
11 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Survey on Deep Learning Resilience Assessment Methodologies / Ruospo, Annachiara; Sanchez, Ernesto; Matana
Luza, Lucas; Dilillo, Luigi; Traiola, Marcello; Bosio, Alberto. - In: COMPUTER. - ISSN 0018-9162. - ELETTRONICO. -
56:2(2023), pp. 57-66. [10.1109/MC.2022.3217841]

Original

A Survey on Deep Learning Resilience Assessment Methodologies

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MC.2022.3217841

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2972644 since: 2022-10-27T13:31:27Z

IEEE

A Survey on Deep Learning
Resilience Assessment
Methodologies

Annachiara Ruospo, Ernesto Sanchez
Politecnico di Torino, Dipartimento di Automatica ed Informatica, Italy

Lucas Matana Luza, Luigi Dilillo
LIRMM, Univ Montpellier, CNRS, Montpellier, France

Marcello Traiola
University of Rennes, Inria, CNRS, IRISA, UMR6074, France

Alberto Bosio
Univ Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, UMR5270, France

Abstract—Deep Learning (DL) applications are gaining increasing interest in the industry and
academia for their outstanding computational capabilities. Indeed, they have found successful
applications in various areas and domains such as avionics, robotics, automotive, medical
wearable devices, gaming; some have been labeled as safety-critical, as system failures can
compromise human life. Consequently, DL reliability is becoming a growing concern, and
efficient reliability assessment approaches are required to meet safety constraints. This paper
presents a survey of the main DL reliability assessment methodologies, focusing mainly on Fault
Injection (FI) techniques used to evaluate the DL resilience. The article describes some of the
most representative state-of-the-art academic and industrial works describing FI methodologies
at different levels of abstraction. Finally, a discussion of the advantages and disadvantages of
each methodology is proposed to provide valuable guidelines for carrying out safety analyses.

IN the last few decades, Deep Learning (DL)
has drastically enhanced the state of the art of
applications such as computer vision, object de-
tection, and language translation. For their out-
standing computational capabilities, DL architec-
tures, such as Deep Neural Networks (DNNs),
have become attractive solutions in safety-critical
areas such as avionics, robotics, medical image
analysis, and automotive.

For this reason, the research community has
shown increasing attention to understanding the
resilience of DL models, which is defined as the
capability to tolerate the presence of hardware

faults.
It is commonly argued that DL models have

inherent fault-tolerant properties due to their dis-
tributed and parallel structure, and their redun-
dancy due to over-provisioning. Indeed, they can
withstand the failure of a limited number of
neurons and continue to function properly [1].

Unfortunately, the choice of hardware on
which DL applications run has also been shown
to have an impact on resilience [2].

In other words, DL resilience must be as-
sessed by examining the entire system stack
(hardware and software), making the overall pro-
cess more complex and costly.

Published by the IEEE Computer Society © IEEE 1

Furthermore, DL models are not 100% accu-
rate, which raises an important issue that needs to
be considered when addressing the resilience of
these systems. As an example, assume a classifier
that due to a fault decreases its accuracy to 88%
instead of the original 90%. Then, can the re-
sults be accepted (considering the device slightly
degraded), or not? In other words, the metrics
used to assess resilience need to be thoughtfully
evaluated. Metrics generally vary depending on
the specific DL model and the task it performs
(e.g., image classification or segmentation), but
they all have in common the goal of measuring
the degradation introduced by software or hard-
ware faults.

This article presents a systematic survey of
existing methodologies developed for the assess-
ment of DL resilience. Some of the most repre-
sentative state-of-the-art academic and industrial
works are analyzed and discussed. The article
proposes a classification of evaluation techniques
according to the level of abstraction and the
models being evaluated. Moreover, a further con-
tribution of the article is a comparative table
indicating the costs and implementation efforts re-
quired to use any of the methodologies presented,
as well as the main advantages and disadvantages.
This latter analysis is intended to highlight their
strengths and weaknesses, and to guide future
research directions.

BACKGROUND
Deep neural network resilience assessment is

intended to evaluate the impact of hardware faults
on DNN inference. This is done by artificially
injecting faults into the system, performing the in-
ference, and comparing the results with a golden
reference. This process is called Fault Injection
(FI).

Firstly, it is important to clarify where faults
can be injected and at what level of abstraction.

