instance, [2] and references therein) the critical curves, for compactly supported

smooth variations, are characterized by the associated Euler-Lagrange equation which, in turn, admits

the conservation law Φλ(κ, κ̇) = d, where κ̇ represents the derivative of κ with respect to the arc-length,

d is a constant of integration and

Φλ(x, y) = (Pxx)
2y2 + (xPx − P − λ)2 + cP 2

x .

Geometric methods can be successfully applied if one can find a contact transformation f : (x, y) →
(f(x), ḟ(x)y) such that the equations of the level curves Φλ ◦ f = d can be reduced to the form

y2 + xnQλ,d(x) = 0, where n ∈ {0, 2} and Qλ,d is, for generic values of λ and d, a polynomial with

simple roots such that Qλ,d(0) ̸= 0. The algebraic curves y2 + xnQλ,d(x) = 0 are called the phase

curves, while their connected components are the reduced phase curves. The phase curves are the

pre-images under the contact transformation f of the usual phase portraits ([30]) of the variational

problem, that is the level sets of the function Φλ. Their main use is in the construction of solutions of

the Euler-Lagrange equation. Indeed, solutions of the ordinary differential equation µ̇2 = −µnQλ,d(µ)

can be built inverting incomplete hyperelliptic integrals2 and the function κ = f ◦ µ solves the Euler-

Lagrange equation. Note that c can modify the algebro-geometric properties of the phase curves with

consequences on the analytical behavior of the integrals. This is a first place where the geometry of

the ambient space enters into play.

Once that we know κλ,d, the corresponding critical curves γλ,d can be found by quadratures. This

is trivial in the Euclidean case, i.e., when c = 0. For c ̸= 0 the problem can be faced using the

momentum map for the Hamiltonian action of Gc on the phase space. Clearly, the curvature c also

affects the geometry of the critical curves at this point.

To find closed critical curves, the first step is to describe the domain U ⊂ R2 of the parameters

λ, d such that κλ,d is periodic. If (λ, d) ∈ U , the least period ωλ,d of κλ,d can be evaluated in terms of

complete hyperelliptic integrals. In a second step we need to extract from critical curves with periodic

curvatures those that are closed. The behavior of the adjoint representation of Gc forces to follow

different procedures depending on whether c = 0, c < 0 or c > 0. This is a third point where the value

of c comes into play in an essential way.

Since the Lagrangian of the unconstrained p-Bernoulli’s bending functionals is positively homoge-

neous, only the sign of the Gaussian curvature of Mc plays a role. Similarly, for the constrained case,

possibly modifying the value of λ, we reach the same conclusion. Thus, without loss of generality, one

can assume c = 0 or c = ±1.

We now focus on the case c = 1, which is the relevant one for the purposes of the paper. In

order to formulate the closure conditions one has to analyze the period map, which is defined as

follows. Let Fλ,d be the spherical Frenet frame along γλ,d. The monodromy of γλ,d is the element

of Gc ≡ SO(3) given by m(γλ,d) := Fλ,d(ωλ,d)Fλ,d(0)
−1. Choosing carefully the initial data, we may

assume that m(γλ,d) belongs to SO(2). This gives rise to a differentiable map m : U → SO(2). The

period map is then a continuous lift Ψ̂ of m to R. Possibly, Ψ̂ can be evaluated in terms of complete

hyperelliptic integrals. Closed solutions arise when Ψ̂(λ, d) = 2πq where q ∈ Q is a rational number.

In the most favorable cases, Ψ̂ has maximal rank and its fibers do intersect transversely the horizontal

2The term hyperelliptic is used here in a broad sense, including also the rational and elliptic cases.
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lines. This means that, for every admissible λ, there exist countably many distinct equivalence classes

of closed critical curves with multiplier λ. In addition, for every q ∈ Q such that 2πq ∈ Ψ̂(U),
the level set Ψ̂−1(2πq) is an embedded curve. The rational number q = m/n encodes two pieces of

relevant geometric information: n is the order of the stabilizer of the trajectory while, generically, m

is the homotopy class of the critical curve in the sphere punctured at the north and south poles (or,

equivalently, the linking number with the vertical axis).

Now we discuss (without claiming to be exhaustive) some known results about p-elasticae fitting

in or related to the above heuristic scheme.

The case p = 2 corresponds with the classical elastic curves, which have received a considerable

interest in the last decades because of their applications in the following research topics: Willmore

surfaces ([41, 55, 62]), constrained Willmore surfaces ([10, 58]), the Canham-Helfrich-Evans model

for lipid bilayers ([15, 16, 22, 33, 35, 60]), and surfaces with spherical curvature lines ([17]), among

others. The existence and the geometric properties of closed elasticae have been extensively treated

in several works published in the 1980s (see, for instance, [41]). Another source of interest is due to

the interrelationships with integrable flows of curves governed by the mKdV hierarchy ([18, 26, 27,

38, 48, 52]). In fact, elasticae do evolve maintaining their shape under the first non-trivial Goldstein-

Petrich flow. A similar relation between elastic curves and the nonlinear Schrödinger equation can be

obtained applying the Hasimoto transformation ([31, 32, 37, 39]). These phenomena occur in other

contexts such as Lorentzian, centro-affine, equi-affine, projective and pseudo-conformal geometries

([12, 13, 14, 19, 20, 47, 49, 50, 51, 56, 61]).

For natural values of p > 2, free p-elasticae have been considered in [2]. They have been used to

construct Willmore-Chen submanifolds in spaces with Riemannian and pseudo-Riemannian warped

product metrics ([1, 6]) and have been applied to analyze conformal tensions in string theories ([5]). In

the case of spherical curves, the only closed critical trajectories are geodesics. Of course, this assertion

which was proven in [2] necessitates the assumption that critical curves are C4, which is the setting we

are interested on in this paper. With a suitable choice of the contact transformation and for generic

values of λ and d, the reduced phase curves are real cycles of smooth hyperelliptic curves of genus

p− 1.

In a recent paper ([44]) Miura-Yoshizawa considered the functionals Bp,λ for curves in the Euclidean

plane, for every real number p > 1. Since the contact transformation they used leads, in general, to

non-algebraic phase curves,3 they developed a new technical tool to handle the problem, namely, the

concept of p-elliptic functions. As a consequence, they obtain a complete and remarkable classification

of critical curves in the plane. As a corollary of their beautiful results, they proved that planar closed

critical curves are either circles or lemniscates, as in the classical case p = 2. However, their approach

cannot be directly applied to the case p ∈ (0, 1) due to the appearance of a singularity at the origin

in the phase curves.

Indeed, when p ∈ (0, 1), less is known about p-elasticae. From an analytical viewpoint this is

understandable since the Lagrangian is merely continuous at the origin; while, from a geometric

viewpoint, the main difference with the case p > 1 is the above mentioned singularity at the origin in

the phase curves. Thus, a word of caution must be spent to clarify the use of the term “critical curve”

in our context. A critical curve is a curve of class at least C4, which is stationary with respect to

3In [44] there is no explicit mention to phase curves, but they are implicitly defined on page 27.
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compactly supported variations whose support does not contain inflection points.4 In particular, the

variational problem can be faced for convex curves and for appropriate choices of p ∈ Q. As suggested

in [2] finding closed critical trajectories for p ∈ (0, 1) also merits investigation. In [2, 3, 45, 46], for

p = (n − 2)/(n + 1), n ∈ N, n > 2 and λ = 0, the existence of infinitely many closed free p-elasticae

in S2 was shown. These curves arise in the theory of biconservative hypersurfaces as the generating

curves of rotational ones ([45, 46]). The existence of countable infinitely many trajectories can be

seen as a consequence of the fact that, with a suitable choice of the contact transformation and for a

generic d, the reduced phase curves are real cycles of singular hyperelliptic curves.

Another class of Bernoulli’s functionals fitting in our scheme is when p = 1/n is the reciprocal of a

natural number n > 1. The unconstrained cases with p = 1/2, or p = 1/3, and c = 0 were considered

by W. Blaschke ([8], Vol I, 1921, and Vol II, 1923) who showed that the critical curves are catenaries

(p = 1/2) or parabolas (p = 1/3). On one hand, the case p = 1/3 and λ = 0 corresponds with the equi-

affine length for convex curves. After the seminal paper [11], equi-affine geometry of convex curves

has been consistently used in recent studies on human curvilinear 2-dimensional drawing movements

and recognition for non-rigid planar shapes (see for instance [23, 57] and the literature therein). On

the other hand, all closed free 1/2-elasticae in S2 were recently found in [2, 4]. Critical curves for

an extension of this case in Riemannian and Lorentzian 3-space forms have been characterized as the

profile curves of invariant constant mean curvature surfaces ([3]).

To analyze the family of Bernoulli’s functionals with p = 1/n, one can resort to the contact

transformation (x, y) → (xn, nxn−1y). The equation of the corresponding phase curves can then be

written as

y2 +
x2

(n− 1)2

(
(n− 1)2x2n + 2n(n− 1)λx2n−1 + n2(λ2 − d)x2(n−1) + c

)
= 0 .

Thus, in general, the reduced phase curves are real cycles of singular hyperelliptic curves of genus

n − 1 (if c ̸= 0). Among all the possible values of p = 1/n, the only one that makes the phase curve

a singular elliptic curve is p = 1/2. For this reason, p = 1/2 can be considered to play the role of the

classical p = 2 among the possible values of p ∈ (0, 1). And, as in the classical case p = 2, their study

can be faced resorting to elliptic functions and integrals. Although in the constrained case there exist

1/2-elasticae in R2 with non-constant periodic curvature, it is quite easy to see that none of them are

closed. The reason lies in the fact that the phase curves are rational curves with an isolated singularity

at the origin (see Appendix B). These critical curves were geometrically described in Theorem 6.1 of

[43]. Note that the present case corresponds to n = −2 in the notation of [43]. Moreover, their shapes

are similar to the one represented in Figure 3 of [43].

Motivated by the above mentioned results of Arroyo, Garay, Menćıa and Pámpano about the

existence of closed free 1/2-elasticae in S2 ([2, 3, 4]), this paper aims to investigate the constrained

case. In perspective, it can be seen as a first step towards a general analysis of closed 1/n-elasticae.

One of the nice features of the spherical case is that the singular points of the phase curves are

isolated. This implies that critical curves, with the exception of geodesics, do not have inflection

points so, possibly after inverting the orientation, they are convex. Consequently, we may restrict

to the space of convex curves without any loss of generality and bypass the problem of having a

Lagrangian which is not of class C1 at the origin. Our goal is, beside proving the existence for every

4Borrowing the terminology from the classical Euclidean geometry, s is an inflection point if κ(s) = 0 and γ is said

convex if κ > 0 everywhere.
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value of λ of countably many smooth closed critical curves, implement effective methods to identify

and analyze the global geometric properties of closed 1/2-elasticae.

For the sake of brevity, a critical curve for B1/2,λ with positive, non-constant periodic curvature is

said to be a B-curve. If, in addition, the curve is periodic, it is called a B-string. We next state the

main results of the paper. The first one is the following theorem.

Theorem 1.1 Let γ : I ⊆ R −→ S2 be a critical curve for B1/2,λ with non-constant curvature κ

defined on its maximal domain I ⊆ R. Then, I = R and, possibly reversing the orientation, γ is a

B-curve that can be parameterized in terms of its arc-length parameter s ∈ R, up to rigid motions, as

γ(s) ≡ γξ(s) =
1

2ξµ

(
1,−

√
4ξ2µ2 − 1 cos θ(s),

√
4ξ2µ2 − 1 sin θ(s)

)
,

where

θ(s) := 2ξ

∫
µ2 (µ+ 2λ)

1− 4ξ2µ2
ds ,

and µ ≡ µ(s) =
√
κ(s) is a solution of

µ̇2 = −µ2
(
µ4 + 4λµ3 + 4

[
λ2 − ξ2

]
µ2 + 1

)
,

for suitable constant ξ > 0.

We will say that two B-curves are equivalent if there is a rigid motion taking one into another.

This theorem implies that γξ, and so all the curves in the equivalence class of γξ, are B-strings if and

only if the elliptic integral

Ψλ(ξ) := 2ξ

∫ ω

0

µ2 (µ+ 2λ)

1− 4ξ2µ2
ds ,

is a rational multiple of 2π. Here, ω denotes the least period of µ. Although the function Ψλ has a

jump discontinuity, it can be regularized to a continuous function Ψ̂λ such that Ψ̂λ ≡ Ψλ(mod 2πQ).

Let γξ be a B-curve with multiplier λ such that Ψ̂λ(ξ) = 2πq, q = m/n ∈ Q, gcd(m,n) = 1. The

function Ψ̂λ plays the role of the period map. We say that q is the characteristic number of γξ. The

number n is said to be the wave number.

Our second main result deals with the existence of B-strings.

Theorem 1.2 For every λ ∈ R the image of Ψ̂λ is an open interval Iλ. Thus, for any q = m/n such

that 2πq ∈ Iλ and every ξ ∈ Ψ̂−1
λ (2πq), γξ is a B-string with multiplier λ and characteristic number q.

