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Abstract
Starting from the similarity between the spherical harmonics approximation of order
one to the linear transport equation (usually referred as P1 approximation) and the
Klein-Gordon equation of the quantum physics, an extended set of equations is
introduced, which is proved to be equivalent to the Dirac equation with imaginary
mass. Conversely, when a real mass is restored into the extended P1 system, a new
equation is obtained, whose solutions are superposition of the spinors for a ½−spin
particle and the corresponding antiparticle.
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1. Introduction

Analogies in mathematical models are often found between fields of physics widely
different. A "likeness" can be just curiosity, but sometimes it brings a new point
of view on a phenomenon. For example, Poisson brackets of classical mechanics
have clear analogies with commutators of linear operators, and the discovery of this
analogy brought deep progress in the study of quantum mechanics. In a completely
different field, the Author, about 40 years ago, collaborated to study a technique to
solve the linear transport equation, which was based on the analogy with the multi-
group diffusion equation (the AN method, developed together with Prof. P. Ravetto
(Coppa and Ravetto (1982))).
The present paper studies the analogy between the spherical harmonics approxima-
tion of order one to the linear transport equation and the famous Dirac equation for
the electron. The spherical harmonics expansion of the angular dependence of the
phase-space density (usually referred as PN method) is a well-known technique em-
ployed for the solution of the linear transport equation (Davison, Sykes, and Cohen
(1957)). According to this method, the angular flux φ (x,v, t) is written as:

φ (x,v, t) =

N∑
n=0

n∑
β=−n

φβ
n (x, |v|, t)Y β

n (Ω), (1)

being Ω = v/|v|. The order of the approximation is fixed by N . At the lowest order
of practical interest, for N = 1, the angular flux is approximated as:

φ (x, |v|,Ω, t) = 1

4π
{ϕ (x, |v|, t) + 3Ω · J(x, |v|, t)} (2)
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where ϕ =
∫
φdΩ and J =

∫
ΩφdΩ represent the particle flux and current, re-

spectively. In this work, the monokinetic problem, in which the particles undergo
absorption and isotropic scattering with no change in the norm of the velocity, is
considered, and the equations for the P1 approximation are simply (Meghreblian
and Holmes (1960)): 

1

v
∂tϕ = −divJ − Σaϕ+ S,

1

v
∂tJ = −1

3
∇ϕ− (Σa +ΣS)J .

(3)

where Σa and ΣS are the absorption and the scattering cross sections, and S is
the (isotropic) source. As it is well known, the P1 system (3) is connected to the
telegrapher’s equation for transmission lines. In particular, if one takes the one-
dimensional version of Eqs. (3) with S = 0, after defining the partial fluxes φ±
as

φ±(x, t) =
ϕ (x, t)±

√
3Jx(x, t)

2
, (4)

one obtains readily:
1

v
∂tφ+ +

1√
3
∂xφ+ = −

(
Σa +

Σs

2

)
φ+ +

Σs

2
φ−,

1

v
∂tφ− − 1√

3
∂xφ− = −

(
Σa +

Σs

2

)
φ− +

Σs

2
φ+.

(5)

Equations (5) describe the transport of particles moving in x direction with veloc-
ity ±v/

√
3, in presence of absorption and scattering, whose effect is reverting the

direction of the motion. A similar phenomenon happens in a transmission line, in
which waves can give origin to signals traveling in the opposite direction due to the
resistance of the line. Instead, if the three-dimensional equations are considered, by
eliminating J from Eqs.(3) one obtains the classic telegrapher’s (Heizler (2010)):

1

v2
∂2
t ϕ− 1

3
∇2ϕ+

2

v

(
Σa +

1

2
Σs

)
∂tϕ+ (Σa +Σs)Σaϕ = 0. (6)

As it was already noticed (Chatzarakis, Livieratos, and Miliaras (2012)), the teleg-
rapher’s equation is related to the Klein-Gordon equation of the relativistic quan-
tum mechanics (Cottingham and Greenwood (2007)). Moreover, the Klein-Gordon
equation is connected with the Dirac equation for ½−spin particles (Dirac (1988));
however, the original P1 equations (3) are not completely equivalent to the Dirac
equation, and a suitable extension of P1 equations, as the one presented in Sect. 2, is
needed. In Sect. 3 it is proved that the extension of the P1 equation is equivalent to a
Dirac-like equation with imaginary mass. Finally, by restoring the real mass into the
extended P1 system, in Sect. 4 a new equation is derived, which can be decoupled
into two Dirac equations for particles having same mass and opposite charge (Sect.
5).