In a DNN-based system, two levels can be
identified: the hardware level and the application
level. The former comprises the hardware device
that runs the DNN, while the latter includes only
the DNN application. In this light, the resilience
assessment can target:

1) The application level: the DNN model as
a technology-independent software applica-

tion.
2) The entire system: the DNN model and the

hardware architecture.

In the first case (1), a designer might be
interested in evaluating the resilience of the DNN,
regardless of the target device on which it will
be deployed. Therefore, a FI process can target
only the units belonging to the DNN model,
i.e., neurons and synaptic weights. According
to [1], each neuron must be regarded as a single
entity that can fail independently of the failure of
any other. This also applies to synaptic weights.
Errors in artificial neurons may occur in the
following elements:

• Communication channels: The communica-
tion link between two neuronal cells can be
disrupted due to faulty interconnections or
disturbances.

• Synaptic weights: The weights represent the
strength of the connection between two neu-
ronal cells.

• Neuron body: It constitutes the nucleus of the
neuronal cell. An error affecting the neuron
body can be distinguished in two categories:
crash and byzantine. In the first case, the neu-
ron completely stops its activity and saturates
with positive or negative values. In the second,
it transmits arbitrary values.

A FI campaign can mimic the occurrence
of these types of errors. Regarding the second
case (2), a designer might be interested in evalu-
ating the resilience of the entire system before
deploying a given DNN on a final device. In
this case, in addition to the types of errors that
compromise the DNN model, it is necessary to
consider also the physical faults that may affect
the hardware.

As previously stated, the hardware selection
impacts the resilience of DNN-based systems.

In state-of-the-art architectures, a single pro-
cessing element (PE) elaborates many neuronal
computations, due to the size of current DNNs.
This implies that a single fault affecting one PE
corresponds to multiple faulty neurons. As a con-
sequence, a comprehensive assessment of system
resilience can be obtained by also considering the
hardware platform running the DNN.

Faults affecting electronic devices can be clas-
sified, based on their temporal characteristics, as

2

permanent or transient. The first one is stable
over the time and represents irreversible physical
damage. The second one, instead, is only active
for a short period of time and occurs as a result
of external disturbance or abnormal conditions.
Based on this classification, the following fault
models have been proposed over the years as
an abstraction of physical defects in electronic
devices:

1) Stuck-at Faults: Individual elements of the
electronic device are tied to a logical state.
In a memory array, for instance, one bit
may be stuck at a logical state ‘1’ or ‘0’
and, regardless of the operation, the result
of the read will be always the same.

2) Bit-Flips: Individual memory elements of
the electronic device have undergone a
change in their logical state. This uninten-
tional change can be recovered by writing a
new value in the affected memory element.

It is fair to state that today, these two fault
models are unable to cover the newer fault mech-
anisms of deep-submicrometer technologies. New
fault models are needed to handle delays, open-
lines, bridging, and transient pulses.

Nevertheless, it has been demonstrated that
stuck-at and bit-flip fault models enable good
fault tolerance investigation even at the applica-
tion level and, because of this, they have been
widely employed for DL reliability studies. An
error affecting the communication channels of a
DNN, for example, can be modeled as a single
or multiple stuck-at faults affecting one or more
bits of the channel. Similarly, an error in a DNN
synaptic weight can be represented by a stuck-at
(or bit-flip) fault impacting one or more bits of
the synaptic weight. The same reasoning can be
applied to represent a crash or byzantine neuron.
A neuron can be considered dead if it no longer
transmits values: this error can be modeled as a
stuck-at-0 at its output. In contrast, a byzantine
neuron can be modeled as a stuck-at-value.

FAULT INJECTION METHODOLOGIES
Resilience evaluation of DNN models and

DNN-based systems can be pursued for various
purposes and at different levels: from the appli-
cation level to silicon measurements on physical
devices, such as Application-Specific Integrated

Circuits (ASICs), Field Programmable Gate Ar-
rays (FPGAs), and Graphics Processing Units
(GPUs).

Significant efforts have been devoted in the
last years to propose methodologies that facil-
itate this task. Most of them rely on specific
frameworks that promote the execution of FI
campaigns.

In line with a preliminary classification pro-
vided in [3], the state-of-the-art FI methodologies
fall into one of the following categories:

• Simulation-based: The injection process is
conducted without relying on the physical de-
vice executing the DNN. Moreover, depending
on the level of abstraction, they can be further
classified.

– Software Level: Injections are performed
on a high-level model of the DNN, without
considering any details of the actual hard-
ware architecture.

