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Summary

The technological progress in terms of micro and nano-fabrication, together
with the growing ability to enhance the performance of superconducting materials
allowed in the last two decades to practically incorporate the rules of quantum
mechanics into 2-dimensional electrical circuits. This combination produced from
one side ordered and controllable quantum systems, that can be engineered and
built by default to observe in laboratory exotic quantum phenomena, and from the
other side pushed a whole new branch of theoretical physics that joins quantum
mechanics and electrical engineering.
In this thesis we address the problem of noiseless microwave amplification for very
low power signals, eventually reaching the single photon level. We tackle this prob-
lem adopting an approach that relies on superconducting transmission lines, since
these objects put together two fundamental ingredients, low temperatures and a
lossless nature. The key physical aspect that we exploit to achieve lossless ampli-
fication is parametric amplification, which allows a natural energy transfer from
different modes, eventually transferring power from a strong pump tone to a weak
signal tone, that we actually mean to amplify. To engineer such a transmission line
we adopt circuit-Quantum ElectroDynamics techniques, hence we treat quantum
mechanically microscopic systems modeling them as electrical circuits. The fun-
damental feature of these devices is the presence of Josephson junctions, a lossless
nonlinear element which confers the needed nonlinearity to the system to trigger
the parametric amplification process.
In this work we develop a quantum mechanical theory to describe a nonlinear
transmission line amplifier, named Josephson Traveling Wave Parametric Ampli-
fier, that works both in 3-wave mixing and 4-wave mixing regime. We perform
analytical simulations based on the output of the quantum model and find a set
of circuit parameters to realise a physical layout. Using electromagnetic simula-
tions we design and test sections of the transmission line in order to ensure the
best impedance matching possible, and after that we fabricate and characterise the
device in a cryogenic environment. The cryogenic characterisation reveals a work-
ing mixing effect between the internal modes but low gain and narrow bandwidth,
meaning that some important features of the device are not fully caught by the
analytic quantum theory. For this reason a modified numerical approach is used
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to identify a working set of circuit parameters, together with a different structure
of transmission line. The new circuit includes a periodic load of resonators that
modifying the dispersion relation of the line avoids the creation of stray modes,
which are a serious cause of gain reduction. This technique, which takes the name
of Resonant Phase Matching, shows high gain in the numerical simulations, and
we finally realise a physical layout of transmission line through an electromagnetic
simulation approach.
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Chapter 1

Introduction

1.0.1 Motivations
The First Quantum Revolution took place at the beginning of the last century

led by that crazy wave-particle duality concept, so the idea that a particle could
be described somehow as a wave and at the same time waves could be treated as
particles. This idea was the substrate of nearly all the breakthroughs that com-
pose the First Quantum Revolution. The wave-like behaviour of electrons is what
allowed us to explain the structure of the periodic table, the chemical bonds and
all the metals, semiconductors and insulators physics in general, on the other hand,
the concept of the light particle called photon gave us the understanding of the
photoelectric effect and lasers [19].

The XXI century is the theatre of the Second Quantum Revolution, which dif-
fers from its predecessor mainly for the paradigms on which it is founded. If the
First Quantum Revolution was focused on understanding the natural world at mi-
croscopic scales, the Second Quantum Revolution takes as its aim bringing the
quantum world into our modern technology, in our devices and in our way of think-
ing. In this view, we are no longer passive observers of the quantum world but
rather active actors who bend it to our needs.
The difference between science and technology is the ability to engineer your sur-
roundings to your ends, and not just explain them. A strong example of this fact,
that is one of the motivations of this thesis, is that in addition to explaining the
periodic table we can produce new artificial atoms [61, 53], which have properties
that cannot be found in nature and can be used to engineer new materials with
unprecedented optical and electronic properties. The great boost towards the fab-
rication of artificial atoms comes from the will to access nature-given forbidden
regions of the electromagnetic spectrum, where the generation and manipulation of
single quanta of light is of great interest for many fields of modern technology. In
the last twenty years circuit-Quantum ElectroDynamics (cQED), that deals with
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studying on-chip fundamental interaction between light and matter, [6, 33] had an
incredible development just to carry out the task of creating superconducting atoms
in which the energy of the quantum jumps sits in the microwave range of the elec-
tromagnetic spectrum. In this way artificial atoms, which take the physical form of
superconducting circuits, become absorbers and emitters of single microwave pho-
tons, that through these devices can be manipulated for technological purposes.

The detection and manipulation of single microwave photons is a key aspect in
several fields.
An example is represented by cosmology and the run for the discovery of dark mat-
ter. A suitable candidate for the composition of dark matter is indeed the axion, a
hypothetical particle that would have no electric charge, very small mass and very
low interaction with strong and weak forces. Despite their elusive nature, axions are
thought to interact with electromagnetic fields and through the Primarkoff effect
turning themselves into microwave photons and vice versa when passing through
very strong magnetic fields. A good part of the strategies adopted to detect axions
include their transformation in microwave photons through the Primarkoff effect,
hence necessarily involving the detection of the latter with very high accuracy and
efficiency [41, 45].
Superconducting quantum computing is another field that daily deals with mi-
crowave photons. Qubits are the elementary units that compose quantum proces-
sors and are realised in the form of artificial atoms [7, 1]. The protocols used to
program and command these single units are physically implemented by short mi-
crowave pulses which need to be reliably detected and generated for the efficient
functioning of these emerging technologies.
Quantum illumination is as well a field where not only the detection but also the
generation and manipulation of quantum microwave fields at the single-photon level
is required. Indeed, this concept of quantum detection can outperform its classical
counterpart when dealing with low reflectivity targets and a very bright thermal
background [16, 35, 3]. Nonetheless, this detection protocol makes use in some of
its realisations of entangled microwave photon pairs, needing performing detectors
to receive the signals after the interaction with the target took place.
In all the above-mentioned fields the main challenge remains the detection of single
microwave photons, a problem that we want to tackle in this thesis.

The fact that the energy of microwave photons is so low imposes several tech-
nological challenges for their detection and use. Fig. 1.1 shows a sketch of an
amplification chain for a single photon signal at 10 GHz. Being the scale energy of
single microwave photons in the order of tenth of µeV, which is several orders of
magnitude lower than room temperature thermal energy that is on average 25 meV,
requires the apparatus for their creation and detection to be cooled down at cryo-
genic temperatures so as to reduce thermal noise well below the single microwave
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Figure 1.1: Example of an amplification chain for cryogenic single photons mi-
crowave experiments.
The cryogenic environment is kept at ≈ 10 mK, which corresponds to an average
thermal energy of 1 µeV. A single photon at 10 GHz (green signal), that corresponds
to an energy of ≈ 40 µeV, undergoes several amplification stages at different base
temperatures, which add noise (blue and red signals).

photon level. The temperatures required range around 10 mK, that is the temper-
ature where the average occupation number of energy levels of tenth of µeV is well
below the unity.
Each one of these experiments requires in general several amplification stages to
make these tiny signals detectable and each of these stages needs to add the lowest
noise possible to avoid the degradation of the signal. So in general, the added noise
should be as little as possible, ideally, the minimum allowed by the laws of quantum
mechanics, otherwise said “quantum-limited noise”. In this thesis, we will deal with
phase-preserving linear amplifiers, hence devices where the output and input fields
are linearly correlated, without any phase dependence. As we will find out, the
quantum-limited noise on this type of amplifier is half a photon at the reference
frequency.

This brings us to the conclusion that for an efficient use of microwave photons
we need low noise amplifiers in a cryogenic environment. Fig. 1.2 illustrates a com-
parison between three different classes of commonly adopted low noise amplifiers.
The most commonly used and commercially available cryogenic amplifiers are the
High Electron Mobility Transistors, or HEMT, which provide very high gain and
wide bandwidth, but do not have quantum-limited noise since their average noise
temperature at cryogenic temperature is around 4 K [27]. This fact makes them
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Figure 1.2: Comparison between different microwave amplification technologies:
High Electron Mobility Transistor (HEMT), Josephson Parametric Amplifier (JPA)
and Traveling Wave Parametric Amplifier (TWPA).

suitable for a second or third stage of amplification but not as the primary one,
that in general needs to be quantum limited.
A very widely studied variety of amplifiers are the Josephson Parametric Amplifiers,
or JPA, which are non-linear resonator shaped amplifiers constituted by a series of
identical sections embedding Josephson junctions, which provide the nonlinearity
needed for parametric amplification [60, 8, 48]. These devices, being superconduct-
ing, offer very low losses and added noise, making them nearly quantum limited.
They also show very high gains at the cost of a narrow bandwidth and saturation
power, caused by their resonant nature.

Another widely studied kind of amplifier is represented by the Traveling Wave
Parametric Amplifiers, or TWPAs, which are most of times realised in supercon-
ducting material, hence offering low added noise and losses, but on the other hand,
they present a much wider bandwidth, since their structure is designed as a trans-
mission line and not as a resonator.
By the way, the latter have not demonstrated gain and noise figure comparable
with the first two kinds of devices yet, but many efforts are being made in this
direction [57, 36].
Among the three categories, the traveling wave parametric amplifier is the only one
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that promises to be the device that can actually achieve all the performance needed
in modern experiments in terms of bandwidth, saturation power, quantum limited
noise and gain.

TWPAs obtain their nonlinearity through some kind of nonlinear reactance. The
nonlinearity that characterises these devices emerges through the phenomenon of
parametric amplification. Indeed, a non-linear component of an LC circuit can
change periodically the resonance frequency of the whole system, leading to broad-
band amplification. We see two examples of parametric amplification in Fig. 1.3.

Figure 1.3: (a) Sketch of a swing process. An oscillating system at a frequency ωs

is excited by parametric amplification via periodical changes of the center of mass
position at a frequency ωp = 2ωs. (b) LC circuit with variable (nonlinear) C and
L components.

In (a) we see a sketch of a playground swing oscillating at frequency ωs, and a
child pumping the swing by periodically bending his knees at frequency ωp = 2ωs.
The action of bending the knees physically corresponds to periodically changing the
momentum of inertia of the whole system, which finally leads to an amplification
of the swing oscillation, practically realising a mechanical parametric amplifier. In
(b) a simple example of LC circuit can be seen, where the reactive components
are variable with time. This scheme realises the electrical concept of a parametric
oscillator, where the resonant frequency of the circuit is dynamically tuned with
respect to a signal generator at frequency ωs. A modulation of the circuit param-
eters at ωp = 2ωs leads to parametric amplification of the electrical oscillations in
the circuit [20].

The nonlinearity of parametric devices is often given by an inductor. A nonlinear
inductor is generally an element of which the inductance depends on the current
passing through it. This electrical component is physically realised mainly in two
different ways. The first way is to exploit the kinetic inductance of a superconduct-
ing transmission line, in this case the device takes the name of Kinetic Inductance
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Traveling wave parametric amplifier, or KIT. The second way consists in exploiting
the nonlinear inductance provided by a series of Josephson junctions, in this case
the device takes the name of Josephson Traveling Wave Parametric Amplifier, or
JTWPA.

KIT amplifiers use the properties of the kinetic inductance of superconductors to
develop the needed nonlinearity for parametric amplification. The superconductor
has indeed a total inductance Ltot = Lg + Lk, with Lg is the geometric inductance
given by the geometrical properties of the device, while Lk is the current dependant
kinetic inductance. The relation between Lk and the current passing through the
superconductor can hence be expressed as

Lk(I) = L0 ·
(︄

1 + I2

I2
∗

)︄
(1.1)

where I∗ is a scaling parameter of the order of the critical current and L0 =
(ℏRs)/(π∆), with Rs the sheet resistance of the film, ∆ is the superconducting
gap of the film and ℏ is the reduced Planck constant. Highly resistive supercon-
ductors are particularly feasible for this aim since their Rs is high, and practically
can reach a a very high fraction of the total inductance. For an amplifier with only
RF signals, the current passing through the nonlinear inductance is I = IRF, which
includes all possible RF components in the line. Namely, a first RF component
used as a pump tone at frequency fP and a second RF component at frequency
fS that is the signal to be amplified. Under the correct signal and pump power
combination we observe parametric amplification of the signal accompanied by the
generation of an idler tone at frequency fI = 2fP − fS.
The introduction of a DC bias, can strongly modifly the response of the device by
tuning the nonlinearity given by the superconducting material. It is indeed true
that now the current in the amplifier can be expressed as I = IDC + IRF, giving a
formula for the kinetic inductance in the form

Lk(I) = L0 ·
(︄

1 + I2
DC
I2
∗

+ 2
(︄
IDCIRF

I2
∗

)︄
+ I2

RF
I2
∗

)︄
(1.2)

This allows parametric amplification of the signal with the generation of an idler
tone at frequency fI = fP − fS. Based on these fundamental properties KITs have
been greatly developed in the past years. [54] proved that nonlinear transmission
lines, in the form of coplanar waveguides made of high kinetic inductance super-
conductors like NbTiN, show a deep modulation of the nonlinearities in the device
by means of a simple DC current passign through it. In this case the performance
reached was of more than 15 dB on a bandwidth from 4 to 8 GHz. Different imple-
mentations of a KIT were realised in [12], where is given the proof of an engineering
dispersion relation by means of periodic characteristic impedance or lumped ele-
ment resonator loading. In this way a modified dispersion relation is created in
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the transmission line, hence providing bandgaps useful for promoting mixing of
wanted tones and avoid the generation of stray tones. KITs have also been used to
realise measurements schemes for superconducting qubit readout [47], showing an
inhancement in the readout fidelty of the amplification chain. The reading out use
of quantum devices is possible due to the optimal noise figure of these devices, as
accurately shown in [37], where the gain and bandwidth of a periodically impedance
loaded KIT is characterised together with its noise figure when put in an amplifica-
tion chain. Here sophisticated measurements of the added noise show a remarkable
noise temperature of 0.66 K, that confirms this technology as one of the leading
candidates in extremely low noise cryogenic amplification.
In general KITs have hence high gain, that is stable over a several GHz bandwidth,
moreover their added noise is extremely low and approaching in some cases the
standard quantum limit. By the way, since the nonlinearity given by the super-
conductor kinetic inductance is quite diluited in the transmission line these devices
need to be very long, in the order of some tenth cm. This non negligible fact
makes their realisation not trivial and in general cause of a low fabrication yield.
Moreover, the general need of high DC currents to drive the system in the wanted
nonlinear condition (≈ mA) poses as well severe restrictions for what concerns the
cryogenic setup, introducing possible overheating problems of the cryogenic setup.

On the other hand, JTWPAs exploit the nonlinearity of typical of the Joseph-
son element to achieve parametric amplification. It is indeed well known that a
Josephson junction can be seen as nonlinear inductors, that in the case of tunnel
junctions, show an inverse cosinusoidal relation between the phase drop φ across it
and the associated inductance LJ(φ)

LJ(φ) = L0

cos (φ) (1.3)

The first realisation of a JTWPA was simply a transmission line composed of a se-
ries of Josephson junctions [62]. This attempt obtained about 15 dB over a narrow
bandwidth of 125 MHz, showing practically the proof of principle of this technol-
ogy. This design allowed a mixing of the pump, signal and idler tones such that
2fP = fS + fI. In the last two decades many efforts have been put in the develop-
ment of Josephson based traveling wave amplifiers. The chain of single junctions,
of which the nonlinearities can be only partially tuned in this simple configuration,
has been substituted by other Josephson elements that allow an in-situ tuning by
means of DC currents or magnetic fields. [66] realised a JTWPA that exploits a se-
ries of rf-SQUIDs, hence a parallel of an inductor and a Josephson junction, which
represents tunable Josephson elements. Indeed a DC current passing through the
device or a magnetic field perpendicular to the plane of the SQUID loop induce a
stable phase difference φDC across the single cells, setting the amplifier in a new
working point that allows a tone mixing such that fP = fS + fI. An even further
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degree of tunability has been reached by modifying the latter Josephson element in
a so called Symmetric TWPA [38], where the inductor of the rf-SQUID is substi-
tuted by a second rf-SQUID. The possibility to separately tune the magnetic fluxes
piercing the two loops of a single Josephson cell by means of individual flux lines
allows to very precisely modify the nonlinearities of the transmission line, leading
to a in-situ maximisation of the gain and adjusting at the same time the charac-
teristic impedance of the device, ensuring a good electromagnetic match with the
surrounding environment. Moreover, JTWPAs can just as KITs be accompanied
with an engineered dispersion relations. It has indeed experimentally been proved
[36] that the use of periodic resonator loading creates bandgaps in the dispersion
relation of Josephson based devices, leading to a significant enhancement of the
gain, bandwidth and added noise. Further steps can be made by engineering the
sequence of elementary cells of JTWPAs. A brilliant example of this aspect is
given in [46], where the authors build a JTWPA using as Josephson element a Su-
perconducting Nonlinear Asymmetric Inductive eLement (SNAIL). A SNAIL is a
superconducting loop where on one side we find a series of three large Josephson
junctions while on the opposite side we find a single smaller junction. In this work,
a chain of SNAILs, properly engineered in terms of junction’s critical currents and
relative rotation of the SNAILs, is used to spatially tune the nonlinearities along
the transmission line. This last approach was particularly succesful to obtain sta-
ble amplification bandwidth wider than 4 GHz between 10 and 20 dB, depending
on the pump frequency applied, avoiding detrimental bandgaps in the transmission
characteristic.
JTWPAs have in general highly tunable nonlinearities given by the flexibility of-
fered by Josephson structures. The structural degrees of freedom allows to engineer
a wide variety of elementary cells able to provide highly nonlinear-density struc-
tures, meaning shorter and more compact devices. On the other hand, the need of
fabricating thousands of tunnel barriers to build the Josephson elements imposes
a high degree of precision and repeatability. This request can be challenging since
the spread of the circuit parameters is one of the main reasons behind the loss of
performance of these devices.

In this thesis we focus on the theoretical development of a quantum mechanical
method to describe JTWPAs in the presence of signals at the single photon level.
This is due to the fact that parametric amplification is explained at microscopic
scales in terms of elementary excitations of the material. The medium undergoes
quantum jumps between its energy levels, converting high frequency photons in
low frequency ones and vice versa. The presence of elementary excitations of light
requires as a consequence a quantum description. The quantum model developed
in Chapter 3 finds analytical forms for the quantum mechanical coupling constants
of wave mixing events, that are the physical base of parametric amplification at the
microscopic scale. We moreover determine some important features of the device
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like the gain and quantum added noise, which will show that the device actually
work as a quantum limited amplifier. In Chapter 4 we describe the cryogenic
characterisation of a first generation of JTWPAs that shows the phenomenon of
nonlinear wave mixing and harmonic generation.
The work goes on facing the problem of the numerical simulation of JTWPAs
with engineered dispersion relations, which theoretically show gain in the order of
20 dB and a several GHz bandwidth. A physical layout for these devices is then
found through electromagnetic simulations, which allow to solve the problem of
the characteristic impedance matching between the device and its electromagnetic
environment.
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Chapter 2

Circuit Quantum Electrodynamics
and Linear Amplifiers

2.1 Classical transmission line theory
A transmission line (TL) is a structure created to convey electromagnetic signals

between two points separated by a certain distance. Normally this distance is com-
parable to or larger than the wavelength of the electromagnetic signal considered
hence the wavelike nature of the signal must be taken into account. The simplest
TL is modeled by two coupled conductors which are assumed to be uniform for all
their length, meaning that the physical properties that characterise the propaga-
tion of the electromagnetic signals, like the dielectric medium, conductor geometry
and shape, remains the same for all physical system. From the theory of electrical
circuits it is known that a TL is characterised by a combination of inductors, which
store the magnetic component of the electromagnetic wave, capacitors, which store
the electric energy and resistors (or alternatively conductances) which represent
the ohmic losses in the conductors and the dielectric losses in the medium. Figure
2.1 shows the circuit that is generally used to describe a TL [42]. Due to the fact
that the whole machinery of electrotechnics can be used just in the quasi-static
approximation, hence at frequencies where the wavelength of the electromagnetic
signal is much larger than the typical dimension, the TL is divided into small sec-
tions where the quasi-stationary approximation holds, defining many infinitesimal
sections of length dz, which show a series inductance L · dz, series resistance R · dz,
shunt capacitance C · dz and shunt conductance G · dz. If we apply the Kirchhoff’s
voltage and current laws to the circuit in Figure 2.1 we get respectively

V (z + dz, t) − V (z, t) + L · dz∂I(z, t)
∂t

+R · dzI(z, t) = 0 (2.1)

I(z + dz, t) − I(z, t) + C · dz∂V (z, t)
∂t

+G · dzV (z, t) = 0 (2.2)
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+

V(z,t)
G⋅dz C⋅dz

R⋅dzL⋅dzI(z,t)

−

+

−

V(z+dz,t)

I(z+dz,t)

Figure 2.1: Circuit diagram of a section of transmission line.

where the current direction is intended from left to right of Figure 2.1. Dividing
then by dz and taking the limit dz → 0 we arrive at

∂V (z, t)
∂z

+ L
∂I(z, t)
∂t

+RI(z, t) = 0 (2.3)

∂I(z, t)
∂z

+ C
∂V (z, t)
∂t

+GV (z, t) = 0 (2.4)

The limit of dz → 0 can be considered physically valid until when the wavelength
of the electromagnetic signal λ ≫ dz. Taking now the derivatives with respect to
space and time of Eq. (2.3) and (2.4) we get

∂2V (z, t)
∂z2 + L

∂2I(z, t)
∂t∂dz

+R
∂I(z, t)
∂z

= 0 (2.5)

∂2I(z, t)
∂z∂t

+ C
∂2V (z, t)
∂t2

+G
∂V (z, t)
∂t

= 0 (2.6)

Substituting Equations (2.4) and (2.6) into (2.5), and Equations (2.3) and (2.5)
into (2.6) one obtains

∂2V (z, t)
∂z2 + LC

∂2V (z, t)
∂t2

− (RC + LG)∂V (z, t)
∂t

−RGV (z, t) = 0 (2.7)

∂2I(z, t)
∂z2 + LC

∂2I(z, t)
∂t2

− (RC + LG)∂I(z, t)
∂t

−RGI(z, t) = 0 (2.8)

In many physical situation we can consider a transmission line that has no ohmic
or dielectric losses, superconducting TL are indeed a good example of that. In this
case the coefficient that characterise the series resistance and shunt conductance
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can be neglected R,G ≈ 0, leading to

∂V (z, t)
∂z

+ L
∂I(z, t)
∂t

= 0 (2.9)

∂I(z, t)
∂z

+ C
∂V (z, t)
∂t

= 0 (2.10)

∂2V (z, t)
∂z2 + LC

∂2V (z, t)
∂t2

= 0 (2.11)

∂2I(z, t)
∂z2 + LC

∂2I(z, t)
∂t2

= 0 (2.12)

Equations (2.3), (2.4), (2.9) and (2.10) are known as the Telegrapher’s equations
while Equations (2.5), (2.6), (2.11) and (2.12) are called the transmission-line equa-
tions. The solutions of Equations (2.11) and (2.12) are a linear composition of a
forward and backward moving wavelike functions. As an example for the solution
of Equation(2.11) one can write

V (z, t) = V +
(︃
t− z

v

)︃
− V −

(︃
t+ z

v

)︃
(2.13)

where v = 1/
√
LC is identified as the phase velocity of the electromagnetic wave,

and V + and V − are arbitrary functions that satisfy the equations of motion. We
can show the relation between the instantaneous voltage V (z, t) and current I(z, t)
in the TL by calculating the space derivative of Equation (2.13) and substituting
it into Equation (2.9)

∂I(z, t)
∂t

= 1
Lv

⎡⎣∂V +
(︂
t− z

v

)︂
∂t

−
∂V −

(︂
t+ z

v

)︂
∂t

⎤⎦ (2.14)

Then integrating with respect to time we get

I(z, t) = 1
Lv

[︃
V +

(︃
t− z

v

)︃
− V −

(︃
t+ z

v

)︃]︃
+ I0(z) (2.15)

We now take the time derivative of (2.13) and spatial derivative of (2.15) and
substitute them into (2.10) obtaining

1
Lv

⎡⎣∂V +
(︂
t− z

v

)︂
∂z

−
∂V −

(︂
t+ z

v

)︂
∂z

⎤⎦+ ∂I0(z)
∂z

= −C 1
Lv

⎡⎣∂V +
(︂
t− z

v

)︂
∂t

−
∂V −

(︂
t+ z

v

)︂
∂t

⎤⎦
(2.16)

which is true only if Iz is a constant. If we neglect this constant term the instan-
taneous current becomes

I(z, t) = 1
Z0

[︃
V +

(︃
t− z

v

)︃
− V −

(︃
t+ z

v

)︃]︃
(2.17)
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where it has been defined Z0 =
√︂
L/C hence the characteristic impedance of the

line. It can be noted that for every t and z holds that

V (z, t)
I(z, t) = Z0 (2.18)

Most of times it is convenient while working with transmission lines to define the
left-moving and right-moving wave amplitudes instead of working with voltages and
currents

A→(z, t) =1
2

⎡⎣ 1√︂
V (z, t)

+
√︂
Z0I(z, t)

⎤⎦ (2.19)

A←(z, t) =1
2

⎡⎣ 1√︂
V (z, t)

−
√︂
Z0I(z, t)

⎤⎦ (2.20)

The unit of these quantities is [watt]1/2 and are defined such that the power P (z, t)
flowing in the forward direction is expressed as

P (z, t) = [A→(z, t)]2 − [A←(z, t)]2 (2.21)

Eq. (2.19) and (2.20) can be used to solve the Telegrapher’s equations giving the
solution in terms of fluxes of energy moving through the line. In particular, Eq.
(2.9) and (2.10) become

∂

∂z
A⇄(z, t) = ±1

v

∂

∂t
A⇄(z, t) (2.22)

In this view, hence working with fluxes of energy, the energy density U(z, t) is
related to the power P (z, t) by the usual conservation law

∂U

∂t
= −∂P

∂z

that using the definition of P given in (2.21) becomes

∂U(z, t)
δt

=2
v

[︄
A→(z, t) ∂

∂t
A→(z, t) + A←(z, t) ∂

∂t
A←(z, t)

]︄
(2.23)

=1
v

∂

∂t

[︂
[A→(z, t)]2 + [A←(z, t)]2

]︂
(2.24)

thus the total energy in the transmission line at a certain time t is

H = 1
v

∫︂ +∞

−∞

(︂
[A→(z, t)]2 + [A←(z, t)]2

)︂
dz (2.25)

Eq. (2.25) gives an operational definition for the total amount of energy in a generic
TL, that can be extended also in the case of nonlinear TL.
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2.2 Canonical quantization of the electromagnetic
field

In order to give a proper description of the electromagnetic field in presence
of very low power signals, eventually to the level of the single elementary excita-
tion, the classical description needs to be substituted with the quantum mechanical
theory. This theory cannot be derived from the classical formulation but the tran-
sition from a classical to quantum description can be easily made if the classical
equations are put in a particular form, performing the so called "quantization" of
classical fields. The whole procedure is based on replacing the classical harmonic
oscillator with the quantum-mechanical harmonic oscillator, for this reason the clas-
sical fields need to explicitly show their harmonic dependence. We will now show
this procedure in the emblematic case of the free field, hence the electromagnetic
field in vacuum, and then we will proceed by doing the same thing when the fields
are confined in electrical circuit.
We start from the Maxwell’s equations [34] formulated using the vector and scalar
potential formalism in the Coulomb gauge1, considering a portion of space where
there are no charges and currents. In this picture we can write a wave equation for
the vector potential A

−∇2A + 1
c2
∂2A
∂t2

= 0 (2.26)

with c the speed of light in vacuum. Eq. (2.26) defines the space and time behaviour
of the free field.
Now, since the quantization of the electromagnetic field is done by replacing the
vector potential A with its quantum-mechanical counterpart operator Â, we need
to recast the classical theory in a way that this substitution is immediate. To do
so, we consider a cubic region of space of side L that we call "quantization cavity"
and we take running waves, subjecting them to periodic boundary conditions at
the limits of the quantization box. Moreover, the vector potential is expressed as
the sum of all the contributions coming from the normal modes of the cavity

A(r, t) =
∑︂

k

∑︂
λ=1,2

ekλAkλ(r, t)

=
∑︂

k

∑︂
λ=1,2

ekλ

(︂
Akλ(t)e+ik·r + A∗kλ(t)e−ik·r

)︂
(2.27)

1The Coulomb gauge condition states that the vector potential satisfies the condition ∇·A = 0,
hence identifying A as a wholly transverse vector.
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here λ is the index that labels the polarisation of the mode k, and the components
of the wavevector k take the values

kx = 2πnx/L ky = 2πny/L kz = 2πnz/L (2.28)

with nx,y,z ∈ Z. The decomposition in normal modes allows to explicit the sinu-
soidal components of the electromagnetic field and to make use of the mathematics
structure for the analysis of purely harmonic signals. The ekλ are unit polarisation
vectors and the Coulomb gauge condition is satisfied if the wave vector and the
polarisation vector are transverse

ekλ · k = 0

The modes of the vector potential independently satisfy the harmonic equation of
motion (derived from Eq. (2.26))

∂2Akλ(t)
∂t2

+ ω2
kAkλ(t) = 0 (2.29)

where we defined the mode angular frequency

ωk = ck (2.30)

The electromagnetic field is quantized by conversion of the classical harmonic os-
cillator to its quantum-mechanical counterpart. This conversion is suggested by
the form of the total field energy, which can be calculated taking a solution to Eq.
(2.29) in the form

Akλ(t) = Akλe
−iωkt (2.31)

so substituting Eq. (2.31) into (2.27) we find

Akλ(r, t) = Akλe
−iωkt+ik·r + A∗kλ(t)e+iωkt−ik·r (2.32)

To compute the total energy in the quantization cavity we need to calculate the
electric and magnetic fields using the definition of A just found. From the defini-
tions of vector potential it follows that the transverse electric field is

E(r, t) = −∂A
∂t

=
∑︂

k

∑︂
λ=1,2

ekλEkλ(r, t)

=
∑︂

k

∑︂
λ=1,2

ekλiωk

(︂
Akλe

−iωkt+ik·r + A∗kλ(t)e+iωkt−ik·r
)︂

(2.33)
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and the magnetic field is

B(r, t) = ∇ × A

=
∑︂

k

∑︂
λ=1,2

k × ekλ

k
Bkλ(r, t)

=
∑︂

k

∑︂
λ=1,2

k × ekλ

k
ik
(︂
Akλe

−iωkt+ik·r + A∗kλ(t)e+iωkt−ik·r
)︂

(2.34)

The total energy of the electromagnetic field in the quantization cavity is then

ER = 1
2

∫︂
cavity

dV
[︂
ϵ0E(r, t) · E(r, t) + µ−1

0 B(r, t) · B(r, t)
]︂

(2.35)

Substituting Eq. (2.33) and (2.34) into (2.35) the total energy ϵR can be found in
terms of the vector potential. The spatial integrals are in the form∫︂

cavity
dV e±i(k−k′)·r = V δk,k′ (2.36)

and ∫︂
cavity

dV e±i(k+k′)·r = V δk,−k′ (2.37)

with V = L3 the volume of the quantization cavity. The total energy in the cavity
then becomes

ER = 1
2
∑︂

k

∑︂
λ,λ′

V
[︃

(AkλA
∗
kλ′ + A∗kλAkλ′) ×

×
(︂
ϵ0ω

2
kekλekλ′ + µ−1

0 k × ekλ · k × ekλ′

)︂
−

−
(︂
AkλA−kλ′e−2iωkt + A∗kλA

∗
−kλ′e2iωkt

)︂
×

×
(︃
ϵ0ω

2
kekλe−kλ′ − µ−1

0 k × ekλ · k × e−kλ′

)︃]︃
(2.38)

The components of this complicated relation that depend on the polarisation vectors
simplify thanks to the property of the vector product

k × ekλ · k × e±kλ′ = k2ekλ · e±kλ′ (2.39)

Moreover, explicitly calculating the time-dependent terms it is found that they
cancel out due to a cancellation between the relevant parts of the electric and
magnetic fields energies. The total radiative energy reduces to a sum of time-
independent contributions from the individual modes

ER =
∑︂

k

∑︂
λ

Ekλ

=
∑︂

k

∑︂
λ

ϵ0V ω
2
k (AkλA

∗
kλ′ + A∗kλAkλ′) (2.40)
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We note that the total energy in the quantization cavity is the mere sum of the
energy of all the independent modes that populate the cavity. This fact is exactly
the contact point between the electromagnetic radiative energy and the quantum-
mechanical harmonic oscillator, that we recall here having a Hamiltonian operator
equal to

ĤR =
∑︂

k

∑︂
λ

Ĥkλ

= 1
2
∑︂

k

∑︂
λ

ℏωk

(︂
âkλâ

†
kλ + â†kλâkλ

)︂
(2.41)

where âkλ is the ladder operator referred to the k-th mode and λ polarisation, with
eigenvalues

Ek =
(︃
k + 1

2

)︃
ℏω (2.42)

The total energy of a multimode harmonic oscillator is again the sum of the energies
of all its independent modes, so, by similarity, if we compare the expression (2.40)
with the quantum mechanical formula of the total energy of a harmonic oscilla-
tor (2.41), we understand that the conversion from the classical vector potential
amplitudes to the quantum mechanical mode operators is

Akλ →
√︂
ℏ/2ϵV ωkâkλ A∗kλ →

√︂
ℏ/2ϵV ωkâ

†
kλ (2.43)

Using this substitutions Eq. (2.27) becomes

Â(r, t) =
∑︂

k

∑︂
λ=1,2

ekλÂkλ(r, t)

=
∑︂

k

∑︂
λ=1,2

ekλ

√︂
ℏ/2ϵ0V ωk

(︂
âkλe

−iωkt+ik·r + â†kλe
+iωkt−ik·r

)︂
(2.44)

One can now recover the quantum mechanical operators that express the electric
and magnetic fields by performing the substitutions (2.43) in (2.33) and (2.34)

Ê(r, t) =
∑︂

k

∑︂
λ

ekλ

√︂
ℏωk/2ϵ0V

(︂
âkλe

−ωkt+ik·r + â†kλe
+ωkt−ik·r

)︂
(2.45)

B̂(r, t) =
∑︂

k

∑︂
λ

k × ekλ

√︂
ℏ/2ϵ0ωkV

(︂
âkλe

−ωkt+ik·r + â†kλe
+ωkt−ik·r

)︂
(2.46)

and write the Hamiltonian operator for the radiative fields in the cavity

ĤR = 1
2

∫︂
cavity

dV
[︂
ϵ0Ê(r, t) · Ê(r, t) + µ−1

0 B̂(r, t) · B̂(r, t)
]︂

(2.47)
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2.3 – Quantization of a non-dissipative superconducting circuit

The integral that defines the Hamiltonian operator is evaluated just the same way
we did for (2.35), and gives the same result of (2.40) but with ladder operators
instead of classical amplitudes. ĤR can thus be rewritten as

ĤR =
∑︂

k

∑︂
λ

ℏωk

(︃
â†kλâkλ + 1

2

)︃
(2.48)

of which the energy eigenvalues are known from the formulation of the quantum
harmonic oscillator. The energy level allowed in the cavity result in this way

Ekλ = ℏωk

(︃
k + 1

2

)︃
(2.49)

with nkλ the numbers of elementary excitations in the cavity. The ground state
of the electromagnetic field where no photons are excited in any mode is called
vacuum state, and is the energy state of the cavity where nkλ = 0 with energy

E0 = 1
2
∑︂

k

∑︂
λ

ℏωk =
∑︂

k
ℏωk (2.50)

known as the zero point energy.