2. The extended P1 system

We start by rewriting Eqs.(3) for S = 0 in an equivalent form, which is more
suitable for the purposes of the work. To do this, after multiplying both Eqs.(3) by
e(Σa+Σs/2)t, one readily obtains:

1

v
∂t
[
ϕe(Σa+Σs/2)t

]
= −div

[
Je(Σa+Σs/2)t

]
+

Σs

2
ϕe(Σa+Σs/2)t

1

v
∂t
[
J (Σa+Σs/2)t

]
= −1

3
∇
[
Je(Σa+Σs/2)t

]
− Σs

2
Je(Σa+Σs/2)t

(7)

2



or: 
∂ϕ̃

∂t̃
= −divJ̃ + µϕ̃,

∂J̃

∂t̃
= −∇ϕ̃− µJ̃ ,

(8)

being µ =
√
3

2
Σs, t̃ = v√

3
t, ϕ̃ = ϕe(Σa+Σs/2)t and J̃ =

√
3Je(Σa+Σs/2)t. In the

following, the tilde is dropped everywhere for simplicity of notation. Taking the
time derivative of the first equation (8), one obtains:

∂2
t ϕ = −div (∂tJ) + µ∂tϕ

= −div (−∇ϕ− µJ) + µ (−divJ + µϕ) ,
(9)

and eventually

2ϕ = µ2ϕ. (10)

As this equation is similar to the Klein-Gordon equation,
(
2+m2

)
ϕ = 0, the only

difference being a sign, one can wonder if the fields ϕ, Jx, Jy, Jz can be represented
as the four component of a Dirac-like equation (Dirac (1988)), in which the mass
is imaginary (m = iµ). If this were true, also J should satisfy Eq. (10); in reality,
taking the time derivative of the second equation (8), one has:

∂2
t J = −∇ (∂tϕ)− µ∂tJ

= −∇ (−divJ + µϕ)− µ (−∇ϕ− µJ)

= ∇divJ + µ2J = ∇2J + µ2J +∇×∇×J ,

(11)

and finally

2J = µ2J +∇×∇×J . (12)

Equation (12) is similar to the Klein-Gordon equation, but it contains an extra term.
In order to obtain Eq. (10) also for J , the system (8) must be suitably modified,
e.g., by adding a term, −∇×A, to the second equation:

∂tJ = −∇ϕ− µJ −∇×A; (13)

in this way, the expression for div (∂tJ) is unchanged and Eqs.(9, 10) are still valid.
If the calculation of ∂2

t J is repeated, now one has:

∂2
t J = −∇∂tϕ− µ∂tJ −∇×(∂tA)

= −∇ (−divJ + µϕ)− µ (−∇ϕ− µJ −∇×A)−∇×(∂tA)

= ∇2J +∇×∇×J + µ2J + µ∇×A−∇×(∂tA)

= ∇2J + µ2J +∇×(∇×J + µA− ∂tA) .