– Hardware Level: Injections are performed
on a more accurate model of the DNN that
simulates the target hardware architecture.
For example, the target can be expressed at
the register transfer level (RTL) or at the
gate level.

• Platform-based: Measurements and analyses
are performed directly on a physical device
that emulates the final implementation of a
design using FPGAs, or on physical platforms
that run DNNs, e.g., CPUs and GPUs.

• Radiation-based: Reliability assessment is
carried out through accelerated radiation test
campaigns mimicking external electromagnetic
interference, such as the occurrence of ionizing
particles, on the actual platform running the
DNN.

An illustration of the proposed classification is
shown in Figure 1. Specifically, for each category,
a lightning bolt symbol indicates the level of ab-
straction and the entities on which FI campaigns
can be held. For example, FIs based on hardware-
level simulation offer the possibility of injecting
faults on both the DNN and HDL hardware
models.

3

Figure 1. Taxonomy for the FI methodologies developed for the resilience assessment of DNNs and DNN-
based systems.

Software-Level Simulation-based FIs
Nowadays, simulation-based FIs represent

the most widely used techniques. Specifically,
software-level approaches are the most frequently
adopted as they are cost-effective, faster, more
controllable, and easier to implement. A high-
level model of the DNN is created which is
independent of any potential hardware architec-
ture. This model is then simulated using a FI
framework for injecting faults. This allows a
general characterization, unrelated to the ultimate
hardware platform. A software-level FI is meant
to identify weaknesses in the DNN, and to de-
termine the most vulnerable layers, or choose
the most reliable data representation. It is worth
saying that DNNs are not all equal; they have
different architectures, but also different pruning
and quantization algorithms [4], which lead to
different properties that can impact the reliability
assessment. Several works have been advanced
in the literature so far [5], [6], [7]. They differ
mainly in the used software platforms (e.g., Py-
Torch or TensorFlow), the type of injected faults
(e.g., permanent or transient), and the fault loca-
tions (e.g., weights, activation, and operators).

Unfortunately, software methodologies might
not be complete to represent real behavior when
implemented on a physical device. It is evident
that software-level simulations and theoretical
analyses may lack the information of the under-
lying hardware platform, and are relatively less

accurate [8].

Hardware-Level Simulation-based FIs
Hardware-level simulations allow the injec-

tion of more realistic fault models (i.e., faults
that can affect the hardware). The lower the level
of abstraction, the higher the injection accuracy.
Therefore, for a comprehensive assessment, it
might be beneficial to run FIs on a Hardware
Description Language (HDL) model of the target
hardware architecture running the DNN.

In [8], the authors present a simulation-based
hardware-level FI framework to perform in-depth
vulnerability analyses of a hardware accelera-
tor described at the RTL. The assessment is
performed by considering both application-level
specifications (the weights, inputs, and interme-
diate DNN values) and architectural-level spec-
ifications (the specific data representation and
the amount of computational resources, i.e., the
PEs). Permanent and transient faults are injected
during inference cycles on the subset of reg-
isters containing the DNN parameters. In [3],
the authors exploit the pipeline mechanism to
reduce the fault simulation time when executing
DNN inferences at the RTL level. Indeed, since
DNN layers work independently of each other
in a sequence of steps, their parallelism can be
exploited to maximize performance. This leads to
reducing fault simulation time by more than 60%
by mimicking the flow of a pipeline, in which

4

layers perform many inferences in parallel.
To further reduce simulation time, many tech-

niques take advantage of hardware knowledge to
derive realistic fault models to be injected later
at the software level to take the benefits of both
techniques. In [9], the authors model a class of
hardware errors in software with high fidelity,
exploiting only the high-level design information
obtained from architectural descriptions. Another
approach consists of modeling the hardware ar-
chitecture at the software level to expedite the
process. In [10], the authors modified an open-
source DNN simulator, i.e., Tiny-CNN, to map
each line of code to the corresponding hardware
component of the DNN accelerators. It is impor-
tant to mention that the currently available com-
mercial tools for FI, such as Z01X1, Xcelium2,
and others, can be exploited at the hardware
level of the simulation-based approaches. Un-
fortunately, these tools are mainly oriented to
assess the quality of the end of production testing
procedures, usually performed at the structural
level of the devices. On the other hand, functional
FI campaigns, as the ones devoted to assess DNN
reliability, are extremely time-consuming and re-
quire huge efforts to configure the system, making
it very difficult to resort to these tools when
assessing the reliability of DNN accelerators.