2.3 Quantization of a non-dissipative supercon-
ducting circuit

To this moment we have quantum mechanically described electromagnetic field
in the free space only, where a proper description can be given in terms of electric
and magnetic fields. But if we want to describe the electromagnetic interaction
when it is confined in a generic circuit we need to change approach in order to find
the more natural way to describe its behaviour.
Referring to Fig. (2.2), we see that a generic electrical circuit is represented and
described as a network of elements that connect nodes. The piece of wire together
with the element in between two nodes is said branch (b), and the behaviour of a
generic element at a time t is described by the voltage vb(t) across the element and
the current ib(t) flowing through it. The voltage and current are defined starting
from the electric and magnetic fields in a very general way

vb(t) =
∫︂ end of b

beginning of b
E(r, t) · dl (2.51)

ib(t) = 1
µ0

∮︂
around b

B(r, t) · ds (2.52)

The path of the loop integral in Eq. (2.52) is taken around the branch b. It follows
that the energy absorbed until the time t by a generic element is the time integral
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Figure 2.2: Schematic of an electrical circuit consisting of elements forming branches
that meet at nodes. A loop is formed when there is more than one path between
two nodes.

of the instantaneous power, defined as the product between the voltage drop and
the flowing current, between a time in the past where the element can be considered
at rest (no power in it) and the time t

Eb(t) =
∫︂ t

−∞
vb(t′)ib(t′)dt′ (2.53)

The canonical quantization of an electrical circuit requires a Hamiltonian descrip-
tion [55] in terms of branch fluxes and branch charges. These new quantities will
be our generalised coordinates in the Hamiltonian framework and are defined as

Φb(t) =
∫︂ t

−∞
vb(t′)dt′ (2.54)

Qb(t) =
∫︂ t

−∞
ib(t′)dt′ (2.55)

Since the circuits we are treating are exclusively non-dissipative we will work with
reactive elements only. An element for which the voltage v(t) is only a function of
the charge Q(t) is said to be a capacitive element, while an element for which the
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2.3 – Quantization of a non-dissipative superconducting circuit

current is only a function of the flux Φ(t) is said to be an inductive element

v(t) = f(Q(t)) Capacitive element (2.56)
i(t) = g(Φ(t)) Inductive element (2.57)

Eq. (2.56) and (2.57) are called constitutive equations of the capacitive and induc-
tive elements respectively.
Just as in classical problems of Hamiltonian mechanics, the degrees of freedom of
the system have to be described in terms of generalised coordinates. By the way, in
electrical circuits there are less degrees of freedom than there are branches, because
in addition to the constitutive relations one has the Kirchhoff’s laws∑︂

all b around l

Φb = ˜︁Φl (2.58)∑︂
all b arriving at n

Qb = ˜︁Qn (2.59)

so, not to have redundant variables, one has to find a way to define a minimal set
of coordinates. For this purpose, there are two mainly used methods, the method of
nodes and the method of loops. They are equivalent because they describe the same
physical situation in two different ways, but one or the other make easier performing
the calculation of the Hamiltonian depending on the layout of the circuit. In this
case we will explain the method of nodes, but we underline that using the method
of loops would lead to the very same results.
In the method of nodes we make a first distinction between active nodes, in which
inductances and capacitances meet, and passive nodes, where only capacitances or
inductances are connected. In this method we use the property of the capacitive
subnetwork to contain only linear elements. This assumption allows to express
the energy of a capacitance in terms of voltage, hence the derivative of flux. For
this reason we can express the energy of a capacitive element as Ec = (C/2)Φ̇2,
exploiting the constitutive relation for a linear capacitance Q = CV , with C the
capacitance of the element and Q the charge accumulated on it. In this way we
broke the symmetry between charge and flux, since the flux is identified as the
position coordinate, its time derivative is the generalised velocity, the inductive
energy is the potential energy and the capacitive energy is the kinetic energy.
To use the method of nodes one has first to make sure that at every node to which
an inductance is connected a capacitance is connected as well, there are thus no
passive nodes in the sub-network of inductances (one can also consider the parasitic
capacitances typical of an electrical element, hence there is no need to fictitiously
modify the circuit in the case this requirement is not met). In practice we have to
make sure that every node is connected to any other node by a path involving only
capacitances.
The active nodes are labeled from 1 to N , while the passive nodes from N+1 to P .
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We define the P×P inverse inductance matrix [L−1]jk, whose non-diagonal elements
are −1/Ljk, where Ljk is the value of the inductance connecting the nodes j and k
(in this case no inductance between two nodes means that the matrix element will
be zero). The diagonal matrix element will be the opposite of the sum of the values
in the corresponding row or column. We also introduce the P × P capacitance
matrix [C]rs whose non-diagonal elements are −Crs, where Crs is the capacitance
between node r and s. Finally, the diagonal elements of the capacitance matrix
are calculated taking the opposite of the sum of values in the corresponding row or
column.
We find use for these matrices defining the spanning tree of the capacitance sub-
network, which consists of the choice of a special node called "ground", and a set
of branches that connect the ground to every other nodes through capacitances,
without forming any loops. This means that there is only one path between the
ground and any other node (see Fig. 2.3 as an example of spanning tree of a
generic 2 modes circuit). In this way, we can assign a flux to each node by adding
the branch fluxes in the path between the ground and the node. We now define

Figure 2.3: Example of spanning tree for a generic circuit. The ground is indicated
by the letter g. Closure branches are dashed, and Φ̃ indicates a constant magnetic
flux threading the loop formed by the three inductors.

the node flux column vector with P − 1 components #»

ϕ . The components of ϕ⃗, the
node fluxes, are connected to the branch fluxes by the simple relations

Φb∈T = ϕn − ϕn′ (2.60)
Φb∈T̄ = ϕn − ϕn′ + Φb̃ (2.61)

with T the particular spanning tree branches and T̄ its complement of this set (n
and n′ label the nodes connected by the branch). Moreover, the generic static flux
threading a loop is indicated by Φ̃b.
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Now that we are able to express the branches flux in terms of flux nodes we can
write the potential and kinetic energies exploiting these new coordinates

Epot = 1
2

#»

ϕt[L−1] #»

ϕ +
∑︂

b

1
Lb

(ϕn − ϕn′)Φ̃b (2.62)

Ekin = 1
2

#»

ϕṫ [C]
#»

ϕ̇ (2.63)

Here, the matrix [L−1] is different from [L−1] because this time the rows and
columns that correspond to the ground node have been canceled, similarly, the
matrix [C] respect with [C]. The sum in the potential energy runs over all the
inductive branches, where n and n′ are the nodes connected by the branch b.
Now that we have an explicit form of the kinetic and potential energies, it is straight-
forward to define the Lagrangian L of the circuit as

L = Ekin − Epot (2.64)

= 1
2

#»

ϕṫ [C]
#»

ϕ̇ − 1
2

#»

ϕt[L−1] #»

ϕ −
∑︂

b

1
Lb

(ϕn − ϕn′)Φ̃b (2.65)

Just to give an example of how this formalism works we write the Lagrangian of
the circuit in Fig. 2.3

L(ϕa, ϕ̇a, ϕb, ϕ̇b) = C1ϕ̇
2
a

2 + C2ϕ̇
2
b

2 + C3(ϕ̇a − ϕ̇b)2

2 −
[︄
ϕ2

a

2L1
+ ϕ2

b

2L2
+ (ϕa − ϕb + Φ̃)2

2L3

]︄
(2.66)

where the degrees of freedom are the fluxes ϕa and ϕb at the nodes a and b. The
Lagrangian of Eq. (2.66) can be used in the Euler-Lagrange equations

d

dt

∂L
∂ϕ̇n

− ∂L
∂ϕn

= 0 (2.67)

to recover the equations of motion of the generalised coordinates

(C1 + C3) ϕ̈a +
(︃ 1
L1

+ 1
L3

)︃
ϕa − ϕb − Φ̃

L3
= 0 (2.68)

(C2 + C3) ϕ̈b +
(︃ 1
L2

+ 1
L3

)︃
ϕb − ϕa + Φ̃

L3
= 0 (2.69)

that is a system of coupled equations which can be solved to find out the dynamical
behaviour of the circuit.
Through the definition of the conjugate momenta to the node fluxes

qn = ∂L
∂ϕ̇n

(2.70)
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we can write the Hamiltonian of the circuit. The conjugate momenta have the
physical interpretation of the algebraic sum of the charges on the capacitances
connected to the node n, for this reason they are called node charges. Expressing the
kinetic energy of the circuit in terms of the qn variables, one finds the Hamiltonian

H = 1
2

#»

q̇t[C] #»
q̇ + 1

2
#»

ϕt[L−1] #»

ϕ +
∑︂

b

1
Lb

(ϕn − ϕn′)Φ̃b (2.71)

Again, referring to the circuit in Fig. 2.3 one can straightforwardly calculate the
Hamiltonian using Eq. (2.70) and (2.71), finding

H(ϕa, qa, ϕb, qb) = 1
C1C2 + C1C3 + C2C3

[︄
(C2 + C3)q2

a

2 + (C1 + C3)q2
b

2 + C3qaqb

]︄
+

+
[︄
ϕ2

a

2L1
+ ϕ2

b

2L2
+ (ϕa − ϕb + Φ̃)2

2L3

]︄
(2.72)

The first term of (2.72) expresses the electrostatic energy as a function of the node
charges while the second term is the magnetic energy as a function of the node
fluxes. In this last expression, the role of Φ̃ as an offset in the magnetic energy is
very clear. If the circuit is composed by linear inductors only the main effect of Φ̃
is the induce an offset in the DC current, on the contrary in the case of nonlinear
inductors like Josephson junctions it deeply changes the dynamics of the system.
At this point, just like we did in the previous section, the passage to the quan-
tum mechanical description is straightforward, since the classical variables can be
replaced by the corresponding operators

ϕ → ϕ̂

q → q̂

H → Ĥ

In this framework the commutator of the node fluxes and their conjugate node
charges is [︂

ϕ̂n, q̂n

]︂
= iℏ (2.73)

It is useful now taking as an operational example the most simple circuit than can
be though including a capacitor and an inductor, hence the simple LC resonator
shown in Fig. 2.4. Taking as the variables the flux in the inductor L and the charge
on the capacitor q we write the Hamiltonian

H = q2

2C + ϕ2

2L (2.74)
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Figure 2.4: Simple LC resonator.

Now, making use of the ladder operators, which satisfy the commutator[︂
â, â†

]︂
= 1 (2.75)

we rewrite in the second quantization framework the charge and flux operators

ϕ̂ =
√︄
ℏZ0

2 (â+ â†) (2.76)

q̂ =
√︄

ℏ
2Z0

(â+ â†) (2.77)

with Z0 =
√︂
L/C. The Hamiltonian operator then becomes

H = ℏ
2
√
LC

(â†â+ ââ†) = ℏω0(â†â+ 1
2) (2.78)

with ω0 =
√︂

1/LC the resonant frequency of the circuit. The form of the Hamil-
tonian (2.78) tells us that the LC resonator has an energy spectrum equal to a
harmonic oscillator with its characteristic frequency given by its inductance and
capacitance components. For this reason, its energy spectrum remarks the one al-
ready seen in Eq. (2.49) for the free field in a quantization box, but this time the
electric and magnetic energies are confined in circuit elements.

2.4 Linear amplifiers, quantum limits on added
noise and parametric amplification

The quantum mechanical framework developed in the previous section can be
used to describe the behaviour of electrical circuits at the single photon level, re-
gardless of the wavelength in use. By the way, this same approach has been ex-
ploited in the past years to study micro and nano-sized circuits, most of times
adopted in the microwave range, hence for frequencies roughly between 1 GHz and
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20 GHz, used to realise very low noise amplifiers [31, 4, 5].
These devices have generally the theoretical description of linear amplifiers, hence
objects that take an input mode and multiply it by a real constant, giving in output
simply an input field amplified g times. This condition can be expressed as

âout = gâin + L̂
† (2.79)

where âout and âin are the destruction operators of respectively the output and
input fields, and L̂ is the added-noise operator. The added noise operator is a
quantum-mechanical requirement for the commutation relations to hold so as not
to violate unitarity when imposing the transformation (2.79). Indeed it has been
shown that every linear amplifier has to add some noise only due to the fact that
an amplification is taking place [25, 9]. When dealing with phase-preserving linear
amplifiers, hence where the output field is not a function of the input signal phase,
the least amount of noise that can be added is half a quantum at the operating
frequency [10]. This can be shown calculating a bound on the second-moment added
noise. We start stating that for the canonical commutation relations to hold it must
be [︂

L,L†
]︂

= g2 − 1 (2.80)

which implies an uncertainty principle on the added noise operator
⟨︂
|∆L|2

⟩︂
= 1

2

⟨︃
∆L̂∆L̂† + ∆L̂†∆L̂

⟩︃
=
⟨︃⃓⃓⃓
L̂
⃓⃓⃓2⟩︃

−
⃓⃓⃓⟨︂
L̂
⟩︂⃓⃓⃓2

≥ 1
2
(︂
g2 − 1

)︂
(2.81)

where we used the definition of symmetric variance and used the notation |â| =
1/2(ââ† + â†â). The total output noise is then the sum of the amplified noise plus
the noise added by the amplifier itself

⟨︂
|∆âout|2

⟩︂
= g2

⟨︂
|∆âin|2

⟩︂
+
⟨︃⃓⃓⃓

∆L̂
⃓⃓⃓2⟩︃

(2.82)

An inferior bound on the output added noise can be calculated evaluating the
added noise of the input annihilation operator, which has a decomposition in terms
of quadratures x̂1 and x̂2 equal to

âin = 1√
2

(x̂1 + ix̂2) (2.83)

The symmetric variance of âin has hence an uncertainty principle
⟨︂
|∆âin|2

⟩︂
= 1

2
(︂⟨︂

∆x̂2
1

⟩︂
+
⟨︂
∆x̂2

2

⟩︂)︂
≥
⟨︂
∆x̂2

1

⟩︂1/2
·
⟨︂
∆x̂2

2

⟩︂1/2
≥ 1

2 (2.84)
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hence the lower bound is the half quantum of zero-point noise. With this in hand,
we can write a lower bound for Eq. (2.82), substituting in it Eq. (2.81) and (2.84)⟨︂

|∆âout|2
⟩︂

≥ g2 − 1
2 (2.85)

It is usually more useful and easily readable to define a new entity that quantifies
the added noise of an amplifier, namely the added-noise number A, which takes its
definition from ⟨︂

|∆âout|2
⟩︂

g2 =
⟨︂
|∆âin|2

⟩︂
+

⟨︃⃓⃓⃓
∆L̂

⃓⃓⃓2⟩︃
g2 =

⟨︂
|∆âin|2

⟩︂
+ A (2.86)

A is the second-moment added noise referred to the input field, and provides a
dimensionless measure of the amplifier’s performance. It is constrained as well,
indeed

A =

⟨︃⃓⃓⃓
∆L̂

⃓⃓⃓2⟩︃
g2 ≥ 1

2

(︄
1 − 1

g2

)︄
(2.87)

which tends to 1/2 for g → ∞, hence in the high gain limit. The added-noise
number is defined as the noise the amplifier adds to the signal, the noise being
referred to the input and given in units of number quanta. For high gains is lower
bounded to one half, just as expected by an ideal linear phase-preserving amplifier.
The simplest and most studied model of an ideal linear amplifier is represented by
a parametric amplifier [40, 13]. In a parametric amplifier the primary mode (the
one that we mean to amplify), described by the annihilation operator â, interacts
with a secondary or ancillary mode, described by the annihilation operator b̂ =
(ŷ1 + iŷ2)/

√
2. The Hamiltonian of the system is

Ĥ = ℏω
(︃
â†â+ b̂

†
b̂
)︃

+ iℏk
(︃
âb̂e2iωt − â†b̂

†
e−2iωt

)︃
(2.88)

which contains a free-field term and an interaction term, which describes the pair-
wise creation or annihilation of quanta in the two modes. The energy for the
creation of the two modes is supplied by a third pump tone at frequency 2ω, of
which the dynamics is not usually considered because excited in a high amplitude
state, that can in certain limits being considered classical. We see the effect of
the pump tone in the coupling strength parameter k, which grows together with
the pump amplitudes, and in the phase term e±2iωt, which oscillates at the pump
frequency. Moving in the interaction picture one can forget about the free field
term of Ĥ and write the simpler form

ĤI = iℏk
(︃
âb̂− â†b̂

†
)︃

(2.89)
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which can be used to write the evolution operator

Û I(t) = e−iĤI t/ℏ = e
kt

(︂
âb̂−â†b̂

†
)︂

≡ S(kt) (2.90)

having defined the two-mode squeezing operator S(kt). Now, working in the Heisen-
berg picture, it can be easily shown by performing the commutators that define the
time evolution of the annihilation operators (supposing no explicit time dependence
of the operators)

dâout

dt
=
[︂
Ĥ, âout

]︂ db̂out

dt
=
[︂
Ĥ, b̂out

]︂
(2.91)

that the input-output relation (2.79) becomes

âout = Ŝ
†
âinŜ

= âin cosh (kt) − b̂
†
in sinh (kt)

= gâin − b̂
†
in

√︂
g2 − 1 (2.92)

where we identified the gain g = cosh (kt) and L̂ = −b̂ sinh (kt) = b̂
√
g2 − 1. If

the input ancillary mode is initially in the vacuum state the added-noise number
saturates (2.87) and the parametric amplifier realises an ideal linear amplifier.

Usually, it is possible to practically realise parametric amplifiers through the
use of a nonlinear medium. This is particularly true for wavelength in the visible
spectrum [11], since nonlinear crystals are daily used in Spontaneous Parametric
Down Conversion (SPDC) experiments to generate entangled couples of photons
or in the seeded Parametric Down Conversion (PDC) to again, generate entangled
couples, but at a particular frequency, namely, the one of the seed. By the way, the
fact that all the formalism developed to this point is independent on the frequency
used stays, indeed the very same parametric processes are realised in the microwave
range using those nano and micro-sized circuits we were talking about at the be-
ginning of this section. The question is, where can we take the nonlinearity needed
for a parametric process in the microwave range? Dealing with reactive circuit
elements the answer quite unique, hence with Josephson junctions. A Josephson
junction [2] is a weak link between two superconducting leads, and can be realised in
a multitude of ways. The most common one, when speaking about superconducting
integrated electronics, is a sandwich of two superconducting layers separated by a
very thin layer of dielectric material. One of the electrical model for a Josephson
junction is a parallel of a nonlinear inductor, a capacitor and a resistor, in the so
called RCSJ model, which stands for "Resistively Capacitance Shunted Junction"
model. The capacitance attributed to the junction comes from the parallel plate
capacitor-like structure that forms the junction itself, where two conductive plates
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Figure 2.5: (Left) Sketch of a weak link, (Right) RCSJ circuit model of a Josephson
junction.

are separated by an insulating layer. Instead, the resistor accounts for the tunnel-
ing of quasi-particles from one superconducting lead to the other, and for very low
temperatures and good quality junctions can often be neglected when describing
most electromagnetic effects. The nonlinear inductance, that is the most relevant
peculiarity of the Josephson junction, takes its origin from a very fundamental fact,
that is the discreteness of the Cooper pair charge that tunnels across the thin in-
sulating barrier.
The Josephson element can be described in terms of the generalised flux variable
defined in (2.54)

ΦJ(t) =
∫︂ t

−∞
vJ(t′)dt′ (2.93)

where vJ is the voltage across the junction. If we call i(t) the current flowing through
the Josephson element, we can write the current-phase relation of a Josephson
junction that links the current and the flux (equivalently the phase) to the current

i(t) = Ic sin
(︃2e
ℏ

ΦJ(t)
)︃

(2.94)

where Ic is the maximum current that the junction can support without dissipation.
The scale of the nonlinearity is set by the flux quantum Φ0 = ℏ/2e, that depends
on the Cooper pair charge 2e, microscopic source of the nonlinearity. As mentioned
before, the Josephson junction acts like a nonlinear inductor [2] of inductance

LJ(i) = ± ℏ
2eI0

1√︂
1 − (i/I0)2

(2.95)

of which the value depends on the current i flowing through it (Fig. 2.6). At zero
bias the Josephson junction behaves as a nonlinear inductor of zero current value
equal to L0 = ℏ/2eIc. Using Equation (2.94) one can obtain the relation for the
Josephson inductance as a function of ΦJ

LJ(ΦJ) = ℏ
2eI0

1
cos (ΦJ/Φ0)

(2.96)

29



Circuit Quantum Electrodynamics and Linear Amplifiers

-0.4 -0.2 0.0 0.2 0.4

-5

0

5

ΦJ/Φ0

L
J
/L
J0

Figure 2.6: Plot of the Josephson inductance as a function of the generalised flux
across the junction.
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Chapter 3

Josephson Traveling Wave
Parametric Amplifier embedding
rf-SQUIDs

3.1 Quantum model for a Josephson Traveling
Wave Parametric Amplifier embedding rf-SQUIDs

Superconducting electronics has gained in the last two decades a strong interest
coming from the quantum computation and information community. Transmission
lines realised as quasi-1D metamaterials with embedded Josephson junctions enable
strong photon-photon on-chip interactions [30], that realise quantum optics phe-
nomena in the microwave range. As a result, these technologies allow the control
and tunability of wave mixing processes, that can be used to engineer non-classical
light and provide quantum limited amplification of single-photon level signals. The
word "metamaterial" is used in this frame to point out the fact that these devices
realise artificially some fundamental features that are typical of natural compounds
in other wavelength ranges. As an example, it has been shown that a weak sig-
nal travelling in a metamaterial can interact with a strong pump tone, activating
parametric amplification [14]. JTWPAs are a the class of devices where these
phenomena are fostered and they represents the solid state analogous of optical
nonlinear crystals [51]. In this framework, different experiments showed that JTW-
PAs can act as parametric amplifiers, almost reaching the quantum limit of added
noise [36] on several GHz wide bandwidth.
JTWPAs promise to be appropriate devices for single quantum amplification in the
microwave regime, moreover showing valuable multiplexing capabilities due to their
wide bandwidth. Indeed, it has been shown how the Four-Wave Mixing (4WM)
induced in all the Kerr-like media allows amplifying very tiny signals over several
GHz bandwidths with a nearly quantum-limited noise. Nevertheless, recent works
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[64, 65] showed that enabling a Three-Wave Mixing (3WM) interaction, through the
introduction of a quadratic nonlinearity in the medium, could provide experimental
benefits for what concerns feasibility and integration capabilities. In particular, a
three-wave mixer generally requires a lower input pump power, easier output filter-
ing and shows a higher dynamic range.
In this chapter we develop a quantum model for a JTWPA covering both the 3WM
and 4WM regimes. Our theory exploits c-QED techniques to model a JTWPA
made up of a chain of Radio Frequency Superconducting QUantum Interference
Devices (rf-SQUIDs) capacitively shunted to ground. The proposed layout can be
biased by a DC current or an externally applied magnetic field to activate 3WM or
4WM of the microwave traveling modes.

3.1.1 Quantization of a Josephson Traveling Wave Para-
metric Amplifier

a

Φn Φn+1

Figure 3.1: Electrical schematic that represents a repetition of three elementary
cells of size a in the JTWPA. Each cell consists of a superconducting loop containing
a geometrical inductance Lg, a Josephson junction, with an associated capacitance
CJ and inductance LJ, and a shunt capacitor Cg. The loops can be biased through
both an external constant in space and time magnetic field B or a DC current IDC
flowing in the signal line. ∆Φ̂ is the phase difference across the nodes of a cell,
while V̂ Cg is the voltage drop across the coupling capacitor.

Our JTWPA can be modeled as a TL of which the signal line is composed
of an array of N rf-SQUIDs [64]. As represented in Fig. 3.1, each elementary
cell is composed by a superconducting loop containing a Josephson junction (with
an associated capacitance CJ and an associated inductance LJ) and a geometrical
inductance Lg. Furthermore, each loop is coupled to the ground line through a

32



3.1 – Quantum model for a Josephson Traveling Wave Parametric Amplifier embedding rf-SQUIDs

capacitor Cg.
Being superconducting, the system can be considered non-dissipative and, for the
sake of simplicity, all the elementary cells are considered identical. We define a as
the physical length of the elementary cell along the z-direction (i.e., the propagating
direction of the signals), considering a single elementary cell as the cluster composed
by an rf-SQUID plus a ground capacitor.
In presence of an electromagnetic field, each cell stores a certain amount of energy
that can be expressed as a function of the conjugate coordinates Φ̂ and Q̂, the
generalized magnetic flux and charge at a certain node respectively, which obey the
commutation relation [Φ̂, Q̂] = iℏ. The generalised magnetic flux at a certain node
can be found using the method of nodes treated in Section 2.3, that this time can
be restricted to just a single cell of the TL instead of considering the whole circuit.
The nodes taken into account for the spanning tree are the ones indicated in Fig.
3.1 by the presence of the generalised flux Φ̂n and Φ̂n+1, that will be our generalised
coordinates. Under the assumption that the differences between the Φ̂ (and Q̂) of
a couple of consecutive nodes are small enough, these quantities can be considered
as functions of both time and space (i.e., Φ̂(z, t) and Q̂(z, t)). We then define the
flux difference operator between two subsequent nodes as [23]

∆Φ̂(z, t) = Φ̂(z + a, t) − Φ̂(z, t) (3.1)

The Hamiltonian of the system can be calculated as the total amount of energy in
the TL, which is found as the sum of the energy stored in each of its elements [52].
Thus, being the system under analysis a repetition of identical elementary units,
the total energy stored in the whole medium can be simply expressed as a sum of
the energy stored in all the cells.
The circuit elements that compose the circuit in Fig. 3.1 are discrete components
(the lumped element approach is considered to be valid), so every cell has its
own ground capacitor, Josephson capacitor, geometrical inductance and Josephson
junction.
The sum that defines the Hamiltonian hence runs over the index n which labels all
the cells.

Ĥ =
N∑︂

n=0
Ĥn (3.2a)

=
N∑︂

n=0

(︂
ĤLg + ĤLj + ĤCj + ĤCg

)︂
(3.2b)

where in the right-hand side of equation (3.2b) one can recognize respectively the
energy associated to the geometrical inductance Lg, the Josephson inductance LJ,
the Josephson capacitance CJ and the ground capacitance Cg and N is the number
of unit cells composing the transmission line. Each term in (3.2b) can be expressed
as a function of Φ̂(z, t) and Q̂(z, t) just as previously shown in Sec. 2.3. Thus,
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defining I(t) the current flowing through a certain element and V (t) the voltage
drop across it, the energy stored in the electrical component at a certain time t can
be expressed as the time-integrated power P (t) = V (t) · I(t):

U(t) =
∫︂ t

t0
P (t′)dt′ =

∫︂ t

t0
I(t′) · V (t′)dt′ (3.3)

The current flowing through a generic inductance L induces a magnetic flux Φ(t) =
LI(t), and can be related to the voltage drop across the element by the relation

V (t) = L
dI(t)
dt

(3.4)

Hence we can express the energy stored in Lg as

HLg(t) =
∫︂ t

t0
ILg(t′) · VLg(t′)dt′ =

∫︂ t

t0
ILg(t′) · Lg

dILg

dt′
dt′ =

= Lg

∫︂ ILg(t)ILg

ILg (t0)
dILg = Lg

2 I2
Lg

⃓⃓⃓⃓
⃓⃓
IL(t)

IL(t0)

= Lg

2 I2
Lg(t) = Lg

2

(︄
∆Φ(t)
Lg

)︄2

=

= (∆Φ(t))2

2Lg
(3.5)

having assumed ILg(t0) = 0.
Using now the relation between the magnetic-flux and voltage drop

V (t) = dΦ(t)
dt

(3.6)

one can compute the the energy stored in the Josephson inductance LJ, with critical
current Ic, as

HLJ(t) =
∫︂ t

t0
ILJ(t′) · VLJ(t′)dt′ =

∫︂ t

t0
Ic sin

(︄
∆Φ(t′)
φ0

)︄
· d∆Φ(t′)

dt′
dt′ =

= Ic

∫︂ ∆Φ(t)

∆Φ(t0)
sin

(︄
∆Φ
φ0

)︄
d∆Φ = −φ0Ic cos

(︄
∆Φ
φ0

)︄⃓⃓⃓⃓
⃓⃓
∆Φ(t)

∆Φ(t0)

=

= φ0Ic

(︄
1 − cos

(︄
∆Φ(t)
φ0

)︄)︄
(3.7)

having assumed ∆Φ(t0) = 0 and φ0 = Φ0/2π the reduced flux quantum.
Using now the relation between the current flowing through a capacitance C and
the voltage drop V across its terminals

I(t) = C
dV (t)
dt

(3.8)
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the energy stored in the ground capacitance Cg can be expressed as

HCg(t) =
∫︂ t

t0
ICg(t′) · VCg(t′)dt′ =

∫︂ t

t0
Cg
dVCg(t′)
dt′

· VCg(t′)dt′ =

= Cg

∫︂ VCg (t)

VCg (t0)
VCgdVCg = Cg

2 V 2
Cg

⃓⃓⃓⃓
⃓⃓
VCg(t)

VCg(t0)

= Cg

2 V 2
Cg(t) (3.9)

having assumed VCg(t0) = 0.
Eq. (3.9) can be recast using the constitutive equation of a linear capacitor C =
Q/V to switch between voltage and charge variable, hence

HCg(t) = Cg

2 V 2
Cg(t) = 1

2Cg
Q2

Cg (3.10)

Lastly, exploiting relations (3.6) and (3.8), the energy stored in CJ can be expressed
as

HCJ(t) =
∫︂ t

t0
ICJ(t′) · VCJ(t′)dt′ =

∫︂ t

t0
CJ
dVCJ(t′)
dt′

· VCJ(t′)dt′ =

= CJ

∫︂ t

t0

d

dt′

[︄
d∆Φ(t′)
dt′

]︄
· d∆Φ(t′)

dt′
dt′ = CJ

2

∫︂ t

t0

d

dt′

⎡⎣(︄d∆Φ(t′)
dt′

)︄2
⎤⎦ dt′ =

= CJ

2

(︄
d∆Φ(t)
dt

)︄2

(3.11)

being ∆Φ(t0) = 0.
Putting equations (3.5), (3.7),(3.9) and (3.11) into (3.2b) one obtains for the Hamil-
tonian operator

Ĥ =
N∑︂

n=0

⎛⎜⎝ 1
2Lg

∆Φ̂(an, t)2 + φ0Ic

⎛⎝1 − cos
⎛⎝∆Φ̂(an, t)

φ0

⎞⎠⎞⎠+ CJ

2

⎛⎝∂∆Φ̂(an, t)
∂t

⎞⎠2

+ 1
2Cg

Q̂(an, t)2

⎞⎟⎠
(3.12)

As can be seen, the flux difference function ∆Φ̂(z, t), defined for every z, is calcu-
lated at discrete points in correspondence to the multiple integers an of the unit
cell length a. This is done because we still consider the flux difference function
calculated at the nodes between the unit cells, hence in discrete point.
In order to express Ĥ in a more handy form, we go from a discrete sum to an ap-
proximated continuous sum substituting the summation sign with an integral [34]
and adding the scale factor a, that is considered to be small with respect to the
electromagnetic wavelengths in use. The integration upper limit is the length of
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the amplifier l = aN , where N is the number of unit cells.

Ĥ =
∫︂ l

0

⎛⎜⎝ 1
2Lg

∆Φ̂(z, t)2 + φ0Ic

⎛⎝1 − cos
⎛⎝∆Φ̂(z, t)

φ0

⎞⎠⎞⎠+ CJ

2

⎛⎝∂∆Φ̂(z, t)
∂t

⎞⎠2

+ 1
2Cg

Q̂(z, t)2

⎞⎟⎠ dz

a

(3.13)

The integral can be considered as an approximation of the discrete sum in Eq.
(3.12), where the flux difference across two subsequent cells is to be considered due
to the presence of a finite number of Josephson junctions, for which the energy is
defined in relation with the flux difference across them.
The presence of an external magnetic field or a DC current through the signal
line induces a constant offset in the flux difference across a cell, just like the Φ̃
component introduced in Sec. 2.3. This means that ∆Φ̂(z, t) can be considered
as the sum of two components, a constant one ∆ΦDC and a time-dependent one
δΦ̂(z, t)

∆Φ̂(z, t) = ∆ΦDC + δΦ̂(z, t) (3.14)
We choose now to switch from the first to the second quantization framework, thus
expressing Ĥ in terms of ladder operators. We start doing so by writing the voltage
drop on Cg using a normal mode decomposition, assuming that sinusoidal waves
are passing through the line [55, 26]. So, by proceeding the same way we did for
Eq. (2.45) we write

V̂ Cg(z, t) =
∑︂

n

⌜⃓⃓⎷ ℏωn

2CgN

(︂
âne

i(knz−ωnt) + H.c.
)︂

(3.15)

where ωn and kn are the angular frequency and wavenumber of the n-th mode
while ân is its annihilation operator of the n-th mode. In this view, positive in-
dexes denote progressive waves (kn > 0 and ωn > 0), while negative indexes denote
regressive waves (k−n = −kn < 0 and ω−n = ωn).
The link between the voltage drop and the current passing through a cell is straight-
forwardly found recalling the Telegrapher’s equations derived in (2.9), which exploit
the inductance of the cell for the n-th mode Ln

∂Vn

∂z
= −Ln

a

∂In

∂t
(3.16)

The AC current passing through the unit cell is then

Î(z, t) =
∑︂

n

În(z, t) =
∑︂

n

sgn(n)
√︄

ℏωn

2LnN

(︂
âne

i(knz−ωnt) + â†ne
−i(knz−ωnt)

)︂
(3.17)

Ln can be explicitly calculated as the parallel between the effective inductance
Leff,n, which is composed by the the geometrical inductance Lg modified by the
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capacitive effect of CJ and the nonlinear Josephson inductance LJ.
We can calculate Leff,n by keeping in mind that the impedance of an inductor L for
the mode n is ZL = jωnL, while the impedance of a capacitor C for the same mode
is ZC = 1/jωnC. We hence define a new inductance Leff,n with an impedance equal
to the impedance of the parallel formed by Lg and CJ

1
ZLeff ,n

= 1
ZLg

+ 1
ZCJ

1
jωnLeff,n

= 1
jωnLg

+ jωCJ

1
Leff,n

= 1
Lg

− ω2
nCJ = 1 − ω2

nLgCJ

Lg

Leff,n = Lg

1 − ω2
nLgCJ

≡ ΛnLg (3.18)

where the dispersion coefficient of the n-th node Λn = 1/(1 − ω2
nLgCJ) has been

defined.
The equivalent inductance of a Josephson junction has been already discussed at
the end of Sec. 2.4 and is

LJ(I) = LJ,0
1√︂

1 − (I/Ic)2
(3.19)

Now promoting the scalar quantities to operators and switching from the current
to the flux variable using the Josephson current-flux relation, we find

LJ(∆Φ) = φ0

Ic

1
cos (∆Φ/φ0)

≡ LJ0

1
cos (∆Φ/φ0)

(3.20)

with LJ0 = φ0/Ic. Using equations (3.18) and (3.20) the inductance of a unit cell
for the n-th mode L̂n is

1
Ln

= 1
LJ

+ 1
Leff,n

(3.21)

Hence

Ln = ΛnLg

1 + Λn
Lg
LJ0

cos (∆Φ/φ0)
(3.22)

We can finally calculate the time-dependent component of equation (3.14), that can
be found by exploiting the constitutive equation for a linear inductor together with
a mode decomposition for the AC current through the cell In and the inductance
Ln for the corresponding mode as

δΦ =
∑︂

n

LnIn (3.23)
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It follows that, by replacing the classical variables by the corresponding operators
and using equations (3.14), (3.17) and (3.22) into (3.23), the time-dependent flux
operator is

δΦ̂ =
∑︂

n

sgn(n)
⌜⃓⃓⎷ ℏωn

2L̂nN
L̂n

(︂
âne

i(knz−ωnt) + â†ne
−i(knz−ωnt)

)︂
=

=
∑︂

n

sgn(n)
√︄
ℏωn

2N

√︂
L̂n

(︂
âne

i(knz−ωnt) + â†ne
−i(knz−ωnt)

)︂
=

=
∑︂

n

sgn(n)
√︄
ℏωn

2N
√︂

ΛnLg

⎛⎝1 + Λn
Lg

LJ0

cos ∆ΦDC + δΦ̂
φ0

⎞⎠−1/2

·

·
(︂
âne

i(knz−ωnt) + â†ne
−i(knz−ωnt)

)︂
=

=
∑︂

n

⎛⎝1 + Λn
Lg

LJ0

cos ∆ΦDC + δΦ̂
φ0

⎞⎠−1/2

δΦ̂(0)
n

where we have identified the zero order AC flux component on the n-th mode δΦ̂(0)
n

δΦ̂(0)
n ≡ sgn(n)

√︄
ℏωn

2N
√︂

ΛnLg
(︂
âne

i(knz−ωnt) + â†ne
−i(knz−ωnt)

)︂
=

= cn

(︂
âne

i(knz−ωnt) + â†ne
−i(knz−ωnt)

)︂
(3.24)

with

cn = sgn(n)
√︄
ℏωn

2N
√︂
LgΛn

Equation (3.24) is an implicit relation for the flux operator δΦ̂, which can be solved
at zero order by the substitution δΦ̂ → δΦ̂(0) in the right-hand side, so that we get