(14)

Thus, if ∇×J + µA − ∂tA is the gradient of a scalar field, −W , also J will satisfy
the equation 2J = µ2J . Does A satisfies the same equation? Starting from the
equation for the time evolution of A,

∂tA = ∇×J + µA+∇W, (15)

3



and taking its time derivative, one obtains:

∂2
tA = ∇×(∂tJ) + µ∂tA+∇ (∂tW )

= ∇×(−∇ϕ− µJ −∇×A) + µ (∇×J + µA+∇W ) +∇ (∂tW )

= −∇×∇×A+ µA+ µ∇W +∇ (∂tW ) ,

(16)

or, equivalently:

2A = µ2A−∇ (divA− µW − ∂tW ) . (17)

As W is arbitrary, the condition ∂tW = divA − µW can be imposed. In this way,
also A satisfies the equation 2A = µ2A. Finally, by taking the time derivative of
the last condition, one has:

∂2
tW = div (∂tA)− µ∂tW

= div (∇×J + µA+∇W )− µ (divA− µW )

= ∇2W + µ2W,

(18)

or, again, 2W = µ2W. In summary, starting from the original P1 system for ϕ and
J , a new extended system:

∂tϕ = µϕ −divJ ,

∂tJ = −∇ϕ −µJ −∇×A,

∂tA = ∇×J +µA +∇W,

∂tW = divA −µW,

(19)

for ϕ,J ,A,W has been introduced. The system can be written in a more concise
way as:


∂t

(
ϕ
A

)
= Ĝ

(
W
J

)
+ µ

(
ϕ
A

)
,

∂t

(
W
J

)
= −Ĝ

(
ϕ
A

)
− µ

(
W
J

)
,

(20)

having definined the operator Ĝ as:

Ĝ =

(
0 −div
∇ ∇×

)
, (21)

such that

Ĝ
(
v0
v

)
=

(
−div v

∇v0 +∇×v

)
. (22)

As can be readily verified, Ĝ2 = −∇2 · I4x4, so:

∂2
t

(
ϕ
A

)
= Ĝ

{
−Ĝ

(
ϕ
A

)
− µ

(
W
J

)}
+ µ

{
Ĝ
(
W
J

)
+ µ

(
ϕ
A

)}

=
(
∇2 + µ2

)( ϕ
A

)
,

(23)
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and similarly for
(
W
J

)
. In summary, each unknown (ϕ,J ,A,W ) of the extended

system (19) satisfies the modified Klein-Gordon equation, Eq. (10).
Before investigating the connection between system (19) and the Dirac equation, it
is interesting to consider its relation with the original P1 equations. By taking the
divergence of the second and the third equations (19), one obtains two uncoupled
sets of equations:

{
∂tϕ = µϕ− divJ ,

∂t (divJ) = −∇2ϕ− µ divJ ,
(24)

and {
∂tW = divA− µW,

∂t (divA) = ∇2W + µ divA,
(25)

for (ϕ, divJ) and (W, divA) respectively. Equations (24) exactly correspond to sys-
tem (8), ie., the original P1 system. Instead, Equations (25) present "wrong" signs.
Actually, by defining t̄ = −t, they assume exactly the form (24):


∂W

∂t̄
= µW − divA,

∂

∂t̄
(divA) = −∇2W − µ divA.

(26)

In other words, W and A can be interpreted as a flux and a current, but they evolve
backwards in time. As an alternative, by defining U = 2µW − divA, we readily find
that the couple (W,U) satisfy the equations:

{
∂tW = µW − U,

∂tU = −∇2W − µU,
(27)

having the same form of Eqs.(24) for (ϕ, divA). Going back to Eqs.(19), if the curl
of the second and the third equations is evaluated, one obtains a new system o
equations for B = rotJ and E = rotA:

{
∂tB = −rotE − µB,

∂tE = rotB + µE ,
(28)

whose form recalls the Maxwell’s equations of the electromagnetism (in which elec-
tric and magnetic current densities are present, je = −µE and jm = µB).