Platform-based FIs
In this category, the resilience assessment is

measured directly on a physical platform that em-
ulates the final implementation using for example
FPGAs, or executes the targeted DNN in GPUs
and embedded CPUs.

In [11], the DNN workload is executed on a
GPU. Injected faults are permanent faults that oc-
cur in DNN parameters. At the application level,
faults are injected into the weights, activations,
and hidden states through bit-flips.

In [12], the authors evaluate the vulnerability
of DNNs to permanent and transient faults, ex-
ploiting a FI framework and accelerated neutron
beam testing. The DNN is a 54-layer model used
for the object detection task. The experiments
were performed on a Volta GPU using TensorRT,

1https://www.synopsys.com/verification/simulation/
z01x-functional-safety.html

2https://www.cadence.com/en US/home/training/all-courses/
86246.html

a framework developed by NVIDIA to optimize
inferences on GPU architectures. Concerning the
emulation on FPGAs, several approaches have
been proposed. As an example, FireNN [13]
exploits the reconfigurability of FPGAs to mimic
faults affecting the hardware running DNNs.

It is important to underline that the effec-
tiveness of simulation-based and platform-based
approaches depends also on the designer’s config-
uration choices. For instance, selecting the appro-
priate number of faults to be injected may affect
the succeeding of the experiment. Validating the
safety properties by exhaustively fault simulating
a DNN is typically prohibitive as the complexity
and the size of newer DNN models grow. To
address this problem, statistical FI approaches
have been proposed over the past decades with the
intent of reducing the cost of the fault simulation
procedure while still achieving statistically sig-
nificant results [14]. Clearly, this concern affects
simulation-based and platform-based techniques,
where the source of errors is not external but
stems from designer’s decisions.

Radiation-based FIs
The actual implementation of the system is

exposed to the same external conditions as the in-
field application (e.g., a flux of atmospheric-like
neutrons which can induce single-event effects on
electronic devices). This methodology guarantees
a highly accurate reliability assessment. However,
measuring the effects of radiation-induced faults
is costly in terms of hardware resources and
facility access.

In [12], irradiation tests were performed on
GPUs based on the Volta architecture. The entire
GPU was irradiated for the entire duration of the
experiment. A second example of a radiation-
based method is provided in [15], in which the
resilience of a Convolutional Neural Network
(CNN) on three different NVIDIA GPU archi-
tectures exposed to controlled neutron beams is
evaluated. The objective of these works was to
understand the propagation of injected errors not
only in memory elements, but also in computa-
tional and control resources.

Furthermore, the authors in [16] studied the
impact of neutron irradiation on the HyperRAM
memory, which stored the weights of the CNN-
based application. In this way, the source of error

5

https://www.synopsys.com/verification/simulation/z01x-functional-safety.html
https://www.synopsys.com/verification/simulation/z01x-functional-safety.html
https://www.cadence.com/en_US/home/training/all-courses/86246.html
https://www.cadence.com/en_US/home/training/all-courses/86246.html

was isolated and the focus was on the CNN
weights. A variety of error types were identified:
single bit upsets, stuck-at faults, and block errors.
A similar approach is proposed in [17], in which
the authors evaluate the use of 2-D and 3-D Flash
memories to store DNN weights.

DISCUSSION
The previous sections highlighted the main

characteristics of FI methodologies. This section
is intended to provide a qualitative comparison
between them, and discuss their main advantages
and disadvantages.

In Table 1, for each FI methodology, the
following parameters are discussed and graded
either as Low, Medium, or High:

• Cost: The total costs required to perform the
reliability assessment, including time and re-
sources;

• Development Effort: The effort required to
develop and set up the FI methodology at that
specific level of abstraction;

• Exactness: How close the FI procedure is to
reality, i.e., the results are accurate.

• Controllability: The ability to control where
and when a fault is injected;

• Observability: The ability to identify internal
events within the system circuit (not only pri-
mary outputs).

• Repeatability: How many times the FI process
can be repeated using the same framework.

• Early Availability: If reliability assessment is
performed early in the design cycle.

• Fault Injection Time: The time required to
perform a single cycle of injection.

In terms of costs, simulation-based method-
ologies are the least expensive because they do
not require the development and purchase of spe-
cific electronic devices to run the tests. Hence, the
cost level is Low, for both FIs based on hardware-
level simulation and those based on software-level
simulation.