δΦ̂ =
∑︂

n

⎡⎢⎣
⎛⎝1 + Λn

Lg

LJ0

cos ∆ΦDC + δΦ̂(0)

φ0

⎞⎠−1/2

δΦ̂(0)
n

⎤⎥⎦ (3.25)

To reach an handy form of δΦ̂ it is necessary to Taylor expand the square root of
Eq. (3.25) for small δΦ̂(0) around the working DC bias point ∆ΦDC , obtaining

δΦ̂ =
∑︂

n

[︄
q0,n + q1,n

(︃
δΦ̂(0)

)︃
+ q2,n

(︃
δΦ̂(0)

)︃2
+ q3,n

(︃
δΦ̂(0)

)︃3
+O

(︃
δΦ̂(0)

)︃4
]︄
δΦ̂(0)

n

(3.26)
We stress that the terms q0,n, q1,n, q2,n and q3,n are coefficients of a Taylor expansion
and result to be functions of the bias condition ∆ΦDC and of the circuit parame-
ters. It’s worth noting here how the lowest perturbative order approach adopted in
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Eq. (3.25) takes into account interactions of modes at the first order, that means
a single multimodes interaction, while the power expansion truncation up to the
third order in Eq. (3.26) limits our model to the interaction of a single mode (δΦ̂(0)

n )
with up to three modes. The maximum order of expansion was chosen to take into
account scattering events involving at most 4 photons. This procedure provides a
valid approximation for the nonlinear time-dependent flux operator δΦ̂ that can be
substituted into equation (3.13) to obtain the Hamiltonian of the system in terms
of ladder operators.
In order to plug Eq. (3.26) into (3.13) it is convenient to express the latter as a
function of δΦ̂. We then start recasting the cosine into the Josephson energy term
use the trigonometric addition formula

cos
⎛⎝∆Φ̂
φ0

⎞⎠ = cos
⎛⎝∆ΦDC

φ0
+ δΦ̂
φ0

⎞⎠ =

= cos
(︄

∆ΦDC

φ0

)︄
cos

⎛⎝δΦ̂
φ0

⎞⎠− sin
(︄

∆ΦDC

φ0

)︄
sin

⎛⎝δΦ̂
φ0

⎞⎠ =

= p1 cos
⎛⎝δΦ̂
φ0

⎞⎠− p2 sin
⎛⎝δΦ̂
φ0

⎞⎠ (3.27)

where we have defined

p1 = cos
(︄

∆ΦDC

φ0

)︄

p2 = sin
(︄

∆ΦDC

φ0

)︄

We can now perform a Maclaurin expansion truncated at the fourth order of equa-
tion (3.27)

cos
⎛⎝∆Φ̂
φ0

⎞⎠ ≈ p1

⎛⎜⎝1 − 1
2

⎛⎝δΦ̂
φ0

⎞⎠2

+ 1
24

⎛⎝δΦ̂
φ0

⎞⎠4
⎞⎟⎠− p2

⎛⎜⎝
⎛⎝δΦ̂
φ0

⎞⎠− 1
6

⎛⎝δΦ̂
φ0

⎞⎠3
⎞⎟⎠ =

= p1 − p2

⎛⎝δΦ̂
φ0

⎞⎠− p1

2

⎛⎝δΦ̂
φ0

⎞⎠2

+ p2

6

⎛⎝δΦ̂
φ0

⎞⎠3

+ p1

24

⎛⎝δΦ̂
φ0

⎞⎠4

(3.28)
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and substitute into Eq. (3.13) obtaining

Ĥ = 1
2a

∫︂
lq
dz

⎡⎣2Icφ0

⎛⎜⎝1 − p1 + p2

⎛⎝δΦ̂
φ0

⎞⎠+ p1

2

⎛⎝δΦ̂
φ0

⎞⎠2

− p2

6

⎛⎝δΦ̂
φ0

⎞⎠3

+ p1

24

⎛⎝δΦ̂
φ0

⎞⎠4
⎞⎟⎠+

+ 1
Lg

(︂
∆ΦDC + δΦ̂

)︂2
+ CJ

(︄
∂

∂t

[︂
∆ΦDC + δΦ̂

]︂)︄2

+ CgV̂
2
Cg

⎤⎦ =

= 1
2a

∫︂
lq
dz

⎡⎣2Icφ0 (1 − p1) + ∆Φ2
DC

Lg
+
(︄

2Icp2 + 2∆ΦDC

Lg

)︄(︂
δΦ̂
)︂

+

+
(︄
Icp1

φ0
+ 1
Lg

)︄(︂
δΦ̂
)︂2

− Icp2

3φ2
0

(︂
δΦ̂
)︂3

+ CJ

(︄
∂

∂t

[︂
δΦ̂
]︂)︄2

+ CgV̂
2
Cg

⎤⎦
(3.29)

We proceed by solving the spatial integral of (3.29), substituting first (3.15) and
(3.26). To simplify this process, it is convenient to exploit a different notation.
We redefine δΦ̂(0) in terms of the curly brackets operator (see appendix B) as

δΦ̂(0) =
∑︂

n

δΦ̂(0)
n =

∑︂
n

cn{â+ â†}ne
i(∆knz−∆ωnt) (3.30)

This choice will make all the equations much more compact and easily readable. It
is also useful to rewrite (3.29) as a sum of several pieces

Ĥ = h0 + ĤI + ĤII + ĤIII + ĤIV + ĤV (3.31)

where the operators have been divided respect to their power

h0 = 1
2a

∫︂
lq
dz

[︄
2Icφ0 (1 − p1) + ∆Φ2

DC

Lg

]︄

ĤI = 1
2a

∫︂
lq
dz
[︂
(2Icp2)

(︂
δΦ̂
)︂]︂

ĤII = 1
2a

∫︂
lq
dz

[︄(︄
Icp1

φ0
+ 1
Lg

)︄(︂
δΦ̂
)︂2

+ CgV̂
2
Cg

]︄

ĤIII = − 1
2a

∫︂
lq
dz

[︄
Icp2

3φ2
0

(︂
δΦ̂
)︂3
]︄

ĤIV = 1
2a

∫︂
lq
dz

[︄
Icp1

12φ3
0

(︂
δΦ̂
)︂4
]︄

ĤV = 1
2a

∫︂
lq
dz

⎡⎣CJ

(︄
∂

∂t

[︂
δΦ̂
]︂)︄2

⎤⎦
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In Appendix C every ĤX is separately calculated in terms of ladder operators and
the integration bounds are chosen to be asymmetric, hence

∫︁
lq

=
∫︁ aN

0 . The creation
and annihilation operators are considered to be slowly varying with respect to space,
hence have been treated as constants during the integration. This situation is phys-
ically achieved when there is not a stiff variation in the circuit parameters between
close cells. The only space dependent quantity is the exponential factor into (3.30).
At the end of the calculation of ĤI in Appendix C the term proportional to 2∆ΦDC

Lg

is subtracted by the Hamiltonian since it is an offset in the magnetic energy caused
by the presence of Lg, that unphysically linearly raises the overall energy of the
system breaking the periodicity.
Summing up all the expressions found for h0, ĤI , ĤII , ĤIII , ĤIV and ĤV , gather-
ing the terms accordingly to the number of indexes, we derive the complete Hamilto-
nian for the JTWPA (refere to Appendix B for further details on the mathematical
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notation used): 1

Ĥ = N

[︄
Icφ0 (1 − p1) + ∆Φ2

DC

2Lg

]︄
+

−
∑︂

n

⎡⎣(︃Icp2

a

)︃
q0,n

⎤⎦cn

{︂
â+ â†

}︂
n

i

∆kn

(︂
ei∆knaN − 1

)︂
e−i∆ωnt+

−
∑︂
n,l

⎡⎣(︃Icp2

a

)︃
q1,n +

[︄
1
2a

(︄
Icp1

φ0
+ 1
Lg

)︄
+ CJ

2a∆ωn∆ωl

]︄
q0,nq0,l + ℏ

4aN

√
ωnωl

cncl

⎤⎦·

· cncl

{︂
â+ â†

}︂
n,l

i

∆kn,l

(︂
ei∆kn,laN − 1

)︂
e−i∆ωn,lt+

−
∑︂

n,l,m

⎡⎣(︃Icp2

a

)︃
q2,n + 1

a

(︄
Icp1

φ0
+ 1
Lg

)︄
q0,nq1,l − Icp2

6aφ2
0
q0,nq0,lq0,m+

+ CJ

2a [q0,nq1,l ∆ωn∆ωm,l + q1,nq0,l ∆ωl∆ωn,m]
⎤⎦·

· cnclcm

{︂
â+ â†

}︂
n,l,m

i

∆kn,l,m

(︂
ei∆kn,l,maN − 1

)︂
e−i∆ωn,l,mt+

−
∑︂

n,l,m,s

⎡⎣(︃Icp2

a

)︃
q3,n + 1

2a

(︄
Icp1

φ0
+ 1
Lg

)︄
(2q0,nq2,l + q1,nq1,l) +

− Icp2

2aφ2
0
q1,nq0,lq0,m − Icp1

24aφ3
0
q0,nq0,lq0,mq0,s+

+ CJ

2a [q1,nq1,l (∆ωm∆ωs,l + ∆ωn∆ωm,l) + q2,nq0,l ∆ωl∆ω2m,n + q0,nq2,l ∆ωn∆ω2m,l]
⎤⎦·

· cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

i

∆kn,l,m,s

(︂
ei∆kn,l,m,saN − 1

)︂
e−i∆ωn,l,m,st

(3.32)

An important remark should be made about equation (3.32), namely that it doesn’t
fulfill a priori the energy conservation required by the three and four photons pro-
cess that it describes. In other terms, this Hamiltonian operator also describes
non-energy conservative interaction between modes.
To clarify this concept, we can analyze some of the terms contained in this operator.
All the terms deriving from the sum over a single-index will be proportional either
to a single annihilation operator or a creation operator. Thus, these terms describe
events in which a single photon is destroyed or created, not conserving energy in
the scattering.

1In this expression we exploit the equivalence 2∆ωm = 2(±ωm) = ±(2ωm) = ∆ω2m.
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Some of the terms deriving from the sum over the double-index will be proportional
to a combination of ladder operators with the form ânâl or â†nâ

†
l . Once again all

of these terms don’t fulfill the energy conservation law because they represent the
creation or annihilation of two photons.
Regarding the terms proportional to combination of ladder operators of the form
â†nâl or ânâ

†
l they will be physically acceptable just in the case of n = l (i.e., in

the case in which a photon of energy ℏωn is created (destroyed) and a photon with
energy ℏωl = ℏωn is destroyed (created)).
More in general, if we want a Hamiltonian operator that describes physical scat-
terings we have to discard in Eq. (3.32) all the combinations of ladder operators
that don’t respect the energy conservation law, and for those particular combi-
nations that fulfill this requirement, it will always be ∆ωn,l = 0, ∆ωn,l,m = 0
or ∆ωn,l,m,s = 0. Furthermore, if we limit from this point our analysis just to the
combinations of progressive modes (i.e., the ones associated to positive indexes) the
imposition of the energy conservation law will automatically select a set of terms
for which, supposing a small chromatic dispersion, will be true that ∆kaN ≪ 1.
Under this assumption

−
i
(︂
ei∆kaN − 1

)︂
∆k ≈ −i (1 + i∆kaN − 1)

∆k = aN where ∆k = ∆kn,l,∆kn,l,m or ∆kn,l,m,s

(3.33)
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With these considerations, the Hamiltonian can be rewritten as

Ĥ = N

[︄
Icφ0

(︄
1 − cos

(︄
∆ΦDC

φ0

)︄)︄
+ ∆Φ2

DC

2Lg

]︄
+

+
∑︂

n

ℏωn

2

(︃
â†nân + 1

2

)︃
+

+
∑︂

n

N

⎡⎣ (Icp2) q1,n +
(︄
Icp1

φ0
+ 1
Lg

+ CJ∆ω2
n

)︄
q2

0,n

2

⎤⎦2c2
n

(︃
â†nân + 1

2

)︃
+

+
∑︂

n,l,m

N

⎡⎣ (Icp2) q2,n +
(︄
Icp1

φ0
+ 1
Lg

)︄
q0,nq1,l − Icp2

6φ2
0
q0,nq0,lq0,m+

+ CJ

2 [q0,nq1,l ∆ωn∆ωm,l + q1,nq0,l ∆ωl∆ωn,m]
⎤⎦cnclcm

{︂
â+ â†

}︂
n,l,m

δ∆ωn,l,m, 0+

+
∑︂

n,l,m,s

N

⎡⎣ (Icp2) q3,n + 1
2

(︄
Icp1

φ0
+ 1
Lg

)︄
(2q0,nq2,l + q1,nq1,l) +

− Icp2

2φ2
0
q1,nq0,lq0,m − Icp1

24φ3
0
q0,nq0,lq0,mq0,s+

+ CJ

2 [q1,nq1,l (∆ωm∆ωs,l + ∆ωn∆ωm,l) + q2,nq0,l ∆ωl∆ω2m,n + q0,nq2,l ∆ωn∆ω2m,l]
⎤⎦·

· cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

δ∆ωn,l,m,s, 0 (3.34)

where δ∆ωn,l,m, 0 and δ∆ωn,l,m,s, 0 are Kronecker deltas, that are 0 for all the non
energy-conservative combinations of ladder operators.
Therefore, Eq. (3.34) is the complete Hamiltonian for a JTWPA modelling all the
energy-conservative interactions up to four photons arising from the nonlinearity
given by the rf-SQUIDs embedded in it.
We can rewrite Equation (3.34) in a more compact and handy form using the curly
bracket operators

Ĥ = h0 + Ĥ1 + Ĥ3WM + Ĥ4WM =

= h0 +
∑︂

n

ℏχ(n)
1

(︃
â†nân + 1

2

)︃
+

+
∑︂

n,l,m

ℏχ(n,l,m)
3

{︂
â+ â†

}︂
n,l,m

δ∆ωn,l,m, 0+

+
∑︂

n,l,m,s

ℏχ(n,l,m,s)
4

{︂
â+ â†

}︂
n,l,m,s

δ∆ωn,l,m,s, 0 (3.35)

where we defined some important quantities that characterize the Hamiltonian.
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h0 is the energy stored into the medium due to the external bias conditions

h0 = N

[︄
Icφ0

(︄
1 − cos

(︄
∆ΦDC

φ0

)︄)︄
+ ∆Φ2

DC

2Lg

]︄
(3.36)

one can indeed notice that this piece of the Hamiltonian goes to zero if one switches
off the external bias, hence brings to zero ∆ΦDC .
Then we introduce the term representing the energy deriving from the propagation
of a photon of energy ℏωn in the nonlinear medium, or the non-interacting-modes
Hamiltonian constant of the n-th mode

χ
(n)
1 = ωn

2 + 2NLgΛn
ωn

2N

[︄
(Icp2) q1,n +

(︄
Icp1

φ0
+ 1
Lg

+ CJ∆ω2
n

)︄
q2

0,n

2

]︄
=

= ωn

2

(︄
1 + 2LgΛn

[︄
(Icp2) q1,n +

(︄
Icp1

φ0
+ 1
Lg

+ CJ∆ω2
n

)︄
q2

0,n

2

]︄)︄
(3.37)

The term containing the sum over three indexes leads to the identification of the
3WM coupling constant of ordered modes (n, l,m), describing all the physical scat-
tering processes involving three photons (e.g. Parametric Down Conversion, Second
Harmonic Generation, etc.)

χ
(n,l,m)
3 = N

ℏ

⎡⎣ (Icp2) q2,n +
(︄
Icp1

φ0
+ 1
Lg

)︄
q0,nq1,l − Icp2

6φ2
0
q0,nq0,lq0,m+

+ CJ

2 [q0,nq1,l ∆ωn∆ωm,l + q1,nq0,l ∆ωl∆ωn,m]
⎤⎦cnclcm

=
√︄
ℏL3

g

8N

√︂
ωnΛnωlΛlωmΛm

⎡⎣ (Icp2) q2,n +
(︄
Icp1

φ0
+ 1
Lg

)︄
q0,nq1,l+

− Icp2

6φ2
0
q0,nq0,lq0,m + CJ

2 [q0,nq1,l ∆ωn∆ωm,l + q1,nq0,l ∆ωl∆ωn,m]
⎤⎦

(3.38)

While the term containing the sum over four indexes leads to the definition of the
4WM coupling constant of ordered modes (n, l,m, s), describing all the physical
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scattering processes involving four photons

χ
(n,l,m,s)
4 = N

ℏ

⎡⎣ (Icp2) q3,n + 1
2

(︄
Icp1

φ0
+ 1
Lg

)︄
(2q0,nq2,l + q1,nq1,l) +

− Icp2

2φ2
0
q1,nq0,lq0,m − Icp1

24φ3
0
q0,nq0,lq0,mq0,s+

+ CJ

2 [q1,nq1,l (∆ωm∆ωs,l + ∆ωn∆ωm,l) + q2,nq0,l ∆ωl∆ω2m,n + q0,nq2,l ∆ωn∆ω2m,l]
⎤⎦cnclcmcs =

=
ℏL2

g

4N

√︂
ωnΛnωlΛlωmΛmωsΛs

⎡⎣ (Icp2) q3,n + 1
2

(︄
Icp1

φ0
+ 1
Lg

)︄
(2q0,nq2,l + q1,nq1,l) +

− Icp2

2φ2
0
q1,nq0,lq0,m − Icp1

24φ3
0
q0,nq0,lq0,mq0,s+

+ CJ

2 [q1,nq1,l (∆ωm∆ωs,l + ∆ωn∆ωm,l) + q2,nq0,l ∆ωl∆ω2m,n + q0,nq2,l ∆ωn∆ω2m,l]
⎤⎦

(3.39)

3.1.2 Three-Wave Mixing
The Parametric Down Conversion (PDC) process is the scattering in which a

pump photon gets converted into a pair of lower frequency photons. This process
is stimulated by the presence in the medium of a non-zero initial photonic popula-
tion in a certain mode n, and for this reason the process is said "parametric". The
energy transfer from one mode to another can be explained by adding a nonlinear
component to the dielectric polarization density vector that describes the interac-
tion of the electromagnetic field into the nonlinear medium.
Once you admit the existence of at least two modes into a nonlinear material, the
natural consequence is the arise of more spectral components of the electromag-
netic field that oscillate at frequencies that are sums and differences of the initial
ones. Anyway, the classical view of this phenomenon is somehow limited. Indeed,
if we consider just one input tone, we will predict an output field that oscillates at
the same frequency and with the same phase of the input one, without any other
harmonics. This prevision is totally inaccurate, indeed experimental observations
tell us that the same process of frequency conversion arises also spontaneously, just
by feeding the nonlinear medium with a single tone. This effect takes the name of
Spontaneous Parametric Down Conversion (SPDC) and needs a quantum mechan-
ical description, in terms of creation and annihilation operators to be accurately
modelled. The effects of PDC induced by an input mode at frequency different from
the pump one are so pronounced that an arbitrary weak input tone (even a one
single photon) can be amplified through this transfer of energy. Straightforwardly,
this “seeded” PDC can be used to amplify and manipulate very weak signals and

46



3.1 – Quantum model for a Josephson Traveling Wave Parametric Amplifier embedding rf-SQUIDs

non-classical states.
In this section we will thoroughly analyse the PDC through a 3WM process.
This event occurs when a pump photon, with the highest frequency (ωp) inter-
acts through the nonlinear medium with a couple of signal and idler modes (with,
respectively, frequencies ωs and ωi). The relation between the frequencies of these
photons must withstand the energy conservation law, and so it must be

ωp = ωs + ωi (3.40)
We here analyze the specific case of the 3WM interaction between three modes
that fulfill the energy conservation law reported in Eq. (3.40). This implies that,
among all the infinite values that the indexes within the definition of Ĥ3WM (see
Eq. (3.35)) can assume, we will just take into account the case in which n, l, and
m assume a value among the set {p, s, i}.
First, we explicitly write the 3-index curly brackets operator:

{â+ â†}n,l,m =
(︂
ân + â†n

)︂(︂
âl + â†l

)︂(︂
âm + â†m

)︂
= (ân + ân)

(︂
âlâm + â†l âm + âlâ

†
m + â†l â

†
m

)︂
= ânâlâm + ânâ

†
l âm + ânâlâ

†
m + ânâ

†
l â
†
m+

+ â†nâlâm + â†nâ
†
l âm + â†nâlâ

†
m + â†nâ

†
l â
†
m (3.41)

For a given quantum state |ψ⟩ the only combinations of creation and annihilation
operators that respect the energy conservation are:

• Combinations in which a pump photon is annihilated and a couple of signal
and idler photons are created (i.e., combination of operators in the form
â†sâ
†
i âp);

• Combinations in which a couple of signal and idler photons are annihilated
and a pump photon is created (i.e., combination of operators in the form
â†pâsâi)

Therefore, we can rewrite Eq. (3.41) deleting the non energy-conservative combi-
nations of operator and then, for each combination of operators, bring the creation
operators on the left-side and the annihilation operators on the right-side. To do
that, we exploit the canonical commutation relation [ân, â

†
l ] = δn,l:{︂

â+ â†
}︂

n,l,m
= ✘✘✘✘ânâlâm +

(︂
â†l ân + δn,l

)︂
âm + ân

(︂
â†mâl + δm,l

)︂
+
(︂
â†l ân + δn,l

)︂
â†m+

+ â†nâlâm + â†nâ
†
l âm + â†n

(︂
â†mâl + δm,l

)︂
+✘✘✘✘
â†nâ

†
l â
†
m =

= â†l ânâm +✘✘✘✘δn,lâm + ânâ
†
mâl +✘✘✘✘ânδm,l + â†l ânâ

†
m +✟

✟✟✟δn,lâ
†
m+

+ â†nâlâm + â†nâ
†
l âm + â†nâ

†
mâl +✟✟✟✟â†nδm,l =

= â†l ânâm +
(︂
â†mân +✟✟✟δn,m

)︂
âl + â†l

(︂
â†mân +✟✟✟δn,m

)︂
+ â†nâlâm + â†nâ

†
l âm + â†nâ

†
mâl =

= â†l ânâm + â†mânâl + â†l â
†
mân + â†nâlâm + â†nâ

†
l âm + â†nâ

†
mâl (3.42)
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Hence, we can write the 3WM Hamiltonian as

Ĥ3WM =
∑︂

n,l,m

ℏχ(n,l,m)
3 {â+ â†}n,l,mδ∆ωn,l,m,0 =

=
∑︂

n,l,m={p,s,i}
ℏχ(n,l,m)

3

[︂
â†l ânâm + â†mânâl + â†nâlâm + â†l â

†
mân + â†nâ

†
l âm + â†nâ

†
mâl

]︂
(3.43)

We can now explicit the sum over the three indexes n, l,m. For instance, regarding
the first term â†l ânâm, among all the possible combinations just two of them can
represent an interaction between three photons that conserve the total energy (Eq.
(3.40)), the first is the one in which n = s, l = p, and m = i while the other is the
one in which n = i, l = p, and m = s. This greatly limits the number of possible
indices combinations.
Being χ(n,l,m)

3 a function of ∆ωn, ∆ωl, and ∆ωm its expression will depend on the
particular combination of ladder operators to whom this coefficient is associated
with (see Appendix B fore more details). To make this dependence more explicit we
will include in the expression of χ(n,l,m)

3 also a reference to the associated operators.
For instance, the 3WM coupling constant associated to â†pâsâi will be χ(p†,s,i)

3 and
in its definition is ∆ωn = ∆ωs = ωs, ∆ωl = ∆ωp = −ωp, and ∆ωm = ∆ωi = ωi.
Under all these assumptions, the calculation of the sum in Eq. (3.43) gives

Ĥ3WM = ℏ
[︂
χ

(s,p†,i)
3 â†pâsâi + χ

(i,p†,s)
3 â†pâiâs + χ

(s,i,p†)
3 â†pâsâi + χ

(i,s,p†)
3 â†pâiâs+

+ χ
(p†,s,i)
3 â†pâsâi + χ

(p†,i,s)
3 â†pâiâs + χ

(p,s†,i†)
3 â†sâ

†
i âp + χ

(p,i†,s†)
3 â†i â

†
sâp+

+ χ
(s†,i†,p)
3 â†sâ

†
i âp + χ

(i†,s†,p)
3 â†i â

†
sâp + χ

(s†,p,i†)
3 â†sâ

†
i âp + χ

(i†,p,s†)
3 â†i â

†
sâp

]︂
(3.44)

This expression can be further simplified considering that the coupling constants
with the same ordered indices are identical (e.g., χ(s,p†,i))

3 = χ
(s†,p,i†)
3 ≡ χ

(s,p,i)
3 ,

χ
(i,p†,s)
3 = χ

(i†,p,s†)
3 ≡ χ

(i,p,s)
3 , etc.) and that the commutation relations for different

modes give [âs, âi] = 0 and [â†s, â
†
i ] = 0, which allow to group some terms and write

Ĥ3WM = ℏ
[︂
χ

(p,s,i)
3 + χ

(p,i,s)
3 + χ

(s,p,i)
3 + χ

(i,p,s)
3 + χ

(s,i,p)
3 + χ

(i,s,p)
3

]︂ (︂
â†pâsâi + â†sâ

†
i âp

)︂
=

= ℏχ{p,s,i}
3

(︂
â†pâsâi + â†sâ

†
i âp

)︂
(3.45)

where

χ
{p,s,i}
3 ≡ 1

2

(︃
χ

(p,s,i)
3 + χ

(p,i,s)
3 + χ

(s,p,i)
3 + χ

(i,p,s)
3 + χ

(s,i,p)
3 + χ

(i,s,p)
3

)︃
(3.46)

is one half of the sum of all the possible indexes permutations of Eq. (3.38) ne-
glecting permutations sign degeneracy.

48



3.1 – Quantum model for a Josephson Traveling Wave Parametric Amplifier embedding rf-SQUIDs

Eq. (3.45) is then the interaction Hamiltonian that describes 3WM in a JTWPA.
It has a standard form very well known in quantum optics, but we stress the fact
that the coupling constant χ{p,s,i}

3 is known just considering the structure of the
circuit and the bias condition, and it is not a mere free parameter of the theory.

3.1.3 Four-Wave Mixing
Just like in the case of the 3WM interaction, amplification can occur also due to

the nonlinearity that causes the 4WM interaction. In this section we will analyze the
specific case of the 4WM between three modes that fulfill the energy-conservation
law, hence the pump-degenerate 4WM scattering

2ωp = ωs + ωj (3.47)

This implies that, among all the infinite values that the indexes within the definition
of Ĥ4WM (see Eq. (3.35)) can assume, we will just take into account the case in
which n, l,m, s assume a value among the set {p, s, j}.
First, we write the 4-index curly bracket operator explicitly:

{â+ â†}n,l,m,s = (ân + â†n)(âl + â†l )(âm + â†m)(âs + â†s) =
= (ânâl + ânâ

†
l + â†nâl + â†nâ

†
l )(âmâs + âmâ

†
s + â†mâs + â†mâ

†
s) =

= ânâlâmâs + ânâlâma
†
s + ânâlâ

†
mâs + ânâla

†
ma
†
s+

+ âna
†
l âmâs + âna

†
l âma

†
s + âna

†
l â
†
mâs + âna

†
la
†
ma
†
s+

+ a†nâlâmâs + a†nâlâma
†
s + a†nâlâ

†
mâs + a†nâla

†
ma
†
s+

+ a†na
†
l âmâs + a†na

†
l âma

†
s + a†na

†
l â
†
mâs + a†na

†
la
†
ma
†
s (3.48)

The only terms that can fulfill the energy conservation requirement given in Eq. (3.47)
are those made of a couple of creation operators and a couple of annihilation oper-
ators. These terms can describe one of the following events:

• Annihilation of two pump photons and creation of a couple of signal-idler
photons (i.e. terms in the form â†pâ

†
pâsâj or â†pâ†pâj âs);

• Annihilation of a couple of signal-idler photons and creation of two pump
photons (i.e. terms in the form âpâpâ

†
sâ
†
j or âpâpâ

†
j â
†
s)

• Annihilation and creation of a couple of tones. These are non-mixing terms
with the form â†pâ

†
pâpâp, â†sâ†sâsâs, â†j â

†
j âj âj, â†pâ†pâsâs, â†pâ†pâj âj, or â†sâ†sâj âji
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Hence, under the hypothesis of energy-conservation in a four-wave mixing interac-
tion, Ĥ4WM can be written as

Ĥ4WM =
∑︂

n,l,m,s

ℏχ(n,l,m,s)
4 {â+ â†}n,l,m,sδ∆ωn,l,m,s,0 =

=
∑︂

n,l,m,s={p,s,j}
ℏ

⎡⎣χ(n,l,m†,s†)
4 ânâlâ

†
mâ
†
s + χ

(n,l†,m,s†)
4 ânâ

†
l âmâ

†
s + χ

(n,l†,m†,s)
4 ânâ

†
l â
†
mâs+

+ χ
(n†,l,m,s†)
4 â†nâlâmâ

†
s + χ

(n†,l,m†,s)
4 â†nâlâ

†
mâs + χ

(n†,l†,m,s)
4 â†nâ

†
l âmâs

⎤⎦
(3.49)

Writing explicitly the six terms contained in Eq. (3.49) (see Appendix D) we can
recast Ĥ4WM as

Ĥ4WM = ℏξ0 + ℏξpâ
†
pâp + ℏξsâ

†
sâs + ℏξj â

†
j âj+

+ ℏξppâ
†
pâ
†
pâpâp + ℏξssâ

†
sâ
†
sâsâs + ℏξjj â

†
j â
†
j âj âj+

+ ℏξpsâ
†
pâ
†
pâsâs + ℏξpj â

†
pâ
†
pâj âj + ℏξsj â

†
sâ
†
sâj âj+

+ ℏχ{p,p,s,j}
4 (â†pâ†pâsâj + âpâpâ

†
sâ
†
j) (3.50)

It is now worth making a small digression to analyse all the terms in Eq. (3.50), so
as to understand their physical meanings.
The terms proportional to a single index (ξp, ξs, ξj) express the energy of the non-
interactive modes, that is modified by the 4WM nonlinearity of the medium, and
add energy proportionally to the amount of photons in the device.
The terms proportional to two indices express the interaction between two traveling
modes, quantifying the self-phase modulation (SPM) and cross-phase modulation
(XPM) caused by the the 4-photons interaction.
ξpp is the SPM parameter of the pump tone, associated to the energy conservative
permutation of four ladder operators with n, l,m, s = {p}.

ξpp ≡
∑︂

n,l,m,s={p}
χ

(n,l,m,s)
4 = χ

(p,p,p†,p†)
4 +χ(p,p†,p,p†)

4 +χ(p,p†,p†,p)
4 +χ(p†,p,p,p†)

4 +χ(p†,p,p†,p)
4 +χ(p†,p†,p,p)

4

(3.51)
ξss is the SPM parameter of the signal tone, associated to the energy conservative
permutation of four ladder operators with n, l,m, s = {s}.

ξss ≡
∑︂

n,l,m,s={s}
χ

(n,l,m,s)
4 = χ

(s,s,s†,s†)
4 +χ(s,s†,s,s†)

4 +χ(s,s†,s†,s)
4 +χ(s†,s,s,s†)

4 +χ(s†,s,s†,s)
4 +χ(s†,s†,s,s)

4

(3.52)
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ξjj is the SPM parameter of the idler tone, associated to the energy conservative
permutation of four ladder operators with n, l,m, s = {j}.

ξjj ≡
∑︂

n,l,m,s={j}
χ

(n,l,m,s)
4 = χ

(j,j,j†,j†)
4 +χ(j,j†,j,j†)

4 +χ(j,j†,j†,j)
4 +χ(j†,j,j,j†)

4 +χ(j†,j,j†,j)
4 +χ(j†,j†,j,j)

4

(3.53)
ξps is the XPM parameter between the pump and the signal tones, calculated as
the sum of all the coefficients χ(n,l,m,s)

4 associated to the energy-conservative per-
mutation of four ladder operators with n, l,m, s = {p, s}

ξps ≡
∑︂

n,l,m,s={p,s}
χ

(n,l,m,s)
4 = χ

(p,s,p†,s†)
4 + χ

(p,s,s†,p†)
4 + χ

(s,p,p†,s†)
4 + χ

(s,p,s†,p†)
4 +

+ χ
(p,p†,s,s†)
4 + χ

(s,s†,p,p†)
4 + χ

(p,s†,s,p†)
4 + χ

(s,p†,p,s†)
4 +

+ χ
(p,p†,s†,s)
4 + χ

(s,s†,p†,p)
4 + χ

(p,s†,p†,s)
4 + χ

(s,p†,s†,p)
4 +

+ χ
(p†,p,s,s†)
4 + χ

(s†,s,p,p†)
4 + χ

(p†,s,p,s†)
4 + χ

(s†,p,s,p†)
4 +

+ χ
(p†,p,s†,s)
4 + χ

(s†,s,p†,p)
4 + χ

(p†,s,s†,p)
4 + χ

(s†,p,p†,s)
4 +

+ χ
(p†,s†,p,s)
4 + χ

(p†,s†,s,p)
4 + χ

(s†,p†,p,s)
4 + χ

(s†,p†,s,p)
4 (3.54)

ξpj is the XPM parameter between the pump and the idler tones, calculated as the
sum of all the coefficients χ(n,l,m,s)

4 associated to the energy-conservative permuta-
tion of four ladder operators with n, l,m, s = {p, j}

ξpj ≡
∑︂

n,l,m,s={p,j}
χ

(n,l,m,s)
4 = χ

(p,j,p†,j†)
4 + χ

(p,j,j†,p†)
4 + χ

(j,p,p†,j†)
4 + χ

(j,p,j†,p†)
4 +

+ χ
(p,p†,j,j†)
4 + χ

(j,j†,p,p†)
4 + χ

(p,j†,j,p†)
4 + χ

(j,p†,p,j†)
4 +

+ χ
(p,p†,j†,j)
4 + χ

(j,j†,p†,p)
4 + χ

(p,j†,p†,j)
4 + χ

(j,p†,j†,p)
4 +

+ χ
(p†,p,j,j†)
4 + χ

(j†,j,p,p†)
4 + χ

(p†,j,p,j†)
4 + χ

(j†,p,j,p†)
4 +

+ χ
(p†,p,j†,j)
4 + χ

(j†,j,p†,p)
4 + χ

(p†,j,j†,p)
4 + χ

(j†,p,p†,j)
4 +

+ χ
(p†,j†,p,j)
4 + χ

(p†,j†,j,p)
4 + χ

(j†,p†,p,j)
4 + χ

(j†,p†,j,p)
4 (3.55)
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ξsj is the XPM parameter between the signal and the idler tones, calculated as the
sum of all the coefficients χ(n,l,m,s)

4 associated to the energy-conservative permuta-
tion of four ladder operators with n, l,m, s = {s, j}

ξsj ≡
∑︂

n,l,m,s={p,j}
χ

(n,l,m,s)
4 = χ

(s,j,s†,j†)
4 + χ

(s,j,j†,s†)
4 + χ

(j,s,s†,j†)
4 + χ

(j,s,j†,s†)
4 +

+ χ
(s,s†,j,j†)
4 + χ

(j,j†,s,s†)
4 + χ

(s,j†,j,s†)
4 + χ

(j,s†,s,j†)
4 +

+ χ
(s,s†,j†,j)
4 + χ

(j,j†,s†,s)
4 + χ

(s,j†,s†,j)
4 + χ

(j,s†,j†,s)
4 +

+ χ
(s†,s,j,j†)
4 + χ

(j†,j,s,s†)
4 + χ

(s†,j,s,j†)
4 + χ

(j†,s,j,s†)
4 +

+ χ
(s†,s,j†,j)
4 + χ

(j†,j,s†,s)
4 + χ

(s†,j,j†,s)
4 + χ

(j†,s,s†,j)
4 +

+ χ
(s†,j†,s,j)
4 + χ

(s†,j†,j,s)
4 + χ

(j†,s†,s,j)
4 + χ

(j†,s†,j,s)
4 (3.56)

Finally, exploiting the fact that the coefficient χ(n,l,m,s)
4 associated to a particu-

lar ladder operator combination and its hermitian conjugate are identical (i.e.,
χ

(p,p,s†,i†)
4 = χ

(p†,p†,s,i)
4 , χ(s†,p,i†,p)

4 = χ
(s,p†,i,s†)
4 , etc . . . ), we define the 4WM coupling

constant χ{p,p,s,i}
4 as one half of the sum of all the coefficients χ(n,l,m,s)

4 associated
to the energy-conservative permutation of four ladder operators with two indexes
equal to p, one index equal to s and the last one equal to j

χ
{p,p,s,i}
4 ≡ 1

2

(︃
χ

(p†,p†,s,i)
4 + χ

(p†,p†,i,s)
4 + χ

(p†,s,p†,i)
4 + χ

(p†,i,p†,s)
4 + χ

(p†,s,i,p†)
4 + χ

(p†,i,s,p†)
4

+ χ
(s,p†,p†,i)
4 + χ

(i,p†,p†,s)
4 + χ

(s,p†,i,p†)
4 + χ

(i,p†,s,p†)
4 + χ

(s,i,p†,p†)
4 + χ

(i,s,p†,p†)
4

)︃
(3.57)

3.1.4 Time evolution of the ladder operators: coupled mode
equations

We can now write a Hamiltonian operator that takes into account the 3WM
and 4WM scatterings taking place in the system

Ĥ
{p,s,i,j} = ℏχ0 + ℏξ0+

+
∑︂

n={p,s,i,j}
ℏχ(n)

1

(︃
â†nân + 1

2

)︃
+

∑︂
n={p,s,i,j}

ℏξnâ
†
nân+

+
∑︂

n,l={p,s,i,j}
ℏξn,lâ

†
nânâ

†
l âl+

+ ℏχ{p,s,i}
3

(︂
â†pâsâi + â†sâ

†
i âp

)︂
+ ℏχ{p,p,s,j}

4

(︂
â†pâ

†
pâsâj + âpâpâ

†
sâ
†
j

)︂
(3.58)
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Figure 3.2: Coupling constants of the Hamiltonian operator in Eq. (3.58) as func-
tions of ∆ΦDC . (a) Non-interacting-mode Hamiltonian coupling constants, (b)
4WM contribution to the non-interacting-mode coupling constants, (c) SPM and
XPM coupling constants.