The proof of this theorem is based on the analysis of the asymptotic behavior of the complete

elliptic integral Ψ̂λ. The numerical experiments strongly support the ansatz that Ψ̂λ is a strictly

decreasing function of ξ and that Iλ ⊂ (0, π). The validity of the ansatz would imply that for each

pair of relatively prime natural numbers (m,n) such that 2πm/n ∈ Iλ there exists a unique equivalence

class of B-strings with multiplier λ and characteristic number q = m/n. Moreover, this would also

show that all B-strings have self-intersections and wave number n ≥ 3.

Finally, the third result is about basic geometric features of B-strings.

Theorem 1.3 Let γξ, ξ > 0, be a suitable representative of a equivalence class of B-strings with

multiplier λ and characteristic number q = m/n. Then, the following conclusions hold true:
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1. The trajectory of γξ is invariant by the group generated by rotation of 2π/n around the Ox-axis

and it is contained in a region of the upper hemisphere S2+ = {(x, y, z) ∈ S2 |x > 0} bounded by

two horizontal planes.

2. If 4λξ + 1 ̸= 0, then γξ does not intersect the Ox-axis. Moreover:

(a) If 4λξ + 1 > 0, n −m is the linking number with the Ox-axis (equipped with the upward

orientation) and γξ possesses, exactly, n(n−m− 1) ordinary double points.

(b) If 4λξ + 1 < 0, −m is the linking number with the Ox-axis (equipped with the upward

orientation) and γξ possesses, at least, nm points of self-intersection.

3. If 4λξ+1 = 0 (necessarily, λ < 0), then γξ intersects the Ox-axis n times and the moving point

γξ(s) travels counter-clockwise around the Ox-axis (equipped with the upward orientation). In

this case n−m is the turning number of the plane projection of γξ into the plane x = 0.

In Figure 1 we show three B-strings with three-fold symmetry for different values of the Lagrange

multiplier λ and for suitable characteristic numbers q = m/n. These cases cover all the possible

options for the sign of 4λξ+1 discussed in Theorem 1.3. More examples will be discussed in detail in

Section 5.

(a) (−1.1, 1, 3) (b) (−0.27, 2, 3) (c) (0.1, 1, 3)

Figure 1: Three B-strings with three-fold symmetry with different multipliers λ and characteristic

numbers q = m/n. From left to right: 4λξ + 1 < 0, 4λξ + 1 = 0 and 4λξ + 1 > 0. For each of them

we show the corresponding parameters (λ,m, n).

The material of this paper is organized into four sections and two appendices. In Section 2 we

write the Euler-Lagrange equation and its associated conservation law. Subsequently, we consider the

monodromy map and we formulate the closure condition in terms of the monodromy. In Section 3 we

prove the three main theorems (which are stated in a more technical form than the one presented in

this introduction). In Section 4 we focus on the theoretical aspects, analyzing the phase space ([28,

30, 34]) and the momentum map for the Hamiltonian SO(3)-action. Beside its theoretical relevance,

the Hamiltonian approach provides a general framework for concretely implement the integration by

quadratures. Finally, Section 5 is devoted to the discussion of explicit examples which illustrate the

theoretical properties shown in previous sections. In the first part of the Appendix A we construct µ

inverting a complete elliptic integral of the third kind and we compute its least period. In the second

part we write Ψλ in terms of complete elliptic integrals and we prove two relevant limits that have
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been used in the proof of Theorem 1.2. In Appendix B, we briefly discuss the case of 1/2-elasticae in

the plane.

The graphics, symbolic computations and numerical evaluations have been performed with the

software Mathematica 13. To evaluate the least period of µ we used its explicit expression given in

Appendix A and the library for elliptic integrals implemented in Mathematica, while to evaluate µ

itself we solved numerically (2) on the interval [0, nω], where n is the wave number and ω is the least

period of µ, with initial conditions µ(0) = e2 and µ̇(0) = 0. Here, e2 is the lowest positive real root of

the polynomial defined in Proposition 2.2. We then solved numerically the linear system (9) on the

interval [0, nω] to compute the critical curves. The initial conditions are those specified in (8). This

few comments should give a rough idea on how the plots for the graphics were computed.

Complete elliptic integrals involving the square root of a quartic polynomial do appear several

times. We used the monograph [9] as our reference on this technical topic. The bibliographic refer-

ences, while relatively consistent, do not completely reflect the vast literature devoted to functionals

depending on curvatures and their interrelations with analysis, symplectic geometry and applied math-

ematics. It is the result of a very partial selection, aimed at the specific themes considered in this

work.

2 Critical Curves

Let (x, y, z) be the standard coordinates of the Euclidean space R3 and S2 be the 2-sphere of radius

one centered at the origin endowed with the induced metric of constant curvature c = 1.

Let γ : I ⊆ R −→ S2 be a smooth immersed curve parameterized by the arc-length s ∈ I. Denote

by T (s) := γ̇(s) the unit tangent vector field along the curve γ(s), where the upper dot represents the

derivative with respect to the arc-length parameter, and define the unit normal vector field N(s) along

γ(s) to be the counter-clockwise rotation of T (s) through an angle π/2 in the tangent bundle of S2.
In this setting, the (signed) geodesic curvature κ(s) of γ(s) is defined by the Frenet-Serret equation

∇TT (s) = κ(s)N(s) ,

where ∇ denotes the Levi-Civita connection on S2. We will say that a curve is convex if κ(s) > 0 for

all s ∈ I. For convex curves we introduce the following geometric invariant, referred as the µ-invariant,

µ(s) :=
√
κ(s) .

It follows from the Fundamental Theorem for Spherical Curves that µ(s) completely determines the

(convex) curve, up to rigid motions.

Let C4(R, S2) be the space of immersed curves γ : R −→ S2 of class C4 parameterized by the

arc-length s ∈ R and let λ ∈ R be a constant. The 1/2-Bernoulli’s bending functional with Lagrange

multiplier λ is defined by

Bλ : γ ∈ C4(R,S2) 7−→
∫ Lγ

0

(√
|κ|+ λ

)
ds , (1)

where Lγ stands for the length of γ.

Using a standard formula for the variational derivative of functionals depending on the curvature

κ (see for instance [2, 3, 41, 54]) we obtain that the µ-invariant of a convex critical curve with respect
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to compactly supported smooth variations satisfies the Euler-Lagrange equation

d2

ds2

(
1

µ

)
− 1

µ

(
µ4 − 1

)
− 2λµ2 = 0 . (2)

Remark 2.1 For every λ ∈ R, with the exception of geodesics, there exists a unique circle critical for

Bλ. Its constant µ-invariant is the (unique) positive solution of

µ4 + 2λµ3 − 1 = 0 , (3)

which we denote by ηλ. Consequently, η : λ ∈ R 7−→ ηλ ∈ R+ is a real-analytic function.

From now on we assume that µ(s) is non-constant. Then (2) admits a first integral from standard

arguments (see [2, 3, 41, 54] again for details). We describe this conservation law in the following

result.

Proposition 2.2 Let µ(s) be a non-constant positive solution of (2). Then µ(s) satisfies the first

order differential equation

µ̇2(s) = −µ2(s)Q (µ(s)) , (4)

where Q is the quartic polynomial defined by

Q(t) := t4 + 4λt3 + 4
(
λ2 − ξ2

)
t2 + 1 , (5)

and ξ > 0 is a constant of integration.

From Proposition 2.2 it follows that, for fixed λ ∈ R, solutions of the Euler-Lagrange equation (2)

belong to a two parameter family. Nevertheless, by translating the origin of the arc-length parameter

s if necessary, we can assume that non-constant solutions µ(s) belong to a one parameter family, since

the constant of integration arising from integrating (4) may be assumed to be zero. Consequently,

the one parameter family of solutions depends on the constant of integration ξ > 0, whose physical

meaning will be clarified in Section 4.

Definition 2.3 A B-curve (with multiplier λ) is an arc-length parameterized convex curve γ : R −→
S2 with non-constant positive periodic curvature satisfying (4). For brevity, a periodic B-curve is said

a B-string. Two B-curves γ and γ̃ are said to be equivalent if there exists A ∈ SO(3) and a ∈ R
such that γ̃(s) = A · γ(s + a), i.e., if there exists an isometry transforming one into another and a

translation of the arc-length parameter. We denote the equivalence class of γ by [γ] and the set of the

equivalence classes of B-curves with multiplier λ by Mλ.

In the following result we show that, with the exclusion of geodesics, 1/2-elasticae do not have

inflection points. Thus, possibly reversing the orientation, κ > 0. As a consequence, non-trivial

1/2-elasticae are B-curves whose µ-invariant is a non-constant periodic solution of (4).

Proposition 2.4 Let γ : I ⊆ R −→ S2 be an arc-length parameterized curve with non-constant

curvature κ and assume that I is its maximal domain of definition. If γ is a critical curve5 for

5 In the sense specified in the Introduction.
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Bλ with respect to compactly supported smooth variations, then κ(s) ̸= 0 for every s ∈ I (possibly

reversing the orientation we may assume κ > 0). Moreover, I = R and γ is a B-curve. Conversely,

every B-curve is a 1/2-elastic curve.

Proof. Without loss of generality we may assume that κ(s) > 0 for some s ∈ I. By contradiction,

suppose that κ vanishes at some point. Then there exist s∗ such that κ(s∗) = 0 and κ > 0 on (s∗, s∗+ϵ),

or κ > 0 on (s∗ − ϵ, s∗). Consequently, the µ-invariant of γ restricted to this interval is a positive

solution of (4). This implies that the polynomial (5) must be negative for some t > 0. We first observe

that the limit when t→ ∞ of Q(t) is ∞, while Q(0) = 1 > 0. Regardless of the values of λ and λ2−ξ2,
Q(t) has either zero or two changes of signs among its coefficients. It then follows from Descartes’

rule of signs that Q(t) has either zero, one (double) or two (distinct) positive roots. The case of zero

positive roots can be discarded since from above limits one would conclude that Q(t) > 0 for all t > 0.

The case of the double root corresponds to a circle, which has been considered in Remark 2.1. On the

other hand, since κ is not constant, this case is excluded. Therefore, it only remains the case of two

distinct positive roots. In this case the algebraic curve y2 = −x2Q(x) has a unique 1-dimensional,

closed connected component C∗ contained in the half-plane x > 0 (see Figures 8-11). In addition, C∗

is smooth and intersects the y = 0 axis at two distinct points (e2, 0), (e1, 0), where 0 < e2 < e1 are

the simple positive roots of Q. Then, 0 < e22 ≤ κ(s) ≤ e21, for every s ∈ (s∗, s∗ + ϵ), or s ∈ (s∗ − ϵ, s∗).

A contradiction. This proves the first part of the statement.

Now we prove that µ =
√
κ is defined on the whole real axis and that it is a periodic function. Let

H be the half-plane {(x, y) |x > 0} and X⃗λ be the vector field defined on H by

X⃗λ|(x,y)= y ∂x +
1

x

(
2y2 + x2 − 2λx5 − x6

)
∂y .

See Figure 2 for an illustration of this vector field on H and its natural extension to R2 minus the

Oy-axis. Define ψ by ψ(x, y) = y2 + x2Q(x). Then

X⃗λ|(x,y)=
1

2
(∂yψ ∂x − ∂xψ ∂y) |(x,y) , ∀(x, y) ∈ C∗. (6)

From the Euler-Lagrange equation it follows that ζ = (µ, µ̇) is an integral curve of X⃗λ. Moreover, the

trajectory of ζ is contained in C∗, because µ is a positive solution of (4). Since C∗ is compact there is

a compactly supported smooth function ϱ : H → R such that ϱ|C∗= 1. Then, ζ is an integral curve of

the complete vector field ϱX⃗λ. This proves that R is the maximal interval of definition of the function

µ. From (6) we have ζ(R) = C∗ and ϱX⃗λ|(x,y) ̸= 0⃗, for every (x, y) ∈ C∗. Taking into account that

C∗ is a compact embedded curve and using the Poincaré-Bendixson Theorem we may conclude that

ζ is periodic. A fortiori, we also conclude that µ is periodic. Consequently, also the maximal domain

of definition of the associated curve is R. This shows that γ is a B-curve. Since the last assertion is

trivial, this finishes the proof. □

Remark 2.5 Note that only the reduced phase curves lying in the half-plane H are relevant in the

study of B-strings. We emphasize here that the phase curves differ from the standard phase portraits

([30]). In fact, putting µ =
√
κ in (4) we obtain

κ̇2 + 4κ2
(
1 + 4[λ2 − ξ2]κ+ 4λκ3/2

)
= 0 .
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Therefore, the phase portraits, in the standard sense of the term, are the (non-algebraic) curves defined

by equations of the following type

y2 + 4x2
(
1 + 4[λ2 − ξ2]x+ 4λx3/2

)
= 0 .