3. The Dirac equation with imaginary mass

It is well known (Dirac (1988)) that from the Dirac equation for a free particle1

i ∂tψ =

(
3∑

k=1

αkp
k + αm ·m

)
ψ, pk = −i ∂k, (29)

1The Dirac matrices are defined as: αi =

(
0 σi

σi 0

)
, i = 1, 2, 3, where σi are the Pauli matrices, and

αm =

(
I2×2 0

0 −I2×2

)
.
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one deduces that each component of the spinor

ψ =

 ψ1

ψ2

ψ3

ψ4

 (30)

satisfies the Klein-Gordon equation(
2+m2)ψa = 0, a = 1, 2, 3, 4. (31)

In order to find an equivalence between the Dirac equation and the extended P1

system, the mass m must be replaced by an imaginary term, iµ, so obtaining the
new equation:

∂tψ +

3∑
k=1

αk∂kψ = αmµψ. (32)

It must be noticed that the ψa’s in Eq.(32) are still complex quantities, as α2 has
imaginary elements.

After splitting ψ into the two vectors
(
ψ1

ψ2

)
and

(
ψ3

ψ4

)
, one obtains:


∂t

(
ψ1

ψ2

)
+ (σ·∇)

(
ψ3

ψ4

)
= µ

(
ψ1

ψ2

)
,

∂t

(
ψ3

ψ4

)
+ (σ·∇)

(
ψ1

ψ2

)
= −µ

(
ψ3

ψ4

)
,

(33)

being (Itzykson and Zuber (1980)):

σ · ∇ =

(
∂z ∂x − i∂y

∂x + i∂y −∂z

)
. (34)

By comparing with system (20) for
(

ϕ
A

)
and

(
W
J

)
, the presence of the co-

efficients "+µ" and "−µ" suggests that ψ1, ψ2 are linear combinations of ϕ and A,
while ψ3, ψ4 are linear combinations of W and J .
The next step is finding the relationship between the operators Ĝ and σ · ∇. To

do this, from a generic 4-component real vector V =

(
v0
v

)
, one can define a

2-component complex vector, VC, as:

VC =

(
vz + iv0
vx + ivy

)
. (35)

In the following, this operation is referred as "C-transform", and it is invertible. In
particular, one has:

(
ĜV

)
C
=

( −divv

∇×v +∇v0

)
C

=

[
(∇×v +∇v0)z − i divv

(∇×v +∇v0)x + i (∇×v −∇v0)y

]
(36)
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Moreover, it can be readily verified that:

(σ·∇)VC = (σ·∇)

(
vz + iv0
vx + ivy

)

=

[ divv + i (∇×v +∇v0)z

− (∇×v +∇v0)y + i (∇×v +∇v0)x

]

= i
(
ĜV

)
C
.

(37)

Now, by C−transforming the first equation (20), one obtains:

∂t

[
−i
(

ϕ
A

)
C

]
= − (σ · ∇)

(
W
J

)
C

+ µ

[
−i
(

ϕ
A

)
C

]
, (38)

or

∂t

(
ψ1

ψ2

)
+ (σ · ∇)

(
ψ3

ψ4

)
= µ

(
ψ1

ψ2

)
, (39)

having defined the vectors:(
ψ1

ψ2

)
= −i

(
ϕ
A

)
C

=

(
ϕ− iAz

Ay − iAx

)
, (40)

and (
ψ3

ψ4

)
=

(
W
J

)
C

=

(
Jz + iW
Jx + iJy

)
. (41)

Similarly, from the C-transform of the second Eq. (20), noticing that:[
Ĝ
(

ϕ
A

)]
C

= −i (σ · ∇)

(
ϕ
A

)
C

= σ · ∇
(
ψ1

ψ2

)
, (42)

one finally obtains:

∂t

(
ψ3

ψ4

)
+ (σ · ∇)

(
ψ1

ψ2

)
= −µ

(
ψ3

ψ4

)
. (43)

In summary, by defining:

ψ =

 ψ1

ψ2

ψ3

ψ4

 =

 ϕ− iAz

Ay − iAx

Jz + iW
Jx + iJy

 , (44)

it has been proved that the extended P1 system is equivalent to the Dirac equation
with imaginary mass, Eq.(32).