The coefficients that characterise the non-mixing part of Eq. (3.58) (first to third
rows) are plotted in Fig. 3.2 as function of the flux bias ∆ΦDC

2.

2The circuit parameters used for the computation of all the plots concerning the quantum
mechanical dynamics are shows in Tab. A.1
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In Fig. 3.2 (a) the term χ0, that describes the energy contribution given by the
external bias conditions, has a parabolic shape with its minimum for ∆ΦDC = 0,
hence for no external magnetic flux. In the same figure, the non-interacting-mode
Hamiltonian constants are shown. These coefficients express the energy attributed
to the presence of a single excitation at frequencies ωp, ωs, ωi and ωj, and have a
periodicity of Φ0 with ∆ΦDC .
Fig. 3.2 (b) shows the 4WM correction to the non-interacting-modes. These co-
efficients give a small contribution to the total amount of energy added for each
excitation compared to χ(n)

1 , being on average four orders of magnitude less intense.
On the other hand in Fig. 3.2 (c) one can observe the the 4WM coupling constants
that characterise the SPM and XPM. These coefficients depend on couple of modes
since they express the tendency of a particular traveling wave to interact with other
modes or to self interact with themselves. The plots have a red vertical line for
∆ΦDC/Φ0 = 0.50 that corresponds to the 4WM working point, hence where the
Kerr nonlinearity is stronger and the 3WM coupling constant is zero. Moreover,
the plots present one blue vertical line at ∆ΦDC/Φ0 = 0.335 where the 4WM based
nonlinearities have a zero. This value is the Kerr-free working points where usually
4WM can be neglected, and all the Kerr-related effects like SPM and XPM are
strongly suppressed.

-1.0 -0.5 0.0 0.5 1.0

-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6

ΔΦDC/Φ0

χ
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ℏ
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H
z]

χ3{p,s,i}·10-2

χ4{p,p,s, j}

Figure 3.3: Coupling constants of the mixing terms of the Hamiltonian operator in
Eq. (3.58) as functions of ∆ΦDC .

Fig. 3.3 shows χ{p,s,i}
3 and χ{p,p,s,j}

4 , hence the 3WM and 4WM coupling constants,
respectively in the fourth and fifth rows of Eq. (3.58), as functions of ∆ΦDC . One
can observe that the maxima (minima) of one curve almost correspond to the min-
ima (maxima) of the other curve. This fact tells us that for an appropriate bias
choice one or the other coupling constant can be almost maximised while the other
is made zero, giving the possibility to foster the wanted nonlinear behaviour.
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Given the tunability of the coupling constants χ{p,s,i}
3 and χ

{p,p,s,j}
4 with ∆ΦDC ,

we can write two different Hamiltonians starting from Eq. 3.2, where the 3WM or
4WM coupling constants are neglected. Both these operators are valid expressions
of the Hamiltonian in the so called pure regimes, hence where the 3WM or the
4WM are suppressed through the modulation of the bias condition (respectively
χ
{p,s,i}
3 ≈ 0 or χ{p,p,s,j}

4 ≈ 0). This choice, that from one side can be seen as a
limit in the description of mixed states (e.g. states where both 3WM and 4WM
are present), from the other side greatly eases the mathematical formulation of the
problem. This is true because mixed states impose solving the dynamics of at least
4 different modes (pump, signal, 3WM idler, 4WM idler), that can be much more
complicated than solving it for only 3 modes, as required when the system is in a
pure state (pump, signal, 3WM idler or 4WM idler).
With this in hand, the 3WM Hamiltonian takes the form

Ĥ
{p,s,i}
3W M = ℏχ0 + ℏξ0+

+
∑︂

n={p,s,i}
ℏχ(n)

1

(︃
â†nân + 1

2

)︃
+

∑︂
n={p,s,i}

ℏξnâ
†
nân+

+
∑︂

n,l={p,s,i}
ℏξn,lâ

†
nânâ

†
l âl+

+ ℏχ{p,s,i}
3

(︂
â†pâsâi + â†sâ

†
i âp

)︂
(3.59)

while the 4WM Hamiltonian

Ĥ
{p,s,j}
4W M = h0 + ℏξ0+∑︂

n={p,s,j}
ℏχ(n)

1

(︃
â†nân + 1

2

)︃
+

∑︂
n={p,s,j}

ℏξnâ
†
nân+

+
∑︂

n,l={p,s,j}
ℏξn,lâ

†
nânâ

†
l âl+

+ ℏχ{p,p,s,j}
4

(︂
â†pâ

†
pâsâj + âpâpâ

†
sâ
†
j

)︂
(3.60)

It should be noted that in Eq. (3.59) the SPM and XPM terms among the pump,
signal and idler tones have not been neglectet nontheless they derive from a 4WM
interaction. This is due to the fact that, despite the χ{p,p,s,j}

4 nonlinearity is sup-
pressed by the bias condition, these terms are not exactly zero because all of them
have different zero points depending on the modes frequencies, and we will see that
they can give a contribution to the dynamic of the system.

Working in the Heisenberg picture of quantum mechanics, we can now compute
the time evolution of the creation and annihilation operators keeping in mind that
the dynamics of the operators is regulated by the Heisenberg equation dâH(t)

dt
=
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i
ℏ [Ĥ, âH(t)] + (∂â

∂t
)H . From here we will drop the H subscript and we admit that

there is no explicit time dependence on the ladder operators.
In most of the practical realisations of JTWPAs involving very tiny signals, like
single photons, the pump tone results to be much more intense than the signal and
idler ones in every piece of the TL, hence computing the Heisenberg equations the
SPM and XPM which do not involve the pump mode can be neglected.
We start calculating the Heisenberg equations in the 3WM case

dâp

dt
= i

ℏ

[︃
Ĥ
{p,s,i}
3WM , âp

]︃
= −i

[︂(︂
χ

(p)
1 + ξp + ξpp + 2ξppâpâ

†
p + ξpsâ

†
sâs + ξpiâ

†
i âi

)︂
âp + χ

{p,s,i}
3 âsâi

]︂
(3.61)

dâs

dt
= i

ℏ

[︃
Ĥ
{p,s,i}
3WM , âs

]︃
= −i

[︂(︂
χ

(s)
1 + ξs + ξss + ξpsâ

†
pâp

)︂
âs + χ

{p,s,i}
3 âpâ

†
i

]︂
(3.62)

dâi

dt
= i

ℏ

[︃
Ĥ
{p,s,i}
3WM , âi

]︃
= −i

[︂(︂
χ

(i)
1 + ξi + ξii + ξpiâ

†
pâp

)︂
âi + χ

{p,s,i}
3 âpâ

†
s

]︂
(3.63)

The system composed by equations (3.61), (3.62) and (3.63), which form a
Quantum Coupled Mode Equations (QCME) system, can be be analytically solved
by applying the undepleted pump approximation [52], hence turning the ladder
pump operators into classical variables, on the basis of its intensity compared to
the signal and idler tones ⌜⃓⃓⎷2ℏωp

CgN
âp → Ap (3.64)

The dynamics of the pump tone can now be solved from Eq. (3.61) by substituting
Eq. (3.64) and neglecting the terms proportional to combinations of signal and
idler ladder operators only√︄

CgN

2ℏωp

dAp

dt
≈ −i

⎛⎝(χ(p)
1 + ξp + ξpp)

√︄
CgN

2ℏωp

Ap + 2ξpp

(︄
CgN

2ℏωp

)︄ 3
2

|Ap,0|2 Ap

⎞⎠
dAp

dt
≈ −i

(︄
χ

(p)
1 + ξp + ξpp + 2ξpp

CgN

2ℏωp

|Ap,0|2
)︄
Ap (3.65)

which have the solution

Ap(t) = |Ap,0| e
−i

(︂
χ

(p)
1 +ξp+ξpp+2ξpp

CgN

2ℏωp
|Ap,0|2

)︂
t

= |Ap,0| eΨpt (3.66)

with

Ψp = −i
(︄
χ

(p)
1 + ξp + ξpp + 2ξpp

CgN

2ℏωp

|Ap,0|2
)︄

(3.67)
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|Ap,0| is the voltage amplitude at t = 0, the time in which the tone enters in the
non-linear medium. For sake of simplicity we have assumed the initial phase of Ap

equal to zero.
Similarly, invoking the undepleted pump approximation and substituting Eq. (3.67),
the time evolution for the signal annihilation operators can be written as

dâs

dt
= −i

⎡⎣(︄χ(s)
1 + ξs + ξss + ξps

(︄
CgN

2ℏωp

)︄
|Ap,0|2+

)︄
âs + χ

{p,s,j}
3

√︄
CgN

2ℏωp

|Ap,0|â†j

⎤⎦
= −i

⎡⎣Ψsâs + χ
{p,s,i}
3

√︄
CgN

2ℏωp

|Ap,0|â†i

⎤⎦
= −i

⎡⎣Ψsâs + χ3|Ap,0|â†i

⎤⎦ (3.68)

with

χ3 =
√︄
CgN

2ℏωp

χ
{p,s,i}
3

Ψs = −i
(︃
χ

(s)
1 + ξs + ξss + ξps

CgN

2ℏωs
|Ap,0|2

)︃
(3.69)

while for the idler tone we have

dâi

dt
= −i

⎡⎣Ψsâs + χ3|Ap,0|â†s

⎤⎦ (3.70)

Ψi = −i
(︃
χ

(i)
1 + ξi + ξii + ξpi

CgN

2ℏωi
|Ap,0|2

)︃
(3.71)

Moving to a co-rotating frame, hence imposing that âs = âCR
s e−iΨst and âi =

âCR
i e−iΨit

dâCR
s

dt
= −iχ3|Ap,0|

(︂
âCR

i

)︂†
e−i(Ψp−Ψs−Ψi)t

= −iχ3|Ap,0|
(︂
âCR

i

)︂†
e−iΨt

= −iΥ3
(︂
âCR

i

)︂†
e−iΨt (3.72)

and
dâCR

i

dt
= −iχ3|Ap,0|

(︂
âCR

s

)︂†
e−i(Ψp−Ψs−Ψi)t

= −iχ3|Ap,0|
(︂
âCR

s

)︂†
e−iΨt

= −iΥ3
(︂
âCR

s

)︂†
e−iΨt (3.73)
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where we defined the phase mismatch density for the 3WM process as
Ψ = Ψp − Ψs − Ψi =

= χ
(p)
1 − χ

(s)
1 − χ

(i)
1 + ξp − ξs − ξi+

+ ξpp − ξss − ξii +
(︄

2ξpp
CgN

2ℏωp

− ξps
CgN

2ℏωp

− ξpi
CgN

2ℏωp

)︄
|Ap,0|2 (3.74)

and the 3WM interaction parameter

Υ3 = χ3|Ap,0| (3.75)
The solution of the system formed by Eq. (3.72) and (3.73) is a well known math-
ematical problem, and can be demonstrated being (Appendix E, we drop the CR
apex, nonetheless we are still in the co-rotating frame approximation, for clarity of
the notation)

âs(i)(t) =
[︄
âCR

s(i),0

(︄
cosh (gt) + iΨ

2g sinh (gt)
)︄

− iΥ3

g

(︂
âi(s),0

)︂†
sinh (gt)

]︄
e−i(Ψ/2)t

(3.76)
where we introduced the complex gain factor

g =

⌜⃓⃓⎷Υ2
3 −

(︄
Ψ
2

)︄2

(3.77)

In the 4WM case we start from a system of coupled equations very similar to the
one composed by Eq. (3.61), (3.62) and (3.63), indeed we have
dâp

dt
= i

ℏ

[︃
Ĥ
{p,s,j}
4WM , âp

]︃
=

= −i
[︂(︂
θp + ξpp + 2ξppâ

†
pâp + ξpsâ

†
sâs + ξpj â

†
j âj

)︂
âp + 2χ{p,p,s,i}

4 â†pâsâj

]︂
(3.78)

dâs

dt
= i

ℏ

[︃
Ĥ
{p,s,i}
4WM , âs

]︃
=

= −i
[︂(︂
θs + ξss + 2ξssâ

†
sâs + ξpsâ

†
pâp + ξsj â

†
j âj

)︂
âs + χ

{p,p,s,i}
4 âpâpâ

†
j

]︂
(3.79)

dâi

dt
= i

ℏ

[︃
Ĥ
{p,s,i}
4WM , âi

]︃
=

= −i
[︂(︂
θj + ξjj + 2ξjj â

†
j âj + ξpj â

†
pâp + ξsj â

†
sâs

)︂
âj + χ

{p,p,s,j}
4 âpâpâ

†
s

]︂
(3.80)

This system can be solved exactly the same way we solved the 3WM one, since it
is formed by the same set of equations. The relations that give the dynamics of the
ladder operators in the 4WM case are then

dâs

dt
= −iΥ4â

†
je
−iΨt (3.81)

dâi

dt
= −iΥ4â

†
se
−iΨt (3.82)

58



3.1 – Quantum model for a Josephson Traveling Wave Parametric Amplifier embedding rf-SQUIDs

with

χ4 = CgN

2ℏωp

χ
{p,p,s,j}
4 (3.83)

Υ4 = χ4|Ap,0|2 (3.84)

and

Ψ = 2Ψp − Ψs − Ψj =
= 2χ(p)

1 − χ
(s)
1 − χ

(j)
1 + 2ξp − ξs − ξj+

+ 2ξpp − ξss − ξjj +
(︄

4ξpp
CgN

2ℏωp

− ξps
CgN

2ℏωp

− ξpj
CgN

2ℏωp

)︄
|Ap,0|2 (3.85)

The solution in the 4WM case is therefore

âs(j)(t) =
[︄
âs(j),0

(︄
cosh (gt) + iΨ

2g sinh (gt)
)︄

− iΥ4

g
â†j(s),0 sinh (gt)

]︄
e−i(Ψ/2)t (3.86)

where the complex gain factor is

g =

⌜⃓⃓⎷Υ2
4 −

(︄
Ψ
2

)︄2

(3.87)

3.1.5 Gain
The mathematical structure developed at this point can be straightforwardly

generalised from a discrete modes view to a continuous modes approach, labeling
the interacting modes with ω and calling the 3WM idler as ω′ = ωp − ω while the
4WM idler as ω′ = 2ωp − ω. Moreover, from now on, to reduce the complexity of
notation, we will use a single set of equations to describe both the 3WM and 4WM
cases, that get distinguished just by the use of the correct interaction factor Υ (Eq.
(3.75) and (3.84)) and phase mismatch density Ψ (Eq. (3.74) and (3.85)).
In this view equation (3.76) and (3.86) are generically indicated as

âω =
[︄
âω,0

(︄
cosh (gt) + iΨ

2g sinh (gt)
)︄

− iΥ
g
â†ω′,0 sinh (gt)

]︄
e−i(Ψ/2)t =

=
[︂
u(ω, t)âω,0 + iv(ω, t)â†ω′,0

]︂
e−i(Ψ/2)t (3.88)

having introduced the functions

u(ω, t) = cosh (g(ω)t) + iΨ(ω)
2g(ω) sinh (g(ω)t) (3.89)

v(ω, t) = −Υ(ω)
g(ω) sinh (g(ω)t) (3.90)
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These definitions satisfy the relation |u(ω, t)|2 −|v(ω, t)|2 = 1, that reflects the form
of Eq. (2.92) concerning the amplitude gain of a linear amplifier and its added noise.
By making use of equation (3.88), hence the time evolution of the ladder operators,
it is now possible to define the number of output signal photons as the average
number of photons of frequency ω after a certain time t spent into the JTWPA. We
here remember that talking about time spent in the amplifier rather than length of
it, is a prerogative of the Heisenberg description in the domain of time, nonetheless,
the length of the JTWPA and the time spent by a signal into it are always linked
together by the phase velocity of the considered mode.
Now, to evaluate the average number of output photons we first calculate the
number operator for the mode ω

n̂ω = â†ωâω (3.91)
=
(︂
u∗â†ω,0 − iv∗âω′,0

)︂ (︂
uâω,0 + ivâ†ω′,0

)︂
(3.92)

= |u|2â†ω,0âω,0 + |v|2âω′,0â
†
ω′,0 + iu∗vâ†ω,0â

†
ω′,0 − uv∗âω′,0âω,0 (3.93)

= |u|2â†ω,0âω,0 + |v|2
(︂
â†ω′,0âω′,0 + 1

)︂
+ iu∗vâ†ω,0â

†
ω′,0 − uv∗âω′,0âω,0 (3.94)

and then calculating the average value over a generic state |Ψ⟩ we land to

⟨n̂ω⟩ = ⟨â†ωâω⟩ = |u|2 ⟨â†ω,0âω,0⟩ + |v|2
[︂
⟨â†ω′,0âω′,0⟩ + 1

]︂
+ iu∗v⟨â†ω,0â

†
ω′,0⟩ − iuv∗⟨âω′,0âω,0⟩

(3.95)

Equation (3.95) is a general relation to estimating the number of outgoing signal
photons regardless of the nature of the incoming state (Fock, coherent, thermal,
etc.).
Having obtained the average number of outgoing photons we can now evaluate
the parametric gain that the JTWPA can offer. We adopt the description of a
parametric amplifier assimilated to a linear amplifier as already anticipated in Sec.
2.4, of which the typical output field is expressed by Eq. 2.79, hence âω =

√
Gâω,0 +

L̂
†. It is then straightforward to calculate the output photon number of a linear

amplifier taking the complex conjugate of âω and then computing the average value
of their product

⟨n̂ω⟩ = G ⟨(âω,0)† âω,0⟩ +

+ ⟨L̂
†
L̂⟩ +

√
G
(︃

⟨(âω,0)† L̂
†
⟩ + ⟨L̂âω,0⟩

)︃
=

= G ⟨n̂ω,0⟩ + ⟨N ⟩ (3.96)

where ⟨n̂ω,0⟩ is the average number of photons in input.
In Equation (3.96) we can identify two key features of a linear amplifier: the
photon number gain G, that is the contribution to the total number of output
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photons given by the sole input field, and the added noise photon number ⟨N ⟩,
which embeds the contribution given by the amplifier itself. By comparing Equa-
tion (3.95) and (3.96) we can write the gain and the added noise photon number
of a JTWPA as

G = |u|2 = cosh gt2 + Ψ2

4g2 sinh gt2 + iΨ
2g sinh gt cosh gt (3.97)

⟨N ⟩ = |v|2
[︂
⟨(âω′,0)†âω′,0⟩ + 1

]︂
+ iu∗v⟨(âω,0)†(âω′,0)†⟩ − iuv∗⟨âω′,0âω,0⟩ (3.98)

In the case where the phase mismatch can be neglected Υ2 ≫ Ψ2

4 (this happens
for low values of CJ and Lg, which reduce the chromatic dispersion in the line) the
gain becomes

G ≈ cosh2 gt (3.99)

in accordance with the classical approach given by [64]. It is now worth making

Figure 3.4: Gain profiles in the 3WM (a) and 4WM (b) regimes as function of the
signal frequency. The darker coloured curves are calculated considering the contri-
bution of the phase mismatch while the light coloured curved in the approximation
of negligible phase mismatch.
(a) The pump currents are (blue) Ip/Ic = 0.06 and (red) Ip/Ic = 0.04. (b) The
pump currents are (light blue) Ip/Ic = 0.13 and (orange) Ip/Ic = 0.10.

few observations on equations (3.97) and (3.98). The gain G depends only on the
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layout of the amplifier, hence the set of parameters that defines the circuit, and on
the amplitude and frequency of the pump tone. In other words, the gain does not
depend on the input state, just as expected from a linear amplifier.
Some plots of G in the 3WM and 4WM cases are shown in Fig. 3.4 as function of
the signal frequency. Fig. 3.4 (a) shows the gain calculated in the 3WM regime,
for a pump frequency of 12 GHz, in the case of non-negligible (dark colour) and
negligible (light colour) phase-mismatch. The first thing to notice is that the band-
width has a maximum at half the pump frequency, as expected since considering a
PDC process we know that the probability for a scattering event to take place is
enhanced getting closer to the degenerate condition ωs = ωp/2, due to the reduced
phase mismatch. Moreover, the figure shows that the set of circuit parameters
taken into account (which gives low chromatic dispersion to the line) does not al-
low to consider valid the negligible phase mismatch approximation due to a large
difference in the maximum value of G in the middle of the bandwidth (> 10 dB).
We clearly see that the effect of the phase mismatch greatly reduces the gain at
half bandwidth.
On the other hand, Fig. 3.4 (b) shows the gain profile in the 4WM case with a
pump frequency of 6 GHz, the choice to halve the pump frequency follows so as to
make the profiles in the 3WM and 4WM cases comparable in the same frequency
range. One should note first that the pump power used to calculate these curves is
ten times higher than the pump current used for the 3WM plots. This fact tells us
that in general, the amplification given by the 4WM process is less power efficient
with respect to the 3WM one under the same bandwidth. We can understand this
by considering the absolute values of the 3WM and 4WM coupling constants that
take part in the definition of the interaction parameters (3.75) and (3.84), indeed,
looking at Fig. 3.3 one sees that χ{p,s,i}

3 is on average two orders of magnitude
higher than χ

{p,p,s,j}
4 . This means that to achieve the same amplification one has

to deliver much more pump power when working in a 4WM regime respect to the
3WM one. Another aspect to point out is that in the 4WM regime there is a more
pronounced difference between the curves calculated considering and neglecting the
contribution of the phase mismatch. One sees that in the low pump current curve
(light orange) the peak difference between the curves calculated with and without
phase mismatch is about 2.5 dB, and this difference grows to 8 dB in the high pump
current curve (light blue). This fact leads us to the conclusion that in 4WM regime
the amplifier is more affected by the phase mismatch effect.
The average value of the noise photon number operator ⟨N̂ ⟩ has a non-trivial depen-
dence on the annihilation and creation operators, and it is interesting to evaluate
this quantity for two simple cases hence a Fock input state |ψF⟩ = |NS

in⟩s |N I
in⟩i and
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a coherent input state |ψc⟩ = |α⟩s |β⟩i. Some simple algebra brings us to

⟨N̂ ⟩F = |v|2
(︂
1 +N I

in

)︂
(3.100)

⟨N̂ ⟩C = |v|2
(︂
1 + |β|2

)︂
− iuv∗αβ + iu∗vα∗β∗ (3.101)

Regardless of its non-trivial dependence, it turns out that if the input idler mode
is in its vacuum state (N I

in = β = 0) the noise photon number simplifies, giving the
same result in both cases ⟨N̂ ⟩F = ⟨N̂ ⟩C = |v|2.
We evaluate now the added noise number A previously defined in (2.87). This
quantity can be defined as the ratio between the symmetric variance of L̂ = iv∗âω′,0
and the gain given by equation (3.97)

A = ⟨|∆L̂|2⟩
G

= ⟨|L̂|2⟩ − | ⟨L̂⟩ |2

G

=
1
2 |v|2⟨âω′,0â

†
ω′,0 + â†ω′,0âω′,0⟩ − |v|2 |⟨aω′,0⟩|2

|u|2

= |v|2

|u|2
(︃1

2 + ⟨â†ω′,0aω′,0⟩ − | ⟨âω′,0⟩ |2
)︃

(3.102)

It’s interesting noting that in general Eq. (3.102) has a non-trivial dependence on
the ladder operators of the idler modes, so it can vary for different input quantum
states. Again, we calculate A in the particular case of an input Fock or coherent
state obtaining

AF = |v|2

|u|2
(︃1

2 +N I
in

)︃
(3.103)

AC = 1
2

|v|2

|u|2
(3.104)

As in the case of the operator ⟨N̂ ⟩, if the idler mode is in the vacuum state the two
expressions give the same result

AF = AC = 1
2

|v|2

|u|2
(3.105)

A final remark must be done about the added noise. The laws of quantum mechanics
impose a lower bound for the added noise number for a linear amplifier in the high
gain limit, that is A > 1/2. This concept can be visualised in Fig. 3.5 where the
added noise number is plotted as function of the pump current, the curves show A
for an input coherent state and for a Fock input state with no and one idler photon.
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From Eq. (3.104) one can see that AC has no dependence on the number of input
idler photons, meaning that, regardless of its occupation numbers, a coherent state
is the state that in the high gain limit (equivalent in this case to the high pump
power limit) saturates the lower bound on the added noise. Similarly, a Fock state
that has no idler photons in input saturates as well this limit, but we see that AF

grows rapidly as N I
in increases.

ni=0 ni=1 Coherent

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.5

1.0

1.5

Ip/Ic

A

Figure 3.5: Added noise number as a function of the normalised pump current,
calculated for a coherent input state (dashed) and a Fock input state with no (light
red) and one (dark red) idler input photons. The plots are done considering a pump
frequency of 12 GHz and a signal frequency of 5 GHz.

3.1.6 Squeezing
The correlation of the signal and idler modes results in a so-called squeezed

output field of a JTWPA, that can be typically measured in experiments using het-
erodyne techniques [21]. These correlations generally occur when the fluctuations of
one of the two entangles modes gets "squeezed" below the standard quantum limit,
while the other gets enlarged above it. This kind of correlation has a frequency
dependence and is usually treated in terms of quadratures of the signal.
One can define [24, 58] the thermal photon number as

N(ω) =
∫︂ ∞

0
dω′(⟨â†ωâω′⟩ − ⟨â†ω⟩ ⟨âω′⟩) (3.106)

and the squeezing parameter as

M(ω) =
∫︂ ∞

0
dω′(⟨âωâω′⟩ − ⟨âω⟩ ⟨âω′⟩) (3.107)
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which defines the squeezing angle (θ) through the relation M(ω) = |M(ω)|eiθ. One
can introduce the quadratures as

Ŷ
θ(ω) = i(eiθ/2â†ω − e−iθ/2âω) (3.108)

with their associated fluctuations ∆Ŷ θ(ω) = Ŷ
θ(ω) − ⟨Ŷ

θ(ω)⟩. From the previ-
ous definitions one can easily compute (see Appendix F) the relation between the
squeezing spectrum S(ω), the thermal photon number and the squeezing parameter

S(ω) =
∫︂ ∞

0
dω′ ⟨∆Ŷ θ(ω)∆Ŷ θ(ω′)⟩ = 1 + 2N(ω) − 2|M(ω)| (3.109)

Considering a vacuum input state, one can see that (see (F.6))

N(ω) = |v(ω, t)|2 =
⃓⃓⃓⃓
⃓Υg sinh gt

⃓⃓⃓⃓
⃓
2

(3.110)

and exploiting (3.88) the squeezing parameter can be written as

M(ω) =
∫︂ ∞

0
dω′(⟨âωâω′⟩ − ⟨âω⟩ ⟨âω′⟩) =

=
∫︂ ∞

0
dω′ ⟨âωâω′⟩ =

=
∫︂ ∞

0
dω′ ⟨vac|

(︃
u(ω, t)âω,0 + iv(ω, t)â†(2)ωp−ω,0

)︃(︃
u(ω′, t)âω′,0 + iv(ω′, t)â†(2)ωp−ω′

)︃
|vac⟩ e−iΨt =

= e−iΨt
∫︂ ∞

0
dω′ ⟨vac|

(︃
u(ω, t)u(ω′, t)âω,0âω′,0 + iu(ω, t)v(ω′, t)âω,0â

†
(2)ωp−ω′,0+

+ iv(ω, t)u(ω′, t)â†(2)ωp−ω,0âω′,0 − v(ω, t)v(ω′, t)â†(2)ωp−ω,0â
†
(2)ωp−ω′,0

)︃
|vac⟩ =

= iu(ω, t)e−iΨt
∫︂ ∞

0
dω′v(ω′, t) ⟨vac| âω,0â

†
(2)ωp−ω′,0 |vac⟩ =

= iu(ω, t)e−iΨt
∫︂ ∞

0
dω′v(ω′, t) ⟨vac|

(︂
â†(2)ωp−ω′,0âω,0 + δ(ω − (2)ωP + ω′)

)︂
|vac⟩ =

= iu(ω, t)v((2)ωP − ω, t)e−iΨt =
= iu(ω, t)v(ω, t)e−iΨt =

=
(︃ΨΥ

2g2 sinh2 (gt) − i
Υ
g

sinh (gt) cosh (gt)
)︃
e−iΨt =

=
√︄⃓⃓⃓⃓ΨΥ

2g2 sinh2 (gt)
⃓⃓⃓⃓2

+
⃓⃓⃓⃓Υ
g

sinh (gt) cosh (gt)
⃓⃓⃓⃓2
e−i 2g

Ψ
cosh (gt)
sinh (gt) e−iΨt =

= |u(ω, t)v(ω, t)|e
−i

(︃
arctan

(︃
2g
Ψ coth (gt)

)︃
+Ψt

)︃
=

= |M(ω)|eiθ (3.111)
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In the calculation to explicit Eq. (3.111) the mode index of the ladder operators
(2)ωp − ω remarks the fact that the mathematics is just the same if we consider
3WM or 4WM. Moreover, we made use of the property v(ωP − ω) = v(ω) and
identified the squeezing angle as

θ = −
(︃

arctan
(︃2g

Ψ coth gt
)︃

+ Ψt
)︃

(3.112)

Furthermore, one can easily find the relation between M(ω) and N(ω) as

|M(ω)|2 = |u(ω, t)v(ω, t)|2

= |u(ω, t)|2|v(ω, t)|2

=
(︃

|v(ω, t)|2 + 1
)︃

|v(ω, t)|2

= N(ω)[N(ω) + 1] (3.113)

that is the maximum allowed by the Heisenberg uncertainty principle and implies
that the amplification is quantum limited [24]. In the case where the input state is

Figure 3.6: Squeezing spectra in the 3WM (a) and 4WM (b) regimes as function of
the signal frequency. The dashed curves are calculated considering the contribution
of the phase mismatch while the solid curved in the approximation of negligible
phase mismatch.
(a) The pump currents are (blue) Ip/Ic = 0.06 and (red) Ip/Ic = 0.04. (b) The
pump currents are (light blue) Ip/Ic = 0.13 and (orange) Ip/Ic = 0.10.

a vacuum state we can calculate the squeezing spectrum from (3.109)

S(ω) = 1 + 2N(ω) − 2|M(ω)|

= 1 + 2|v(ω, t)|2 − 2
√︂

|v(ω, t)|2(|v(ω, t)|2 + 1)

= 1 + 2|v(ω, t)|2 − 2|v(ω, t)|
√︂

|v(ω, t)|2 + 1 (3.114)
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That under the zero total phase mismatch assumption (Ψ ≈ 0) is

S(ω) = 1 + 2| sinh gt|2 − 2| sinh gt|
√︂

| sinh gt|2 + 1 (3.115)

and the squeezing angle becomes θ ≈ −π/2. Equations (3.114) and (3.115) are
plotted in Fig. 3.6 for different values of pump current as a function of the signal
frequency. Similar considerations can be made as done for the gain profiles shown
in Fig. 3.4, indeed we see that the maximum squeezing is achieved in 3WM at
half bandwidth closer to degeneracy. For the squeezing spectrum it is confirmed
that the negligible phase mismatch approximation does not hold in both 3WM and
4WM cases. Again, in this case the pump power used for the 4WM plots is ten
times higher than in 3WM, testifying the latter as a more efficient process than the
former.

3.2 JTWPA with high chromatic dispersion

3.2.1 Resonant Phase Matching
Recent works [17] have shown that in practical realisations of JTWPAs the

generation of high frequency modes emerges as a strong gain limitation. This
happens because a great amount of pump and signal power get converted in these
stray modes instead of been transferred to the signal, hence allowing amplification.
Fig. 3.7 shows a sketch of an ideal vs real frequency mixing scheme of a JTWPA
working in PDC regime having in input a weak signal ωs and a strong pump ωp. In
the ideal case we would assist to a single wave mixing between ωp and ωs, that would
generate an idler mode ωi = ωp − ωs and would determine an efficient parametric
amplification. By the way, wave mixing processes not only apply to signal and
idler, but rather to each combination of modes into the JTWPA. Indeed Fig. 3.7
shows also part of the real set of modes that gets generated in the TL, namely
ωp+p = ωp + ωp (Second Pump Harmonic Generation), ωp+s = ωp + ωs (Signal Up-
Conversion), ωp+i = ωp +ωi (Idler Up-Conversion) and many more. To suppress the
generation of these unwanted modes two different paths can be followed. The first
one is to lower the cutoff frequency of the line below the frequency of the stray tones,
preventing in this way their propagation. By the way, this approach can introduce
some serious limitations to the functionality of the device for different reasons. First
of all, the wavelength of the traveling tones, λ = 2πω0/ω would become shorter,
about the size of only few tenth cells. For this reason the discreteness of the line
would not be negligible anymore, so the gain could exhibit high ripples. Second, in
order to keep the impedance unchanged both inductance and ground capacitance
should be increased, what is only possible with enlarging their physical sizes. Third,
the maximum pump power would be small, hence causing pump depletion at rather
low signal power [65].
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Figure 3.7: Ideal vs real frequency mixing scheme in PDC regime. The JTWPA
receives in input a pump mode ωp and a signal mode ωs, giving in output a ideal
set of modes, namely ωp, ωs and ωi = ωp −ωs and a real set of modes, hence ωp, ωs,
ωi = ωp −ωs, ωp+p = ωp +ωp (Second Pump Harmonic Generation), ωp+s = ωp +ωs

(Signal Up-Conversion), ωp+i = ωp + ωi (Idler Up-Conversion) and many more.