Contrarily, platform-based techniques have a
Medium cost, requiring the use of validation or
emulation devices such as GPUs, CPUs, and
FPGAs. Once purchased, the advantage is that
they can be reused after FI campaigns. Moreover,
they can be parallelized to increase performance.
The most expensive techniques are undoubtedly

radiation-based techniques for two main reasons:
first, access to the irradiation facility; second, the
setup development. Moreover, in some cases the
electronics exposed to radiation can be irreme-
diably degraded, inhibiting their reuse. The cost
level is High.

Radiation-based techniques do not involve the
creation of a specific FI environment. However,
the identification/creation of observation means
may not be trivial. The highest development effort
is required for platform-based FI methodologies,
where the developer must both build a FI en-
vironment and configure the platform on which
experiments will run (e.g., reconfigure for FPGA
emulations). For software-level simulation-based
techniques, a medium to high development effort
is required to build the FI framework. Likewise
for those at the hardware level, where the HDL
model of the device to be tested is required.

The exactness of the results varies and de-
pends on how closely these FI techniques mimic
the occurrence of realistic defects in the system,
and how close they are to reality. In other words,
realistic fault models with failure rates according
to the environment and systems characteristics
will have a direct impact on the exactness of
the FI procedure. The highest level of exact-
ness is achieved with radiation-based FIs, where
radiation-induced faults directly affect the silicon
implementation of the device. This allows for
a really accurate characterization of the DNN
model. Right after this category, simulation-based
hardware-level FIs are characterized by a good
level of precision, which can be close to the final
silicon implementation. Indeed, by adopting the
HDL model of the hardware device (RTL or gate-
level), they can be credited with a medium to high
level of exactness.

In contrast, a different reasoning must be
made for simulation-based software-level FIs and
platform-based FIs: they present a Low and a
Low-Medium level of exactness, respectively. The
lower the level of programming language adopted
for DNN applications, the higher the exactness.
When injecting errors at the software or algorith-
mic level, the occurrence of realistic hardware
faults is reproduced with specific software fault
models. A FI framework and a DNN model de-
veloped in C/C++ can be compiled and executed
directly on a physical hardware device. Therefore,

6

Table 1. Comparison among the different fault injection methodologies.

Metric Simulation-based
Software Level

Simulation-based
Hardware Level Platform-based Radiation-based

Cost Low Low Medium-High High

Development Effort Medium-High Medium-High High Low-Medium

Exactnessa Low Medium-High Low-Medium Very High

Controllability High High Medium Low

Observability High Mediumb Lowb Lowb

Repeatability High High High Medium-Low

Early Availability High Medium High Medium-Low

Fault Injection Time Low High Medium-Low Low

Principal Advantages Cheap & Fast Good FI Exactness Portability Best FI Exactness
Realistic

Principal Drawbacks Low FI Exactness Time-consuming
The HDL must be available Limited FI Exactness Expensive

a Closeness to reality.
b The observability depends on the complexity of the hardware, which is used for the implementation of the FI process.

the injected software errors can be close to the
faults they seek to reproduce. Examples are the
FI frameworks described in [5], [10]. However,
this is not true for FI frameworks that inject
algorithmic-level errors into high-level program-
ming languages or tools, such as Python, Py-
Torch, and TensorFlow. Indeed, they are subject
to a more complex compilation chain. A great
number of works exploit such tools in their de-
ployment; examples of FI frameworks that inject
errors at this level are described in [6], [7], [9],
[11], [12].

It is worth underlining that although the FI
frameworks in [3] and [13] make use of high-level
programming languages, they do not inject errors
into the high-level DNN model. Rather, they cor-
rupt the RTL register/signals or bits in the FPGAs
configuration memory bitstream, respectively. As
discussed previously, this leads to a higher level
of exactness.