4. From the extended P1 system to the original Dirac equation

In the previous section, it has been demonstrated that the system (20) can be written
in the form (32), using the correspondence provided by Eq.(29) between {ϕ,A,W,J}
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and ψ. If µ is replaced by −im, the original Dirac equation is reobtained, and, in
some way, it should be equivalent to the system:


∂t

(
ϕ
A

)
= Ĝ

(
W
J

)
− im

(
ϕ
A

)
,

∂t

(
W
J

)
= −Ĝ

(
ϕ
A

)
+ im

(
W
J

)
,

(45)

in which now all the variables ϕ,A,W,J are complex quantities.
By writing ϕ = ϕ′ + iϕ

′′
(ϕ′, ϕ′′ ∈ R) and similarly for all variables, one has:



∂t

(
ϕ
A

)′

= Ĝ
(
W
J

)′

+m

(
ϕ
A

)′′

,

∂t

(
ϕ
A

)′′

= Ĝ
(
W
J

)′′

−m

(
ϕ
A

)′

,

∂t

(
W
J

)′

= −Ĝ
(

ϕ
A

)′

+m

(
W
J

)′′

,

∂t

(
W
J

)′′

= −Ĝ
(

ϕ
A

)′′

−m

(
W
J

)′

.

(46)

The new system contains sixteen real unknowns, while the original Dirac equation
has only eight. Thus, system (46) must contain more information with respect to
the Dirac equation. Through C-transformation, system (46) becomes



∂t

(
ϕ′

A′

)
C

= −i (σ·∇)

(
W ′

J ′

)
C

+m

(
ϕ

′′

A
′′

)
C

,

∂t

(
ϕ

′′

A
′′

)
C

= −i (σ·∇)

(
W

′′

J
′′

)
C

−m

(
ϕ′

A′

)
C

,

∂t

(
W ′

J ′

)
C

= +i (σ·∇)

(
ϕ′

A′

)
C

−m

(
W

′′

J
′′

)
C

,

∂t

(
W

′′

J
′′

)
C

= +i (σ·∇)

(
ϕ

′′

A
′′

)
C

+m

(
W ′

J ′

)
C

.

(47)

By defining four vectors ξI, ξII, ηI, ηII ∈ C2 as:

(
ϕ′

A′

)
C

= iξI,

(
ϕ

′′

A
′′

)
C

= iξII,

(
W ′

J ′

)
C

= ηI,

(
W

′′

J
′′

)
C

= ηII,

(48)
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system (47) assumes the form:



∂tξI + (σ · ∇) ηI = mξII,

∂tηI + (σ · ∇) ξI = −mηII,

∂tξII + (σ · ∇) ηII = −mξI,

∂tηII + (σ · ∇) ξII = mηI,

(49)

or 
∂tψI +

∑
k

αk∂kψI = mαmψII,

∂tψII +
∑
k

αk∂kψII = −mαmψI,

(50)

with

ψI =

(
ξI

ηI

)
, ψII =

(
ξII

ηII

)
. (51)

Finally, by defining the vector Ψ ∈ C8 as:

Ψ =

(
ψI

ψII

)
=

 ξI

ηI

ξII

ηII

 , (52)

and the 8x8 matrices:

Ok =

(
αk 0
0 αk

)
, k = 1, 2, 3, Om =

(
0 iαm

−iαm 0

)
, (53)

the system can be written as:

i∂tΨ =

3∑
k=1

Ok (−i∂k)Ψ + OmmΨ. (54)

It can be readily proved that the O’s and Dirac’s α matrices have similar properties.
In particular:

O†
a = Oa, {Oa,Ob} = 2δabI8x8 a, b,= 1, 2, 3,m. (55)

Therefore, Eq.(54) is a sort of Dirac equation, in which the 4× 4 Dirac matrices are
replaced by the 8× 8O’s.