On the contrary, the second path, that we wish to explore in this section, is to
introduce dispersion in the line by, for example, lowering the plasma frequency of
the rf-SQUIDs defined as

ωJ = 1√︂
LgCJ

(3.116)

This approach allows to introduce phase mismatch between the pump and its higher
harmonics, preventing the pump from being depleted by the presence of these stray
tones. By the way, lowering the plasma frequency adds inevitably a smaller amount
of phase mismatch among the tones that are intended to be amplified, preventing
in this way an efficient amplification. To fix this, caused by the high chromatic dis-
persion, a modified dispersion relation should be introduced, in order to re-phase
the pump, signal and idler tones.
The quantum theory developed in sections 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.6 and 3.1.5
is based on the assumption that the transmission line presents low chromatic dis-
persion, hence ∆kaN ≪ 1. Moreover, this quantum theory is a 3-wave treatment
of the problem and does not account for higher harmonics that, as said, are a main
cause of gain limitation. For these reasons, to extend the discussion of JTWPAs in
the case of high chromatic dispersion, we will make use of a set of classical Coupled
Mode Equations (CME) introduced in [17], that allows to describe the dynamics of
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3.2 – JTWPA with high chromatic dispersion

a multi-wave system, and we will readjust it in the case of high chromatic dispersion
and engineered dispersion relation. For this purpose, we will treat the case of the
PDC amplification only, hence a 3WM regime, since the 4WM case have already
been extensively studied [24, 57, 36]. Moreover, in all the numerical evaluations

c

r r

Figure 3.8: Unit cell of a JTWPA equipped with RPM. The LC resonator that
shunts the signal line to ground is capacitively couples through a coupling capaci-
tance Cc and is formed by an inductance Lr and a capacitance Cc.

that follow we will use the set of parameters shown in Tab. A.2, if not differently
indicated.
The Resonant Phase Matching [43] is a technique that allows to engineer the dis-
persion relation of a TL by introducing LC resonators capacitively coupled between
the signal line and the ground plane. Fig. 3.8 shows how the unit cell gets modified
by the introduction of the resonator, composed by an inductance Lr, a capacitance
Cr and a coupling capacitance Cc. For simplicity, in the figure a resonator is coupled
to each rf-SQUID of the JTWPA, but in practical realisations [57] one resonator
can be used to re-phase the contribution of a certain number of cells, hence dras-
tically reducing the complexity of the circuit. Anyway, just to keep things simple,
and without lack of generality, here we model our TL, in the hypothesis that every
rf-SQUID has its own resonator.
We can easily take into account the effect of the resonator on the circuit by consid-
ering the ensemble behaviour of the cluster formed by Cg plus resonator, and then
defining a fictitious frequency dependant ground capacitance Cg(ω). The equation
that governs Cg(ω) can be obtained by considering the impedance to ground (see
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Appendix G) of the cluster formed by the resonator plus Cg that is

Zres+Cg = 1 − (Cc + Cr)Lrω
2

iω
(︃
Cg(1 − (Cc + Cr)Lrω2) + Cc(1 − CrLrω2)

)︃ (3.117)

If now we suppose to substitute a frequency dependant capacitance with the same
impedance of Eq (3.117) we find

Cg(ω) = 1
iωZres+Cg

= C0(1 − (Cc + Cr)Lrω
2) + Cc(1 − CrLrω

2)
1 − (Cc + Cr)Lrω2 (3.118)

The dispersion relation of a ladder-type TL which does not include RPM has been

Figure 3.9: Comparison between the engineered dispersion relation (3.119) (blue)
and a linear dispersion relation with low chromatic dispersion.
Inset: zoom of the stop band opened by the presence of the RPM.

calculated in [65], and corresponds to

k(ω) = 2 arcsin
⎛⎝ ω/2ω0√︂

1 − ω2/ω2
J

⎞⎠ (3.119)

with ω0 = 1/
√︂
LgCg the characteristic frequency of the line. To include the effect of

the resonator in Eq. (3.119) it is sufficient to perform the substitution Cg → Cg(ω)
in the definition of ω0.
In Fig. 3.9 one can see the dispersion relation of the JTWPA with an inset showing
the stop band created by the presence of the resonator, characterised by a negative
and a positive asymptote, respectively at the right and left hand sides of the stop
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band.
The RPM technique works by placing the pump frequency in correspondence with
one or the other asymptote, depending if working in 3WM or 4WM, giving in this
way an extra amount of phase that with a smooth dispersion relation could not be
given, thus reducing the phase-mismatch among the traveling tones. To see this
concept we define the phase mismatch in PDC regime as

∆k(ωp, ωs) = k(ωp) − k(ωs) − k(ωp − ωs) (3.120)

Plotting (3.120) it is ready visible the effect of the RPM on the overall phase

p

(a) (b)

Figure 3.10: (a) Phase mismatch calculated sweeping on the pump frequency for
ωs = 6 GHz. Both the blue solid line and the black dashed line are calculated for
the set of parameters in Table A.2 but for the latter the stop band introduced by
the resonator has been removed.
(b) Phase mismatch calculated sweeping on the signal frequency for a fixed pump
frequency of ωp = 14.4 GHz. Both the blue solid line and the black dashed line are
calculated for the set of parameters in Table A.2 but for the latter the stop band
introduced by the resonator has been removed.

mismatch. In Fig. 3.10 (a) one sees two plots of ∆k(ωp, ωs) as function of ωp for
ωs = 6 GHz, with RPM (blue solid curve) and without RPM (black dashed curve).
From ∆k(ωp, ωs) with RPM we see that, differently from the case without RPM,
the phase mismatch crosses the frequency axis in 14.4 GHz, meaning that in this
point the phase mismatch is zero. The condition of negligible phase mismatch is of
key importance for an efficient amplification, indeed recalling Eq. (3.97) one sees
that in the case of Ψ ≈ 0 the gain becomes

G ≈ cosh gt2 (3.121)

hence giving an exponential growth of the signal through all the length of the am-
plifier.
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In Fig. 3.10 (b) ∆k(ωp, ωs) is calculated sweeping on the signal frequency, for
ωp = 14.4 GHz. In this case the comparison between the two curves shows us that
in the case without RPM we observe that ∆k(ωp, ωs) is negligible just at the extreme
positions of the considered range, hence where the signal or the idler are very close
to the pump, on the other hand n the case with RPM we see that the region where
∆k(ωp, ωs) ≈ 0 is positioned in the center of the range, and extends for several
GHz. For these considerations we conclude that an engineered dispersion relation
allows to greatly extend the region of negligible phase mismatch ∆k(ωp, ωs) ≈ 0,
and hence the bandwidth with exponential gain.

3.2.2 Coupled Mode Equations
Following the approach and notation developed in [17], we describe the dynam-

ics of the traveling waves in the amplifier through the CME method. CME are a
system of differential equations normally used to describe the dynamics of signals in
parametric amplifiers, and to the lowest orders include just 3 differential equations,
describing the pump, signal and idler tones. In [17] an extension of this method
has been developed to take into account all the pump-mediated tones up to the
K-th pump harmonic, for this reason the system takes the name CME-K. To de-
scribe our system we will make use of CME-2, because the set of circuit parameters
chosen allows to have a real wavevector up to the second pump harmonic (around
24 GHz), making the tones at higher frequencies evanescent waves not important
for the overall evolution of the system (see Fig. 3.9). The choice of this set of
parameters is made in order to have ωJ = 35.6 GHz, hence between the second and
third pump harmonics. This is to induce enough phase mismatch for the second
pump harmonic but not to introduce too much mismatch for the signal tone, that
otherwise would require too experimentally stringent conditions for an efficient re-
phasing.
The dynamical description of the JTWPA can be made considering the flux wave
through a modal decompisition [64, 59] including the signal, pump, idler, pump+idler,
pump+signal and pump+pump tones

Φ = 1
2

∑︂
j=i,s,p,p+i,p+s,2p

Aj(x)ei(kjx−ωjt) + c.c (3.122)

where Aj(x) is the wave amplitude of the j-th mode at the coordinate x = X/a,
with X the physical coordinate that runs over the length of the amplifier and a the
unit cell length. The wave equation that the flux wave has to satisfy in a JTWPA
in pure 3WM regime is [64, 59]

∂2Φ
∂x2 − ω−2

0
∂2Φ
∂t2

+ ω−2
J

∂4Φ
∂x2∂t2

+ βL

2
∂

∂x

[︄(︄
∂Φ
∂x

)︄]︄
= 0 (3.123)
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with

βL = 2πLgIc

Φ0

It can be shown that plugging Eq. (3.122) into (3.123) a system of differential
equations that regulates the spatial evolution of the wave amplitudes Aj(x) can be
derived. We call this system CME-2 and it takes the form

dAi

dx
= βL

4

(︃
kpksApA

∗
se

i(kp−ks)x + kpkp+iApA
∗
p+ie

i(kp−kp+i)x + k2pkp+sA2pA
∗
p+se

i(k2p−kp+s)x
)︃
e−ikix

dAs

dx
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4
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kpkiApA

∗
i e

i(kp−ki)x + kpkp+sApA
∗
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i(kp−kp+s)x + k2pkp+iA2pA
∗
p+ie
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∗
pe
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where Aj is the amplitude of one of the six modes considered and kth is its wavenu-
mebr.

In this framework we can define the gain of the JTWPA as

G = |As(end of amplifier)|2
|A(0)|2 (3.124)

hence as the ration between the modulus square of the signal amplitude at the
end of the amplifier on the one at the beginning of the amplifier. Eq. 3.124 is
the definition of power gain since the power of a microwave tone is proportional to
the modulus square of its amplitude. Ref. [17] has shown that the CME approach
better fits the numerical simulations performed by the WRspice simulator when
sitting in the low power regime, for this reason we identify the link between the
power of the microwave modes P (z) and their amplitudes |A(z)| as

P (z) =
(︄√

Z0|A(z)|ωIc

ω0βL

)︄2

(3.125)

where Z0 is the characteristic impedance of the line, ω is the frequency of the mode
and Ic is the critical current of the junctions.
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In all the numerical computations we will always keep the power of the consid-
ered signals well above the single photon limit, hence where the classical CME
theory can be safely used, but below the high power limit, where the model fails
due to the excitation of higher modes not taken into account by a pure PDC theory.
In the next sections we will make use of the CME-K approach both to analyse and
understand experimental results (Sec. 4.3) and to engineer a novel kind of JTWPA
with a modified dispersion relation (Sec. 4.4).
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Chapter 4

Fabrication and cryogenic
characterisation of JTWPAs

4.1 Fabrication and characterisation of JJs

Figure 4.1: Scheme of the measurement setup used to measure the critical currents
of JJs. A voltage generator in series of a resistor R supply the excitation current
to the DUT, which is then measured by a voltmeter in series of a transimpedance
amplifier with gain Z. The voltage drop across the DUT is measured by a second
voltmeter in series of a voltage amplifier with gain G. The current and voltage lines
are filtered with low pass filters in order to reduce the presence of high frequency
noise. An in-plane field B⃗ is provided to the DUT.

75



Fabrication and cryogenic characterisation of JTWPAs

The JTWPA is entirely produced by standard Al deposition utilising a single
lithographic step. For the fabrication of the JJs a double angled evaporation is
used [18, 22], so as to create an overlap between two superconducting leads, hence
the junction area, by the superposition of two distinct metal layers produced by
two separated depositions. The creation of the oxide layer between the two leads
of the junctions is of fundamental importance, since it is directly related to the
critical current density and the associated junction capacitance. Its creation takes
place through an oxidation process of the first Al layer operated using a continuous
flow of pure oxygen, in a vacuum chamber where the atmospheric pressure is under
constant control. There is indeed a direct relation between the oxidation time, the
oxidation pressure and the critical current density of a JJ, that allows to predict
with a certain precision the critical current of a JJ given the oxidation conditions
and the overlap area. The critical current density of a JJ can be considered a
function of the

√
P · t product [29], where P is the oxidation pressure while t is the

oxidation time, indeed the easiest and more accurate way to obtain the Jc vs
√
P · t

relation is to directly measure the critical currents of JJ with known area, and then
build an experimental curve that interpolates the measured data. Fig. 4.2 shows a
micrograph of a typical JJ realised by the shadow mask evaporation technique in Al.

The measurements of the critical currents taken to create the Jc vs
√
P ·t curve were

500 nm

Figure 4.2: Micrograph of a JJ embedded in the rf-SQUIDs.

performed in a wet dilution refrigerator Leiden CF-MCK50-100, using the experi-
mental setup shown in Fig. 4.1. The IV characteristics were measured through a 4
terminal scheme, where the DUT is powered by a voltage source Yokogawa GS200
in series with a resistor with resistance R = 10 kΩ. The current supplied is then
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measured after the DUT through a transimpedance amplifier FEMTO DDPCA-
300 with gain Z = 105 V/A, of which the output voltage is measured using a
multimeter Keithley 2400. The voltage drop across the DUT is measured using a
second Keithley 2400, preamplified by a voltage amplifier Aivon dVPA-B with gain
G = 100. Both the current and voltage lines are filtered with RC low pass filters
with respectively 10 MHz and 30 Hz cutoff frequency. The choice of the different
cutoff frequencies is lead by power dissipation considerations taking place in the
current and voltage lines, indeed a lower cutoff frequency means in general a higher
series resistance in the filter, that is a suitable choice for a line in which a low
current is flowing, so as not to generate too much heat in the cryostat. Similarly,
a higher cutoff frequency is given by a low series resistance, that is a good choice
for high current lines. The measurement setup is provided with a superconducting
magnet that can generate an in-plane magnetic field (indicated in Fig. 4.1 by B⃗)
up to 3 T.
In Fig. 4.3 one can see the IV characteristic of a typical JJ fabricated for the de-
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Figure 4.3: IV characteristic of a JJ. The blue solid line represents the positive
branch while the red dashed line the retrapping branch.

termination of the Jc vs
√
P · t curve. The blue solid line represents the positive

branch where the critical current is measured, while the red dashed line the retrap-
ping branch of the IV characteristic.
Fig. 4.4 shows the critical current measured (black dots) as a function of the in-
plane applied magnetic field. This measurement is commonly used as a criterion
for testing the uniformity of the tunneling current in a JJ, since the shape of this
experimental curve depends on the critical current density distribution of the JJ,
which is linked to the shape of the potential barrier [2]. In general, the potential
barrier has not the same high in all the area of the JJ, locally causing spikes or
attenuations of the critical current density. This phenomenon has a major role in
the case of high-current-density junctions (> 108A/m2) since the tunneling cur-
rent is exponentially dependent on the barrier thickness, by the way, our JJs have
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Figure 4.4: Critical current of a JJ measured as a function of the in-plane magnetic
field (black dots). The orange and red curves represent two fits calculated using
respectively a Fraunhofer pattern (4.1) and a double Fraunhofer pattern (4.2).

critical current densities always lower than 107A/m2, limit that puts ourselves in a
regime where the tunnel barrier can be considered thick and uniform. The case of a
rectangular junction, with a uniform tunnel barrier pierced laterally by a magnetic
field, can be analytically treated and the resultant Josephson critical current as a
function of the magnetic flux is found to be equal to a so-called Fraunhofer pattern,
of equation

Ic(B) = Ic,0

⃓⃓⃓⃓
⃓⃓sin

(︂
πBLh

Φ0

)︂
πBLh

Φ0

⃓⃓⃓⃓
⃓⃓ (4.1)

where Ic,0 is the critical current with no magnetic field applied, B is the magnetic
field, L is length of the junction and h = 2λL + t, with λL the London penetration
length and t the thickness of the oxide layer. It can be shown that, if the mag-
netic field applied has nonzero components along two different in-plane axis of the
junction, the dependence of Ic from Φ is given by the product of two Fraunhofer
patterns

Ic(B) = Ic,0

⃓⃓⃓⃓
⃓⃓sin

(︂
πBLh

Φ0
cosα

)︂
πBLh

Φ0
cosα

⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓⃓sin

(︂
πBW h

Φ0
sinα

)︂
πBW h

Φ0
sinα

⃓⃓⃓⃓
⃓⃓ (4.2)

with L and W the length and width of the two sides of the junction and α the
angle between the applied field direction and the normal versor to the L side of the
junction. Fig. 4.4 shows two curves representing fits of the experimental data using
Eq. (4.1) (orange) and Eq. 4.2 (red), where we introduced the fitting parameters
a = πLd

Φ0
for Eq. (4.1) and b = πLd

Φ0
cosα and c = πW d

Φ0
sinα for Eq. (4.2).
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Parameter Value Standard Error Unit
a 124.59 1.07 1/T
b 116.96 1.05 1/T
c 26.96 2.25 1/T

Calculating the sum of the residuals between the fitting curves and the experimental
data we obtain

Σresiduals(Fraunhofer) = 5.12 · 10−7 (4.3)
Σresiduals(doub.Fraunhofer) = 2.77 · 10−7 (4.4)

which testify that the double Fraunhofer pattern better fits the experimental data.
In conclusion, the experimental data shown in Fig. 4.4 are well fitted by a double
Fraunhofer pattern, meaning that the shape of the potential barrier is uniform in
all the area of the junction and that the magnetic field direction enters the side of
the junction with an angle different from 90°. From the fit of the experimental data
is possible to obtain some interesting features of out JJs, like the angle α and the
length h. Inded from Eq. (4.2) we obtain the relation between the fit parameters
and the geometric features of the JJ⎧⎨⎩h cosα = aΦ0

πL

h sinα = bΦ0
πW

(4.5)

which can be recast in

α = arctan
(︄
bL

aW

)︄
(4.6)

h = bΦ0

πW sinα (4.7)

It turn out that, considering the results of the double Fraunhofer pattern fit and
the geometrical dimensions of the JJ used to perform the measurements in Fig.
4.4 L = 2 µm and W = 500 nm, the angle α = (43 ± 2)° and h = (52 ± 5)nm.
From the value of h one can hence make an estimate of λL for our Al thin film. If
one assumes that the thickness of the oxide barrier is ≈ 1 nm we obtain λL ≈ 25 nm.

The relation between the oxidation pressure, oxidation time and critical current
density can be deduced through the

√
P · t rule studied in [29, 56]. In the mi-

croscopic theory of the Josephson effect the relation between the critical current
density and the width of the potential barrier of a JJ is found to be [2]

Jc = eℏk
me

√
n1n2

sinh (2kd) (4.8)
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where me is the electron mass, n1,2 are the supercarrier densities in the two leads
of the JJ and k is the decay constant of the barrier. We can obtain the equation
for the thickness of the barrier as a function of the

√
P · t product in terms of the

extended Cabrera-Mott theory for the formation of very thin oxide films as

d3/2 = 6.05 log
(︂
138 · P 1/2 · t+ c

)︂
(4.9)

where d is the thickness of the oxide barrier in Å, c is a fitting adimensional constant
and pressure and time are expressed in torr and min respectively. In this specific
analysis we choose to express the pressure and time units in torr and minutes since
these are more widely used than the standard SI units Pa and s in fabrication
context. Putting (4.9) into (4.8) leads to

Jc = ak

sinh (2k[6.05 log (138 · P 1/2 · t+ c)]2/3) (4.10)

with a a multiplication constant that for superconducting Al at T = 0 is a =
1.3 · 106 µA · Å.
We performed 4 measurement sessions, where in each session we measured between
10 and 15 Josephson critical currents relative to the same oxidation process. In
Fig. 4.5 one can see a fit of the experimental points made with Eq. (4.10), where
each point correspond to a different measurement session. The parameters of the
fit are

Parameter Value Standard Error Unit
k 1551 · 107 6 · 107 1/Å
c 4.9 0.1

The measurements reported in Fig. 4.5 have uncertainty on the
√
P · t axes given

mainly by the pressure fluctuations recorded during the oxidation processes, and
on the Jc axes calculated as the standard deviation on the whole number of mea-
surements performed during the different runs.
Considering that the geometrical layout of our JJ involves an area of ≈ 0.4 µm2,
in order to obtain a critical current of 1.3 µA we need Jc = 1.3 µA/0.4 µm2 ≈
3.25 µA/µm2, which, making use of the curve shown in Fig. 4.5, corresponds to√
P · t ≈ 0.175

√
torr· min.

Finally, the intrinsic Josephson capacitance can be estimated from the geometric
dimensions of the junction and physical properties of the oxide layer, if we consider
it comparable to a parallel plate capacitor of capacitance

C = ϵ0ϵr
A

d
(4.11)

where ϵ0 is the dielectric constant of vacuum, ϵr = 9.34 is the relative dielectric
constant of the dielectric layer, A is the junction area and d is the oxide thickness.
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Figure 4.5: The figure shows a fitting curve of the Jc vs
√
P ·t relation interpolating

some experimental measurements (red dots) of JJ critical current densities.

Fig. 4.6 (a) and (b) show respectively the thickness of the oxide barrier and the
capacitance of a parallel plate capacitor calculated using Eq. (4.11), where the
dielectric layer thickness is d and the area is A = 0.4 µm2. Hence, the target value
of Ic = 1.3 µA corresponds to a junction capacitance CJ ≈ 28.5 fF.

4.2 Electromagnetic simulations for the layout
definition of the JTWPA

Our JTWPA is realised in a coplanar waveguide form, embedding the rf-SQUIDs
into the signal line, realising the ground capacitances through interdigitated capac-
itors and the geometric inductances through meander inductors.
There are, by the way, some observations to make about the simple schematic pro-
posed in [64] and about its physical realisation. This circuit does not take into
account some parasitic inductances and capacitances that in practical realisations
can never be totally eliminated, and that we need to take into account for a good
impedance matching of the transmission line and in general for the proper operation
of the device. For example, the rf-SQUIDs are posed at a certain distance between
each other, and the connection between them is realised by a piece of coplanar
waveguide. This means that there always is a linear inductance connecting two
subsequent rf-SQUIDs, that gets longer the further the rf-SQUIDs are. An other
stray inductance is represented by the pieces of the rf-SQUID loop that connect
the Josephson junction with the rest of the circuit, which very few times can be
considered negligible given their reduced width. Moreover, the total ground ca-
pacitance of the elementary cell is given by a superposition of the interdigitated
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(a)

(b)

Figure 4.6: (a) Plot of the oxide barrier thickness as a function of the oxidation
parameters. (b) Intrinsic capacitance of a JJ with area 0.4 µm2 and dielectric
thickness d.

capacitors plus the distributed capacitance between the signal line and the ground
planes, making the sizing of this feature not straightforward. A schematic of the
circuit which includes the parasitic inductances and capacitances is given in Fig.
4.7.
Cinter is the capacitance due to the interdigitated capacitors while Cdist is the dis-
tributed capacitance given by the coupling between the signal line and the ground
planes. These two contributions are in parallel and for this reason can be unified
in a single ground capacitance, here they are indicated separated just to underline
their physical origin. The superconducting loop that forms the rf-SQUID in [64] has
a total inductance Lg, that in Fig. 4.7 is divided into three different contributions,
namely Lmeander, the inductance given by the meander inductor in parallel with the
Josephson junction, Lg1, the inductance due to the input feedline of the Joseph-
son junction and Lg2, the inductance due to the output feedline of the Josephson
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g1 g2
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Figure 4.7: The picture shows a schematic of the JTWPA elementary cell complete
of its stray inductances and capacitances.

junction. Finally, Ldist indicates the distributed series inductance due to the bare
coplanar waveguide that joins two rf-SQUIDs.
To realise the physical components of the circuit we made use of the electromagnetic
simulation software Sonnet. The stackup used for the simulations is composed of a

Ground
planeSignal

line
Substrate

Air

Figure 4.8: Picture of the CPW meander used to house the nonlinear elements,
indicating the structure of the stackup used for the simulations.

p-doped Si wafer 500 µm thick with on top of it a 300 nm thick layer of Si dioxide.
The tangent loss of the dielectric substrate is involved only in the calculation of
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the signal attenuation due to dielectric losses, while the conductivity is used to
compute ohmic losses. Their values at cryogenic temperature and microwave fre-
quency is strongly dependant on the particular material experimentally realised for
the fabrication of the device, for this reason we can give just an estimate based on
measurements found in literature. Typical magnitudes [44] for these parameters
at ≈ 100 mK suggest that in the case of crystalline Si we have tan δ ≈ 5 · 10−6

while in the case of Si dioxide tan δ ≈ 3 · 10−4. We choose to use these numbers
to characterise the dielectric layers composing the stakup, considering in addition
a negligible value for the conductivity of the substrate being at cryogenic temper-
ature.
The relative dielectric constants of the stackup layers are used to calculate the re-
flected microwave power at the ports and calculating some important quantities
like the effective dielectric constant of the transmission lines. Typical values found
in literature for the cryogenic relative dielectric constant of Si substrates highlight a
weak temperature dependence at microwave frequencies, giving a value of ϵr = 11.4
at 77 K [63], that we will use for our simulations. The relative dielectric constant
of Si dioxide has a weak temperature dependence as well and is set to ϵr = 3.7 [39].
On top of the substrate we then find 4 cm of air, with ϵr = 1. The metal used to
simulate superconducting Al is a perfectly conductive metal with a sheet induc-
tance L□ = 0.0201 pH/sq. The sheet inductance custom-defined is added in order
to simulate the presence of the weak kinetic inductance typical of the supercon-
ducting Al. We add this feature to the simulation for completeness, by the way it
can be shown that this contribution is most of times negligible when considering
micro-sized elements fabricated using state-of-the-art Al thin films.
Fig. 4.8 shows a picture of the CPW meander used as the housing for the nonlinear
elements. The signal line, 32 µm wide, is accompanied by two ground planes 118 µm
wide, separated by a gap of 16 µm. These dimensions ensure a 50 Ω characteristic
impedance [49].

The parameter constraints considered to realise the device are mainly two. First,
the screening parameter βL of the rf-SQUIDs has to be smaller than 1, so as not to
incur in a hysteretic behaviour of the rf-SQUIDs. βL should also not be too close to
1 because we need to take into account that due to fabrication imperfections some
of the hundreds of junctions could have a smaller or larger Ic, causing important
fluctuations in βL. For this reason, we choose a fault-tolerant value of βL ≈ 0.2.
Second, the characteristic impedance of the line should be Z0 =

√︂
L/C = 50 Ω,

imposing a constraint on the mutual value of the cell series inductance L and cell
ground capacitance C.
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4.2.1 Lg

First of all, we determine the geometry of Lmeander, Lg1 and Lg2, of which the
sum gives Lg. Fig. 4.9 and 4.10 show the physical layout and the simulated in-

10 μm

Port 1

Port 2

Figure 4.9: Physical layout of Lmeander and simulated inductance.

Port 1

Port 2

5 μm

Figure 4.10: Physical layout of Lg1 + Lg2 and simulated inductance.
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ductance of the meander inductor and Josephson feedline respectively, in the range
of frequency 4 − 12 GHz. The geometric inductance of the whole loop can then be
straightforwardly calculated as Lg ≈ 31.5 pH + 21.8 pH = 53.3 pH.
As a benchmark for the electromagnetic simulations we estimate the value of
Lmeander, Lg1 and Lg2 through analytic expressions taken from Ref. [50, 15]. The
analytic formula for a meander inductor (for which the reader can refer to Ref. [50])
takes into account the self-inductance of the striplines constituting the meander and
their mutual inductance contributions. The value obtained is Lmeander = 29.8 pH,
resulting in a difference of about 5% between the two results. The inductance of
Lg1 and Lg2 is calculated considering the inductance of a piece of stripline with the
same length of Lg1 + Lg2 [50] through the formula

L = 0.00508l(ln ( 2l
w + h

) + 0.5 + 0.2235w + h

l
) (4.12)

with l the length of the microstrip segment, w its width and h the dielectric layer
thickness (all the length are expressed in inches). The resulting inductance is
Lg1 + Lg2 = 15.4 pH, that differs from the simulated value of about 30%. In this
case the discrepancy between the two results is significantly larger since the mutual
inductances between the segments is not taken into account. Nonetheless, we see
good agreement between the numerical and analytical approach.

4.2.2 Ldist

Now, we determine the distributed series inductance of the elementary cell by
simulating a piece of 50 Ω matched coplanar waveguide and calculating its associ-
ated inductance per unit length. Fig. 4.11 shows the geometrical dimensions of the
CPW used for the simulation and its associated inductance for a length of 700 µm.
To extrapolate inductance per unit length of our CPW we simply divide the total
inductance by the length of the TL, finding ≈ 280 pH/700 µm = 0.4 pH/µm. Con-
sidering that the portion of coplanar waveguide composing a single elementary cell
is 46 µm, the distributed series inductance is Ldist = 46 µm · 0.4 pH/µm = 19.3 pH.
Calculating the value of the distributed inductance through [49]

Ldist = µ0

4
K(
√︂

1 − ( s
s+2w

)2)
K( s

s+2w
) (4.13)

with s the signal line width, w the gap width, µ0 the magnetic permeability of
vacuum and K(x) the complete elliptic integral of the first kind of argument x, we
find Ldist = 0.4 pH, in perfect agreement with the numerical simulations.
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100 μm

Port 1

Port 2

Figure 4.11: Physical layout of the coplanar waveguide used to extrapolate Ldist
and simulated inductance.

Port 2

Port 1

150 μm

Figure 4.12: Simulated metalization used to extrapolate the distributed capacitance
of the coplanar waveguide.
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4.2.3 Cdist

We now evaluate the distributed ground capacitance Cdist given by the coupling
between the signal line and the ground planes. To this end, we draw the circuit
shown in Fig. 4.12, that is simply composed by two pieces of metallization rep-
resenting the signal line (connected to Port 1) and one of the two ground planes
(connected to Port 2), coupled for a total length of 400 µm. We then simulate
the capacitance between the two metal strips and obtain the distributed capac-
itance per unit length as ≈ 40 fF/400 µm ≈ 0.1 fF/µm. The distributed capaci-
tance to ground of a single cell is then readily calculated considering again that
the portion of coplanar waveguide composing the elementary cell is 46 µm, hence
Cdist = (46 µm · 0.1 fF/µm) · 2 ≈ 9.2 fF. We underline that the overall capacitance
has been multiplied by a factor of 2 since the TL has two ground planes.
We can evaluate Cdist analytically considering the formula for the distributed ca-
pacitance of a coplanar waveguide [49]

Cdist = 2ϵ0(ϵr + 1)
K( s

s+2w
)

K(
√︂

1 − ( s
s+2w

)2
(4.14)

where ϵr is the relative dielectric constant of the substrate and ϵ0 is the dielectric
constant of vacuum. We obtain Cdist = 0.17 fF/µm, that underestimate the capaci-
tance of about 15% with respect to the electromagnetic simulations. This is proba-
bly caused by the fact that Sonnet is able to take into account the cross-capacitance
effects of the whole metallization, considering corrections that are missing in the
analytical formula.

4.2.4 Cinter

Finally, we estimate the interdigitated ground capacitance through the circuit
depicted in Fig. 4.13. As one can see the capacitance supplied by a single capacitor
is around 5.5 fF in all the range, meaning that the total capacitance due to these
components in a single cell is around 11 fF.
We estimate the value of the interdigitated capacitors using also the analytical
approach given in Ref. [28], where an analytic form for the capacitance of inter-
digitated capacitors on multilayer substrate is developed. This approach gives a
capacitance value for the capacitor shown in Fig. 4.13 of Cinter = 8.3 fF, that is
about 50% higher with respect to the value obtained through electromagnetic sim-
ulations. Ref. [28] gives many comparisons between their values obtained by the
analytical approach and experimental values or electromagnetic simulations, always
giving optimal agreement. Nonetheless, the scale length at which the model is used
in Ref. [28] is cm, resulting in capacitances in the order of hundreds of pF. Given
this consideration and the discrepancy obtained between analytical model and our
electromagnetic simulations we think that at smaller scales, say tenth of µm, the
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Port 1 Port 2

14 μm

Figure 4.13: Physical layout of Cinter and simulated capacitance.

hypothesis made to obtain a closed form for the capacitance do not hold anymore,
overestimating the overall capacitance.

4.2.5 LJ and CJ

The geometry of the Josephson feedlines shown in Fig. 4.10 has been chosen
in order to give a solid mechanical stability to the suspended mask used in the
doubled-angle evaporation process, since the need of fabricating nearly one thou-
sand junctions in a single device imposes severe constraints in terms of lithographic
reliability. On the other hand, this same geometry limits the maximum area that a
single junction can have, because the limited angle and thickness of the mask does
not allow to achieve large overlaps, hence large areas. As a consequence, CJ and Ic
cannot have any value, but will have some kind of upper limit.
Referring to Eq. (2.96), we see that a Josephson junction with a certain critical
current has an associated inductance that has to be taken into account when we
make characteristic impedance balances. Given Lg = 53.3 pH we need the critical
current to be Ic ≈ 1.3 pA to have βL ≈ 0.2 fulfilled. It follows that in a 3WM work-
ing point the JJ corresponds to an inductance of which the value is much higher
than Lmeander, say LJ ≈ 400 pH. This contribution can be taken into account in
the simulation by defining a custom metal with a sheet inductance such that its
enclosure in the TL circuit mimics the electromagnetic behaviour of the JJ in the
rf-SQUID at the working point. To this end, a piece of custom metal with sheet
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inductance L□ = 400 pH/sq is defined and placed in the physical layout in substi-
tution of the JJ.
As explained in Sec. 4.1, an intrinsic capacitance is always attributed to JJs when
made by thin superconducting films, given by the overlap of the two leads. To take
into account this contribution a lumped element capacitor CJ is placed between the
two leads of the JJ. The Sonnet Suite allows to insert ideal electrical components
with a custom value between any two metal polygons, so we use this feature to
simulate CJ. In this case the lumped element capacitor will have a capacitance
28.5 fF, just as estimated at the end of 4.1.

4.2.6 Characteristic impedance
Given the results above, we can now evaluate the characteristic impedance of

the line calculating the total series inductance and ground capacitance of the ele-
mentary cell. It turn out that the characteristic impedance is very close to 50 Ω

Z0 =
√︄
L

C
=
√︄
Ldist + Lmeander

Cinter + Cdist
=

⌜⃓⃓⎷(19.3 + 31.5) pH
(11 + 9.2) fF = 50.1 Ω (4.15)

It has to be noted that the Josephson branch of the rf-SQUID does not give any con-
tribution to the characteristic impedance since the series inductance of Lg1+Lg2+LJ
is much larger than Lmeander. The method just described to realise a 50 Ω matched
TL estimates separately all the contributions of the circuit components and then
calculates at the end the characteristic impedance of the line. By the way, for more
complicated and irregular devices this method can be somehow limitating because
it does not take into account the non-trivial electromagnetic interactions between
the components, and hence can lead to errors due to the underestimation of some
features. To avoid this problem, an electromagnetic simulation of the whole device
is preferable and in the following we show how to design the same 50 Ω matched
TL in a more straightforward way.
We start by choosing again a value of βL ≈ 0.2, so that we can use the simula-
tions shown in Fig. 4.9 and 4.10 to find Lg. The definition of the other circuit
components is done through a parametric electromagnetic simulation, where the
parameter is represented by the length of the interdigitated capacitor fingers of Cg.
Fig. 4.14 shows a screenshot of the unit cell with the length of the interdigitated ca-
pacitor fingers parameterized by the "Grd" parameter. We choose this dimensional
parameter because the capacitance to ground of the unit cell is directly related to
the length of the interdigitated capacitors fingers Cinter ∝ Length(Grd), and by
modifying this length we can easily tune Cinter and consequently the characteristic
impedance of the line. Indeed by looking at Eq. (4.15) we see that removing the ca-
pacitance contribution given by Cinter we would obtain a characteristic impedance
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Figure 4.14: Physical layout of the elementary cell showing the dimensional pa-
rameter "Grd" indicating the length of the fingers of the interdigitated ground
capacitors.

of about ≈ 62 Ω, hence this circuit element is essential to balance the inductive
contribution of the unit cell, hence lowering the characteristic impedance of the
line. The simulation is then performed by sweeping the length of "Grd" at a fixed
frequency (6 GHz), monitoring the transmission of the TL by looking at the value of
S21. When the magnitude of S21 is maximum we have the best power transmission
possible, hence the characteristic impedance matching. Fig. 4.14 reports the re-
sults of some parametric simulation, calculated for different numbers of elementary
cells, as a function of the length of the parameter "Grd". As can be seen, all the
curves present a maximum for Grd = 14 µm, meaning the this point presents the
best achievable power transmission with the length steps used (probably a higher
value of S21 could be reached with thinner steps but we chose to keep 1 µm in order
to limit the computational time). This length corresponds exactly to the one found
in Fig. 4.13, giving perfect agreement between the two methods.
One last remark needs to be made on the frequency dependence of the simulations
presented in this sections. One can indeed notice that the simulations shown from
Figures 4.9 to 4.13 present a weak frequency dependence of the capacitances and
inductances of the single circuit components. This fact is known to be a direct
consequence of the change in inductance and capacitance of the elementary metal-
lic and dielectric sections of the complex geometries here simulated given by the
different frequency response to the electromagnetic field. In other words, we see
directly the effect of the complex reactances of inductors and capacitors. We do
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Figure 4.15: Parametric simulations of the S21 amplitude parameter as a function
of the length of "Grd". The simulations are performed for different numbers of unit
cells (blue = 1 cell, orange = 2 cells, green = 4 cells, red = 8 cells).

not see this effect in the analytical formulas since this is an approximation that
works in a generic high frequency regime and do not give an explicit frequency
dependence. This said, we notice that the frequency dependence of the simulated
objects is weak and cane be considered negligible in relation to the magnitude of the
simulated quantity. As a consequence, the analytical approach can be considered
again a valid approximation.