The reduced phase curves lying in the half-plane x > 0 are the pre-images of the standard phase

portraits under the contact transformation f : (x, y) ∈ H → (x2, 2xy) ∈ H.

Figure 2: On the left: the plot of the vector field X⃗λ, λ = −0.2, and the phase curve with λ = −0.2

and ξ2 = 0.869759. The curve colored in blue is the reduced phase curve contained in the half-plane

H = {(x, y) |x > 0}, parameterized by (µ, µ̇), where µ is a positive solution of (4). On the right: the

corresponding “standard” phase portrait, which consists of the origin (singular point) and the image

of the blue curve on the left by the contact transformation f : (x, y) ∈ H → (x2, 2xy) ∈ H.

Example 2.6 The picture on the left of Figure 2 depicts the plot of the vector field X⃗λ, λ = −0.2,

thought of as a vector field defined on R2 minus the Oy-axis. The plot reproduces only the direction

of the vector field and the legend specifies the magnitude. The blue and red curves are the reduced

phase curves contained in the negative and positive half-planes x < 0 (dark red) and x > 0 (blue). The

value of the constant ξ2 is 0.869759. The origin (the red point) is the isolated singular point of the

phase curve. The two points colored in purple are the two zeroes of X⃗λ. The picture on the right of

Figure 2 reproduces the corresponding “standard” phase portrait. Figure 3 reproduces phase curves for

λ = −0.2 and ξ2 ∈ [0, 1.675] (left) and ξ2 ∈ [0, 20] (right). When 0 ≤ ξ2 < 0.328893, the phase curve

consists only of a singular point, the origin (in red). When ξ2 = 0.328893 the phase curve consists

of two singular points, the origin and (1.117181339509767, 0), one of the two zeroes of the vector field

X⃗λ (in purple). These phase curves are “virtual” in the sense that are not originated from B-strings.

When 0.328893 < ξ2 < 0.730907 the phase curve has an isolated singular point (the origin) and a

smooth reduced phase curve contained in the half-plane x > 0 (colored in red). When ξ2 = 0.730907,

the phase curve has two singular points, the origin and the other zero (−0.9131837363949253, 0) of the

vector field X⃗λ (colored in black) and a smooth connected component (colored in black) contained in

the half-plane x > 0. When ξ2 > 0.730907 the phase curve has an isolated singular point (the origin)

and two smooth connected components (colored in blue). One contained in the half-plane x < 0 and

the other one in the half-plane x > 0.
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Figure 3: The phase curves for λ = −0.2. On the left are depicted the phase curves when ξ2 varies in

the interval [0, 1.675]. On the right are depicted the phase curves when ξ2 varies in the interval [0, 20].

Remark 2.7 Proposition 2.4 proves that, up to equivalence, there exists a one parameter family of

B-curves, depending on the constant of integration ξ > 0. It turns out that this constant of integration

ξ > 0 can be described in terms of the Lagrange multiplier λ and the largest root of the polynomial

Q. Indeed, as shown above, this polynomial has two positive roots, which we denote by e1 > e2 > 0.

Then, it follows from Q(e1) = 0 that

ξ =
1

2e1

√
1 + (e1 [e1 + 2λ])2 . (7)

From this relation we can assume that B-curves depend on λ and e1 and we can consider these param-

eters as the fundamental ones. In addition, the µ-invariant of a critical curve can be built inverting

a function involving incomplete elliptic integrals of the third kind, the Jacobi’s amplitude and the Ja-

cobi’s sn-function, with parameters that depend on λ and e1. Consequently, also the least period of µ

can be written in terms of complete elliptic integrals of the first and third kind (we refer to the first

part of Appendix A for the explicit formulae).

The set of equivalence classes of B-curves is in one-to-one correspondence with the plane domain

P = {(λ, e1) ∈ R2 | e1 > ηλ}, where ηλ was defined in Remark 2.1 as the only positive solution of

µ4 + 2λµ3 − 1 = 0.

Theorem 2.8 For every λ ∈ R, the map e1 ∈ (ηλ,∞) 7−→ [γλ,e1 ] ∈ Mλ is bijective.

Proof. The proof is a straightforward consequence of the existence and uniqueness of solutions for

ordinary differential equations. For each λ ∈ R and e1 ∈ (ηλ,∞) fixed, we get a unique ξ > 0 from

(7). Note that for λ ∈ R fixed the relation (7) between ξ and e1 is bijective. Then, there exists a

unique, up to translation of the arc-length parameter, solution of (4), denoted by µλ,e1(s). From the

Fundamental Theorem for Spherical Curves, this geometric invariant uniquely determines a convex

spherical curve γλ,e1 , up to rigid motions. In conclusion, the curve γλ,e1 is unique, up to equivalence. □

In order to treat the B-curves, it is convenient to fix a suitable representative for each equivalence

class. Let (λ, e1) ∈ P and µ ≡ µλ,e1 be the unique solution of (4) such that µλ,e1(ωλ,e1/2) = e1, where
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ωλ,e1 denotes the least period of µλ,e1 . Consider γλ,e1 to be the unique B-curve with curvature µ2λ,e1
such that 

γλ,e1

(ωλ,e1

2

)
=

 1√
1 + (e1 [e1 + 2λ])2

,
−e1 (e1 + 2λ)√
1 + (e1 [e1 + 2λ])2

, 0


γ̇λ,e1

(ωλ,e1

2

)
= (0, 0,−1)

. (8)

We call γλ,e1 , obtained as above, the standard B-curve with parameters λ and e1.

Remark 2.9 It is not restrictive to focus exclusively on standard B-curves and, hence, from now on

we implicitly assume that the B-curves in consideration are in their standard form.

We finish this section by formulating the closure condition for a B-curve in terms of the monodromy

map. For a B-curve γλ,e1 we define the (spherical) Frenet frame field along γλ,e1 as the map Fλ,e1 ≡
(γλ,e1 , γ̇λ,e1 , γλ,e1 × γ̇λ,e1) : R −→ SO(3) where × denotes the usual vector cross product of R3. The

map m : (λ, e1) ∈ P 7−→ Fλ,e1(ωλ,e1) · [Fλ,e1(0)]
−1 ∈ SO(3) is called the monodromy.

Theorem 2.10 The monodromy m is a continuous function of λ and e1. Moreover, γλ,e1 is a B-string

if and only if mλ,e1 has finite order.

Proof. Let (λ, e1) ∈ P and consider a B-curve γλ,e1 (in its standard form). Since µλ,e1 is a solution of

(4), it also satisfies (2), together with the initial conditions µλ,e1(ωλ,e1/2) = e1 and µ̇λ,e1(ωλ,e1/2) = 0.

Therefore, µλ,e1(s) is a real-analytic function of s ∈ R and (λ, e1) ∈ P, and so is κλ,e1(s) =
√
µλ,e1(s).

On the other hand, Fλ,e1 satisfies {
Ḟλ,e1 = Fλ,e1 · Kλ,e1

Fλ,e1(ωλ,e1/2) = Fλ,e1

, (9)

where

Kλ,e1 =

0 −1 0

1 0 −κλ,e1
0 κλ,e1 0


and Fλ,e1 = ([E1]λ,e1 , [E2]λ,e1 , [E3]λ,e1) for

(E1)λ,e1 =

(
1√

1 + (e1[e1 + 2λ])2
,

−e1(e1 + 2λ)√
1 + (e1[e1 + 2λ])2

, 0

)
(E2)λ,e1 = (0, 0,−1)

(E3)λ,e1 = (E1)λ,e1 × (E2)λ,e1

.

Consequently, Fλ,e1(s) is also a real-analytic function of s ∈ R and (λ, e1) ∈ P.

The least period of ωλ,e1 can be written in terms of complete elliptic integrals of the first and

third kind (see Part I of Appendix A). It then follows from the properties of these integrals that

ω : (λ, e1) ∈ P 7−→ ωλ,e1 ∈ R is a continuous function which is real-analytic on P̂ i.e., the complement

of the zero locus of the real-analytic function (λ, e1) ∈ P 7−→ (e1 + [e2]λ,e1)
2 − 4e31[e2]

3
λ,e1

. Thus, m is

also a continuous function and real-analytic on P̂.
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Finally, since µλ,e1 is periodic with least period ωλ,e1 , we conclude from (2) that for every k ∈ Z,

Fλ,e1(s+ kωλ,e1) = mk
λ,e1 · Fλ,e1(s) .

This finishes the proof. □

Remark 2.11 Observe that the order of the monodromy mλ,e1 is, precisely, the wave number n of

γλ,e1.

3 Integrability by Quadratures and Existence of B-Strings

In this section we give the parameterization of B-curves in terms of just one quadrature and prove the

main theorems of the paper. The parameterization we will obtain in this section is, essentially, the one

of Theorem 1.1. Observe that, locally, the ordinary differential equation determining µ(s) can be used

to make a change of variable in θ(s) and so this parameterization depends on just one quadrature.

We begin by defining a curve in the plane domain P = {(λ, e1) ∈ R2 | e1 > ηλ}. The exceptional

locus is the smooth curve P∗ ⊂ P defined by the equation

4λ2e31 + 8λ3e21 − e1 + 2λ = 0 . (10)

It is easy to check that this exceptional curve is contained in {(λ, e1) ∈ P |λ < 0}. We say that the

parameters (λ, e1) are exceptional if they belong to P∗. Moreover, for any λ < 0, the cubic equation

(10) has a unique positive root uλ, which may be explicitly computed. The function u : λ ∈ R− 7−→
uλ ∈ R+ is real-analytic and P∗ is the graph of u (see Figure 7). For convenience, if λ ≥ 0 we will

define uλ = ∞.

We next introduce some functions which will play an essential role on the parameterization of

B-curves. Let σ : (s, λ, e1) ∈ R× P 7−→ σλ,e1(s) ∈ Z2 be defined by

σλ,e1(s) :=

{
1 , if s ∈ [2kωλ,e1 , (2k + 1)ωλ,e1) , k ∈ Z

(−1)χ(λ,e1) , if s ∈ [(2k + 1)ωλ,e1 , 2(k + 1)ωλ,e1) , k ∈ Z
,

where ωλ,e1 is the least period of µλ,e1 and χ : P −→ Z2 is the indicator function of P∗, i.e., χ is

zero everywhere but at the points (λ, e1) ∈ P∗ in which case χ(λ, e1) = 1. We then define the angular

function

θλ,e1(s) := 2ξλ,e1

∫ s

ωλ,e1
2

µ2λ,e1(t) (µλ,e1(t) + 2λ)

1− 4ξ2λ,e1µ
2
λ,e1

(t)
dt (11)

and the radial and height functions, respectively,

ρλ,e1(s) :=
σλ,e1(s)

√
4ξ2λ,e1µ

2
λ,e1

(s)− 1

2ξλ,e1µλ,e1(s)
, (12)

hλ,e1(s) :=
1

2ξλ,e1µλ,e1(s)
. (13)

From these definitions, some basic features of these functions can be deduced:

1. The height functions are periodic (with least period ωλ,e1) and even. They have a minimum at

s = ωλ,e1/2 and a maximum at s = ωλ,e1 . (See Figure 4.)
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Figure 4: The graph of the height function hλ,e1 for λ = 1.1 and e1 ≃ 1.46 (e1 < uλ). In this picture

we show the portion of the graph on the interval [ωλ,e1/2, ωλ,e1/2 + ωλ,e1 ].

2. The radial functions have two different qualitative behaviors depending on whether e1 = uλ or

not:

(a) If e1 ̸= uλ, then ρλ,e1 is periodic (with least period ωλ,e1) and positive. (See Figure 5, Left.)

(b) If e1 = uλ, then ρλ,e1 is periodic (with least period 2ωλ,e1) and ρλ,e1(s+ωλ,e1) = −ρλ,e1(s). It
has two zeros in the interval [ωλ,e1/2, ωλ,e1/2+2ωλ,e1), precisely, at s = ωλ,e1 and s = 2ωλ,e1 .

(See Figure 5, Right.)

Figure 5: The graphs of the radial functions ρλ,e1 for: λ = −1.1 and uλ < e1 ≃ 4.59 (left); and,

λ = −0.27 and e1 = uλ ≃ 2.34 (right). In the left figure we take the portion of the graph on the

interval [ωλ,e1/2, ωλ,e1/2 + ωλ,e1 ], while in the right one we are showing the graph on the interval

[ωλ,e1/2, ωλ,e1/2 + 2ωλ,e1 ].

3. The angular functions are arithmetic quasi-periodic (with quasi-period ωλ,e1) and odd. In

the interval [ωλ,e1/2, ωλ,e1/2 + ωλ,e1), θλ,e1 possesses an inflection point at s = ωλ,e1 with

θλ,e1(ωλ,e1/2) = θ(ωλ,e1)/2. However, their qualitative behavior depends on whether e1 > uλ or

e1 ≤ uλ:

(a) If e1 > uλ, in the same interval, θλ,e1 has exactly two critical points, an absolute minimum

somewhere between s ∈ (ωλ,e1/2, ωλ,e1) and an absolute maximum in (ωλ,e1 , ωλ,e1/2+ωλ,e1).