Noteworthy, one of the advantages of con-
ducting resilience assessments based on software-
level simulations is the ability to characterize
the vulnerability of the DNN independently of
the target hardware device and, in particular,
to conduct analyses on layers, data types, and
network parameters. Nevertheless, when a more
comprehensive resilience assessment is needed,
injection campaigns should also address the target
hardware running the DNN. This is possible when

the device’s HDL model is available ([3], [8])
either at the RTL or gate level. In this case,
hardware-level FIs can achieve better accuracy
of results, closer to the implementation on sil-
icon. The main drawback is simulation time.
RTL (or gate-level) simulations are known to be
time-consuming, due to the complexity of the
HDL and DNN models. For example, a small
CNN with only seven layers simulated at RTL
can take about 25 minutes to perform a single
inference [3]. Furthermore, existing commercial
simulation tools are neither tuned nor optimized
to deal with the complexity of state-of-the-art
DNN applications performing billions of neuronal
computations. This means that a hardware-level
FI is accurate but very expensive in terms of
simulation time. Indeed, hardware-level resilience
assessments typically consider only DNNs of
limited size: a 6-layer fully connected classi-
fier in [8], or a 7-layer CNN in [3]. Con-
versely, software-level simulation-based method-
ologies are not concerned with this non-negligible
limitation. Finally, when the device’s HDL model
is not available, the FI framework can extract
architectural details and inject software errors that
closely mimic realistic physical hardware faults,
as shown in [9] and [10].

In terms of controllability and observability
parameters, the FI methodologies described ex-
hibit different degrees. The highest controllability

7

is obtained in simulation (at the software or
hardware level), where the developer can cre-
ate an accurate FI framework for this purpose.
Conversely, the level of observability in simu-
lation is not always high: while at the software
level it is possible to observe the internal events
of the system, at the hardware level this task
may prove more challenging. Depending on the
complexity of the HDL model of the hardware,
observing all internal states can be very difficult.
For platform-based FI methodologies, it may be
straightforward to control where and when to
inject errors, but as outlined before, the FI frame-
works can be subject to a specific compilation
chain, which could lead to less controllability and
visibility. Observability is also reduced for this
category. Observing changes in the internal states
of the hardware can be very complicated, and
also depends on its complexity. Usually, in these
cases, the output signals are observed. The same
reasoning applies to the observability parameter
of radiation-based FI approaches. However, the
level of controllability is drastically reduced. In-
deed, since the source of errors is external, the
developer is unable to control when and where
faults are introduced.

Software-level simulation-based, hardware-
level simulation-based, and platform-based FI
methodologies are characterized by a high level
of repeatability: indeed, the FI procedure can be
repeated several times using the same injection
framework (probably just by adjusting a few con-
figuration parameter). For radiation-based tech-
niques, this is unrealizable. After the irradiation
test, the devices, most of the time, cannot be
reused.

Another important metric to consider is early
availability. Simulation-based software-level FIs
can be run early in the design cycle, without rely-
ing on the availability of a HDL model. Platform-
based FIs can also be performed by emulating or
running the DNN on an FPGA, CPU, or GPU,
which may or (in most cases) may not represent
the final platform on which the DNN is to be
deployed. Finally, if the radiation test targets the
complete DNN-based system, the FI procedure
should be executed at the end of the full design
cycle on the final silicon implementation.

To conclude, it is worth noting that it was
difficult to precisely compare the time required

to run a single FI among all existing FI method-
ologies. Indeed, there are many variables that
determine the FI execution time, such as the
parallelization of experiments, the instruments
adopted, and the specific radiation source.
Another influential factor is the number of fault
injections performed: as mentioned before, ex-
haustive simulation of DNN faults is typically be-
yond computational possibilities. Therefore, sta-
tistical inferences are commonly performed to re-
duce complexity by injecting a reduced number of
faults while still obtaining statistically significant
results.

Open Challenges and Future Directions
This article discusses some of the most rep-

resentative works proposing FI methodologies,
highlighting advantages and disadvantages. In this
subsection, the main open issues that need re-
search and innovation are underlined.

In a recent publication [18], the authors
demonstrated that systematic FIs in the config-
uration memory of SRAM-based FPGAs could
not be generalized to all devices of that type.
Experimental analyses conducted on sixteen Xil-
inx Artix-7 and ten Lattice iCE40 showed that
results vary from device to device, and that tem-
perature influences the FI results. This means
that parallelization of the FI procedure may yield
inaccurate results.

Moreover, the study of different fault models
(e.g., delays, bridging, open-lines), covering the
new fault mechanisms of deep-submicrometer
technologies is an open challenge. Indeed, only
the effects of transient and permanent faults have
been investigated in this topic.

Finally, because all FI methodologies have
advantages and disadvantages, the research com-
munity is pushing for hybrid solutions that can
get the best out of each approach. For example, a
very recent approach [19] proposes a simulation-
based cross-layer framework for the reliability
analysis of CNN-based applications against soft
errors in GPUs. It combines the high exactness
of hardware-level FIs with the low fault injection
time of software-level FIs.