For a deeper understanding of the electromagnetic behaviour of the TL it is useful
analysing the simulations as a function of the number of unit cells in the circuit, in
order to extrapolate some important pieces of information for the whole JTWPA,
which includes 990. To this end, in Fig, 4.16 we plot the value of S21 at Grd
= 14 µm as a function of the number of cells and analyse its behaviour. The plot
shows the simulated points extrapolated from Fig. 4.15 and a parabolic fit of
equation y = a+ bx+ cx2, of which the parameters are

Parameter Value Standard Error Unit
a 5 · 10−4 5 · 10−4 dB
b 200 · 10−4 3 · 10−4 dB
c 259 · 10−5 3 · 10−5 dB

It turns out that the magnitude of S21 has a parabolic behaviour in the number
of cells that compose line, and an extrapolation of its value using the parabolic fit
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Figure 4.16: S21 magnitude as a function of the number of unit cells. The red dots
indicate the simulated points while a blue curve the parabolic fit.

for 990 cells gives S21(990) = −2.55 dB, that is the expected insertion loss of the
whole device. In the next section we experimentally show some S21 measurements
of a JTWPA realised using the circuit parameters found thanks to the method just
described, finding a very good agreement between the simulations and the experi-
mental data.
When designing a microwave circuit it is useful understanding the sources of at-
tenuation that play a role in the signal transmission, for example identifying the
different contribution of impedance mismatch, ohmic losses and dielectric losses.
To this end we study a quantity named Loss Factor (or Efficiency factor or Power
Balance), defined as

Loss Factor(dB) = 10 log10 (|S11|2 + |S21|2 + ....+ |SN1|2) (4.16)

where N is the number of ports in the network. As an example, the loss factor for
a lossless circuit will be 1.0 in magnitude or 0.0 dB, a circuit that loses 20 percent
of its power has an efficiency factor of −1 dB, etc. etc. The Loss Factor gives
a measurement of how "lossless" a circuit would be if you were able to perfectly
impedance match it, giving important hints on the sources of loss located in the
circuit. Fig. 4.17 shows the Loss Factor simulated for different numbers of unit
cells (blue = 1 cell, orange = 2 cells, green = 4 cells, red = 8 cells) as a function
of the length of the parameter Grd. Analysing these plots one sees that for a low
value of Grd, hence for short intersections of the capacitors fingers, the modulus of
the Loss Factor is always below 0.03 dB, and then it grows monotonously with Grd.
This behaviour can be understood considering that the electric field density stored
in Cg grows with Grd, hence the dielectric losses grow as well (there are no ohmic
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Figure 4.17: Parametric simulations of the Loss Factor as a function of the length
of "Grd". The simulations are performed for different numbers of unit cells (blue =
1 cell, orange = 2 cells, green = 4 cells, red = 8 cells).

losses considered since the metal is a perfect conductor). Fig. 4.18 shows the Loss
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Figure 4.18: Loss Factor as a function of the number of unit cells. The red dots
indicate the simulated points while a blue curve the linear fit.

Factor as a function of the number of cells. The red dots represent the simulations
performed for 1, 2, 4 and 8 cells for Grd = 14 µm, while the blue curve is a linear
fit of the simulated points of equation y = a+ bx, of which the parameters are
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Parameter Value Standard Error Unit
a −0.00003 0.00002 dB
b −0.019864 0.000004 dB

The linear fit testify a simple but important fact, hence that every cell gives the
same amount of losses. Using the linear fit we extrapolate a Loss Factor at 990 cells
of Loss Factor (990) = −0.02 dB, that is much less than the attenuation previously
found of S21(990) = −2.55 dB. This fact makes us understand that the main cause
of attenuation in the circuit is mainly a result of impedance mismatch instead of
dielectric losses.

A final remark about this second method of defining the layout of a 50 Ω matched
TL. This method intrinsically takes into account all the electromagnetic interac-
tions between the components of the circuit since the device is simulated as a whole
geometry. We can find in this case accordance between the two methods because
the structure of the TL is simple and the single parts tend not to electromagneti-
cally interact between each other in complicated ways.

Fig. 4.19 shows a micrograph of the whole elementary cell, of which the set of
circuit parameters can be summarised as

Component Value Unit
Lmeander 31.5 pH
Lg1 + Lg2 21.4 pH
Ldist 19.3 pH
Cdist 9.2 fF
Cinter 11 fF
Ic 1.3 µA
CJ 28.5 fF

4.3 Cryogenic measurements of JTWPA
The cryogenic characterisations of JTWPAs were performed on two different

samples to which we will refer as sample A and sample B.
We start the RF characterisation of the JTWPA-A measuring the power trans-
mission of the TL, so as to evaluate the overall attenuation due to the impedance
mismatch and losses. The cryogenic setup used for the characterisation is a DRY
ICE 300 mK He-3 system with base temperature 300 mK (Fig. 4.20 left). The
schematic of the circuit is shown in the right side of Fig. 4.20. The system is a
closed loop He refrigerator studied to allow very long measurement sessions (> 1
month) always keeping base temperature. It presents 4 cold stages, at 50 K, 3 K,
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20 μm

Figure 4.19: Micrograph of a JTWPA.

Figure 4.20: Left: picture of the refrigerator DRY ICE 300 mK used to characterise
sample A. Right: schematic of the microwave circuit used for the VNA characteri-
sation of sample A.

1.5 K and 300 mK, and is provided with four microwave lines that link the out-
side of the refrigerator with the coldest stage passing through all the temperature
stages. The 300 mK stage is then connected to room temperature again through
a superconducting output line that minimises signal losses. The DUT is mounted
at the 300 mK stage while the circuitry necessary to perform the experiment, like
amplifiers and circulators, are placed at the 1.5 K and 3 K, so as not to thermally
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overload the coldest stage. The input line has 30 dB of attenuation at room tem-
perature given by attenuators put in front of the Vector Network Analyzer 2-port
PNA-X-P9372A (VNA), then about 37 dB of attenuation given by the input line
inside the refrigerator (composed by the coaxial wires plus the input switch plus the
bias tee). The input and output lines have about 3 dB each (6 dB in total) of extra
attenuation given by the presence of the room temperature cables connecting the
VNA and the fridge. A bias tee put in front of the DUT allows to bias the ampli-
fier using a DC current (the circuit of the DC bias is closed to ground through the
isolators, hence there is no need of two bias tees) generated at room temperature
by a standard voltage generator in series of a resistor R of resistance 13 kΩ (much
higher than the resistance of all the DC circuit, hence the voltage generator + R
makes a good approximation of current generator). The JTWPA is placed between
the two RF switches. The characterisation required the use of a channel connected
to a thru (e. g. a bare piece of coaxial cable), so as to estimate in situ the overall
losses of the setup, and a channel connected to the device to be characterised. The
superconducting (NbTi) output line has two stages of isolation in series of 20 dB
each and a final amplification stage obtained through a High Electron Mobility
Transistor (HEMT), placed at the 3 K stage, that provides about 36 dB in a range
between 4 and 12 GHz.
Fig. 4.21 (a) shows some transmission spectra takes on sample A for different in-
put signal powers. One can see a comparison between the power transmission of
the thru channel and the transmission of the JTWPA for a probe tone power of
−107 dBm, −97 dBm and −87 dBm (calculated at the JTWPA input). Fig. 4.21
(b) shows the spectra after the line attenuation subtraction. Looking at the atten-
uation subtracted spectra one can notice that the overall insertion loss given by the
introduction of the JTWPA in the line ranges between 2 dB and 4 dB for low probe
power (RF power = −107 dBm) and goes eventually to 6 dB for high powers and
high frequencies.
This measurement confirms two important facts. First, the device has a charac-
teristic impedance of approximately 50 Ω and low losses. Due to the structure of
the measurement setup it was impossible to measure the reflected power at the
DUT input, it is hence impossible to determine the distinct contributions of losses
and reflections of the overall insertion loss. Moreover, the growing loss at higher
frequencies is compatible with the RF behaviour of a CPW. Second, the signal
transmission gets worse for high power probe tones. This fact can be explained by
considering that due to the nonlinear nature of the JTWPA a higher portion of
RF power gets converted into higher harmonics if the probe tone is more intense,
resulting ultimately in a reduced transmission when measuring the scattering pa-
rameters. Transmission measurements performed sweeping the DC current bias did
not highlight a real dependence of the insertion losses from this parameter.
We finally underline that the measurements just presented are in very good agree-
ment with the simulations of the S21 parameter presented in the previous section.
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(b)

(a)

Figure 4.21: (a) Transmission spectra of the JTWPA measured for different pump
powers. (b) Subtraction between the transmission spectra shown in (a) and the
Thru trace.

The modulation of the quadratic and cubic nonlinearities can be tested by mea-
suring the power of the 3WM and 4WM idlers as function of the DC bias cur-
rent. This measurement has been carried out on sample B, in a Leiden Cryogenics
cryostat CF-CS110, of which the circuit schematic is reported in Fig. 4.22. A 2
tones measurement is performed by supplying in input a weak signal tone supplied
by an Agilent E5071C 300 kHz-20 GHz VNA, and a pump tone given by a Ro-
hde&Schwarz SMA100B 8 kHz-20 GHz signal generator. The microwave signals
enter the dilution refrigerator and passing through several attenuation stages, get
to the metamaterial after have been gone through a directional coupler and a first
isolation stage provided by a circulator. The microwave tones are then detected
at room temperature after passing through a HEMT amplifier placed on the 4 K
stage, which provides 30 dB of amplification. Before getting at room temperature
the output microwave passes through an isolation stage realised by means of two
circulators. A voltage source in series to a 10 kΩ resistor is connected to the device
via a couple of bias tees, providing the DC current bias to the device. We supply
a pump tone at 6.8 GHz and −52 dBm and a signal tone at 3.3 GHz and −64 dBm
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Figure 4.22: Schematic of the microwave circuit used for the idlers power measure-
ment of sample B.

Figure 4.23: Plot of the 3WM and 4WM idlers power as a function of the DC bias
current provided to the JTWPA.
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(the power is considered at the device input), thus, we will find the 3WM idler at
3.5 GHz and the 4WM idler at 10.3 GHz. Fig. 4.23 shows the modulation of the
idlers as a function of the DC bias. Analysing the 3WM idler curve it is possible to
appreciate four main minima at an average distance of 23.2 µA between each other.
These bias points are the ones where the quadratic nonlinearity of the most of the
rf-SQUIDs is negligible, hence where the device works as a 4 wave mixer. We notice
that the 4 minima have different magnitudes depending on the bias point. This
behaviour can be attributed to inhomogeneities among the rf-SQUIDs in terms of
critical currents of the junctions or loop inductance, which shifts the periodicity
of the single cells creating a non-harmonic characteristic of the total device, hence
the non-trivial pattern of the idlers shown here. By the way, the equidistance be-
tween the minima and their pronounced dips testifies a overall homogeneity of the
rf-SQUIDs along the whole line.
Due to the natural Kerr-nonlinearity of a rf-SQUID with no current bias one would
expect at zero bias current that the 3WM idler would not appear, nonetheless we
see a non-zero 3WM idler with no DC bias. This fact can be explained considering
a magnetic field offset during the cooling down phase of the dilution refrigerator,
that has trapped some flux in the rf-SQUIDs, generating a shift in the periodicity
of the curves.

Once checked the nonlinear behaviour of the JTWPA through the observation of
frequency mixing, we now measure the parametric gain given by the TL. We per-
form this measurement on sample A, using the circuit depicted in Fig. 4.24. The
scheme used for this measurement is similar to the one shown in Fig. 4.20 excep-
tion made for the signals generation at room temperature. The signal and pump
tones are respectively supplied by a SynthHD PRO 10MHz – 24GHz Dual Channel
Microwave Generator and a Keysight signal generator. Both channels have a series
of low pass and high pass filters to reduce the presence of higher harmonics given
by the generators, and are finally coupled through a directional coupler at room
temperature, that injects the microwaves in the cryostat. The signal channel is
attenuated 40 dB more than the pump one so as to ensure that the signal power is
much lower than the pump power in all the explored power range. With this scheme
we measured the output signal power through a Spectrum Analyser USB-SA124B
- 12.4 GHz, as a function of the pump power, supplying a pump tone at 11.7 GHz
and a signal at variable frequency. Fig. 4.25 shows the signal dependence on the
pump power at 6.4 GHz. As can be seen, the output signal power stays unaltered
for low pump powers (≈ −75 dBm) and then monotonically decreases supplying a
higher pump power, leading to a overall deamplification of the signal tone. This
behaviour does not change modifying the signal frequency in a range that goes from
4 GHz to nearly the pump frequency. This fact can be explained as the result of
two separated phenomena, hence the generation of higher order tones that takes
place in the device and the overall low level of nonlinearity of the TL.
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Figure 4.24: Schematic of the microwave circuit used for the measurement of second
and third harmonics generation of sample A.

The quantum model of the JTWPA presented in Sec. 3.1 is a 3-waves model,
hence the description given by this theory is accurate just as long as all the other
modes different from pump, signal and idler can be considered negligibly small.
However, we need to ask ourselves if this is the case, hence if with the device pa-
rameters used to realise the measured JTWPAs we actually sit in the case where
we can consider negligible all the other modes. For this reason, we make use of
the CME to simulate the behaviour of our devices. Making use of the circuit
parameters listed at the end of Sec. 4.1, we estimate a characteristic frequency of
ω0 =

√︂
1/(Lmeander + Lg1 + Lg1) · (Cdist + Cinter) = 156 GHz and a plasma frequency

of ωJ =
√︂

1/(Lmeander + Lg1 + Lg1) · (CJ) = 112 GHz. Plugging these numbers into
the definition of dispersion relation given in (3.119) we find that the system al-
lows real-valued wavenumbers up to ≈110 GHz. This gives us the possibility to use
CME-5 to simulate the the device, since the highest frequency mode in this case is
the 5th pump harmonic, with a frequency of 58.5 GHz. Fig. 4.26 (a) shows the evo-
lution of the signal mode with input power −115 dBm, simulated for different input
pump powers, as a function of the JTWPA length. As can be seen, the signal mode
is deamplified through all the length of the TL, and this behaviour is emphasized
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Figure 4.25: Measured signal power as a function of the pump power. The pump fre-
quency is 11.7 GHz, while the signal tone is supplied at 6.4 GHz at about −110 dBm
considered at the device input (the pump power in the x axis is considered at the
device input while the signal power in the y axis at the device output).

(a) (b)

Figure 4.26: Simulations of the JTWPA with ω0 = 156 GHz and ωJ = 112 GHz
using CME-5 (pump frequency 11.7 GHz, signal frequency 6.4 GHz). (a) Gain sim-
ulations as a function of the length of the TL for different pump powers. (b) Gain
simulation as a function of the pump power.

for higher input pump powers. This feature can be understood if one considers that
many of the traveling modes present in the JTWPA require a certain amount of
energy directly coming from the signal to be created (pump+signal, pump+idler,
pump+pump+signal, etc.). This fact involves necessarily a deamplification of the
signal in the first section of the JTWPA, that, if not properly compensated, leads
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to a overall signal loss. Moreover, the generation of higher pump harmonics lim-
its in this case the amount of energy transferred to the signal because much more
energy is converted in higher frequency modes. The sum of these two effects gives
the plot reported in Fig. 4.26 (b), where the signal gain for our JTWPA is plotted
as a function of the input pump power. The simulated features result to be in
agreement with the experimental data showing deamplification of the signal up to
−3.5 dB for a pump power of −65 dBm, after this point the theoretical curve and
the experimental data disagree. This last fact is probably due to higher nonlinear
modes getting excited in the sample when very high RF power is supplied to the
JTWPA, feature that cannot be captured by the CME approach that is limited to
pure 3WM modes.
In general, the low nonlinearity given by the small value of βL contributes as well
in preventing the JTWPA from amplifying correctly. Indeed, the unavoidable sig-
nal deamplification that takes place in the first part of the JTWPA can be made
shorter and even negligible with higher values of βL, that speeds up the energy
transfer between the traveling modes.

To verify the origin of the energy loss mechanism cause of the lack of amplifi-
cation we measure the intensity of the pump harmonics so as to clarify if these
modes can be considered negligible or not. We measure just up to the third har-
monic due to limitations of the experimental setup bandwidth, mainly given by
the cryogenic amplifiers and circulators. To perform this measurement we adopt a
circuit very similar to the one depicted in Fig. 4.24, where this time the signal RF
generator is removed together with the directional coupler, and a 30 dB attenuator
is added at room temperature in series to the pump RF generator. Thus, we supply
a single pump tone at 4.12 GHz, and measure the second and third harmonics, re-
spectively at 8.24 GHz and 12.36 GHz, sweeping on the pump power. We make this
measurement at two different DC bias points, where the 3WM idler is minimised
(4WM bias) and where the 3WM idler is maximised (3WM bias). Fig. 4.27 shows
the power of the second and third pump harmonics considered at the DUT output
function of the pump power considered at the DUT input. In this picture the red
curves represent the data taken in the 4WM bias while the purple curves in the
3WM bias. One can see that for low pump powers (< −100 dBm) the harmonic
generation is negligible since the output stays under the noise level, then after this
point, the harmonics start to grow and their power raise up to −100 dBm for an
input power of −70 dBm. We notice that the behaviour of these modes is similar
in both the bias conditions, besides the fact that in the 3WM bias the harmonic
generation seems to be favoured with respect to the 4WM bias, since the power
growth of both harmonics starts at lower pump powers. It is not surprising that the
second and third harmonics have a similar behaviour both with the bias current
and pump power. If we consider which process is responsible for the generation
of a particular harmonic we notice that the 3WM process is responsible for both
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Figure 4.27: Power of the second and third harmonics generated by the JTWPA
considered at the device output, as a function of the pump power (considered at the
device input) in 3WM and 4WM bias points. The second harmonic is at 8.24 GHz
while the third harmonic is at 12.36 GHz.

the second harmonic ω2p = ωp + ωp, with the sum of two pump photons, and the
third harmonic generation, with the sum of a pump photon plus a second harmonic
photon ω2p = ω2p +ωp. What we learn from this last measurement is that the har-
monic generation is a mechanism that takes a non-negligible amount of energy from
the pump tone, hence can be a serious limitation for the energy transferred to the
signal that should be amplified. This result is in agreement with the power trans-
mission measurement shown in Fig. 4.21, where we recorded a worse transmission
increasing the probe power. Now we can say that this feature can be attributed to
the generation of higher harmonics triggered by a high pump power.

We can draw some important conclusions from the measurements just presented.
The JTWPA can be used as a reliable TL that is well matched with its electro-
magnetic environment and is able to transmit RF power without high attenuation
under a certain level of RF power. The device presents both 4WM and 3WM
phenomena, that can be easily tuned by a DC current bias passing into its signal
line. The non homogeneity of the elementary cells leads to non-trivial behaviour
in terms of nonlinearity tuning, for this reason, the parameter spread is a crucial
aspect for a correct operation of the device. Due to the lack of high nonlinearity,
and the generation of pump harmonics that drain the energy away from the signal,
the JTWPA does not show signal amplification.

In order to engineer a JTWPA that presents high amplification the up-conversion
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processes need to be suppressed and the rf-SQUIDs needs to be made highly nonlin-
ear. To this end we now make use of the CME to obtain a set of circuit parameters
to realise a JTWPA equipped with RPM.

4.4 Modeling JTWPA with RPM through CME
In order to model a JTWPA which introduces enough phase mismatch for the

up-converted tones to be suppressed and re-phased with RPM the CME method
introduced in subsection 3.2.2 is used. Just as for the device described in Sec. 3.1,
we fix the working frequency band to be centered around 6 GHz, with the widest
bandwidth possible. For this reason, working in a 3WM mode, the device requires
to place the pump frequency, and as a consequence the resonator frequency, around
12 GHz. This choice brings the second and third pump harmonics to be at about
24 GHz and 36 GHz, hence the plasma frequency of the the rf-SQUIDs will be placed
between these two harmonics. As a consequence, the highest frequency mode with
real wavenumber will be the second pump harmonic, thus the system can be de-
scribed using CME-2.

The plasma frequency of the JTWPA with RPM is chosen to be ωJ = 35.5 GHz,
hence between the second and third pump harmonics.
The screening parameter of the rf-SQUIDs is fixed at βL ≈ 0.7, which is far enough
from the unity to be a fault tolerant value during the fabrication process, but still
high to ensure enough nonlinearity to the device, hence an efficient wave mixing
mechanism.
The characteristic frequency is set to ω0 = 80 GHz, that is high enough so as to
safely sit in the continuous TL approximation, thus neglecting its discrete nature
given by the cell structure.
Finally, the 50 Ω characteristic impedance of the line fixes definitively the four cir-
cuit parameters of the elementary cell, which have to satisfy the above mentioned
four constraints.
Given these considerations, we choose for our device the set of parameters given in
Tab. A.2, hence with the dispersion relation plotted in Fig. 3.9. It can be easily
seen that this set of parameters satisfy all the above mentioned constraints.

In order to find the right pump frequency that minimises the phase mismatch
maximising the gain, we plot the gain of the JTWPA as a function of the pump
frequency for a sample signal frequency put in the middle of the operation band-
width, that is 6 GHz. The plot of the gain, function of the pump frequency, is given
in Fig. 4.28. As can be seen, the curves, plotted for different values of the initial
pump power, present a first peak at about 14.4 GHz, that corresponds to the pump
re-phasing due to the RPM, and then a second rise of the gain between 16 GHz
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Figure 4.28: Gain of the JTWPA as a function of the pump frequency for a pump
power of Pp(0) = −85 dBm, Pp(0) = −82 dBm and Pp(0) = −80 dBm.

and 17 GHz, which correspond to the re-phasing of the idler tone. Nonetheless this
second feature seems to be more pronounced we will not take it into account in our
discussions since, due to the rapid increase of the phase mismatch in this region,
it doesn’t allow a wide amplification bandwidth. So, if we focus on the first gain
peak, we notice that, considering Fig. 3.10, it is centered at 14.4 GHz, hence where
the phase mismatch curve crosses the x axes (have a zero). If we try now to plot
the gain as a function of the amplifier’s length for two different pump frequencies,
namely 14.4 GHz and 13 GHz, we immediately understand the physical reason of
the shapes of the curves in Fig. 4.28. In Fig. 4.29 one sees the gain profile, for a
signal of 6 GHz, as a function of the number of nodes (hence cells) of the JTWPA
for a pump frequency equal to 14.4 GHz, hence centered on the first gain peak,
and for a pump frequency of 13 GHz, that is well out of the gain peak. The main
difference between these two curves is that if we put the pump frequency where
the phase mismatch is close to zero, hence 14.4 GHz, the growth of the signal will
be exponential, eventually, like in this case, reaching a point where the pump is
depleted, and cannot provide more energy for amplification. The fingerprint of
this situation is the maximum of gain reached at the end of the amplifier. On the
contrary, putting the pump frequency where the phase mismatch is non-negligible
(13 GHz) the signal intensity oscillates with a period of about 200 nodes. This
remarkable feature can be explained if one considers the coherence length of the
traveling waves defined as

lc = π

∆k(ωp, ωs)
(4.17)
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Figure 4.29: Gain profile as a function of the amplifier’s length calculated for a
pump frequency of 13 GHz and 4.4 GHz. The inset shows a zoom of the curve
calculated for a pump frequency of 13 GHz. The input pump power is Pp(0) = −81
dBm while the input signal power is Pp(0) = −107 dBm

where ∆k(ωp, ωs) is the phase mismatch in 3WM defined in Eq. (3.120). This
characteristic length defines the spatial length in the JTWPA for which the traveling
waves are in phase between each other. The inset in Fig. 4.29 shows a zoom of
the gain profile with the pump frequency set in a high phase mismatch point, and
in this plot one can observe that there actually is an initial exponential growth of
the signal power, that, on the contrary of the negligible phase mismatched case,
ends around the 180 node. This is due to the fact that the coherence length of the
device we are simulating, calculated for a signal frequency of 6 GHz and a pump
frequency of 13 GHz, is lc ≈ 178 node, meaning that the exponential growth must
end after this length. If now we consider the coherence length of the traveling tones
for frequencies of ωp = 14.4 GHz and ωs = 6 GHz we find lc ≈ 3000, much longer
than the amplifier’s length, meaning that the phase coherence will hold for all the
length of the device.
To estimate the bandwidth of our device we now calculate the gain sweeping on the
signal frequency, plotting in Fig 4.30 the curves for different input pump powers and
an input signal power of Pp(0) = −107 dBm. The plots show a clear dependence
of the maximum gain on the input pump power, starting from a minimum value
of 10 dB for the lowest pump power reaching about 23 dB for the highest pump
value. The bandwidth shown by these curves goes from about 5 GHz for low pump
powers to a maximum of 6 GHz for high pump values. In the same figure one can
see the bandwidth of the same JTWPA without any re-phasing technique, in this
case without the presence of a resonator in the cell, of which the corresponding

107



Fabrication and cryogenic characterisation of JTWPAs

Figure 4.30: Numerical simulation of the gain of a JTWPA with RPM for different
pump powers as a function of the signal frequency. The pump frequency is 14.4 GHz
for all the curves and the black dashed curve is calculated for a JTWPA without
RPM.

phase mismatch can be seen in Fig. (3.10), represented by the black dashed curve.
The shape of this bandwidth curve is pretty clear if one looks at it together with
its corresponding phase mismatch, indeed where the gain is high, hence for very
low and very high frequencies, the phase mismatch is low, because respectively the
idler and signal tones are very close in frequency with the pump, hence making in
these narrow windows the overall phase mismatch negligible.
The simulations performed in this section tell us that the set of parameters (Tab.
A.2) chosen for the realisation of our JTWPA with RPM could in principle lead
to an amplifier with an average gain of 20 dB over 6 GHz of bandwidth, capable of
amplify very tiny signals using low pump powers.

4.5 Layout definition of JTWPA with RPM through
electromagnetic simulations

The CME approach helped us finding a set of circuit parameters that could give
high gain and wide bandwidth to the JTWPA. In this section we perform some
electromagnetic simulations to define the physical layout of the circuit components
that compose the device, paying particular attention to the impedance matching
of the TL. The stackup used for all the simulations is the same described in the
introductory part of section 4.2, so refer to this paragraph for more information.
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4.5.1 Resonator
We start by defining the geometry of the shunt resonator capacitively coupled

to the signal line used to open the band gap in the dispersion relation of our TL
(the reader can refer to Fig. 3.8 for a schematic of the circuit). Fig. 4.31 shows
the lumped element geometry chosen for the resonator, composed by a meander
inductor (Lr) that has a distributed capacitance to ground given by a couple of
interdigitated capacitors (Cr) that enter into the meander bends. The coupling
capacitance (Cc) is an interdigitated capacitor that has one of the two faces directly
leant on the signal line of a CPW. To find the resonance frequency of the resonator
we place the excitation ports at the two ends of the signal line and simulate its
transmission. Fig. 4.31 shows the result of the S21 simulation. The plot highlights

Port 1

Port 2

50 μm 

Figure 4.31: Left: layout of the resonator capacitively coupled to a CPW used for
the simulations. Right: S21 scattering parameter simulated between Port 1 and
Port 2 of the layout on the left. The dashed vertical lines indicate the frequencies
at the −3 dB point, indicated by the horizontal solid line.

a dip in the transmission with central frequency at 11.44 GHz and the −3 dB points
at 11.385 GHz and 11.495 GHz.
Engineering a resonator with the right quality factor is of fundamental importance
when projecting a JTWPA with RPM. Indeed it has been shown in some recent
works [32] through a SPICE simulation approach that when dealing with statistical
spread of the Josephson critical currents a wider resonance dip can help recovering
phase matching by avoiding a too strict constraint on the pump frequency choice.
It has been shown that a random spread of the Josephson critical currents of about
the 5%, that is a reasonable experimental requirement, can be recovered by shunt
resonators with Q ≈ 100. Choosing this value as the goal for our resonators we
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now estimate the quality factor and find

Q = f0

∆f0
≈ 104 (4.18)

4.5.2 Lg

The approach for the layout definition of Lg is similar to the one adopted in
section 4.2. Given a goal value of Lg = 120 pH, we have to estimate separately
the inductive contributions of Lmeander, Lg1 and Lg2 which together give Lg. From
Fig. 4.32 and 4.33 we find that Lmeander = 86.2 pH and Lg1 +Lg2 = 34.3 pH, which
together give Lg = 86.2 pH + 34.3 pH = 120.7 pH.

Port 1

Port 2

6 μm 

Figure 4.32: Left: layout of Lmeander. Right: inductance simulated between Port 1
and Port 2.

4.5.3 LJ and CJ

We take into account the electromagnetic contribution of the JJ the same way
we did in Subsec. 4.2.5. Referring to Eq. (2.96), we see that a Josephson junction
with critical current Ic = 2 µA biased in a 3WM working point corresponds to
an inductance again much higher than Lmeander, say again LJ ≈ 400 pH. This
contribution can be taken into account by defining a custom metal with a sheet
inductance such that its enclosure in the TL circuit mimics the electromagnetic
behaviour of the JJ in the rf-SQUID at the working point. The piece of custom
metal has sheet inductance L□ = 400 pH/sq, and this piece of metal will be inserted
in the Josephson feedline in the complete layout.
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Port 1

Port 2

5 μm 

Figure 4.33: Left: layout of Lg1 + Lg2. Right: inductance simulated between Port
1 and Port 2.

The Josephson intrinsic capacitance CJ is taken into account by placing a lumped
element ideal capacitor between the two leads of the JJ. Given the simulations
performed in Sec. 4.4, of which the set of parameters is listed in A.2, the value for
this component is taken as CJ = 200 fF.

4.5.4 Characteristic impedance
We implement the impedance matching of the JTWPA to 50 Ω through the

parametric sweep method illustrated at the end of subsection 4.2.6. For this purpose
we draw the layout shown in Fig. 4.34. The simulation is performed considering a
series of four rf-SQUIDs with their respectively ground capacitors together with a
single resonator instead of one each rf-SQUID. This choice has been made to reduce
the complexity of the circuit since it has been calculated [32] that one resonator
each four rf-SQUIDs is enough to rephase the traveling waves in the signal line.
The simulation in Fig. 4.34 shows a maximum of S21 for Grd = 68 µm.

4.5.5 Cutoff
Given the results in the previous sections we can define the final cells layout of

the JTWPA equipped with RPM with a 50 Ω characteristic impedance.
In section 4.4 we explained how the choice of the characteristic frequencies of the
TL ω0 and ωJ are of great importance for proper operation of the RPM technique.
For this reason it is an important benchmark for the definition of the layout a wide
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Port 1

Port 2
50 μm 

Grd

Figure 4.34: Left: layout of a cluster formed by 4 elementary cells plus 1 resonator.
Right: parametric simulation of the S21 scattering parameter as a function of the
length of the interdigitated capacitance fingers "Grd".

range frequency simulation that catches the behaviour of the device at higher fre-
quencies, where unwanted harmonics are generated. Fig. 4.35 shows the S11 and

Figure 4.35: Simulation of the S11 and S21 scattering parameters for the JTWPA
equipped with RPM with a 50 Ω characteristic impedance between 2 GHz and
42 GHz.

S21 scattering parameters simulation of the JTWPA 50 Ω matched layout between
2 GHz and 42 GHz. Analyzing these spectra we can draw some important conclu-
sions about the TL just modeled. At low frequencies (< 12 GHz) the TL presents
a good transmission with an S21 parameter close to 0 dB. At about 12 GHz the
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spectra show a peak of reflection given by the activation of the resonator that lo-
cally greatly modify the characteristic impedance of the line. The transmission has
a sudden drop around 32 GHz and after some oscillations goes to −60 dB, meaning
that the TL does not carry any signal from this point on. The sudden drop in
the transmission is the footprint of the cutoff frequency, hence the frequency from
which the TL is not able to carry signals anymore. Following the CME approach
this frequency should be between the second and the third pump harmonics, hence
around 35 GHz, that is pretty close to the value just found in Fig. 4.35.
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Chapter 5

Conclusions and perspectives

In this thesis we showed the theoretical description, engineering, realisation and
characterisation of a JTWPA.
In this process, we developed a quantum mechanical approach through c-QED tech-
niques in order to obtain a description of the JTWPA at the single photon level.
This approach allowed us to describe the JTWPA in both 3WM and 4WM regimes,
calculating important figures of merit like coupling constants, gain and noise, stud-
ied as a function of the device’s constructive parameters.
The quantum theoretical description together with a wide use of electromagnetic
simulations allowed to define first a set of circuit parameter and then a physical
layout of a JTWPA, that was consequently realised and characterised in a cryogenic
microwave setup. The realisation of a JTWPA required a precise calibration of the
JJs fabrication process, which moreover requires a high yield.
The cryogenic characterisation of the produced JTWPA showed the clear presence
of wave mixing both in a 3WM and 4WM fashion, together with a precise control
of the nonlinearities through an external control parameter like a DC current bias.
Nonetheless, the characterised JTWPA did not show high gain and wide bandwidth
as expected.
The reason for such deviation from the expected behaviour of the JTWPA lies
in the restrictive hypothesis used to write the analytic quantum model. Indeed,
the quantum description does not take into account some non-negligible effects like
higher harmonics generation and phase mismatch between the traveling modes that
change the overall dynamics of the device.
For this reason we developed a modified version of the JTWPA, including a so called
Resonant-Phase Matching technique. This modification, that practically consists
in periodically loading the TL with shunt LC resonator, allows to greatly reduce
the phase mismatch issue by modifying the dispersion relation of the device. This
solution needed the development of a new theoretical approach able to describe the
new dynamics of the system. To this end we developed a modified version of a clas-
sical numerical approach, known as Coupled Mode Equations. This method takes
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into account the modified dispersion relation and generation of higher harmonics,
allowing to study the JTWPA as a function of its circuit parameters.
The latter gave us a new set of circuit parameters, able in theory to provide a
JTWPA with modified dispersion relation through RPM technique. We finally
engineer through electromagnetic simulations a physical layout of the new device,
that respects all the constraints given by the physics of the problem.

There are several directions towards future works can go to, but we would re-
strict the paths mainly to two main topics, that are the ones covered in this thesis.
The first direction regards the extension of the quantum model to physical systems
with high chromatic dispersion. It is indeed true that it would be almost straight-
forward to modify the dispersion relation of the analytic model described in Chapter
3 taking into account the effect of the resonators used in the RPM technique (Eq.
(3.118)). Nonetheless, the use of RPM and the addition of high chromatic disper-
sion would place the whole system out of the approximation made with Eq. (3.33),
making necessary to evaluate differently many terms in the Hamiltonian. This ex-
tension could by the way be of a certain interest, since in this regime the 3-wave
description would be valid given the suppression of higher frequency modes, and
the JTWPA equipped with RPM could become a reliable platform to study the
generation and manipulation of quantum states starting from an exact Hamilto-
nian description.
The second path is clearly the fabrication and testing of the JTWPA equipped with
RPM of which a physical layout has been developed in Sec. 4.5. This work would
be of great interest since it could prove experimentally the validity of the numerical
model and electromagnetic simulation approach developed, providing a platform
for cryogenic single photon microwave in the quantum regime.
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Appendix A

Tables of circuital parameter sets

In the following one can find the sets of parameters used for the computations
in the Quantum Mechanical case A.1 and in the Couple Mode Equation case A.2.
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Tables of circuital parameter sets

Parameter Value Description
Ic 2 µA Josephson critical current
Cg 58 fF Ground capacitance
Lg 100 pH Geometrical inductance
CJ 40 fF Josephson capacitance
a 60 µm Unit cell length
N 900 Number of unit cells
ωp 2π · 12 GHz Pump frequency
ωs 2π · 7 GHz Signal frequency
ωi 2π · 5 GHz 3WM idler frequency
ωj 2π · 17 GHz 4WM idler frequency

∆ΦDC,3WM/Φ0 0.335 3WM working point
∆ΦDC,4WM/Φ0 0.50 4WM working point

Table A.1: Circuit parameters and magnetic field flux bias (working points) used
for numerical evaluations in the Quantum Mechanical approach.