These functions are increasing from the minimum to the maximum and they tend to ∞ as

s→ ∞. (See Figure 6, Left.)

(b) If e1 ≤ uλ, then θλ,e1 is strictly decreasing and it tends to −∞ as s → ∞. (See Figure 6,

Right.)

We have now all the necessary information to prove the parameterization of B-curves (the following

result corresponds to Theorem 1.1 in the Introduction).
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Figure 6: The graphs of the angular functions θλ,e1 for: λ = −1.1 and uλ < e1 ≃ 4.59 (left); and,

λ = −0.27 and e1 = uλ ≃ 2.34 (right). The black segment represents the jump of the quasi-periodic

function. If the length of the segment is a rational multiple of 2π, the critical curve is periodic (see

Theorem 3.3). In this pictures we show the portion of the graph on the interval [ωλ,e1/2, ωλ,e1/2 +

2ωλ,e1 ].

Theorem 3.1 Let (λ, e1) ∈ P = {(λ, e1) ∈ R2 | e1 > ηλ} where ηλ is defined in Remark 2.1, and µ be

a solution of the Cauchy problem {
µ̇2 = −µ2Q(µ)

µ(ω/2) = e1
,

where Q is the quartic polynomial defined in (5) and ω is the least period of µ. Then, µ ≡ µλ,e1 is a

positive periodic function. Moreover, define the curve

γλ,e1(s) = (hλ,e1(s),−ρλ,e1(s) cos θλ,e1(s), ρλ,e1(s) sin θλ,e1(s))

where hλ,e1, ρλ,e1 and θλ,e1 are the height, radial and angular functions introduced above, (11)-(13).

Then, γλ,e1 is the B-curve with parameters (λ, e1), in its standard form.

Proof. The first part of the statement was already proven in previous section. It remains to prove

that γλ,e1 is the B-curve with parameters (λ, e1). For simplicity, we will omit the subscripts λ and e1
throughout this proof.

We first note that for every (λ, e1) ∈ P the function

s 7−→ µ(s) + 2λ

1− 4ξ2µ2(s)

is real-analytic. In fact, if (λ, e1) is not exceptional, then 1 − 4ξ2µ2(s) ≤ 1 − 4ξ2e22 < 0. Note that

(λ, e1) is exceptional if and only if ξ = −1/(4λ) and λ = −e2/2 < 0. Thus, in this case

µ(s) + 2λ

1− 4ξ2µ2(s)
= 4λ2

µ(s) + 2λ

4λ2 − µ2(s)
= −4λ2

1

µ(s)− 2λ
=

−4λ2

µ(s) + e2
< 0 .

This implies that the angular function θ(s) is real-analytic. By construction, so is the height function

h(s).

We next distinguish between the cases where (λ, e1) ∈ P is exceptional or not.

Suppose first that (λ, e1) ∈ P is not exceptional. Then, as shown above 4ξ2µ2 − 1 > 0 holds and,

hence, γ(s) is a real-analytic spherical curve. Moreover, since µ(ω/2) = e1, we have

γ
(ω
2

)
=
(
h
(ω
2

)
,−ρ

(ω
2

)
, 0
)
=

1

2ξe1

(
1,−

√
4ξ2e21 − 1, 0

)
.
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Computing the derivative we get

γ̇(s) · γ̇(s) = −4λ2µ2 + 4λµ5 + µ6 + µ̇2

µ2 − 4ξ2µ4
= 1 ,

and γ̇(ω/2) = (0, 0,−1). Here we have used the conservation law (4) to simplify above expression.

Hence, γ is an arc-length parameterized spherical curve. Then, computing the second order derivative

of γ, and using the Euler-Lagrange equation (2) and the conservation law (4) to simplify the expression,

we obtain that

γ̈(s) · γ̈(s) = µ4(s) + 1 ,

from which we conclude that the geodesic curvature of γ is either µ2 or −µ2. In what follows, we will

discard the second case. From above computations we also deduce that

γ
(ω
2

)
× γ̇

(ω
2

)
=

(
e1(e1 + 2λ)√

1 + (e1[e1 + 2λ])2
,

1√
1 + (e1[e1 + 2λ])2

, 0

)
.

This implies

κ
(ω
2

)
= γ̈

(ω
2

)
·

(
e1(e1 + 2λ)√

1 + (e1[e1 + 2λ])2
,

1√
1 + (e1[e1 + 2λ])2

, 0

)
.

A straightforward computation yields

γ̈
(ω
2

)
=

(
e41 + 2λe31 − 1√
1 + (e1[e1 + 2λ])2

,
2e1(e1 + λ)√

1 + (e1[e1 + 2λ])2
, 0

)
,

and, hence, κ(ω/2) = e21 = µ2(ω/2). That is κ = µ2 and γ is an arc-length parameterized curve with

curvature µ2 and the same initial conditions of the (standard) B-curve. Consequently, both of them

coincide.

Finally, we treat the case where (λ, e1) ∈ P is exceptional. In this case 4ξ2µ2 − 1 vanishes on ωZ
and is positive on R \ ωZ. By definition,

γ(s) =

{
(h(s),−ρ̂(s) cos θ(s), ρ̂(s) sin θ(s)) , if s ∈ [2kω, (2k + 1)ω) , k ∈ Z
(h(s), ρ̂(s) cos θ(s),−ρ̂(s) sin θ(s)) , if s ∈ [(2k + 1)ω, 2(k + 1)ω) , k ∈ Z

,

where ρ̂ =
√

4ξ2µ2 − 1/(2ξµ).

It is then clear that γ is continuous and real-analytic away from the discrete set ωZ. On the set

R \ ωZ we can argue as in the non-exceptional case to prove that γ is an arc-length parameterized

spherical curve with κ = µ2 and such that
γ
(ω
2

)
=

1

2ξe1

(
1,−

√
4ξ2e21 − 1, 0

)
γ̇
(ω
2

)
= (0, 0,−1)

.

We next prove that γ is of class C1 on ωZ. By construction, γ(s + kω) = Rk · γ(s), for any k ∈ Z,
where R is a rotation around the Ox-axis. Hence, it suffices to show that γ is of class C1 at s = ω.

Note that the first component of γ is everywhere real-analytic. Since θ is a real-analytic function, the

second and third components of γ are of class C1 at s = ω if and only if the function

f(s) =

{√
4ξ2µ2(s)− 1 , s ∈ [0, ω)

−
√

4ξ2µ2(s)− 1 , s ∈ [ω, 2ω)
,
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is of class C1 at s = ω. Recall that µ(ω) = e2 and that, in the exceptional case ξ = 1/(2e2). Thus, f

is continuous at s = ω. Moreover, on the left of ω we have

µ̇ = µ
√

−(µ− e1)(µ− e2)(µ− e3)(µ− e4) ,

where e1 > e2 > 0, e3 and e4 are the roots of the polynomial Q, (5). Therefore,

ḟ =
µµ̇

e2
√
µ2 − e22

=
µ2
√
−(µ− e1)(µ− e3)(µ− e4)

e2
√
µ+ e2

.

While, on the right of ω,

µ̇ = −µ
√

−(µ− e1)(µ− e2)(µ− e3)(µ− e4) ,

and so

ḟ = − µµ̇

e2
√
µ2 − e22

=
µ2
√

−(µ− e1)(µ− e3)(µ− e4)

e2
√
µ+ e2

.

This implies that

lim
s→ω−

ḟ(s) = lim
s→ω+

ḟ(s) =

√
(e1 − e2)(e2 − e3)(e2 − e4)√

2
.

Consequently, γ is an arc-length parameterized spherical curve of class C1. Let γ̃ be the standard

B-curve with parameters λ and e1. Then, both γ and γ̃ are arc-length parameterized spherical curves

with the same curvature and the same initial conditions, γ(ω/2) = γ̃(ω/2) and γ̇(ω/2) = ˙̃γ(ω/2).

Since γ̃ is real-analytic and γ is of class C1 and real-analytic on R \ ωZ, we may conclude that γ = γ̃.

More precisely, let F and F̃ be the (spherical) Frenet frame fields along γ and γ̃, respectively. By

construction, F is continuous and real-analytic on R \ ωZ, while F̃ is real-analytic everywhere. Then

there exists a continuous map A : R −→ SO(3) such that F̃ = AF . On R \ ωZ, F and F̃ are both

solutions of the linear system

Ẋ = X ·

0 −1 0

1 0 −µ2
0 µ2 0

 .

Thus, A is constant on R\ωZ. By continuity, one concludes that A is constant everywhere. Moreover,

since F(ω/2) = F̃(ω/2), we obtain that A = Id3x3 is the identity. This proves that γ = γ̃. □

Remark 3.2 A B-curve γλ,e1 passes through the pole (1, 0, 0) of the unit-sphere S2 if and only if the

parameters (λ, e1) ∈ P are exceptional, i.e., if (λ, e1) ∈ P∗ or, equivalently, if e1 = uλ. Moreover, the

B-curve passes through the pole, precisely, whenever s ∈ ωZ.

The jump of the B-curve γ with parameters (λ, e1) ∈ P is defined by

Ψ(λ, e1) ≡ Ψλ(e1) := θλ,e1 (ωλ,e1)− θλ,e1(0) . (14)

The curve is periodic if and only if Ψλ(e1) is a rational multiple of 2π. (See Figure 6.)

The jump function can be seen as a period map in the following way. Let SO(2) ⊂ SO(3) be

the stabilizer of the vector i⃗ = (1, 0, 0). From Theorem 3.1 it follows that the monodromy map m
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is SO(2)-valued. Then, since P is contractible and m is continuous, there exist continuous functions

Φ : P −→ R such that

mλ,e1 =

1 0 0

0 cosΦλ,e1 − sinΦλ,e1

0 sinΦλ,e1 cosΦλ,e1

 .

We say that Φ is a period map. The period map is unique modZ and Φλ,e1 ≡ Ψλ(e1) (mod 1). Keeping

in mind that ω is real-analytic on the open set P̂, that ξ and the integrand are real-analytic on P, we

deduce that the period maps are real-analytic on P̂.

We now introduce the strictly increasing real-analytic function p : R −→
(
−1,−1/

√
3
)
given by

p(λ) := −

√
1 + η4λ
3 + η4λ

= −

√
1− λη3λ
2− λη3λ

, (15)

where ηλ is the (unique) positive solution of (3). This function will arise when analyzing the asymptotic

behavior of Ψλ(e1).

We next prove the second main result of the paper, which shows the existence of periodic B-curves,

i.e., B-strings (this result corresponds to Theorem 1.2 in the Introduction).

Theorem 3.3 Let λ ∈ R. Then, there exists an unbounded countable set ∆λ ⊂ (ηλ,∞) such that

a B-curve γ with parameters λ and e1 is periodic if and only if e1 ∈ ∆λ. In other words, for every

q ∈ (1 + p(λ), 1/2) ∩Q there exists a B-string γ with Lagrange multiplier λ and monodromy

mq ≡ mλ,e1 =

1 0 0

0 cos(2πq) − sin(2πq)

0 sin(2πq) cos(2πq)

 .

The rational number q is the characteristic number of the B-string.

Proof. In order to show the existence of B-strings, we need to analyze the asymptotic behavior of the

jump function (for simplicity, we will omit the subscript λ)

Ψ(e1) = 2ξ

∫ ω

0

µ2 (µ+ 2λ)

1− 4ξ2µ2
ds = 4ξ

∫ e1

e2

µ (µ+ 2λ)

(1− 4ξ2µ2)
√
−(µ− e1)(µ− e2)(µ− e3)(µ− e4)

dµ .

This is a rather standard integral that can be solved in terms of complete elliptic integrals of the first

and third kind (for details, see Appendix A). Moreover, by the properties of these elliptic integrals we

obtain that Ψ is real-analytic on the following sets:

P− = {(λ, e1) ∈ P | e1 < uλ} , P+ = {(λ, e1) ∈ P | e1 > uλ} ,

and P∗ (see Figure 7 for the plot of these regions). However, the jump function Ψ is not real-analytic

on P since it has a jump discontinuity on the exceptional locus P∗ (see Remark 3.4).

We next obtain the limits of Ψ as the parameter e1 approaches the boundaries of its domain,

i.e., e1 ∈ (ηλ,∞). The proof of the following limits is just a technical computation involving the

decomposition of Ψ as the sum of three complete elliptic integrals. For the sake of clarity we simply

state the limits here, while we postpone the proof to Appendix A.

18



-6 -4 -2 0 2

0

2

4

6

8

10

12

Figure 7: The exceptional locus P∗ (in red) and the regions P− (in green) and P+ (in blue). The

colored domain represents the region P = P− ∪ P∗ ∪ P+ and its boundary is ηλ (in purple).