Hybrid FIs have already been used for re-
silience assessment of generic applications, such
as the FI tool based on simulation and emulation
cooperation presented in [20]. We believe that for

8

future works, Table 1 could serve as a basis for
researchers to select the best hybrid strategy that
considers all the metrics examined.

CONCLUSION
In recent years, there has been a grow-

ing interest in studying the resilience of DNN-
based systems. This article presents a review
of the main methodologies used for this pur-
pose. The reviewed works have been classi-
fied into four main categories, namely software-
level simulation-based, hardware-level simulation
based, platform-based, and radiation-based FI
methodologies, depending on the level of abstrac-
tion, the source of errors (internal or external),
and the overall injection procedure. Their main
characteristics are highlighted and qualitatively
compared with the aim of providing a guideline
for all those who want to examine the resilience
of their DNN-based systems. The literature study
highlights challenges and open research issues.
For instance, in our long-term view, there is a
need for more accurate FI metrics, tools, and
statistic-based methodologies able to handle the
non-negligible complexity of modern DNNs. The
proposed discussion is meant to serve as a basis
for advanced research in this area.

ACKNOWLEDGMENT
This study has been achieved thanks to

the financial support of the project ANR RE-
TRUSTING (Contract No. ANR-21-CE24-0015).

REFERENCES
1. E. M. El Mhamdi and R. Guerraoui, “When neurons

fail,” in 2017 IEEE International Parallel and Distributed

Processing Symposium (IPDPS). Orlando, FL, USA:

IEEE, 2017, pp. 1028–1037.

2. V. Piuri, “Analysis of fault tolerance in artificial neural

networks,” Journal of Parallel and Distributed Comput-

ing, vol. 61, no. 1, pp. 18 – 48, Jan. 2001.

3. A. Ruospo, A. Balaara, A. Bosio, and E. Sanchez,

“A pipelined multi-level fault injector for deep neural

networks,” in 2020 IEEE International Symposium on

Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFT). Frascati, Italy: IEEE, 2020, pp. 1–6.

4. T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang,

“Pruning and quantization for deep neural network ac-

celeration: A survey,” Neurocomputing, vol. 461, pp.

370–403, 2021.

5. A. Ruospo, E. Sanchez, M. Traiola, I. O’Connor, and

A. Bosio, “Investigating data representation for efficient

and reliable convolutional neural networks,” Micropro-

cessors and Microsystems, vol. 86, p. 104318, 2021.

6. Z. Chen et al., “Tensorfi: A flexible fault injection frame-

work for tensorflow applications,” in 2020 IEEE 31st

International Symposium on Software Reliability Engi-

neering (ISSRE). Coimbra, Portugal: IEEE, Oct. 2020,

pp. 426–435.

7. A. Mahmoud et al., “PyTorchFI: A runtime perturba-

tion tool for DNNs,” in 2020 50th Annual IEEE/IFIP

International Conference on Dependable Systems and

Networks Workshops (DSN-W).

8. B. Salami, O. S. Unsal, and A. C. Kestelman, “On the re-

silience of RTL NN accelerators: Fault characterization

and mitigation,” in 2018 30th International Symposium

on Computer Architecture and High Performance Com-

puting (SBAC-PAD). Lyon, France: IEEE, 2018, pp.

322–329.

9. Y. He, P. Balaprakash, and Y. Li, “Fidelity: Efficient

resilience analysis framework for deep learning accel-

erators,” in 2020 53rd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO). Athens,

Greece: IEEE, 2020, pp. 270–281.

10. G. Li et al., “Understanding error propagation in deep

learning neural network (DNN) accelerators and appli-

cations,” in Proceedings of the International Conference

for High Performance Computing, Networking, Storage

and Analysis.

11. B. Reagen et al., “Ares: A framework for quantifying the

resilience of deep neural networks,” in Proceedings of

the 55th Annual Design Automation Conference.

12. A. Lotfi et al., “Resiliency of automotive object detection

networks on GPU architectures,” in 2019 IEEE Interna-

tional Test Conference (ITC).

13. C. De Sio, S. Azimi, and L. Sterpone, “An emulation

platform for evaluating the reliability of deep neural

networks,” in 2020 IEEE International Symposium on

Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFT).