5. Discussion and concluding remarks

What is the meaning of Eq. (54) and how does it differ from the Dirac equation?
A possible answer can be obtained by adding the electromagnetic field to the equa-
tions. When the electromagnetic interaction is included into the Dirac equation, the
derivatives ∂α are replaced by ∂α + ieA α, where

(
A 0,AAA

)
is the 4-potential for the

9



field (Itzykson and Zuber (1980)). In particular, ∂t and ∇ become ∂t + ieA 0 and
∇− ieAAA , respectively. By operating in this way on the system (45), one obtains:


(
∂t + i e A 0

)( ϕ
A

)
=

(
Ĝ− i eA

)(
W
J

)
− im

(
ϕ
A

)
,

(
∂t + i e A 0

)( W
J

)
=

(
−Ĝ+ i eA

)(
ϕ
A

)
+ im

(
W
J

)
,

(56)

in which the 4× 4 matrix A has been defined as

A =

(
0 AAA ·
AAA AAA ×

)
. (57)

Now, by splitting real and imaginary part of system (56), then C−transforming the
resulting equations, the new system



∂tξI = − (σ·∇) ηI − e (σ·AAA ) ηII + eA 0ξII +mξII,

∂tξII = − (σ·∇) ηII + e (σ·AAA ) ηI − eA 0ξI −mξI,

∂tηI = − (σ·∇) ξI − e (σ·AAA ) ξII + eA 0ηII −mηII,

∂tηII = − (σ·∇) ξII + e (σ·AAA ) ξI − eA 0ηI +mηI,

(58)

is obtained. In system (58) all the unknowns are coupled, but in reality it can be
split into two independent subsystems. If the time derivatives of ξI + i ξII and of
ηI + iηII are considered, one has:

∂t (ξI + iξII) = − (σ·∇)(ηI + iηII) + e (σ·AAA )(iηI − ηII) +
(
eA 0 +m

)
(−iξI + ξII) , (59)

and

∂t (ηI + iηII) = − (σ·∇)(ξI + iξII) + e (σ·AAA )(iξI − ξII) +
(
eA 0 −m

)
(−iηI + ηII) , (60)

or, equivalently,

{
i∂tψa = −iσ·(∇− ieAAA )ψb + eA 0ψa +mψa,

i∂tψb = −iσ·(∇− ieAAA )ψa + eA 0ψb −mψb,
(61)

with ψa = ξI + i ξII, ψb = ηI + i ηII. Therefore,
(
ψa

ψb

)
is the (4-component) spinor

associated to a particle of charge e, according to the classic Dirac equation. Moreover,
by taking the time derivative of ηII + i ηI and of ξII + i ξI, the new equations

∂t (ηII + iηI) = − (σ·∇)(ξII + iξI) + e (σ·AAA )(ξI − iξII) +
(
eA 0 −m

)
(−ηI + iηII) , (62)

and

∂t (ξII + iξI) = − (σ·∇)(ηII + iηI) + e (σ·AAA )(ηI − iηII) +
(
eA 0 +m

)
(−ξI + iξII) (63)

are deduced. After defining ψc = ηII + i ηI, ψd = ξII + i ξI, one finally obtains:

{
i∂tψc = −iσ·(∇+ ieAAA )ψd − eA 0ψc +mψc,

i∂tψd = −iσ·(∇+ ieAAA )ψc − eA 0ψd −mψd,
(64)
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which is the Dirac equation for a particle of charge −e. In summary, the solution
of the system (58) can be expressed as a suitable superposition of the solutions of
two Dirac equations, one for a particle of mass m and charge e, the other for the
corresponding antiparticle. The work shows that the Dirac equation with imaginary
mass can be written in terms of scalar and vector fields (in particular, ϕ is a real
scalar, J is a polar vector, W a pseudo-scalar, and A an axial vector), and the
equations they satisfy [Eqs. (19) or (20)] involve the usual differential operators
(∇, div and ∇×) in a curious mixture between diffusion and Maxwell’s equations.
Instead, by restoring the real mass [Eqs. (45)] the form of the equations is unchanged,
but they correspond to an extended Dirac equation [Eq. (54)] rather than to the
original one, for reason that are not easy to understand (at least to the Author).
However, there is a limit situation, when µ = 0, in which the system (19) is perfectly
equivalent to the Dirac equation for a massless fermion. The study of these equations
will be the object of a forthcoming paper.
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