We begin with the limit when e1 → η+λ . In this case, for every λ ∈ R we have

lim
e1→η+λ

Ψ(e1) = 2πp(λ) ,

where p(λ) is, precisely, the function introduced in (15). On the other hand, we have the following

limits when e1 → ∞, depending on the sign of λ,

lim
e1→∞

Ψ(e1) = −π ,

if λ ≥ 0, and

lim
e1→∞

Ψ(e1) = π ,

if λ < 0.

Finally, let Φ± : P −→ R be the period maps such that Φ−|P−= Ψ|P− and Φ+|P+= Ψ|P+ . Then,

there exists a k ∈ Z such that Φ− = Φ++2πk. From above limits, k = −1 and {Φ−(λ, e1)/2π | e1 > ηλ}
contains the open interval (−1/2, p(λ)) ≡ (1 + p(λ), 1/2) (mod 1). This concludes the proof. □

As mentioned in the previous proof, the function Ψλ has a jump discontinuity on P∗, i.e., when

e1 = uλ. Consequently, it is convenient to regularize this function in order to work with a continuous

function. Let us define the regularized jump function Ψ̂ : P −→ R by

Ψ̂(λ, e1) ≡ Ψ̂λ(e1) =

{
Ψλ(e1) (mod 2π) , e1 ̸= uλ

Ψλ(e1) + π , e1 = uλ
. (16)

In terms of Ψ̂λ, a B-curve γ with parameters (λ, e1) ∈ P is closed, i.e., a B-string, if and only if

Ψ̂λ(e1) = 2πq, where q ∈ Q is a rational number of the type q = m/n for relatively prime natural

numbers m < n. The rational number q is the characteristic number of the B-string, while the natural

number n is its wave number.

From Theorem 3.3 we conclude that for any pair (m,n) of relatively prime natural numbers and

λ ∈ R satisfying

2 (1 + p(λ))n < 2m < n

there exists a B-string with multiplier λ ∈ R and characteristic number q = m/n.
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Remark 3.4 Numerical experiments strongly support the ansatz that the regularized jump function Ψ̂λ

is a real-analytic period map for the 1/2-Bernoulli’s bending variational problem. In addition, for every

λ ∈ R the function Ψ̂λ : e1 ∈ (ηλ,∞) 7−→ (2π[1+p(λ)], π) is a strictly increasing diffeomorphism. This

experimental fact would lead to the following conclusions (which are stronger than those of Theorem

3.3):

1. For every λ ∈ R and q ∈ (1 + p(λ), 1/2) ∩ Q there exists a unique B-string γ with multiplier

λ such that e1 = Ψ̂−1
λ (2πq). In particular, B-strings γ with multiplier λ are in one-to-one

correspondence with the countable set (1 + p(λ), 1/2) ∩Q.

2. The wave number of γ ≡ γq is n ≥ 3, and hence B-strings are not embedded (see Lemma 3.5 for

the number of self-intersection points).

In the last part of this section we will prove Theorem 1.3. We first show a technical lemma

regarding the number of points of self-intersection.

Lemma 3.5 Let γ be a B-string with multiplier λ and characteristic number q = m/n. Assume also

that e1 ̸= uλ. Then,

1. The points γ(ω/2 + kω) and γ(ω + kω), k = 0, ..., n− 1 are simple.

2. If e1 < uλ, then γ possesses, exactly, n (n−m− 1) ordinary double points.

3. If e1 > uλ, then γ possesses, at least, nm points of self-intersection. The angular function has

a unique absolute maximum at s∗ ∈ [ω/2, ω] such that θ(s∗) > θ(ω) = πm/n, and we have three

different scenarios:

(a) Case θ(s∗) < π(m+1)/n. In this case the B-string has exactly nm ordinary double points.

(b) Case π(m+ k)/n < θ(s∗) < π(m+ k + 1)/n for some k ∈ N. In this case the B-string has

exactly n(m+ 2k) points of self-intersection.

(c) Case π(m+k)/n < θ(s∗) = π(m+k+1)/n for some k ∈ N∪{0}. In this case the B-string

has exactly n(m+ 2k + 1) points of self-intersection.

Proof. We begin by proving that the points γ(ω/2 + kω) and γ(ω + kω), k = 0, ..., n − 1 are simple.

Since γ(s + ω) = R2πm/n · γ(s), where R is a rotation around the Ox-axis (see previous Theorems

3.1 and 3.3) it suffices to show that γ(ω/2) and γ(ω) are simple. Consider γ(ω/2). We exhibit that,

if s∗ ∈ [ω/2, ω/2 + nω) satisfies γ(s∗) = γ(ω/2), then s∗ = ω/2. The radial function reaches its

maximum at ω/2 + hω, h ∈ Z. Hence s∗ = ω/2 + pω, for some integer p = 0, . . . n − 1. In addition,

θ(s∗) ≡ θ(ω/2) = 0(mod 2π). Then, θ(s∗) = 2kπ, k ∈ Z. On the other hand, θ(s∗) = θ(ω/2 + pω) =

2πmp/n. This implies mp = kn. Since m and n are relatively prime, we have p = hn, h ∈ Z.
Therefore, s∗ = ω/2 + hnω. But ω/2 ≤ s∗ < ω/2 + nω. Thus, h = 0 and s∗ = ω/2. Next, consider

γ(ω). The radial function reaches its minimum at hω, h ∈ Z. Thus, if s∗ ∈ [ω/2, ω/2 + nω) satisfies

γ(s∗) = γ(ω), then s∗ = pω, for some integer p = 0, . . . n. In addition, θ(s∗) ≡ θ(ω) = 2πm/n,

mod 2πZ, ie θ(s∗) = 2π(m/n + k), k ∈ Z. On the other hand, θ(s∗) = θ(pω) = 2πpm/n. Then,

m(p− 1) = nk. Thus, p− 1 = hn, h ∈ Z. Since 1 ≤ p ≤ n, the only option is p = 1. This proves that

s∗ = ω.
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To prove the other assertions, let k1 and k2 be the integers such that

k1n+ k2m = 1 , (17)

whose existence is guaranteed because m and n are relatively prime.

Consider first that e1 < uλ. The angular function is strictly decreasing on (ω/2, ω) and θ(ω/2) = 0

while θ(ω) = −2π(n−m)/n. Thus, for every j = 1, ..., n−m− 1 there exists a unique sj ∈ (ω/2, ω)

such that θ(sj) = −πj/n. We are going to prove that, for every k = 0, ..., n − 1, γ(sj − kω) is a

multiple point. For this purpose, consider

ŝj = −sj − (k + jk2)ω .

The height and radial functions are even and periodic, with period ω. Then, ρ(sj) = ρ(ŝj) and

h(sj) = h(ŝj). Taking into account that θ is an odd function and using (17) we have

θ(ŝj) = −θ(sj)− 2π (k + jk2))
m

n
= π

j

n
− 2πj

1− k1n

n
− 2πk

m

n

= −π j
n
− 2πk

m

n
+ 2πjk1 = θ(sj − kω) + 2πjk1 .

This implies that γ(sj) = γ(ŝj). It remains to prove that sj ̸≡ ŝj (modnω). By contradiction, suppose

sj ≡ ŝj (modnω), then there exists a p ∈ Z such that 2sj = pω, but this is impossible because

sj ∈ (ω/2, ω). We next prove that the points γ(sj − kω), 1 ≤ j ≤ n −m − 1 and 0 ≤ k ≤ n − 1 are

distinct. Let 0 ≤ k̂ < k ≤ n− 1, then

θ(sj − kω) = −π j
n
− 2πk

m

n
= θ(sj − k̂ω)− 2π

m(k − k̂)

n
.

Since m and n are relatively prime, m(k− k̂)/n is an integer number if and only if k− k̂ is an integer

multiple of n. On the other hand, it is clear that 1 ≤ k − k̂ < n− 1. Hence, m(k − k̂)/n ̸∈ Z and so

θ(sj − kω) ̸≡ θ(sj − k̂ω) (mod 2π). This implies that γ(sj − kω) ̸= γ(sj − k̂ω).

Suppose now that 1 ≤ j < ĵ ≤ n−m−1, then θ(sj) = −πj/n > −πĵ/n = θ(sĵ). Since θ is strictly

decreasing, we have ω/2 < sj < sĵ < ω. On the other hand, ρ is also strictly decreasing on (ω/2, ω),

so ρ(sj − kω) = ρ(sj) ̸= ρ(sĵ) = ρ(sĵ − k̂ω), for every k, k̂ = 0, ..., n− 1.

In conclusion, γ(sj − kω) ̸= γ(sĵ − k̂ω), for every k, k̂ = 0, ..., n − 1, and it then follows that the

points γ(sj − kω), 1 ≤ j ≤ n −m − 1, 0 ≤ k ≤ n − 1 are distinct. This proves that γ possesses, at

least, n(n−m− 1) points of self-intersection.

We finally conclude from the first assertion and from the fact that the angular function is strictly

decreasing that the points constructed above are the only multiple points of γ.

In what follows, we analyze the case e1 > uλ. Denote by ŝ, s̃ ∈ (ω/2, ω) the absolute minimum

and absolute maximum, respectively, of θ on the closed interval [ω/2, ω]. Then, for every j = 1, ...,m

there exists a unique sj ∈ (ŝ, s̃) such that θ(sj) = πj/n. Then, arguing as in the case e1 < uλ, we

prove that γ(sj − kω), j = 1, ...,m and k = 0, ..., n − 1 are distinct multiple points of γ. However,

contrary to the case e1 < uλ, these may not be the only multiple points of γ since the angular function

has a unique absolute maximum at s∗ ∈ [ω/2, ω] such that θ(s∗) > θ(ω) = πm/n, and we have three

different scenarios:
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(a) Case θ(s∗) < π(m + 1)/n. In this case the B-string has exactly nm points of self-intersection.

These points are the ones constructed above. (See Figure 11 of Subsection 5.4.)

(b) Case π(m + k)/n < θ(s∗) < π(m + k + 1)/n. In this case the B-string has exactly n(m + 2k)

points of self-intersection. All of them are ordinary double points. The first nm multiple points

are the ones constructed in the proof, while the others arise as the two solutions of the equations

θ(s) = π(m+ p)/n with p = 1, ..., k. (See Figure 13 of Subsection 5.6.)

(c) Case π(m+ k)/n < θ(s∗) = π(m+ k+1)/n. In this case the B-string has exactly n(m+2k+1)

points of self-intersection. The first n(m+ 2k) are ordinary double points (as in previous case),

while the remaining n points are points of tangential self-intersection. More precisely, these

points are, exactly, γ(s∗ + pω), p = 0, ..., n− 1. (See Figure 12 of Subsection 5.5.)

This finishes the proof. □

A similar argument may be used to obtain the analogue result for the case e1 = uλ, which we state

in the following remark.

Remark 3.6 Let γ be a B-string with multiplier λ and characteristic number q = m/n. Assume that

e1 = uλ and let k be the largest natural number relatively prime with n and such that 2k < n. Then,

γ has a multiple point of multiplicity n and n(k −m) ordinary double points (see Figures 9 and 10 of

Subsections 5.2 and 5.3, respectively).

We are now in the right position to prove Theorem 1.3, which we state here in a more technical

form.

Theorem 3.7 Let γ be a B-string with parameters (λ, e1) ∈ P and characteristic number q = m/n.

Then, the following conclusions hold true:

1. The trajectory of γ is invariant by the group generated by the rotation 2π/n around the Ox-axis

and γ is contained in the spherical region bounded by the planes x = 1/(2ξe1) and x = 1/(2ξe2).

2. If e1 ̸= uλ, then γ does not intersect the Ox-axis. Moreover:

(a) If e1 < uλ, n−m is the linking number with the Ox-axis (equipped with the upward orien-

tation) and γ possesses, exactly, n (n−m− 1) ordinary double points.

(b) If e1 > uλ, −m is the linking number with the Ox-axis (equipped with the upward orienta-

tion) and γ possesses, at least, nm points of self-intersection.

3. If e1 = uλ, then γ intersects the Ox-axis n times and the moving point γ(s) travels counter-

clockwise around the Ox-axis (equipped with the upward orientation). Moreover, n −m is the

turning number of the plane projection of γ to the plane x = 0.

Proof. The first assertion is trivial. In fact, the stabilizer of the trajectory of a B-string is the subgroup

generated by the monodromy, that is the group generated by the rotation of an angle 2π/n around

the Ox-axis. Moreover, from Theorem 3.1, it follows that

γ(s) = (h(s),−ρ(s) cos θ(s), ρ(s) sin θ(s)) ,
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where h(s) is defined in (13). As customary in our proofs, we are avoiding to write the subscripts λ

and e1, for simplicity in the expressions. Since h(s) > 0, the trajectory of the curve is clearly contained

in S2+ = {(x, y, z) ∈ S2 |x > 0}. Similarly, since e2 ≤ µ(s) ≤ e1, from the definition of h(s), one also

concludes that the trajectory of the curve lies in the spherical region bounded by the planes of the

statement.