14. R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert,

“Statistical fault injection: Quantified error and confi-

dence,” in 2009 Design, Automation Test in Europe

Conference Exhibition, 2009, pp. 502–506.

15. F. Fernandes dos Santos et al., “Evaluation and mitiga-

tion of soft-errors in neural network-based object detec-

tion in three GPU architectures,” in 2017 47th Annual

IEEE/IFIP International Conference on Dependable

Systems and Networks Workshops (DSN-W), 2017.

16. L. Matana Luza et al., “Emulating the effects of

9

radiation-induced soft-errors for the reliability assess-

ment of neural networks,” IEEE Transactions on Emerg-

ing Topics in Computing, pp. 1–1, 2021.

17. M. M. Hasan, M. Raquibuzzaman, I. Chatterjee, and

B. Ray, “Radiation tolerance of 3-d nand flash based

neuromorphic computing system,” in 2020 IEEE Inter-

national Reliability Physics Symposium (IRPS).

18. C. Fibich, R. Obermaisser, and M. Horauer, “Device-

and temperature dependency of systematic fault injec-

tion results in Artix-7 and iCE40 FPGAs,” in 2021 De-

sign, Automation Test in Europe Conference Exhibition

(DATE). IEEE, 2021, pp. 1600–1605.

19. C. Bolchini, L. Cassano, A. Miele, and A. Toschi, “Fast

and accurate error simulation for cnns against soft er-

rors,” IEEE Transactions on Computers, pp. 1–14, 2022.

20. A. Ejlali et al., “A hybrid fault injection approach based

on simulation and emulation co-operation,” in 2003 In-

ternational Conference on Dependable Systems and

Networks, DSN 2003. Proceedings.

Annachiara Ruospo is a Postdoctoral Researcher
at the Politecnico di Torino, Turin, Italy. Her research
interests include test and verification of embedded
devices, and the reliability assessment of neural net-
works and AI-oriented SoCs. She received her Ph.D.
degree cum laude in computer engineering from Po-
litecnico di Torino in 2022. She is a member of IEEE.
Contact her at annachiara.ruospo@polito.it.

Ernesto Sanchez is an Associate Professor at Po-
litecnico di Torino, Torino, Italy. His research interests
include digital circuits and systems reliability, evolu-
tionary computation and AI. He received his Ph.D.
in computing engineer from Politecnico di Torino in
2006. He is an IEEE senior member. Contact him at
ernesto.sanchez@polito.it.

Lucas Matana Luza is a Researcher Engineer at
LIRMM, CNRS, University of Montpellier, Montpellier,
34090, France. His research interests include radia-
tion effects, reliability, and testing of electronics and
systems. Matana Luza received his Ph.D. in Auto-
matic Systems and Microelectronics from the Uni-
versity of Montpellier. Contact him at lucas.matana-
luza@lirmm.fr.

Luigi Dilillo is a CNRS Researcher at the LIRMM
laboratory, Montpellier. He received the Diploma in
Electronic Engineering from the Politecnico di Torino
(Italy) in 2001. He next obtained his Ph.D. in mi-
croelectronics at the University of Montpellier. The
fields of interest of his researches are Memory Test

and Reliability, Power-Aware Test, Radiation Impact
on Electronics, Radiation monitoring, Space and Ra-
diation Hardened Systems Design. Contact him at
https://www.lirmm.fr/ dilillo/

Marcello Traiola is a Researcher at Inria centre of
Rennes University, IRISA, Rennes, France. His re-
search interests include Hardware Architecture De-
sign, Test, and Reliability with focus on Emerging
Computing Paradigms. Traiola received his Ph.D. in
Computer Engineering from University of Montpellier
in 2019. He is a member of IEEE. Contact him at
https://people.rennes.inria.fr/Marcello.Traiola/.

Alberto Bosio is a Full Professor at the Ecole Cen-
trale de Lyon, Institute of nanotechnology, France. His
research interests include Computing Architectures,
Reliability and Testing of digital circuits and systems.
Bosio received his Ph.D. in computing engineer from
Politecnico di Torino in 2006. He is a member of IEEE.
Contact him at http://perso.ec-lyon.fr/alberto.bosio.

10

	REFERENCES
	Biographies
	Annachiara Ruospo
	Ernesto Sanchez
	Lucas Matana Luza
	Luigi Dilillo
	Marcello Traiola
	Alberto Bosio