Parameter Value Description
Ic 2 µA Josephson critical current
Cg 40 fF Ground capacitance
Lg 120 pH Geometrical inductance
CJ 200 fF Josephson capacitance
a 60 µm Unit cell length
N 900 Number of unit cells
Cc 30 fF Resonator coupling capacitance
Cr 1 pF Resonator capacitance
Lr 172.5 pH Resonator inductance

Table A.2: Circuit parameters used for numerical evaluations in the CME approach.
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Appendix B

Curly brackets operators algebra
and time derivatives

In order to simplify the notation during the derivation of the Hamiltonian in
the second quantization framework we can define the curly brackets operator{︂

â+ â†
}︂

n,l
≡ (ân + ân

†)(âl + âl
†) (B.1)

This definition can be easily extended to an arbitrary number of indexes as{︂
â+ â†

}︂
n,l,m,...

≡ (ân + ân
†)(âl + âl

†)(âm + âm
†)...

Using the usual bosonic commutation relations

[ân, âl] = ânâl − âlân = 0 (B.2)
[â†n, â

†
l ] = â†nâ

†
l − â†l â

†
n = 0 (B.3)

[ân, â
†
l ] = ânâ

†
l − â†l ân = δn,l (B.4)

we can demonstrate the commutative property of the curly bracket operators. For
a double index operator{︂

â+ â†
}︂

n,l
=
(︂
ân + â†n

)︂(︂
âl + â†l

)︂
= ânâl + ânâ

†
l + â†nâl + â†nâ

†
l =

= âlân +
(︂
δn,l + â†l ân

)︂
+
(︂

− δn,l + âlâ
†
n

)︂
+ â†l â

†
n =

= âlân + â†l ân + âlâ
†
n + â†l â

†
n =

(︂
âl + â†l

)︂(︂
ân + â†n

)︂
=
{︂
â+ â†

}︂
l,n

(B.5)

This property can be easily generalized to the case of a curly brackets operator
with more then two indexes. For instance, for a three-index operator{︂

â+ â†
}︂

l,m,n
=
(︂
âl + â†l

)︂ {︂
â+ â†

}︂
m,n

=
(︂
âl + â†l

)︂ {︂
â+ â†

}︂
n,m

=
{︂
â+ â†

}︂
l,n,m

(B.6)
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and, with the same approach, we can demonstrate the equivalence for any index
commutation. Furthermore, again with the intent of simplify the notation, we can
define the quantities ∆ωn,l,m,s,... and ∆kn,l,m,s,... as

∆ωn,l,m,s,... = ±ωn ± ωl ± ωm ± ωs ± ... and (B.7)
∆kn,l,m,s,... = ±kn ± kl ± km ± ks ± ... (B.8)

where the sign is determined by the combination of creation and annihilation opera-
tors that precede this quantity. For instance, we can compact the following product
of three terms as(︂

â†ne
−i(knz−ωnt)

)︂
·
(︂
âle

i(klz−ωlt)
)︂

·
(︂
â†me

−i(kmz−ωmt)
)︂

=

â†nâlâ
†
me

i[(−kn+kl−km)z−(−ωn+ωl−ωm)t] = â†nâlâ
†
me

i(∆kn,l,mz−∆ωn,l,mt) (B.9)

where, in this specific case ∆kn,l,m = −kn + kl − km and ∆ωn,l,m = −ωn + ωl − ωm.
Hence, in Eqs. (B.7) and (B.8) we take a plus sign if the index is related to an
annihilation operator (i.e., ai → +ωi,+ki), while we take a minus sign if the index
is related to a creation operator (i.e., a†i → −ωi,−ki)
Exploiting these compact notations in the case of a single index, we can write δΦ̂(0)

n

(whose expression is given in Eq. (3.24)) as

δΦ(0)
n ≡ cn

(︂
âne

i(knz−ωnt) + â†ne
−i(knz−ωnt)

)︂
= cn

{︂
â+ â†

}︂
n
ei(∆knz−∆ωnt)

In terms of this formalism, under the slowly variant operator assumption (i.e.,
∂â(†)

n /∂t ≈ 0 and ∂â(†)
n /∂z ≈ 0 we can express:

∂

∂z

[︂
δΦ(0)

]︂
= ∂

∂z

[︄∑︂
n

δΦ(0)
n

]︄
=
∑︂

n

∂

∂z

[︂
δϕ(0)

n

]︂
= (B.10)

=
∑︂

n

∂

∂z

[︂
cn

(︂
âne

i(knz−ωnt) + â†ne
−i(knz−ωnt)

)︂]︂
=

=
∑︂

n

cn

[︂
ân(ikn)ei(knz−ωnt) + â†n(−ikn)e−i(knz−ωnt)

]︂
=

=
∑︂

n

icn∆kn

{︂
a+ a†

}︂
n
ei(∆knz−∆ωnt) =

∑︂
n

i∆knδΦ(0)
n (B.11)

and, similarly,
∂2

∂z2

[︂
δΦ(0)

]︂
= −

∑︂
n

cn (∆kn)2
{︂
a+ a†

}︂
n
ei(∆knz−∆ωnt) = −

∑︂
n

(∆kn)2 δΦ(0)
n (B.12)

∂

∂t

[︂
δΦ(0)

]︂
= −

∑︂
n

icn∆ωn

{︂
a+ a†

}︂
n
ei(∆knz−∆ωnt) = −

∑︂
n

i∆ωnδΦ(0)
n (B.13)

∂2

∂t2

[︂
δΦ(0)

]︂
= −

∑︂
n

cn (∆ωn)2
{︂
a+ a†

}︂
n
ei(∆knz−∆ωnt) = −

∑︂
n

(∆ωn)2 δΦ(0)
n (B.14)
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Appendix C

ĤN vs. δΦ in the second
quantization regime

This appendix is devoted to the explicit calculation of the terms composing the
second quantization Hamiltonian. We start calculating the second and the third
power of δΦ̂, truncating them to the fourth power in δΦ(0)

i . This choice limit our
treatment to the investigations of scattering phenomena that involve at most four
photons.

(︂
δΦ̂
)︂2

=
(︄∑︂

n

[︄
q0,n + q1,n

(︃
δΦ̂(0)

)︃
+ q2,n

(︃
δΦ̂(0)

)︃2
+ q3,n

(︃
δΦ̂(0)

)︃3
]︄
δΦ̂(0)

n

)︄
·

·
(︄∑︂

l

[︄
q0,l + q1,l

(︃
δΦ̂(0)

)︃
+ q2,l

(︃
δΦ̂(0)

)︃2
+ q3,l

(︃
δΦ̂(0)

)︃3
]︄
δΦ̂(0)

l

)︄
=

=
∑︂
n,l

[︄
q0,nq0,l + (q0,nq1,l + q1,nq0,l)

(︃
δΦ̂(0)

)︃
+

+ (q0,nq2,l + q1,lq1,n + q2,nq0,l)
(︃
δΦ̂(0)

)︃2
+

+ (q0,nq3,l + q1,nq2,l + q2,nq1,l + q3,nq0,l)
(︃
δΦ̂(0)

)︃3
]︄
δΦ(0)

n δΦ(0)
l (C.1)
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ĤN vs. δΦ in the second quantization regime

and, exploiting the definition δΦ(0) = ∑︁
m δΦ(0)

m and Eq. (3.24), Eq. (C.1) can be
written as

(︂
δΦ̂
)︂2

=
∑︂
n,l

⎡⎣q0,nq0,l + (q0,nq1,l + q1,nq0,l)
(︄∑︂

m

δΦ(0)
m

)︄
+

+ (q0,nq2,l + q1,lq1,n + q2,nq0,l)
(︄∑︂

m,s

δΦ(0)
m δΦ(0)

s

)︄⎤⎦δΦ(0)
n δΦ(0)

l =

=
∑︂
n,l

[︃
q0,nq0,lcncl

{︂
â+ â†

}︂
n,l
ei(∆kn,lz−∆ωn,lz)

]︃
+

+
∑︂

n,l,m

[︃
(q0,nq1,l + q1,nq0,l) cnclcm

{︂
â+ â†

}︂
n,l,m

ei(∆kn,l,mz−∆ωn,l,mz)
]︃

+

+
∑︂

n,l,m,s

[︃
(q0,nq2,l + q1,lq1,n + q2,nq0,l) cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

ei(∆kn,l,m,sz−∆ωn,l,m,sz)
]︃

(C.2)

Exploiting the commutativity of both the coefficients q and of the curly brackets
operator we can reduce Eq. (C.2) to

(︂
δΦ̂
)︂2

=
∑︂
n,l

⎡⎣q0,nq0,l + (q0,nq1,l + q1,nq0,l)
(︄∑︂

m

δΦ(0)
m

)︄
+

+ (q0,nq2,l + q1,lq1,n + q2,nq0,l)
(︄∑︂

m,s

δΦ(0)
m δΦ(0)

s

)︄⎤⎦δΦ(0)
n δΦ(0)

l =

=
∑︂
n,l

[︃
q0,nq0,lcncl

{︂
â+ â†

}︂
n,l
ei(∆kn,lz−∆ωn,lt)

]︃
+

+
∑︂

n,l,m

[︃
2 q0,nq1,lcnclcm

{︂
â+ â†

}︂
n,l,m

ei(∆kn,l,mz−∆ωn,l,mt)
]︃

+

+
∑︂

n,l,m,s

[︃
(2 q0,nq2,l + q1,lq1,n) cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

ei(∆kn,l,m,sz−∆ωn,l,m,st)
]︃

(C.3)
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ĤN vs. δΦ in the second quantization regime

For what the third power of δΦ is concerning, exploiting Eq. (C.1):(︂
δΦ̂
)︂3

=
(︂
δΦ̂
)︂

·
(︂
δΦ̂
)︂2

=

=
(︄∑︂

n

[︄
q0,n + q1,n

(︃
δΦ̂(0)

)︃
+ q2,n

(︃
δΦ̂(0)

)︃2
+ q3,n

(︃
δΦ̂(0)

)︃3
]︄
δΦ̂(0)

n

)︄
·

·

⎛⎝∑︂
l,m

[︄
q0,lq0,m + (q0,lq1,m + q1,lq0,m)

(︃
δΦ̂(0)

)︃
+

+ (q0,lq2,m + q1,lq1,m + q2,lq0,m)
(︃
δΦ̂(0)

)︃2
]︄
δΦ̂(0)

l δΦ̂(0)
m

⎞⎠ =

=
∑︂

n,l,m

⎡⎣q0,nq0,lq0,m + (q1,nq0,lq0,m + q0,n (q0,lq1,m + q1,lq0,m))
(︂
δΦ(0)

)︂ ⎤⎦δΦ(0)
n δΦ(0)

l δΦ(0)
m =

=
∑︂

n,l,m

⎡⎣q0,nq0,lq0,m + (q1,nq0,lq0,m + q0,n (q0,lq1,m + q1,lq0,m))
(︄∑︂

s

δΦ(0)
s

)︄⎤⎦δΦ(0)
n δΦ(0)

l δΦ(0)
m

(C.4)

exploiting Eq.(3.24), Eq. (C.4) can be written as
(︂
δΦ̂
)︂3

=
∑︂

n,l,m

[︃
q0,nq0,lq0,m cnclcm

{︂
â+ â†

}︂
n,l,m

ei(∆kn,l,mz−∆ωn,l,mt)
]︃

+

+
∑︂

n,l,m,s

[︃
(q1,nq0,lq0,m + q0,nq0,lq1,m + q0,nq1,lq0,m) cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

·

· ei(∆kn,l,m,sz−∆ωn,l,m,st)
]︃

(C.5)

This time again, exploiting the commutativity of both the coefficients q and the
curly brackets operators, we can write Eq. (C.4) as
(︂
δΦ̂
)︂3

=
∑︂

n,l,m

[︃
q0,nq0,lq0,m cnclcm

{︂
â+ â†

}︂
n,l,m

ei(∆kn,l,mz−∆ωn,l,mt)
]︃

+

+
∑︂

n,l,m,s

[︃
3 q1,nq0,lq0,m cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

ei(∆kn,l,m,sz−∆ωn,l,m,st)
]︃

(C.6)
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ĤN vs. δΦ in the second quantization regime

For what the fourth power of δΦ is concerning, exploiting Eq. (C.4):(︂
δΦ̂
)︂4

=
(︂
δΦ̂
)︂

·
(︂
δΦ̂
)︂3

=

=
(︄∑︂

s

[︄
q0,s + q1,s

(︃
δΦ̂(0)

)︃
+ q2,s

(︃
δΦ̂(0)

)︃2
+ q3,s

(︃
δΦ̂(0)

)︃3
]︄
δΦ̂(0)

s

)︄
·

·

⎛⎝ ∑︂
n,l,m

⎡⎣q0,nq0,lq0,m + (q1,nq0,lq0,m + q0,n (q0,lq1,m + q1,lq0,m))
(︄∑︂

o

δΦ(0)
o

)︄⎤⎦δΦ(0)
n δΦ(0)

l δΦ(0)
m

⎞⎠ =

=
∑︂

n,l,m,s

q0,nq0,lq0,mq0,sδΦ(0)
n δΦ(0)

l δΦ(0)
m δΦ(0)

s (C.7)

This time again, exploiting the curly brackets operators, we can write Eq. (C.7) as
(︂
δΦ̂
)︂4

=
∑︂

n,l,m,s

[︃
q0,nq0,lq0,mq0,s cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

ei(∆kn,l,m,sz−∆ωn,l,m,st)
]︃

(C.8)

We can now calculate the time derivative of δΦ̂, starting from its approximate form
given in Eq. (3.26):

∂

∂t

[︂
δΦ̂
]︂

= ∂

∂t

[︄∑︂
n

[︄
q0,n + q1,n

(︃
δΦ̂(0)

)︃
+ q2,n

(︃
δΦ̂(0)

)︃2
+ q3,n

(︃
δΦ̂(0)

)︃3
]︄
δΦ̂(0)

n ]
]︄

=

=
∑︂

n

[︄
q1,n

∂

∂t

[︃
δΦ̂(0)

]︃
+ 2q2,n

(︃
δΦ̂(0)

)︃
∂

∂t

[︃
δΦ̂(0)

]︃
+ 3 q3,n

(︃
δΦ̂(0)

)︃2 ∂

∂t

[︃
δΦ̂(0)

]︃]︄
δΦ̂(0)

n +

+
∑︂

n

[︄
q0,n + q1,n

(︃
δΦ̂(0)

)︃
+ q2,n

(︃
δΦ̂(0)

)︃2
+ q3,n

(︃
δΦ̂(0)

)︃3
]︄
∂

∂t

[︃
δΦ̂(0)

n

]︃
=

=
∑︂

n

⎡⎣(︄q1,n + 2q2,n

(︃
δΦ̂(0)

)︃
+ 3q3,n

(︃
δΦ̂(0)

)︃2
)︄
∂

∂t

[︃
δΦ̂(0)

]︃
δΦ̂(0)

n +

+
(︄
q0,n + q1,n

(︃
δΦ̂(0)

)︃
+ q2,n

(︃
δΦ̂(0)

)︃2
+ q3,n

(︃
δΦ̂(0)

)︃3
)︄
∂

∂t

[︃
δΦ̂(0)

n

]︃ ⎤⎦
(C.9)
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ĤN vs. δΦ in the second quantization regime

and(︄
∂

∂t

[︂
δΦ̂
]︂)︄2

=
∑︂

n

⎡⎣(︄q1,n + 2q2,n

(︃
δΦ̂(0)

)︃
+ 3q3,n

(︃
δΦ̂(0)

)︃2
)︄
∂

∂t

[︃
δΦ̂(0)

]︃
δΦ̂(0)

n +

+
(︄
q0,n + q1,n

(︃
δΦ̂(0)

)︃
+ q2,n

(︃
δΦ̂(0)

)︃2
+ q3,n

(︃
δΦ̂(0)

)︃3
)︄
∂

∂t

[︃
δΦ̂(0)

n

]︃ ⎤⎦·

·
∑︂

l

⎡⎣(︄q1,l + 2q2,l

(︃
δΦ̂(0)

)︃
+ 3q3,l

(︃
δΦ̂(0)

)︃2
)︄
∂

∂t

[︃
δΦ̂(0)

]︃
δΦ̂(0)

l +

+
(︄
q0,l + q1,l

(︃
δΦ̂(0)

)︃
+ q2,l

(︃
δΦ̂(0)

)︃2
+ q3,l

(︃
δΦ̂(0)

)︃3
)︄
∂

∂t

[︃
δΦ̂(0)

l

]︃ ⎤⎦
(C.10)
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ĤN vs. δΦ in the second quantization regime

Truncating this product to the fourth power in δΦ̂(0)
i we obtain

(︄
∂

∂t

[︂
δΦ̂
]︂)︄2

=
∑︂
n,l

⎡⎣q0,nq0,l
∂

∂t

[︃
δΦ̂(0)

n

]︃
∂

∂t

[︃
δΦ̂(0)

l

]︃
+

+ q1,nq0,l
∂

∂t

[︃
δΦ̂(0)

]︃
∂

∂t

[︃
δΦ̂(0)

l

]︃
δΦ̂(0)

n +

+ q0,nq1,l
∂

∂t

[︃
δΦ̂(0)

]︃
∂

∂t

[︃
δΦ̂(0)

n

]︃
δΦ̂(0)

l +

+ q0,nq1,l
∂

∂t

[︃
δΦ̂(0)

n

]︃
∂

∂t

[︃
δΦ̂(0)

l

]︃
δΦ̂(0)+

+ q1,nq0,l
∂

∂t

[︃
δΦ̂(0)

n

]︃
∂

∂t

[︃
δΦ̂(0)

l

]︃
δΦ̂(0)+

+ q1,nq1,l
∂

∂t

[︃
δΦ̂(0)

]︃
∂

∂t

[︂
δΦ(0)

l

]︂
δΦ̂(0)

n δΦ̂(0)+

+ q1,nq1,l
∂

∂t

[︃
δΦ̂(0)

n

]︃
∂

∂t

[︃
δΦ̂(0)

]︃
δΦ̂(0)

δΦ̂(0)
l +

+ 2q2,nq0,l
∂

∂t

[︃
δΦ̂(0)

]︃
∂

∂t

[︃
δΦ̂(0)

l

]︃
δΦ̂(0)

δΦ̂(0)
n +

+ 2q0,nq2,l
∂

∂t

[︃
δΦ̂(0)

n

]︃
∂

∂t

[︃
δΦ̂(0)

]︃
δΦ̂(0)

δΦ̂(0)
l +

+ q0,nq2,l
∂

∂t

[︃
δΦ̂(0)

n

]︃
∂

∂t

[︃
δΦ̂(0)

l

]︃ (︃
δΦ̂(0)

)︃2
+

+ q1,nq1,l
∂

∂t

[︃
δΦ̂(0)

n

]︃
∂

∂t

[︃
δΦ̂(0)

l

]︃ (︃
δΦ̂(0)

)︃2
+

+ q2,nq0,l
∂

∂t

[︃
δΦ̂(0)

n

]︃
∂

∂t

[︃
δΦ̂(0)

l

]︃ (︃
δΦ̂(0)

)︃2
+

+ q1,nq1,l

(︄
∂

∂t

[︃
δΦ̂(0)

]︃)︄2

δΦ̂(0)
n δΦ̂(0)

l

⎤⎦
(C.11)
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Defining each terms as a function of δΦ̂(0)
i (exploiting the time-derivative properties

expressed in Eq. (B.13))(︄
∂

∂t

[︂
δΦ̂
]︂)︄2

= −
∑︂
n,l

q0,nq0,l ∆ωn∆ωl δΦ̂
(0)
n δΦ̂(0)

l +

−
∑︂

n,l,m

[︂
q0,nq1,l ∆ωn∆ωm,l + q1,nq0,l ∆ωl∆ωn,l

]︂
δΦ̂(0)

n δΦ̂(0)
l δΦ̂(0)

m +

−
∑︂

n,l,m,s

[︂
q1,nq1,l (∆ωm∆ωs + ∆ωm∆ωl + ∆ωn∆ωm + ∆ωn∆ωl) +

+ q2,nq0,l ∆ωl∆ω2m,n + q0,nq2,l ∆ωn∆ω2m,l

]︂
δΦ̂(0)

n δΦ̂(0)
l δΦ̂(0)

m δΦ̂(0)
s =

= −
∑︂
n,l

q0,nq0,l ∆ωn∆ωl δΦ̂
(0)
n δΦ̂(0)

l +

−
∑︂

n,l,m

[︂
q0,nq1,l ∆ωn∆ωm,l + q1,nq0,l ∆ωl∆ωn,l

]︂
δΦ̂(0)

n δΦ̂(0)
l δΦ̂(0)

m +

−
∑︂

n,l,m,s

[︂
q1,nq1,l (∆ωm∆ωs + ∆ωm∆ωl + ∆ωn∆ωm + ∆ωn∆ωl) +

+ q2,nq0,l ∆ωl∆ω2m,n + q0,nq2,l ∆ωn∆ω2m,l

]︂
δΦ̂(0)

n δΦ̂(0)
l δΦ̂(0)

m δΦ̂(0)
s

(C.12)

Lastly, exploiting the definition of δΦ̂(0)
i given in Eq. (3.30):(︄

∂

∂t

[︂
δΦ̂
]︂)︄2

= −
∑︂
n,l

q0,nq0,l ∆ωn∆ωl cncl

{︂
â+ â†

}︂
n,l
ei(∆kn,lz−∆ωn,lt)+

−
∑︂

n,l,m

[︂
q0,nq1,l ∆ωn∆ωm,l + q1,nq0,l ∆ωl∆ωn,m

]︂
·

· cnclcm

{︂
â+ â†

}︂
n,l,m

ei(∆kn,l,mz−∆ωn,l,mt)

−
∑︂

n,l,m,s

[︂
q1,nq1,l (∆ωm∆ωs + ∆ωm∆ωl + ∆ωn∆ωm + ∆ωn∆ωl) +

+ q2,nq0,l ∆ωl∆ω2m,n + q0,nq2,l ∆ωn∆ω2m,l

]︂
·

cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

ei(∆kn,l,m,sz−∆ωn,l,m,st) (C.13)

We can now space-integrate the different components of (3.31):

h0 = 1
2a

∫︂ aN

0
dz

[︄
2Icφ0(1 − p1) + ∆Φ2

DC

Lg

]︄
= N

[︄
Icφ0 (1 − p1) + ∆Φ2

DC

2Lg

]︄
(C.14)

ĤI = 1
2a

∫︂ aN

0
dz

[︄(︄
2Icp2 + 2∆ΦDC

Lg

)︄
δΦ̂
]︄

=
(︄
Icp2

a
+ ∆ΦDC

aLg

)︄∫︂ aN

0
δΦ̂ dz
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ĤN vs. δΦ in the second quantization regime

and, exploiting the third-order approximated expression of δΦ̂ given in Eq. (3.26)

ĤI =
(︄
Icp2

a
+ ∆ΦDC

aLg

)︄
·

·
∫︂ aN

0
dz
∑︂

n

[︄
q0,n + q1,n

(︃
δΦ̂(0)

)︃
+ q2,n

(︃
δΦ̂(0)

)︃2
+ q3,n

(︃
δΦ̂(0)

)︃3
]︄
δΦ̂(0)

n =

=
(︄
Icp2

a
+ ∆ΦDC

aLg

)︄
·

·
∫︂ aN

0
dz

⎡⎣∑︂
n

q0,n cn

{︂
â+ â†

}︂
n
ei(∆knz−∆ωnt)+

+
∑︂
n,l

q1,n cncl

{︂
â+ â†

}︂
n,l

ei(∆kn,lz−∆ωn,lt)+

+
∑︂

n,l,m

q2,n cnclcm

{︂
â+ â†

}︂
n,l,m

ei(∆kn,l,mz−∆ωn,l,mt)+

+
∑︂

n,l,m,s

q3,n cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

ei(∆kn,l,m,sz−∆ωn,l,m,st)
⎤⎦

(C.15)

and performing the spatial integration we obtain

ĤI =
(︄
Icp2

a
+ ∆ΦDC

aLg

)︄
·

·

⎡⎣−
∑︂

n

q0,n cn

{︂
â+ â†

}︂
n

i

∆kn

(︂
ei∆knaN − 1

)︂
e−i∆ωnt+

−
∑︂
n,l

q1,n cncl

{︂
â+ â†

}︂
n,l

i

∆kn,l

(︂
ei∆kn,laN − 1

)︂
e−i∆ωn,lt+

−
∑︂

n,l,m

q2,n cnclcm

{︂
â+ â†

}︂
n,l,m

i

∆kn,l,m

(︂
ei∆kn,l,maN − 1

)︂
e−i∆ωn,l,mt+

−
∑︂

n,l,m,s

q3,n cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

i

∆kn,l,m,s

(︂
ei∆kn,l,m,saN − 1

)︂
e−i∆ωn,l,m,st

⎤⎦
(C.16)

We can now calculate separately the two components of ĤII :

ĤII = ĤII,a + ĤII,b = 1
2a

∫︂ aN

0

[︄(︄
Icp1

φ0
+ 1
Lg

)︄
δΦ̂2

]︄
dz + 1

2a

∫︂ aN

0
CgV̂

2
Cg
dz

(C.17)
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ĤN vs. δΦ in the second quantization regime

For what ĤII,a is concerning, exploiting the definition of δΦ̂2 given in Eq. (C.2)

ĤII,a = 1
2a

(︄
Icp1

φo

+ 1
Lg

)︄∫︂ aN

0
δΦ̂2

dz =

= 1
2a

(︄
Icp1

φo

+ 1
Lg

)︄
·

·
∫︂ aN

0
dz

⎡⎣∑︂
n,l

q0,nq0,l cncl

{︂
â+ â†

}︂
n,l
ei(∆kn,lz−∆ωn,lt)+

+
∑︂

n,l,m

2q0,nq1,l cnclcm

{︂
â+ â†

}︂
n,l,m

ei(∆kn,l,mz−∆ωn,l,mt)+

+
∑︂

n,l,m,s

(2q0,nq2,l + q1,nq1,l) cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

ei(∆kn,l,m,sz−∆ωn,l,m,st)
⎤⎦

(C.18)

and performing the spatial integration:

ĤII,a = 1
2a

(︄
Icp1

φo

+ 1
Lg

)︄
·

·

⎡⎣−
∑︂
n,l

q0,nq0,l cncl

{︂
â+ â†

}︂
n,l

i

∆kn,l

(︂
ei∆kn,laN − 1

)︂
e−i∆ωn,lt+

−
∑︂

n,l,m

2q0,nq1,l cnclcm

{︂
â+ â†

}︂
n,l,m

i

∆kn,l,m

(︂
ei∆kn,l,maN − 1

)︂
e−i∆ωn,l,mt+

−
∑︂

n,l,m,s

(2q0,nq2,l + q1,nq1,l) cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

i

∆kn,l,m,s

(︂
ei∆kn,l,m,saN − 1

)︂
e−i∆ωn,l,m,st

⎤⎦
(C.19)

Instead, for what ĤII,b is concerning, exploiting the definition of V̂ Cg given in Eq.
(3.15)

ĤII,b = Cg

2a

∫︂ aN

0
dzV̂

2
Cg

= Cg

2a

∫︂ aN

0
dz

ℏ
2CgN

∑︂
n,l

√
ωnωl

{︂
â+ â†

}︂
n,l
ei(∆kn,lz−∆ωn,lt) =

= − ℏ
4aN

∑︂
n,l

√
ωnωl

{︂
â+ â†

}︂
n,l

i

∆kn,l

(︂
ei∆kn,laN − 1

)︂
e−i∆ωn,lt (C.20)
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ĤN vs. δΦ in the second quantization regime

We can now calculate the space integral of ĤIII exploiting the expression for δΦ̂3

given in Eq. (C.6)

ĤIII = − 1
2a
Icp2

3φ2
0

∫︂ aN

0
δΦ̂3

dz =

= − Icp2

6aφ2
0

∫︂ aN

0
dz

⎡⎣ ∑︂
n,l,m

q0,nq0,lq0,m cnclcm

{︂
â+ â†

}︂
n,l,m

ei(∆kn,l,mz−∆ωn,l,mt)+

+
∑︂

n,l,m,s

3q1,nq0,lq0,m cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

ei(∆kn,l,m,sz−∆ωn,l,m,st)
⎤⎦ =

= Icp2

6aφ2
0

⎡⎣ ∑︂
n,l,m

q0,nq0,lq0,m cnclcm

{︂
â+ â†

}︂
n,l,m

i

∆kn,l,m

(︂
ei∆kn,l,maN − 1

)︂
e−i(∆ωn,l,mt)+

+
∑︂

n,l,m,s

3 q1,nq0,lq0,m cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

i

∆kn,l,m,s

(︂
ei∆kn,l,m,saN − 1

)︂
e−i(∆ωn,l,m,s)t

⎤⎦
(C.21)

We can now calculate the space integral of ĤIV exploiting the expression for δΦ̂4

given in Eq. (C.6)

ĤIV = 1
2a

Icp1

12φ3
0

∫︂ aN

0
δΦ̂4

dz =

= 1
2a

Icp1

12φ3
0

∫︂ aN

0
dz

⎡⎣ ∑︂
n,l,m,s

q0,nq0,lq0,mq0,s cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

ei(∆kn,l,m,sz−∆ωn,l,m,st)
⎤⎦ =

= Icp1

24aφ3
0

⎡⎣ ∑︂
n,l,m,s

q0,nq0,lq0,mq0,s cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

i

∆kn,l,m,s

(︂
ei∆kn,l,m,saN − 1

)︂
e−i(∆ωn,l,m,s)t

⎤⎦
(C.22)
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ĤN vs. δΦ in the second quantization regime

Lastly, we can space integrate ĤV

ĤV = CJ

2a

∫︂ aN

0

(︄
∂

∂t

[︂
δΦ̂
]︂)︄2

dz =

= −CJ

2a

∫︂ aN

0
dz

⎡⎣∑︂
n,l

q0,nq0,l ∆ωn∆ωl cncl

{︂
â+ â†

}︂
n,l
ei(∆kn,lz−∆ωn,lt)+

+
∑︂

n,l,m

[q0,nq1,l ∆ωn∆ωm,l + q1,nq0,l ∆ωl∆ωn,m] cnclcm

{︂
â+ â†

}︂
n,l,m

ei(∆kn,l,mz−∆ωn,l,mt)+

+
∑︂

n,l,m,s

[q1,nq1,l (∆ωm∆ωs + ∆ωm∆ωl + ∆ωn∆ωm + ∆ωn∆ωl) + q2,nq0,l ∆ωl∆ω2m,n + q0,nq2,l ∆ωn∆ω2m,l] ·

· cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

ei(∆kn,l,m,sz−∆ωn,l,m,st)
⎤⎦ =

= −CJ

2a

⎡⎣∑︂
n,l

q0,nq0,l ∆ωn∆ωl cncl

{︂
â+ â†

}︂ i

∆kn,l

(︂
ei∆kn,laN − 1

)︂
e−i∆ωn,lt+

+
∑︂

n,l,m

[q0,nq1,l ∆ωn∆ωm,l + q1,nq0,l ∆ωl∆ωn,m] cnclcm

{︂
â+ â†

}︂
n,l,m

i

∆kn,l,m

(︂
ei∆kn,l,maN − 1

)︂
e−i∆ωn,l,mt+

+
∑︂

n,l,m,s

[q1,nq1,l (∆ωm∆ωs + ∆ωm∆ωl + ∆ωn∆ωm + ∆ωn∆ωl) + q2,nq0,l ∆ωl∆ω2m,n + q0,nq2,l ∆ωn∆ω2m,l] ·

· cnclcmcs

{︂
â+ â†

}︂
n,l,m,s

i

∆kn,l,m,s

(︂
ei∆kn,l,m,saN − 1

)︂
e−i∆ωn,l,m,st

⎤⎦
(C.23)
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Appendix D

Curly brackets development and
energy-conservative permutations
selection

If we consider the combination of creation and annihilation operators given by

{a+ a†}n,l,m,s = (an + a†n)(al + a†l )(am + a†m)(as + a†s) =
= (anal + ana

†
l + a†nal + a†na

†
l )(amas + ama

†
s + a†mas + a†ma

†
s) =

= analamas + analama
†
s + anala

†
mas + anala

†
ma
†
s+

+ ana
†
lamas + ana

†
lama

†
s + ana

†
la
†
mas + ana

†
la
†
ma
†
s+

+ a†nalamas + a†nalama
†
s + a†nala

†
mas + a†nala

†
ma
†
s+

+ a†na
†
lamas + a†na

†
lama

†
s + a†na

†
la
†
mas + a†na

†
la
†
ma
†
s (D.1)

the only terms that can fulfill the energy conservation requirement are those made
of 2 creation an 2 annihilation operators. These terms can describe one of the
following events:

• Annihilation of 2 pump photons and creation of a couple of signal-idler pho-
tons (these are mixing terms);

• Annihilation of a couple of signal-idler photons and creation of 2 pump pho-
tons;

• Creation and annihilation of a couple of tones (non-mixing terms).