Suppose now that e1 ̸= uλ. In this case, the radial function ρ defined in (12) is strictly positive and

so the linking number Lk(γ,Ox) is the winding number of γ̂ = (−ρ cos θ, ρ sin θ) around the origin,

that is, the degree of the circle map

s ∈ R \ nωZ ∼= S1 7−→ (− cos θ, sin θ) ∈ S1 ,

which is equal to

− n

2π

(
θ
[ω
2
+ ω

]
− θ

[ω
2

])
= −m.

If e1 > uλ, we have θ(ω/2+ω) > θ(ω/2) and, if e1 < uλ, θ(ω/2+ω) < θ(ω/2). This proves the second

statement (the number of points of self-intersection follows from Lemma 3.5).

Finally, suppose that e1 = uλ, then γ(s) passes through the pole (1, 0, 0) if and only if s is a zero

of the radial function ρ. In other words, if and only if, s ≡ 0(modω). This implies that γ crosses the

Ox-axis when s = 0, ..., (n− 1)ω, i.e., n times.

Recall that in this exceptional case

Ψ(e1) = θ(ω)− θ(0) = 2π

(
q − 1

2

)
= 2π

(
m

n
− 1

2

)
,

where q = m/n is the characteristic number of γ, and we denote by m̂/n̂ = q − 1/2. The plane

projection of γ is the “polar” curve

γ̃(s) = ρ(s) (− cos θ(s), sin θ(s)) .

The radial and angular functions satisfy θ(s + ω) − θ(s) = 2πm̂/n̂ and ρ(s + ω) = −ρ(s). Thus, if

n̂ = 2k and k is an odd integer, the least period of γ̃ is kω, while if n̂ = 2k and k is even, the least

period of γ̃ is n̂ω. Similarly, if n̂ is odd, ωγ̃ = 2n̂ω. Let T̃ and Ñ be the unit tangent and unit normal

vector fields along γ̃. Then

Ñ · dT̃ = −2ρ̇2θ̇ + ρ2θ̇3 − ρρ̈ θ̇ + ρρ̇ θ̈

ρ̇2 + ρ2θ̇2
ds .

This implies that
1

2π

∫
Ñ · dT̃ =

1

2π
(f(s)− θ(s)) + c , (18)

where f is the continuous determination of − arctan(ρ θ̇/ρ̇) such that f(0) = 0. Considering the

properties of the radial and angular functions, arctan(ρ θ̇/ρ̇) possesses jump discontinuities at the

points pk = ω/2 + kω, k ∈ Z, and is real-analytic elsewhere. At the points of discontinuity we have
lim
s→p+k

arctan

(
ρ θ̇

ρ̇

)
=
π

2

lim
s→p−k

arctan

(
ρ θ̇

ρ̇

)
= −π

2

.

Consequently, f is a quasi-periodic function with quasi-period ω such that f(ω)− f(0) = π. Then, we

deduce the following properties from (18):
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1. If n̂ = 2k and k is an odd integer, then 2m = m̂+ k, n = k and (ωγ̃ = kω)

1

2π

∫ kω

0
Ñ · dT̃ = −m̂

2
+
k

2
= n−m.

2. If n̂ = 2k and k is an even integer, then m = m̂+ k, n = n̂ and (ωγ̃ = n̂ω)

1

2π

∫ n̂ω

0
Ñ · dT̃ =

n̂

2
− m̂ = n−m.

3. If n̂ is an odd integer, m = 2m̂+ n̂, n = 2n̂ and (ωγ̃ = 2n̂ω)

1

2π

∫ 2n̂ω

0
Ñ · dT̃ = n̂− 2m̂ = n−m.

This proves that the total curvature, i.e., the turning number of γ̃ is n−m, as claimed. □

Remark 3.8 Theorem 3.7 implies that the geometry of a B-string is encoded by its projection onto an

annular region (disc-type region if the B-string intersects the Ox-axis) of the oriented plane through

the origin and orthogonal to the symmetry axis. The multiple points of the B-string are projected onto

the multiple points of the projected plane curve and, vice-versa, each multiple point of the projection

gives rise to a multiple point of the string.

If e1 ≤ uλ, the projection is counter-clockwise oriented, while if e1 > uλ is clockwise oriented. Its

symmetry group is the same than the one of the B-string. If e1 ̸= uλ, the linking number of the string

is the homotopy class of the projection, viewed as a plane curve of the annular region.

4 Theoretical Aspects

In this section we comment on the theoretical aspects behind Theorems 3.1, 3.3 and 3.7 and on the rich

“hidden” geometry surrounding the 1/2-Bernoulli’s bending variational problem, which is typical of

variational problems related to non-commutative completely integrable Hamiltonian contact systems

([24, 25, 28, 29, 36, 53]) and to Liouville integrable geometric variational problems ([40]).

4.1 The Phase Space

Let

Ω :=

 0 −ϖ1
0 −ϖ2

0

ϖ1
0 0 −ϖ2

1

ϖ2
0 ϖ2

1 0

 ,

be the Maurer-Cartan form of SO(3). Then, {ϖ1
0, ϖ

2
0, ϖ

2
1} is a basis for the space of left-invariant

1-forms. Using the algorithmic procedure illustrated in [28, 30], the momentum space of the functional

Bλ is the 5-dimensional submanifold M of T ∗[SO(3)] defined by the embedding

(A,µ, µ̇) ∈ SO(3)× R+ × R 7−→
(µ
2
+ λ

)
ϖ1

0|A−
µ̇2

µ2
ϖ2

0|A+
1

2µ
ϖ2

1|A∈ T ∗[SO(3)] .
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The restriction of the Liouville form of T ∗[SO(3)] to M is the 1-form

ζ =
(µ
2
+ λ

)
ϖ1

0 −
µ̇2

µ2
ϖ2

0 +
1

2µ
ϖ2

1 .

The 2-form dζ has maximal rank and its characteristic line bundle is generated by the vector field

X = ∂ϖ1
0
+ µ2∂ϖ2

1
+ µ̇∂µ +

(
µ− 2λµ4 − µ5 + 2

µ̇2

µ

)
∂µ̇ ,

where
(
∂ϖ1

0
, ∂ϖ2

0
, ∂ϖ2

1
, ∂µ, ∂µ̇

)
is the trivialization of TM dual to the coframe

(
ϖ1

0, ϖ
2
0, ϖ

2
1, dµ, dµ̇

)
.

The integral curves of X are the canonical lifts of the B-curves (not necessarily in their standard

form) with multiplier λ, that is curves of the following type

Γ : s ∈ R 7−→ ((γ, γ̇, γ × γ̇) , µ, µ̇) ∈M ,

where γ is an arc-length parameterized B-curve with multiplier λ, curvature µ2 and where µ̇ is the

derivative of µ with respect to the arc-length parameter. Thus, the problem has been reduced to the

integration of the characteristic vector field of the SO(3)-invariant 2-form dζ.

4.2 The Moment Map

The moment map M :M −→ so(3)∗ for the SO(3)-action on (M,dζ) is the restriction of the moment

map for the SO(3)-action on T ∗[SO(3)] equipped with its standard symplectic form. So, we get

M : (A,µ, µ̇) 7−→ Ad∗(A) ·H(µ, µ̇) ∈ so(3)∗ ,

where

H(µ, µ̇) =
(µ
2
+ λ

)
ϖ1

0 −
µ̇2

µ2
ϖ2

0 +
1

2µ
ϖ2

1 ∈ so(3)∗ .

Using the Killing form we identify so(3)∗ with so(3), which is isomorphic to R3 equipped with the Lie

algebra structure defined by the usual vector cross product. Modulo these identifications, the moment

map can be written as

M : (A,µ, µ̇) ∈M 7−→ A ·
(

1

2µ
,− µ̇

2µ2
,
µ

2
+ λ

)T

∈ R3 .

By construction, M is constant along the integral curves of X. This implies that if γ is a B-curve with

multiplier λ and parameter e1, then

1

2µ
γ − µ̇

2µ2
γ̇ +

(µ
2
+ λ

)
γ × γ̇ = J ,

is constant. Note that ∥J ∥ = ξ, where ξ is the constant of integration defined in (7). The oriented

line passing through the origin and parallel to J is the axis of symmetry of γ. The element J ∈ R3

is the momentum of the B-curve and so the constant of integration ξ is the length of the momentum.

Identifying R3 with so(3) and letting J ∗ be the corresponding fundamental vector field of S2, then
J ∗ is the sum of the (adapted) Killing vector fields along γ which arise in the Lagrangian approach

([41]).
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The momentum map has maximal rank at each point of M and its image is the open set

Υλ := {J ∈ R3 | ∥J ∥ > 1

2ηλ

√
1 + (ηλ [ηλ + 2λ])2 } ⊂ R3 ,

where ηλ is defined in Remark 2.1.

If J ∈ Υλ, the quartic polynomial

QJ (t) = t4 + 4λt3 + 4
(
λ− ∥J ∥2

)
t2 + 1 ,

possesses exactly two distinct positive real roots, e1 > e2 > 0. The integral curves of X with momen-

tum J are, precisely, the canonical lifts of B-curves with multiplier λ and parameter e1.

The (reduced) phase curve C∗
J of J is the connected component of the singular algebraic curve

CJ := {(x, y) ∈ R2 | y2 = −x2QJ (x)} ⊂ R2 ,

contained in the half-plane x > 0. It turns out that C∗
J is a smooth curve and CJ ⊗ C is the affine

part of a singular algebraic curve of CP2. Such a curve is, in general, elliptic and it is rational if and

only if either λ = 0 or λ < 0 and (e1 + e2)
2 = 4e31e

3
2.

4.3 The Marsden-Weinstein Reduction and the Arnold Connection

Let J ∈ Υλ. The (Marsden-Weinstein) reduced space of J is the 2-dimensional torus OJ :=

M−1(J ) ⊂ M . This torus is invariant by the action of the stabilizer SJ := {A ∈ SO(3) |A · J =

J } ∼= SO(2) and the vector field X is tangent to OJ .

The map πJ : (A,µ, µ̇) ∈ OJ 7−→ (µ, µ̇) ∈ C∗
J is SJ -invariant and gives, on OJ , the structure of

a principal circle bundle. The line bundle of TOJ spanned by XJ := X|OJ defines a connection on

the principal bundle OJ 7−→ C∗
J .

4.4 Closure Conditions and Integrability by Quadratures

Let e1 be the largest positive root of QJ (x). Then, (e1, 0) ∈ C∗
J . Let ∆J ⊂ SJ be the (discrete)

holonomy group of the connection, with reference point (e1, 0). We have that ∆J is isomorphic to the

monodromy of a B-curve with multiplier λ and parameter e1. From a theoretical point of view, the

closure condition for a critical curve can be rephrased as follows.

Remark 4.1 A B-curve with momentum J is periodic if and only if ∆J is finite.

Let R = (R1, R2, R3) ∈ SO(3) be a positively oriented orthogonal basis such that

J =
1

2e1
R1 +

(e1
2

+ λ
)
R3 ,

and ÕJ ⊂ OJ be the holonomy bundle of the connection passing through (R, e1, 0). Then:

1. The map ÕJ 7−→ OJ is a covering map with deck transformation group ∆J .

2. If ∆J is finite, ÕJ ∼= S1. Otherwise, ÕJ ∼= R.
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3. The set ÕJ is an integral curve of X and, hence, (A,µ, µ̇) ∈ ÕJ 7−→ A1 ∈ S2 is a B-curve with

multiplier λ and momentum J .

We next explain how to find the parameterization of a B-curve given in Theorem 3.1. Let (λ, e1) ∈
P and

J ≡ Jλ,e1 = ξ⃗i =
1

2e1

√
1 + (e1 [e1 + 2λ])2 i⃗ .

Assume that µ : R −→ R+ is a (periodic) solution to the Cauchy problem{
µ̇2 = −µ2QJ (µ)

µ(ϖ/2) = e1
.

We denote by φ = (µ, µ̇) : R −→ C∗
J the parameterization of the phase curve. Choose any cross section

of φ∗(OJ ) 7−→ R. This amounts to find A : R −→ SO(3) satisfying

A ·
(

1

2µ
,− µ̇

2µ2
,
µ

2
+ λ

)T

= (ξ, 0, 0).

Such a map can be easily found by elementary linear algebra. For instance,

A =


1

2ξµ − µ̇
2ξµ2

2λ+µ
2ξ

−
√

4ξ2µ2−1
2ξµ − µ̇

2ξµ2
√

4ξ2µ2−1

2λ+µ

2ξ
√

4ξ2µ2−1

0 − µ(2λ+µ)√
4ξ2µ2−1

− µ̇

µ
√

4ξ2µ2−1


satisfies above equation. Clearly, any other cross section is of the form

B =

1 0 0

0 cosΨ − sinΨ

0 sinΨ cosΨ

 ·A .

Parallel sections of the connection are solutions of

Ḃ = B ·

0 −1 0

1 0 −µ2
0 µ2 0

 .

It follows from the expression of A and B, that B is, precisely, a parallel section if and only if

Ψ = 2ξ

∫
µ2(µ+ λ)

1− 4ξ2µ2
ds .

Hence, the map s 7−→ (B(s), µ(s), µ̇(s)) is a parallel cross section and s 7−→ B1(s) is the standard

configuration of a B-curve with parameters (λ, e1) exhibited in Theorem 3.1.

We finish this section by reformulating Theorems 3.3 and 3.7 in terms of the momentum.

Let λ ∈ R and Σλ := Im(Ψ̂λ)∩ 2πQ (which is a countable set containing 2π ((1 + p(λ), 1/2) ∩Q)).

The function ξ is a strictly increasing real-analytic diffeomorphism of (ηλ,∞) onto (η̂λ,∞) where

η̂λ :=
1

2ηλ

√
1 + (ηλ [ηλ + 2λ])2 .

Then, we may choose ξ as a fundamental parameter and express e1 and Ψ̂λ as functions of ξ ∈ (η̂λ,∞).

Let ξ∗λ ∈ (η̂λ,∞] be defined by uλ = e1(ξ
∗
λ) (if λ < 0, then ξ∗λ = −1/(4λ), while if λ ≥ 0, we set ξ∗λ = ∞).

Note that there exist countably many λ < 0 such that Ψ̂λ(ξ
∗
λ) ∈ Σλ.
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Remark 4.2 With this notation the results of Theorems 3.3 and 3.7 can be reformulated as follows:

1. An arc-length parameterized curve γ is a B-string with multiplier λ if and only if

1

2µ
γ − µ̇

2µ2
γ̇ +

(µ
2
+ λ

)
γ × γ̇ = J ,

is constant and Ψ̂λ(∥J ∥) ∈ Σλ.

2. For every J such that Ψ̂λ(∥J ∥) ∈ Σλ, there exists a B-string with momentum J . Two B-strings

are equivalent if and only if their momenta have the same length.

3. Let Ψ̂λ(∥J ∥) = 2πm/n ∈ Σλ. Then, the stabilizer of a B-string with momentum J is generated

by the rotation around J of an angle 2π/n. Moreover:

(a) If ∥J ∥ < ξ∗λ, n − m is the linking number of the B-string with the oriented axis AJ :=

{O+ tJ | t ∈ R}. In this case, the B-string possesses, exactly, n(n−m−1) ordinary double

points.

(b) If ∥J ∥ = ξ∗λ, the B-string turns counter-clockwise around AJ and intersects this axis n

times. The turning number of the plane projection of the B-string to the oriented plane

through the origin and orthogonal to AJ is n−m.

(c) If ∥J ∥ > ξ∗λ, −m is the linking number of the B-string with the axis AJ . In this case,

the B-string possesses, at least, nm points of self-intersection. (See Lemma 3.5 for more

details about the intersection points.)

Remark 4.3 Assuming the ansatz that Ψ̂λ is strictly increasing, then Σλ = 2π ((1 + p(λ), 1/2) ∩Q)

and, for every 2πm/n ∈ Σλ there exists a unique equivalence class of B-strings with multiplier λ such

that Ψ̂λ(∥J ∥) = 2πm/n.

5 Examples

In this section we will consider several examples which illustrate all the theoretical findings of previous

sections.

5.1 Case ηλ < e1 < uλ:

In this example we consider a B-string with multiplier λ = 1.1 and characteristic number q = 2/5

(n = 5 and m = 2). Since λ > 0 the B-string is of negative type (i.e., e1 < uλ = ∞).

According to Theorems 3.3 and 3.7, the B-string has a counter-clockwise five-fold symmetry; its

linking number with the (upward oriented) Ox-axis is n −m = 3 (which coincides with the winding

number and the turning number of the plane projection), and it possesses n(n−m− 1) = 10 ordinary

double points. In Figure 8, we show the corresponding B-string, its plane projection and its associated

phase curve, where we illustrate these properties.
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0.0 0.2 0.4 0.6 0.8 1.0 1.2
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Figure 8: A B-string of negative type (e1 < uλ) with multiplier λ = 1.1 and characteristic number

q = 2/5, together with its plane projection. On the right: the phase curve, which consists of the

isolated singular point (the origin, in black) and a smooth connected component contained in the

half-plane x > 0.

5.2 Case e1 = uλ (without ordinary double points):

In this example we consider an exceptional B-string with multiplier λ ≃ −0.11 and characteristic

number q = 4/9 (n = 9 and m = 4).

Observe in Figure 9 that, as stated in Theorems 3.3 and 3.7, the B-string possesses a counter-

clockwise nine-fold symmetry, the turning number of the plane projection is n −m = 5 and that it

possesses a multiple point (at the pole (1, 0, 0)) of multiplicity n = 9. Observe that the largest natural

number k relatively prime with n = 9 and such that 2k < n is k = 4 and so, we conclude from Remark

3.6, that this B-string has n(k −m) = 0 ordinary double points.

e1e2e3e4

-4 -2 0 2 4

-30

-20

-10

0

10

20

30

Figure 9: An exceptional (e1 = uλ) B-string with multiplier λ ≃ −0.11 and characteristic number

q = 4/9, together with its plane projection. On the right: the phase curve, which consists of the

isolated singular point (the origin, in black) and two smooth reduced phase curves. One is contained

in the half-plane x > 0 (colored in blue) and the other one (the dashed dark-red curve) is contained

in the half-plane x < 0.
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5.3 Case e1 = uλ (with n(k −m) ordinary double points):

In this example we consider an exceptional B-string with multiplier λ ≃ −0.45 and characteristic

number q = 2/9 (n = 9 and m = 2).

In Figure 10 we can see that, as stated in Theorems 3.3 and 3.7, the B-string possesses a counter-

clockwise nine-fold symmetry, the turning number of the plane projection is n −m = 7 and that it

possesses a multiple point (at the pole (1, 0, 0)) of multiplicity n = 9. Moreover, the B-string also

possesses n(k − m) = 18 ordinary double points, since in this case the largest natural number k

relatively prime with n = 9 and such that 2k < n is k = 4 (see Remark 3.6).

e1e2

0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 10: An exceptional (e1 = uλ) B-string with multiplier λ ≃ −0.45 and characteristic number

q = 2/9, together with its plane projection. On the right: the phase curve, which consists of the

isolated singular point (the origin, in black) and a smooth reduced phase curve contained in the half-

plane x > 0.

5.4 Case e1 > uλ (with nm ordinary double points):

In this example we consider a B-string of positive type with multiplier λ = −0.5 and characteristic

number q = 3/8 (n = 8 and m = 3). By positive type, we mean that e1 > uλ holds.

Observe in Figure 11 that, as stated in Theorems 3.3 and 3.7, the B-string possesses a clockwise

eight-fold symmetry, the winding number (also, the turning number) of the plane projection is −m =

−3 and it possesses nm = 24 ordinary double points.

5.5 Case e1 > uλ (with tangential double points):

In this example we consider a B-string of positive type with multiplier λ = −0.5 and characteristic

number q = 3/11 (n = 11 and m = 3).

This B-string possesses a clockwise eleven-fold symmetry, the winding number (also, the turning

number) of the plane projection is −m = −3 and it possesses nm = 33 ordinary double points and

n = 11 points of tangential self-intersection.
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Figure 11: A B-string of positive type (e1 > uλ) with multiplier λ = −0.5 and characteristic number

q = 3/8, together with its plane projection. On the right: the phase curve, which consists of the

isolated singular point (the origin, in black) and two smooth reduced phase curves. One is contained

in the half-plane x > 0 (colored in blue) and the other one (the dashed dark-red curve) is contained

in the half-plane x < 0.
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0.0 0.5 1.0 1.5 2.0
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Figure 12: A B-string of positive type (e1 > uλ) with multiplier λ = −0.5 and characteristic number

q = 3/11, together with its plane projection. On the right: the phase curve, which consists of the

isolated singular point (the origin, in black) and a smooth connected component contained in the

half-plane x > 0.

5.6 Case e1 > uλ (with n(m+ 2k) ordinary double points):

In this example we consider a B-string of positive type with multiplier λ = −0.5 and characteristic

number q = 2/9 (n = 9 and m = 2).

Observe in Figure 13 that, as stated in Theorems 3.3 and 3.7, the B-string possesses a clockwise

nine-fold symmetry, the winding number (also, the turning number) of the plane projection is −m =

−2 and that it possesses n(m+ 2k) = 36 ordinary double points, since k = 1.
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Figure 13: A B-string of positive type (e1 > uλ) with multiplier λ = −0.5 and characteristic number

q = 2/9, together with its plane projection. On the right: the phase curve, which consists of the

isolated singular point (the origin, in black) and a smooth connected component contained in the

half-plane x > 0.

Appendix A. The curvature of the Extrema and the Complete Elliptic

Integral Ψλ

This appendix has two parts. In the first one we will show how to build the µ-invariant from incomplete

elliptic integrals of the third kind and how to compute its least period in terms of complete elliptic

integrals. In the second part we will decompose the integral Ψλ and compute its limits as e1 approaches

the boundaries of its domain.

Part I: The Curvature of the Extrema

Let K(ϕ, δ) and Π(ζ, ϕ, δ) be the Legendre’s incomplete elliptic integrals of the first and third kind,

defined as

K(ϕ, δ) =

∫ ϕ

0

1√
1− δ sin2(θ)

dθ , Π(ζ, ϕ, δ) =

∫ ϕ

0

1

(1− ζ sin2(θ))
√
1− δ sin2(θ)

dθ ,

and K(δ) = K(π/2, δ), Π(ζ, δ) = Π(ζ, π/2, δ) be the corresponding complete elliptic integrals. Let

am(u, δ) be the Jacobi’s amplitude with parameter δ and sn(u, δ) = sin(am(u, δ)) the associated

Jacobi’s elliptic function. For simplicity, we denote by

α ≡ α(λ, e1) =
e2 − e1
e2 − e4

, β ≡ β(λ, e1) =
2√

(e1 − e3)(e2 − e4)
, δ ≡ δ(λ, e1) =

(e1 − e2)(e3 − e4)

(e1 − e3)(e2 − e4)
,

and

ζ ≡ ζ(λ, e1) =
e4(e2 − e1)

e1(e2 − e4)
,

where e1 > e2 > 0 and e3, e4 are the roots of the polynomial Q. Recall that e2, e3 and e4 are

functions of the fundamental parameters λ and e1. Let µ be the solution of (4) with µ(0) = e2 and

ω > 0 be its least period. By construction, µ is strictly increasing on [0, ω/2] and µ(ω/2) = e1. Let

h : [e2, e1] → [0, ω/2] be defined by

h(y) =

∫ y

e2

1

x
√
−Q(x)

dx =
ω

2
−
∫ e1

y

1

x
√

−Q(x)
dx.
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Then, from (4) it follows that µ|[0,ω/2] = h−1. Since µ is even, this is enough to reconstruct µ on the

whole real axis. Using 257.12 and 340.04 of [9], we obtain∫ e1

y

1

x
√
−Q(x)

dx =
β

e1

(
α

ζ
u(y)− α− ζ

ζ
Π(ζ, am(u(y), δ), δ)

)
,

where

u(y) = sn−1

(√
(e2 − e4)(e1 − y)

(e1 − e2)(y − e4)
, δ

)
.

Putting y = e2, we see that the least period of µ is

ω = 2
β

e1

(
α

ζ
K(δ)− α− ζ

ζ
Π(ζ, δ)

)
.

Figure 14 reproduces the graphs of the h-function and of the µ-function on the intervals [e2, e1] and

[0, ω], when e1 = 2, e2 = 1, e3 = (−3 + i
√
23)/8, e4 = e3. The h-function is evaluated via the

Mathematica library of elliptic functions while the µ function is evaluated solving numerically (2)

with initial conditions µ(0) = e2 and µ̇(0) = 0. The black-dashed portion of the graph of µ on [0, ω/2]

is obtained by symmetrizing the graph of h with respect to the bisector of the first quadrant, showing

that the two methods are in agreement with each other.

Figure 14: On the left: the graph of the h-function for e1 = 2 and e2 = 1. On the right: the graph of the µ

function for the same values of e1 and e2.

The 1/2-Bernoulli’s bending energy of a B-string can also be evaluated in terms of the wave number

and complete elliptic integrals of the first kind as

Bλ(γm,n) = 2n

∫ e1

e2

1√
−Q(y)

dy + nλω = n (2βK(δ) + λω) .

Part II: The Complete Elliptic Integral Ψλ

Using (4) to make a change of variable in the definition of Ψλ, (14), we have

Ψλ(e1) = 2ξ

∫ ω

0

µ2 (µ+ 2λ)

1− 4ξ2µ2
ds = 4ξ

∫ e1

e2

µ (µ+ 2λ)

(1− 4ξ2µ2)
√
−(µ− e1)(µ− e2)(µ− e3)(µ− e4)

dµ.

This integral can be solved in terms of complete elliptic integrals of the first and third kind.
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For simplicity, we denote by

ζ+ ≡ ζ+(λ, e1) = −(e1 − e2)(−1 + 2e4ξ)

(e2 − e4)(−1 + 2e1ξ)
, ζ− ≡ ζ−(λ, e1) = −(e1 − e2)(1 + 2e4ξ)

(e2 − e4)(1 + 2e1ξ)
.

We then have

Ψλ = 2π (I + [1− χ]II + III) ,

where χ is the indicator function of the exceptional locus P∗ and,

I =
β

4πξ

(
−2 + α

[
−1− 4λξ

ζ+(−1 + 2e1ξ)
+

1− 4λξ

ζ−(1 + 2e1ξ)

])
K(δ) , (19)

II =
β(α− ζ+)(1 + 4λξ)

4πζ+ξ(−1 + 2e1ξ)
Π(ζ+, δ) , (20)

III =
β(α− ζ−)(−1 + 4λξ)

4πζ−ξ(1 + 2e1ξ
)Π(ζ−, δ) . (21)

These formulas follow from three standard elliptic integrals. The first one (cf. 340.01 and 341.03 of

[9]) is ∫ K(δ)

0

1− a sn2(u, δ)

1− b sn2(u, δ)
du =

a

b
K(δ)− a− b

b
Π(b, δ).

The second elliptic integral (cf. 257 and 259 of [9]) is∫ e1

e2

dµ√
−(µ− e1)(µ− e2)(µ− e3)(µ− e4)

= βK(δ) ,

where β and δ are as above. The third relevant elliptic integral (cf. 257.39 and 259.04 of [9]) is∫ e1

e2

dµ

(p− µ)
√
−(µ− e1)(µ− e2)(µ− e3)(µ− e4)

=
β

p− e1

∫ K(δ)

0

1− α sn2(u, δ)

1− ζ̃ sn2(u, δ)
du

=
β

p− e1

(
α

ζ̃
K(δ)− α− ζ̃

ζ̃
Π(ζ̃, δ)

)
,

where p ̸= e1, α, β and δ are as above, and

ζ̃ =
(p− e4)(e1 − e2)

(e1 − p)(e2 − e4)
.

We begin proving that Ψλ → 2πp(λ) when e1 approaches ηλ from the right. By construction we

have that e2 → ηλ too, and, hence, it follows that
lim

e1→η+λ

e3(λ, e1) =
−1 +

√
1− η4λ

η3λ

lim
e1→η+λ

e4(λ, e1) =
−1−

√
1− η4λ

η3λ

,

and

λ =
1− η4λ
2η3λ

.
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We now see that the coefficients in (19)-(21) tend to, respectively,

lim
e1→η+λ

α(λ, e1) = 0 , lim
e1→η+λ

β(λ, e1) =
2ηλ√
3 + η4λ

, lim
e1→η+λ

δ(λ, e1) = 0 ,

while

lim
e1→η+λ

ξ(λ, e1) =

√
1 + η4λ

2η3λ
, lim

e1→η+λ

ζ+(λ, e1) = 0 , lim
e1→η+λ

ζ−(λ, e1) = 0 ,

and

lim
e1→η+λ

α

ζ+
=

η4λ

(
η2λ −

√
1 + η4λ

)
√
1 + η4λ +

√
1− η8λ + η6λ

, lim
e1→η+λ

α

ζ−
= −

η4λ

(
η2λ +

√
1 + η4λ

)
√
1 + η4λ +

√
1− η8λ − η6λ

.

Finally, recalling that K(0) = Π(0, 0) = π/2, using the above limits and (15) we conclude that

lim
e1→η+λ

Ψλ = −2π

√
1 + η4λ
3 + η4λ

= 2πp(λ). (22)

In what follows, we prove the limit when e1 → ∞. This limit will depend on the sign of λ. More

precisely, we will see that

lim
e1→∞

I(λ, e1) = lim
e1→∞

III(λ, e1) = 0 ,

and 
lim

e1→∞
II(λ, e1) = −1

2
, ifλ ≥ 0

lim
e1→∞

II(λ, e1) =
1

2
, ifλ < 0

.

In order to prove these limits we observe that, as e1 → ∞, the following asymptotic estimates hold

true:

e2 ∼ 1/e1 , e3 ∼ −1/e1 , e4 ∼ −e1 , ξ ∼ e1/2 , β ∼ 2/e1 ,

δ ∼ 1− 4/e21 , α ∼ (1− e21)/(1 + e21) , ζ− ∼ 1− 4/e21 ,

and 
ζ+ ∼ 1− 4λ2

e41
, ifλ ̸= 0

ζ+ ∼ 1− 1

e61
, ifλ = 0

. (23)

Moreover, recall that K(δ) ∼ − log(1− δ)/2 as δ → 1− and so, in our case, we have

K (δ(λ, e1)) ∼
−1

2
log

4

e21
,

as e1 → ∞. Combining this and the above estimates we conclude that

I(λ, e1) ∼
1

πe21
log

4

e21
,

as e1 → ∞. This proves the first limit.
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For the other limits we need some basic properties of the complete elliptic integral of the third

kind Π(ζ, δ). Let Λ = {(ζ, δ) ∈ [0, 1)× [0, 1) | ζ ≥ δ} and consider the function

f : (ζ, δ) ∈ Λ 7−→ 2

π

√
1− ζ

√
1− δΠ(ζ, δ) ∈ R .

This function f is bounded below by 2/π and above by 1. In addition, f(ζ, 0) = 1 for every ζ ∈ [0, 1)

and f(ζ, δ) → 1 when ζ → 1−, for every value of δ ∈ [0, 1). Moreover, for every ζ ∈ [0, 1),

f(ζ, ζ) =
2

π

√
1− ζ E

(
ζ

ζ − 1

)
where E is the complete elliptic integral of the second kind. From this we infer that

lim
ζ→1−

f(ζ, ζ) =
2

π
.

From these properties we deduce the following facts:

1. If γ : (a,∞) −→ Λ is a smooth curve such that γ(t) → (1, 1) when t → ∞ and ζ = δ is an

asymptote of γ as t→ ∞, then

lim
t→∞

f(γ(t)) =
2

π
.

2. If γ̃ : (a,∞) −→ Λ is a smooth curve such that γ̃(t) → (1, 1) when t → ∞ and ζ = 1 is an

asymptote of γ̃ as t→ ∞, then

lim
t→∞

f(γ̃(t)) = 1 .

Combining both things, it follows that as t→ ∞,
Π(γ(t)) ∼ 1√

1− γ1(t)
√
1− γ2(t)

Π(γ̃(t)) ∼ π

2
√
1− γ̃1(t)

√
1− γ̃2(t)

.

In view of these properties, fix τλ sufficiently large and consider the curves{
γλ : e1 ∈ (τλ,∞) 7−→ (ζ−(λ, e1), δ(λ, e1)) ∈ Λ

γ̃λ : e1 ∈ (τλ,∞) 7−→ (ζ+(λ, e1), δ(λ, e1)) ∈ Λ
.

From above estimates when e1 → ∞, we have the following asymptotic behavior for γλ,

γλ ∼
(
1− 4

e21
, 1− 4

e21

)
,

while for γ̃λ, it depends on the value of λ,
γ̃λ ∼

(
1− 4λ2

e41
, 1− 4

e21

)
, ifλ ̸= 0

γ̃0 ∼
(
1− 1

e61
, 1− 4

e21

)
, ifλ = 0

.
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Thus, γλ → (1, 1) and ζ = δ is an asymptote of γλ as e1 → ∞. Similarly, γ̃λ → (1, 1) as e1 → ∞.

Hence, it follows from above facts that

Π(ζ−(λ, e1), δ(λ, e1)) ∼
e21

e21 − 4

Π (ζ+(λ ̸= 0, e1), δ(λ ̸= 0, e1)) ∼
πe31
8|λ|

Π(ζ+(λ = 0, e1), δ(λ = 0, e1)) ∼
πe41
4

,

when e1 → ∞.

It is then clear, combining this and above estimates, that

lim
e1→∞

III(λ, e1) = 0

lim
e1→∞

II(λ ≥ 0, e1) = −1

2

lim
e1→∞

II(λ < 0, e1) =
1

2

.

This completes the proof about the claimed limits for Ψλ when e1 → ∞.

Appendix B. Closed 1/2-Elasticae in the Plane

We briefly comment about 1/2-elasticae in R2 in order to clarify some assertions made in the Intro-

duction. We begin with the non-existence of closed convex 1/2-elasticae other than circles. In R2 the

phase curves for convex 1/2-elasticae are the singular rational curves (see the picture on the left of

Figure 16)

Ce1,e2 : y2 + x4
(
x2 − [e1 + e2]x+ e1e2

)
= 0 ,

where e1 > e2 > 0. Then, following the general argument of the Introduction, µ is a solution of

µ̇2 + µ4(µ2 − [e1 + e2]µ + e1e2) = 0 and (µ, µ̇) is a periodic, regular parameterization of the smooth

component of the phase curve lying in the positive half-plane H2 = {(x, y) |x > 0}.

Figure 15: Phase curves of convex planar 1/2-elasticae. On the left, e1 = 2 and e2 = 1; while, on the

right, e1 = 3 and e2 = −2.
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Integrating by quadratures, the arc-length parameterization of a critical curve, up to rigid motions,

is

γλ,d(s) =

√
1

d

(
λs+

1

2

∫
µ(s)ds,− 1

2µ(s)

)
.

Let ω be the least period of µ. Then,

γ(ω)− γ(0) =

√
1

d

(
λω +

1

2

∫ ω

0
µ(s)ds, 0

)
.

On the other hand,

ω = 2

∫ e1

e2

dµ

µ2
√

−(µ− e1)(µ− e2)
= π

e1 + e2

(e1e2)3/2
,

and
1

2

∫ ω

0
µ(s)ds =

∫ e1

e2

dµ

µ
√
−(µ− e1)(µ− e2)

=
π

√
e1e2

.

Hence

γ(ω)− γ(0) = −π(e1 − e2)

(e1e2)3/2
(1, 0).

This implies that the trajectory of γλ,d is invariant by the subgroup generated by a non-trivial trans-

lation along the Ox-axis. In particular, it is unbounded.

Figure 16: On the left, the functions h+ (black) and h− (red). On the right, the graph of the µ-

invariant of a planar 1/2-elastic curve with e1 = 3 and e2 = −2.

Next we focus on the non-existence of non-convex critical curves with periodic curvature. In

this case e1 > 0 > e2. By contradiction, suppose that κ is periodic and non-constant. Without

loss of generality κ(0) = max(κ) > 0. Let J = (a, b), a < 0 < b be the connected component of

{s ∈ R |κ(s) > 0} containing the origin. Since κ is not strictly positive, at least one among a or b is

finite. Put µ =
√
κ|J . Then, m : s ∈ J → (µ, µ′) ∈ H2 is a parameterization of an open arc contained

in C+
e1,e2 := Ce1,e2 ∩ H2 (see the picture on the right of Figure 15; C+

e1,e2 is represented in the black

part). By construction, µ(0) = e1 and, in addition, there exist ϵ > 0 such that µ′ > 0 on (−ϵ, 0) and
µ′ < 0 on (0, ϵ). Taking into account that µ is a solution of the Euler-Lagrange equation, m is an

integral curve of the vector field

X⃗|(x,y)= y ∂y +
1

x

(
2y2 +

1

2
[e1 + e2]x

5 − x6
)
∂y ∈ X(H2) .
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Thus, m(s) cannot invert his motion along C+
e1,e2 . Since C+

e1,e2 is homeomorphic to R, this implies

that m is a homeomorphism onto its image. Therefore, m((a, b)) intersects the Ox-axis at one point,

namely at m(0) = (e1, 0). Hence, µ
′ > 0 on (a, 0) and µ′ < 0 on (0, b). Let h+ and h− be the inverses

of µ|(a,0) and µ|(0,b) respectively (see the picture on the left of Figure 16; the graph of h+ is shown in

black while the graph of h− in red). Then,

h±(m) =

∫ m

e1

1

µ2
√
−µ2 + (e1 + e2)µ− e1e2

dµ =

=∓ 1

(e21e
2
2)

3/4m

(√
e1|e2|(e1 −m)(m− e2)− (e1 + e2)m arctanh

√
|e2|(e1 −m)

e1(m− e2)

)
.

Consequently, µ can be extended to a function µ̂ : R → (0, e1] attaining its maximum at s = 0, strictly

increasing on (−∞, 0) and strictly decreasing on (0,+∞) (see the picture on the right of Figure 16)

such that

lim
s→∞

µ̂(s) = lim
s→+∞

µ̂(s) = 0 .

This implies a = −∞ and b = +∞, which is a contradiction.
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[43] R. López and A. Pámpano, Stationary Soap Films with Vertical Potentials, Nonlinear Anal. 215 (2022), 112661.

[44] T. Miura and K. Yoshizawa, Complete Classification of Planar p-Elasticae, ArXiv: 2203.08535 [math.AP], (2022).
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