133



Curly brackets development and energy-conservative permutations selection

Hence, under the energy conservation hypothesis we get:

∑︂
n,l,m,s={p,s,i}

ℏ

⎡⎣χ(n,l,m†,s†)
4 anala

†
ma
†
s + χ

(n,l†,m,s†)
4 ana

†
lama

†
s + χ

(n,l†,m†,s)
4 ana

†
la
†
mas+

+ χ
(n†,l,m,s†)
4 a†nalama

†
s + χ

(n†,l,m†,s)
4 a†nala

†
mas + χ

(n†,l†,m,s)
4 a†na

†
lamas

⎤⎦
(D.2)

D.1 Development of the energy-conservative terms
in 4WM

∑︂
n,l,m,s={p,s,i}

χ
(n,l,m†,s†)
4 anala

†
ma
†
s =

= χ
(p,p,p†,p†)
4 apapa

†
pa
†
p + χ

(s,s,s†,s†)
4 asasa

†
sa
†
s + χ

(i,i,i†,i†)
4 aiaia

†
ia
†
i+

+ χ
(p,s,p†,s†)
4 apasa

†
pa
†
s + χ

(p,s,s†,p†)
4 apasa

†
sa
†
p + χ

(s,p,p†,s†)
4 asapa

†
pa
†
s + χ

(s,p,s†,p†)
4 asapa

†
sa
†
p

+ χ
(p,i,p†,i†)
4 apaia

†
pa
†
i + χ

(p,i,i†,p†)
4 apaia

†
ia
†
p + χ

(i,p,p†,i†)
4 aiapa

†
pa
†
i + χ

(i,p,i†,p†)
4 aiapa

†
ia
†
p+

+ χ
(s,i,s†,i†)
4 asaia

†
sa
†
i + χ

(s,i,i†,s†)
4 asaia

†
ia
†
s + χ

(i,s,s†,i†)
4 aiasa

†
sa
†
i + χ

(i,s,i†,s†)
4 aiasa

†
ia
†
s+

+ χ
(p,p,s†,i†)
4 apapa

†
sa
†
i + χ

(p,p,i†,s†)
4 apapa

†
ia
†
s+

+ χ
(s,i,p†,p†)
4 asaia

†
pa
†
p + χ

(i,s,p†,p†)
4 aiasa

†
pa
†
p =

= χ
(p,p,p†,p†)
4 a†papa

†
pap + 3χ(p,p,p†,p†)

4 a†pap + 2χ(p,p,p†,p†)
4 +

+ χ
(s,s,s†,s†)
4 a†sasa

†
sas + 3χ(s,s,s†,s†)

4 a†sas + 2χ(s,s,s†,s†)
4 +

+ χ
(i,i,i†,i†)
4 a†iaia

†
iai + 3χ(i,i,i†,i†)

4 a†iai + 2χ(i,i,i†,i†)
4 +

+
[︃
χ

(p,s,p†,s†)
4 + χ

(p,s,s†,p†)
4 + χ

(s,p,p†,s†)
4 + χ

(s,p,s†,p†)
4

]︃
· (a†papa

†
sas + a†pap + a†sas + 1)+

+
[︃
χ

(p,i,p†,i†)
4 + χ

(p,i,i†,p†)
4 + χ

(i,p,p†,i†)
4 + χ

(i,p,i†,p†)
4

]︃
· (a†papa

†
iai + a†pap + a†iai + 1)+

+
[︃
χ

(s,i,s†,i†)
4 + χ

(s,i,i†,s†)
4 + χ

(i,s,s†,i†)
4 + χ

(i,s,i†,s†)
4

]︃
· (a†sasa

†
iai + a†sas + a†iai + 1)+

+
[︃
χ

(p,p,s†,i†)
4 + χ

(p,p,i†,s†)
4

]︃
apapa

†
sa
†
i+

+
[︃
χ

(s,i,p†,p†)
4 + χ

(i,s,p†,p†)
4

]︃
a†pa

†
pasai

(D.3)
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D.1 – Development of the energy-conservative terms in 4WM

∑︂
n,l,m,s={p,s,i}

χ
(n,l†,m,s†)
4 ana

†
lama

†
s =

= χ
(p,p†,p,p†)
4 apa

†
papa

†
p + χ

(s,s†,s,s†)
4 asa

†
sasa

†
s + χ

(i,i†,i,i†)
4 aia

†
iaia

†
i+

+ χ
(p,p†,s,s†)
4 apa

†
pasa

†
s + χ

(s,s†,p,p†)
4 asa

†
sapa

†
p + χ

(p,s†,s,p†)
4 apa

†
sasa

†
p + χ

(s,p†,p,s†)
4 asa

†
papa

†
s+

+ χ
(p,p†,i,i†)
4 apa

†
paia

†
i + χ

(i,i†,p,p†)
4 aia

†
iapa

†
p + χ

(p,i†,i,p†)
4 apa

†
iaia

†
p + χ

(i,p†,p,i†)
4 aia

†
papa

†
i+

+ χ
(s,s†,i,i†)
4 asa

†
saia

†
i + χ

(i,i†,s,s†)
4 aia

†
iasa

†
s + χ

(s,i†,i,s†)
4 asa

†
iaia

†
s + χ

(i,s†,s,i†)
4 aia

†
sasa

†
i+

+ χ
(p,s†,p,i†)
4 apa

†
sapa

†
i + χ

(p,i†,p,s†)
4 apa

†
iapa

†
s+

+ χ
(s,p†,i,p†)
4 asa

†
paia

†
p + χ

(i,p†,s,p†)
4 aia

†
pasa

†
p =

=
[︃
χ

(p,p†,p,p†)
4

]︃
(a†papa

†
pap + 2a†pap + 1)+

+
[︃
χ

(s,s†,s,s†)
4

]︃
(a†sasa

†
sas + 2a†sas + 1)+

+
[︃
χ

(i,i†,i,i†)
4

]︃
(a†iaia

†
iai + 2a†iai + 1)+

+
[︃
χ

(p,p†,s,s†)
4 + χ

(s,s†,p,p†)
4 + χ

(p,s†,s,p†)
4 + χ

(s,p†,p,s†)
4

]︃
a†papa

†
sas +

[︃
χ

(p,p†,s,s†)
4 + χ

(s,s†,p,p†)
4 + χ

(s,p†,p,s†)
4

]︃
a†pap+

+
[︃
χ

(p,p†,s,s†)
4 + χ

(s,s†,p,p†)
4 + χ

(p,s†,s,p†)
4

]︃
a†sas +

[︃
χ

(p,p†,s,s†)
4 + χ

(s,s†,p,p†)
4

]︃
+

+
[︃
χ

(p,p†,i,i†)
4 + χ

(i,i†,p,p†)
4 + χ

(p,i†,i,p†)
4 + χ

(i,p†,p,i†)
4

]︃
a†papa

†
iai +

[︃
χ

(p,p†,i,i†)
4 + χ

(i,i†,p,p†)
4 + χ

(i,p†,p,i†)
4

]︃
a†pap+

+
[︃
χ

(p,p†,i,i†)
4 + χ

(i,i†,p,p†)
4 + χ

(p,i†,i,p†)
4

]︃
a†iai +

[︃
χ

(p,p†,i,i†)
4 + χ

(i,i†,p,p†)
4

]︃
+

+
[︃
χ

(s,s†,i,i†)
4 + χ

(i,i†,s,s†)
4 + χ

(s,i†,i,s†)
4 + χ

(i,s†,s,i†)
4

]︃
a†sasa

†
iai +

[︃
χ

(s,s†,i,i†)
4 + χ

(i,i†,s,s†)
4 + χ

(i,s†,s,i†)
4

]︃
a†sas+

+
[︃
χ

(s,s†,i,i†)
4 + χ

(i,i†,s,s†)
4 + χ

(s,i†,i,s†)
4

]︃
a†iai +

[︃
χ

(s,s†,i,i†)
4 + χ

(i,i†,s,s†)
4

]︃
+

+
[︃
χ

(p,s†,p,i†)
4 + χ

(p,i†,p,s†)
4

]︃
apapa

†
sa
†
i+

+
[︃
χ

(s,p†,i,p†)
4 + χ

(i,p†,s,p†)
4

]︃
a†pa

†
pasai (D.4)
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Curly brackets development and energy-conservative permutations selection

∑︂
n,l,m,s={p,s,i}

χ
(n,l†,m†,s)
4 ana

†
la
†
mas =

= χ
(p,p†,p†,p)
4 apa

†
pa
†
pap + χ

(s,s†,s†,s)
4 asa

†
sa
†
sas + χ

(i,i†,i†,i)
4 aia

†
ia
†
iai+

+ χ
(p,p†,s†,s)
4 apa

†
pa
†
sas + χ

(s,s†,p†,p)
4 asa

†
sa
†
pap + χ

(p,s†,p†,s)
4 apa

†
sa
†
pas + χ

(s,p†,s†,p)
4 asa

†
pa
†
sap+

+ χ
(p,p†,i†,i)
4 apa

†
pa
†
iai + χ

(i,i†,p†,p)
4 aia

†
ia
†
pap + χ

(p,i†,p†,i)
4 apa

†
ia
†
pai + χ

(i,p†,i†,p)
4 aia

†
pa
†
iap+

+ χ
(s,s†,i†,i)
4 asa

†
sa
†
iai + χ

(i,i†,s†,s)
4 aia

†
ia
†
sas + χ

(s,i†,s†,i)
4 asa

†
ia
†
sai + χ

(i,s†,i†,s)
4 aia

†
sa
†
ias+

+ χ
(p,s†,i†,p)
4 apa

†
sa
†
iap + χ

(p,i†,s†,p)apa†
i a†

sap

4 +

+ χ
(s,p†,p†,i)
4 asa

†
pa
†
pai + χ

(i,p†,p†,s)
4 aia

†
pa
†
pas =

=
[︃
χ

(p,p†,p†,p)
4

]︃
(a†papa

†
pap + a†pap)+

+
[︃
χ

(s,s†,s†,s)
4

]︃
(a†sasa

†
sas + a†sas)+

+
[︃
χ

(i,i†,i†,i)
4

]︃
(a†iaia

†
iai + a†iai)+

+
[︃
χ

(p,p†,s†,s)
4 + χ

(s,s†,p†,p)
4 + χ

(p,s†,p†,s)
4 + χ

(s,p†,s†,p)
4

]︃
a†papa

†
sas+

+
[︃
χ

(s,s†,p†,p)
4 + χ

(s,p†,s†,p)
4

]︃
a†pap +

[︃
χ

(p,p†,s†,s)
4 + χ

(p,s†,p†,s)
4

]︃
a†sas+

+
[︃
χ

(p,p†,i†,i)
4 + χ

(i,i†,p†,p)
4 + χ

(p,i†,p†,i)
4 + χ

(i,p†,i†,p)
4

]︃
a†papa

†
iai+

+
[︃
χ

(i,i†,p†,p)
4 + χ

(i,p†,i†,p)
4

]︃
a†pap +

[︃
χ

(p,p†,i†,i)
4 + χ

(p,i†,p†,i)
4

]︃
a†iai+

+
[︃
χ

(s,s†,i†,i)
4 + χ

(i,i†,s†,s)
4 + χ

(s,i†,s†,i)
4 + χ

(i,s†,i†,s)
4

]︃
a†sasa

†
iai+

+
[︃
χ

(i,i†,s†,s)
4 + χ

(i,s†,i†,s)
4

]︃
a†sas +

[︃
χ

(s,s†,i†,i)
4 + χ

(s,i†,s†,i)
4

]︃
a†iai+

+
[︃
χ

(p,s†,i†,p)
4 + χ

(p,i†,s†,p)
4

]︃
apapa

†
sa
†
i+

+
[︃
χ

(s,p†,p†,i)
4 + χ

(i,p†,p†,s)
4

]︃
a†pa

†
pasai (D.5)
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D.1 – Development of the energy-conservative terms in 4WM

∑︂
n,l,m,s={p,s,i}

χ
(n†,l,m,s†)
4 a†nalama

†
s =

= χ
(p†,p,p,p†)
4 a†papapa

†
p + χ

(s†,s,s,s†)
4 a†sasasa

†
s + χ

(i†,i,i,i†)
4 a†iaiaia

†
i+

+ χ
(p†,p,s,s†)
4 a†papasa

†
s + χ

(s†,s,p,p†)
4 a†sasapa

†
p + χ

(p†,s,p,s†)
4 a†pasapa

†
s + χ

(s†,p,s,p†)
4 a†sapasa

†
p+

+ χ
(p†,p,i,i†)
4 a†papaia

†
i + χ

(i†,i,p,p†)
4 a†iaiapa

†
p + χ

(p†,i,p,i†)
4 a†paiapa

†
i + χ

(i†,p,i,p†)
4 a†iapaia

†
p+

+ χ
(s†,s,i,i†)
4 a†sasaia

†
i + χ

(i†,i,s,s†)
4 a†iaiasa

†
s + χ

(s†,i,s,i†)
4 a†saiasa

†
i + χ

(i†,s,i,s†)
4 a†iasaia

†
s+

+ χ
(s†,p,p,i†)
4 a†sapapa

†
i + χ

(i†,p,p,s†)
4 a†iapapa

†
s+

+ χ
(p†,s,i,p†)
4 a†pasaia

†
p + χ

(p†,i,s,p†)
4 a†paiasa

†
p =

=
[︃
χ

(p†,p,p,p†)
4

]︃
(a†papa

†
pap + a†pap)+

+
[︃
χ

(s†,s,s,s†)
4

]︃
(a†sasa

†
sas + a†sas)+

+
[︃
χ

(i†,i,i,i†)
4

]︃
(a†iaia

†
iai + a†iai)+

+
[︃
χ

(p†,p,s,s†)
4 + χ

(s†,s,p,p†)
4 + χ

(p†,s,p,s†)
4 + χ

(s†,p,s,p†)
4

]︃
a†papa

†
sas+

+
[︃
χ

(p†,p,s,s†)
4 + χ

(p†,s,p,s†)
4

]︃
a†pap +

[︃
χ

(s†,s,p,p†)
4 + χ

(s†,p,s,p†)
4

]︃
a†sas+

+
[︃
χ

(p†,p,i,i†)
4 + χ

(i†,i,p,p†)
4 + χ

(p†,i,p,i†)
4 + χ

(i†,p,i,p†)
4

]︃
a†papa

†
iai+

+
[︃
χ

(p†,p,i,i†)
4 + χ

(p†,i,p,i†)
4

]︃
a†pap +

[︃
χ

(i†,i,p,p†)
4 + χ

(i†,p,i,p†)
4

]︃
a†iai+

+
[︃
χ

(s†,s,i,i†)
4 + χ

(i†,i,s,s†)
4 + χ

(s†,i,s,i†)
4 + χ

(i†,s,i,s†)
4

]︃
a†sasa

†
iai+

+
[︃
χ

(s†,s,i,i†)
4 + χ

(s†,i,s,i†)
4

]︃
a†sas +

[︃
χ

(i†,i,s,s†)
4 + χ

(i†,s,i,s†)
4

]︃
a†iai+

+
[︃
χ

(s†,p,p,i†)
4 + χ

(i†,p,p,s†)
4

]︃
apapa

†
sa
†
i+

+
[︃
χ

(p†,s,i,p†)
4 + χ

(p†,i,p,p†)
4

]︃
a†pa

†
pasai (D.6)
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Curly brackets development and energy-conservative permutations selection

∑︂
n,l,m,s={p,s,i}

χ
(n†,l,m†,s)
4 a†nala

†
mas =

= χ
(p†,p,p†,p)
4 a†papa

†
pap + χ

(s†,s,s†,s)
4 a†sasa

†
sas + χ

(i†,i,i†,i)
4 a†iaia

†
iai+

+ χ
(p†,p,s†,s)
4 a†papa

†
sas + χ

(s†,s,p†,p)
4 a†sasa

†
pap + χ

(p†,s,s†,p)
4 a†pasa

†
sap + χ

(s†,p,p†,s)
4 a†sapa

†
pas+

+ χ
(p†,p,i†,i)
4 a†papa

†
iai + χ

(i†,i,p†,p)
4 a†iaia

†
pap + χ

(p†,i,i†,p)
4 a†paia

†
iap + χ

(i†,p,p†,i)
4 a†iapa

†
pai+

+ χ
(s†,s,i†,i)
4 a†sasa

†
iai + χ

(i†,i,s†,s)
4 a†iaia

†
sas + χ

(s†,i,i†,s)
4 a†saia

†
ias + χ

(i†,s,s†,i)
4 a†iasa

†
sai+

+ χ
(s†,p,i†,p)
4 a†sapa

†
iap + χ

(i†,p,s†,p)
4 a†iapa

†
sap+

+ χ
(p†,s,p†,i)
4 a†pasa

†
pai + χ

(p†,i,p†,s)
4 a†paia

†
pas =

= χ
(p†,p,p†,p)
4 a†papa

†
pap + χ

(s†,s,s†,s)
4 a†sasa

†
sas + χ

(i†,i,i†,i)
4 a†iaia

†
iai+

+
[︃
χ

(p†,p,s†,s)
4 + χ

(s†,s,p†,p)
4 + χ

(p†,s,s†,p)
4 + χ

(s†,p,p†,s)
4

]︃
a†papa

†
sas +

[︃
χ

(p†,s,s†,p)
4

]︃
a†pap +

[︃
χ

(s†,p,p†,s)
4

]︃
a†sas+

+
[︃
χ

(p†,p,i†,i)
4 + χ

(i†,i,p†,p)
4 + χ

(p†,i,i†,p)
4 + χ

(i†,p,p†,i)
4

]︃
a†papa

†
iai +

[︃
χ

(p†,i,i†,p)
4

]︃
a†pap +

[︃
χ

(i†,p,p†,i)
4

]︃
a†iai+

+
[︃
χ

(s†,s,i†,i)
4 + χ

(i†,i,s†,s)
4 + χ

(s†,i,i†,s)
4 + χ

(i†,s,s†,i)
4

]︃
a†sasa

†
iai +

[︃
χ

(s†,i,i†,s)
4

]︃
a†sas +

[︃
χ

(i†,s,s†,i)
4

]︃
a†iai+

+
[︃
χ

(s†,p,i†,p)
4 + χ

(i†,p,s†,p)
4

]︃
apapa

†
sa
†
i+

+
[︃
χ

(p†,s,p†,i)
4 + χ

(p†,i,p†,s)
4

]︃
a†pa

†
pasai

(D.7)
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D.1 – Development of the energy-conservative terms in 4WM

∑︂
n,l,m,s={p,s,i}

χ
(n†,l†,m,s)
4 a†na

†
lamas =

= χ
(p†,p†,p,p)
4 a†pa

†
papap + χ

(s†,s†,s,s)
4 a†sa

†
sasas + χ

(i†,i†,i,s)
4 a†ia

†
iaiai+

+ χ
(p†,s†,p,s)
4 a†pa

†
sapas + χ

(p†,s†,s,p)
4 a†pa

†
sasap + χ

(s†,p†,p,s)
4 a†sa

†
papas + χ

(s†,p†,s,p)
4 a†sa

†
pasap+

+ χ
(p†,i†,p,i)
4 a†pa

†
iapai + χ

(p†,i†,i,p)
4 a†pa

†
iaiap + χ

(i†,p†,p,i)
4 a†ia

†
papai + χ

(i†,p†,i,p)
4 a†ia

†
paiap+

+ χ
(s†,i†,s,i)
4 a†sa

†
iasai + χ

(s†,i†,i,s)
4 a†sa

†
iaias + χ

(i†,s†,s,i)
4 a†ia

†
sasai + χ

(i†,s†,i,s)
4 a†ia

†
saias+

+ χ
(s†,i†,p,p)
4 a†sa

†
iapap + χ

(i†,s†,p,p)
4 a†ia

†
sapap+

+ χ
(p†,p†,s,i)
4 a†pa

†
pasai + χ

(p†,p†,i,s)
4 a†pa

†
paias =

=
[︃
χ

(p†,p†,p,p)
4

]︃
(a†papa

†
pap − a†pap)+

+
[︃
χ

(s†,s†,s,s)
4

]︃
(a†sasa

†
sas − a†sas)+

+
[︃
χ

(i†,i†,i,i)
4

]︃
(a†iaia

†
iai − a†iai)+

+
[︃
χ

(p†,s†,p,s)
4 + χ

(p†,s†,s,p)
4 + χ

(s†,p†,p,s)
4 + χ

(s†,p†,s,p)
4

]︃
a†papa

†
sas+

+
[︃
χ

(p†,i†,p,i)
4 + χ

(p†,i†,i,p)
4 + χ

(i†,p†,p,i)
4 + χ

(i†,p†,i,p)
4

]︃
a†papa

†
iai+

+
[︃
χ

(s†,i†,s,i)
4 + χ

(s†,i†,i,s)
4 + χ

(i†,s†,s,i)
4 + χ

(i†,s†,i,s)
4

]︃
a†sasa

†
iai+

+
[︃
χ

(s†,i†,p,p)
4 + χ

(i†,s†,p,p)
4

]︃
apapa

†
sa
†
i+

+
[︃
χ

(p†,p†,s,i)
4 + χ

(p†,p†,i,s)
4

]︃
a†pa

†
pasai (D.8)

139



Curly brackets development and energy-conservative permutations selection

D.2 Self-phase, cross-phase and 4WM coupling
constant

Summing e reordering all the terms of Eq. (D.2):

H4WM = ℏ
[︃
2χ(p,p,p†,p†)

4 + χ
(p,p†,p,p†)
4 + 2χ(s,s,s†,s†)

4 + χ
(s,s†,s,s†)
4 + 2χ(i,i,i†,i†)

4 + χ
(i,i†,i,i†)
4 +

+ χ
(p,s,p†,s†)
4 + χ

(p,s,s†,p†)
4 + χ

(s,p,p†,s†)
4 + χ

(s,p,s†,p†)
4 + χ

(p,p†,s,s†)
4 + χ

(s,s†,p,p†)
4

+ χ
(p,i,p†,i†)
4 + χ

(p,i,i†,p†)
4 + χ

(i,p,p†,i†)
4 + χ

(i,p,i†,p†)
4 + χ

(p,p†,i,i†)
4 + χ

(i,i†,p,p†)
4 +

+ χ
(s,i,s†,i†)
4 + χ

(s,i,i†,s†)
4 + χ

(i,s,s†,i†)
4 + χ

(i,s,i†,p†)
4 + χ

(s,s†,i,i†)
4 + χ

(i,i†,s,s†)
4

]︃
1+

+ ℏ
[︃
3χ(p,p,p†,p†)

4 + 2χ(p,p†,p,p†)
4 + χ

(p,p†,p†,p)
4 + χ

(p†,p,p,p†)
4 − χ

(p†,p†,p,p)
4 +

+ χ
(p,s,p†,s†)
4 + χ

(p,s,s†,p†)
4 + χ

(s,p,p†,s†)
4 + χ

(s,p,s†,p†)
4 + χ

(p,p†,s,s†)
4 + χ

(s,s†,p,p†)
4 +

+ χ
(s,p†,p,s†)
4 + χ

(s,s†,p†,p)
4 + χ

(s,p†,s†,p)
4 + χ

(p†,p,s,s†)
4 + χ

(p†,s,p,s†)
4 + χ

(p†,s,s†,p)
4 +

+ χ
(p,i,p†,i†)
4 + χ

(p,i,i†,p†)
4 + χ

(i,p,p†,i†)
4 + χ

(i,p,i†,p†)
4 + χ

(p,p†,i,i†)
4 + χ

(i,i†,p,p†)
4 +

+ χ
(i,p†,p,i†)
4 + χ

(i,i†,p†,p)
4 + χ

(i,p†,i†,p)
4 + χ

(p†,p,i,i†)
4 + χ

(p†,i,p,i†)
4 + χ

(p†,i,i†,p)
4

]︃
a†pap+

+ ℏ
[︃
3χ(s,s,s†,s†)

4 + 2χ(s,s†,s,s†)
4 + χ

(s,s†,s†,s)
4 + χ

(s†,s,s,s†)
4 − χ

(s†,s†,s,s)
4 +

+ χ
(p,s,p†,s†)
4 + χ

(p,s,s†,p†)
4 + χ

(s,p,p†,s†)
4 + χ

(s,p,s†,p†)
4 + χ

(p,p†,s,s†)
4 + χ

(s,s†,p,p†)
4 +

+ χ
(p,s†,s,p†)
4 + χ

(p,p†,s†,s)
4 + χ

(p,s†,p†,s)
4 + χ

(s†,s,p,p†)
4 + χ

(s†,p,s,p†)
4 + χ

(s†,p,p†,s)
4 +

+ χ
(s,i,s†,i†)
4 + χ

(s,i,i†,s†)
4 + χ

(i,s,s†,i†)
4 + χ

(i,s,i†,s†)
4 + χ

(s,s†,i,i†)
4 + χ

(i,i†,s,s†)
4 +

+ χ
(i,s†,s,i†)
4 + χ

(i,i†,s†,s)
4 + χ

(i,s†,i†,s)
4 + χ

(s†,s,i,i†)
4 + χ

(s†,i,s,i†)
4 + χ

(s†,i,i†,s)
4

]︃
a†sas

+ ℏ
[︃
3χ(i,i,i†,i†)

4 + 2χ(i,i†,i,i†)
4 + χ

(i,i†,i†,i)
4 + χ

(i†,i,i,i†)
4 − χ

(i†,i†,i,i)
4 +

+ χ
(p,i,p†,i†)
4 + χ

(p,i,i†,p†)
4 + χ

(i,p,p†,i†)
4 + χ

(i,p,i†,p†)
4 + χ

(p,p†,i,i†)
4 + χ

(i,i†,p,p†)
4 +

+ χ
(p,i†,i,p†)
4 + χ

(p,p†,i†,i)
4 + χ

(p,i†,p†,i)
4 + χ

(i†,i,p,p†)
4 + χ

(i†,i,p,p†)
4 + χ

(i†,p,p†,i)
4 +

+ χ
(s,i,s†,i†)
4 + χ

(s,i,i†,s†)
4 + χ

(i,s,s†,i†)
4 + χ

(i,s,i†,s†)
4 + χ

(s,s†,i,i†)
4 + χ

(i,i†,s,s†)
4 +

+ χ
(s,i†,i,s†)
4 + χ

(s,s†,i†,i)
4 + χ

(s,i†,s†,i)
4 + χ

(i†,i,s,s†)
4 + χ

(i†,i,s,s†)
4 + χ

(i†,s,s†,i)
4

]︃
a†iai+

(D.9)
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+ ℏ
[︃
χ

(p,p,p†,p†)
4 + χ

(p,p†,p,p†)
4 + χ

(p,p†,p†,p)
4 + χ

(p†,p,p,p†)
4 + χ

(p†,p,p†,p)
4 + χ

(p†,p†,p,p)
4

]︃
a†papa

†
pap+

+ ℏ
[︃
χ

(s,s,s†,s†)
4 + χ

(s,s†,s,s†)
4 + χ

(s,s†,s†,s)
4 + χ

(s†,s,s,s†)
4 + χ

(s†,s,s†,s)
4 + χ

(s†,s†,s,s)
4

]︃
a†sasa

†
sas+

+ ℏ
[︃
χ

(i,i,i†,i†)
4 + χ

(i,i†,i,i†)
4 + χ

(i,i†,i†,i)
4 + χ

(i†,i,i,i†)
4 + χ

(i†,i,i†,i)
4 + χ

(i†,i†,i,i)
4

]︃
a†iaia

†
iai+

+ ℏ
[︃
χ

(p,s,p†,s†)
4 + χ

(p,s,s†,p†)
4 + χ

(s,p,p†,s†)
4 + χ

(s,p,s†,p†)
4 + χ

(p,p†,s,s†)
4 + χ

(s,s†,p,p†)
4 + χ

(p,s†,s,p†)
4 + χ

(s,p†,p,s†)
4 +

+ χ
(p,p†,s†,s)
4 + χ

(s,s†,p†,p)
4 + χ

(p,s†,p†,s)
4 + χ

(s,p†,s†,p)
4 + χ

(p†,p,s,s†)
4 + χ

(s†,s,p,p†)
4 +

+ χ
(p†,s,p,s†)
4 + χ

(s†,p,s,p†)
4 + χ

(p†,p,s†,s)
4 + χ

(s†,s,p†,p)
4 + χ

(p†,s,s†,p)
4 + χ

(s†,p,p†,s)
4 +

+ χ
(p†,s†,p,s)
4 + χ

(p†,s†,s,p)
4 + χ

(s†,p†,p,s)
4 + χ

(s†,p†,s,p)
4

]︃
a†papa

†
sas+

+ ℏ
[︃
χ

(p,i,p†,i†)
4 + χ

(p,i,i†,p†)
4 + χ

(i,p,p†,i†)
4 + χ

(i,p,i†,p†)
4 + χ

(p,p†,i,i†)
4 + χ

(i,i†,p,p†)
4 + χ

(p,i†,i,p†)
4 + χ

(i,p†,p,i†)
4 +

+ χ
(p,p†,i†,i)
4 + χ

(i,i†,p†,p)
4 + χ

(p,i†,p†,i)
4 + χ

(i,p†,i†,p)
4 + χ

(p†,p,i,i†)
4 + χ

(i†,i,p,p†)
4 +

+ χ
(p†,i,p,i†)
4 + χ

(i†,p,i,p†)
4 + χ

(p†,p,i†,i)
4 + χ

(i†,i,p†,p)
4 + χ

(p†,i,i†,p)
4 + χ

(i†,p,p†,i)
4 +

+ χ
(p†,i†,p,i)
4 + χ

(p†,i†,i,p)
4 + χ

(i†,p†,p,i)
4 + χ

(i†,p†,i,p)
4

]︃
a†papa

†
iai+

+ ℏ
[︃
χ

(s,i,s†,i†)
4 + χ

(s,i,i†,s†)
4 + χ

(i,s,s†,i†)
4 + χ

(i,s,i†,s†)
4 + χ

(s,s†,i,i†)
4 + χ

(i,i†,s,s†)
4 + χ

(s,i†,i,s†)
4 + χ

(i,s†,s,i†)
4 +

+ χ
(s,s†,i†,i)
4 + χ

(i,i†,s†,s)
4 + χ

(s,i†,s†,i)
4 + χ

(i,s†,i†,s)
4 + χ

(s†,s,i,i†)
4 + χ

(i†,i,s,s†)
4 +

+ χ
(s†,i,s,i†)
4 + χ

(i†,s,i,s†)
4 + χ

(s†,s,i†,i)
4 + χ

(i†,i,s†,s)
4 + χ

(s†,i,i†,s)
4 + χ

(i†,s,s†,i)
4 +

+ χ
(s†,i†,s,i)
4 + χ

(s†,i†,i,s)
4 + χ

(i†,s†,s,i)
4 + χ

(i†,s†,i,s)
4

]︃
a†sasa

†
iai+

+ ℏ
[︃
χ

(p,p,s†,i†)
4 + χ

(p,p,i†,s†)
4 + χ

(p,s†,p,i†)
4 + χ

(p,i†,p,s†)
4 + χ

(p,s†,i†,p)
4 + χ

(p,i†,s†,p)
4 +

+ χ
(s†,p,p,i†)
4 + χ

(i†,p,p,s†)
4 + χ

(s†,p,i†,p)
4 + χ

(i†,p,s†,p)
4 + χ

(s†,i†,p,p)
4 + χ

(i†,s†,p,p)
4

]︃
apapa

†
sa
†
i+

+ ℏ
[︃
χ

(p†,p†,s,i)
4 + χ

(p†,p†,i,s)
4 + χ

(p†,s,p†,i)
4 + χ

(p†,i,p†,s)
4 + χ

(p†,s,i,p†)
4 + χ

(p†,i,s,p†)
4

+ χ
(s,p†,p†,i)
4 + χ

(i,p†,p†,s)
4 + χ

(s,p†,i,p†)
4 + χ

(i,p†,s,p†)
4 + χ

(s,i,p†,p†)
4 + χ

(i,s,p†,p†)
4

]︃
a†pa

†
pasai

(D.10)

Moreover, we can define the self-phase modulation parameter of the pump ξpp as the
sum of all the coefficients χ(n,l,m,s)

4 associated to the energy conservative permutation
of four ladder operators with n, l,m, s = {p}

ξpp ≡
∑︂

n,l,m,s={p}
χ

(n,l,m,s)
4 = χ

(p,p,p†,p†)
4 +χ(p,p†,p,p†)

4 +χ(p,p†,p†,p)
4 +χ(p†,p,p,p†)

4 +χ(p†,p,p†,p)
4 +χ(p†,p†,p,p)

4

(D.11)
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the self-phase modulation parameter of the signal ξss as the sum of all the coefficients
χ

(n,l,m,s)
4 associated to the energy-conservative permutation of four ladder operators

with n, l,m, s = {s}

ξss ≡
∑︂

n,l,m,s={s}
χ

(n,l,m,s)
4 = χ

(s,s,s†,s†)
4 +χ(s,s†,s,s†)

4 +χ(s,s†,s†,s)
4 +χ(s†,s,s,s†)

4 +χ(s†,s,s†,s)
4 +χ(s†,s†,s,s)

4

(D.12)
and the self-phase modulation parameter of the idler ξii as the sum of all the co-
efficients χ(n,l,m,s)

4 associated to the energy-conservative permutation of four ladder
operators with n, l,m, s = {i}

ξii ≡
∑︂

n,l,m,s={i}
χ

(n,l,m,s)
4 = χ

(i,i,i†,i†)
4 +χ(i,i†,i,i†)

4 +χ(i,i†,i†,i)
4 +χ(i†,i,i,i†)

4 +χ(i†,i,i†,i)
4 +χ(i†,i†,i,i)

4

(D.13)
Furthermore, we can define the cross-phase modulation parameter between pump
and signal ξps as the sum of all the coefficients χ(n,l,m,s)

4 associated to the energy-
conservative permutation of four ladder operators with n, l,m, s = {p, s}

ξps ≡
∑︂

n,l,m,s={p,s}
χ

(n,l,m,s)
4 = χ

(p,s,p†,s†)
4 + χ

(p,s,s†,p†)
4 + χ

(s,p,p†,s†)
4 + χ

(s,p,s†,p†)
4 +

+ χ
(p,p†,s,s†)
4 + χ

(s,s†,p,p†)
4 + χ

(p,s†,s,p†)
4 + χ

(s,p†,p,s†)
4 +

+ χ
(p,p†,s†,s)
4 + χ

(s,s†,p†,p)
4 + χ

(p,s†,p†,s)
4 + χ

(s,p†,s†,p)
4 +

+ χ
(p†,p,s,s†)
4 + χ

(s†,s,p,p†)
4 + χ

(p†,s,p,s†)
4 + χ

(s†,p,s,p†)
4 +

+ χ
(p†,p,s†,s)
4 + χ

(s†,s,p†,p)
4 + χ

(p†,s,s†,p)
4 + χ

(s†,p,p†,s)
4 +

+ χ
(p†,s†,p,s)
4 + χ

(p†,s†,s,p)
4 + χ

(s†,p†,p,s)
4 + χ

(s†,p†,s,p)
4 (D.14)

the cross-phase modulation parameter between pump and idler ξpi as the sum of all
the coefficients χ(n,l,m,s)

4 associated to the energy-conservative permutation of four
ladder operators with n, l,m, s = {p, i}

ξpi ≡
∑︂

n,l,m,s={p,i}
χ

(n,l,m,s)
4 = χ

(p,i,p†,i†)
4 + χ

(p,i,i†,p†)
4 + χ

(i,p,p†,i†)
4 + χ

(i,p,i†,p†)
4 +

+ χ
(p,p†,i,i†)
4 + χ

(i,i†,p,p†)
4 + χ

(p,i†,i,p†)
4 + χ

(i,p†,p,i†)
4 +

+ χ
(p,p†,i†,i)
4 + χ

(i,i†,p†,p)
4 + χ

(p,i†,p†,i)
4 + χ

(i,p†,i†,p)
4 +

+ χ
(p†,p,i,i†)
4 + χ

(i†,i,p,p†)
4 + χ

(p†,i,p,i†)
4 + χ

(i†,p,i,p†)
4 +

+ χ
(p†,p,i†,i)
4 + χ

(i†,i,p†,p)
4 + χ

(p†,i,i†,p)
4 + χ

(i†,p,p†,i)
4 +

+ χ
(p†,i†,p,i)
4 + χ

(p†,i†,i,p)
4 + χ

(i†,p†,p,i)
4 + χ

(i†,p†,i,p)
4 (D.15)

and the cross-phase modulation parameter between signal and idler ξsi as the sum
of all the coefficients χ(n,l,m,s)

4 associated to the energy-conservative permutation of
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four ladder operators with n, l,m, s = {s, i}

ξsi ≡
∑︂

n,l,m,s={p,i}
χ

(n,l,m,s)
4 = χ

(s,i,s†,i†)
4 + χ

(s,i,i†,s†)
4 + χ

(i,s,s†,i†)
4 + χ

(i,s,i†,s†)
4 +

+ χ
(s,s†,i,i†)
4 + χ

(i,i†,s,s†)
4 + χ

(s,i†,i,s†)
4 + χ

(i,s†,s,i†)
4 +

+ χ
(s,s†,i†,i)
4 + χ

(i,i†,s†,s)
4 + χ

(s,i†,s†,i)
4 + χ

(i,s†,i†,s)
4 +

+ χ
(s†,s,i,i†)
4 + χ

(i†,i,s,s†)
4 + χ

(s†,i,s,i†)
4 + χ

(i†,s,i,s†)
4 +

+ χ
(s†,s,i†,i)
4 + χ

(i†,i,s†,s)
4 + χ

(s†,i,i†,s)
4 + χ

(i†,s,s†,i)
4 +

+ χ
(s†,i†,s,i)
4 + χ

(s†,i†,i,s)
4 + χ

(i†,s†,s,i)
4 + χ

(i†,s†,i,s)
4 (D.16)

Eventually, exploiting the fact that it can be easily demonstrated that the co-
efficient χ(n,l,m,s)

4 associated to a particular ladder operator combination and the
one associated to the hermitian conjugate of this combination are identical (i.e.,
χ

(p,p,s†,i†)
4 = χ

(p†,p†,s,i)
4 , χ(s†,p,i†,p)

4 = χ
(s,p†,i,s†)
4 , etc . . . ) we can define the four-wave

mixing term ℏχ{p,p,s,i}
4 as one half of the sum of all the coefficients χ(n,l,m,s)

4 asso-
ciated to the energy-conservative permutation of four ladder operators with two
indexes equal to p, one index equal to s and the last one equal to i

χ
{p,p,s,i}
4 ≡ χ

(p,p,s†,i†)
4 + χ

(p,p,i†,s†)
4 + χ

(p,s†,p,i†)
4 + χ

(p,i†,p,s†)
4 + χ

(p,s†,i†,p)
4 + χ

(p,i†,s†,p)
4 +

+ χ
(s†,p,p,i†)
4 + χ

(i†,p,p,s†)
4 + χ

(s†,p,i†,p)
4 + χ

(i†,p,s†,p)
4 + χ

(s†,i†,p,p)
4 + χ

(i†,s†,p,p)
4 =

= χ
(p†,p†,s,i)
4 + χ

(p†,p†,i,s)
4 + χ

(p†,s,p†,i)
4 + χ

(p†,i,p†,s)
4 + χ

(p†,s,i,p†)
4 + χ

(p†,i,s,p†)
4

+ χ
(s,p†,p†,i)
4 + χ

(i,p†,p†,s)
4 + χ

(s,p†,i,p†)
4 + χ

(i,p†,s,p†)
4 + χ

(s,i,p†,p†)
4 + χ

(i,s,p†,p†)
4

(D.17)

The term proportional to no ladder operators is defined ξ0, while the terms pro-
portional to a couple of creation-annihilation operators respectively of the pump,
signal and idler tones are ξp, ξs, and ξi

ξ0 ≡ 2χ(p,p,p†,p†)
4 + χ

(p,p†,p,p†)
4 + 2χ(s,s,s†,s†)

4 + χ
(s,s†,s,s†)
4 + 2χ(i,i,i†,i†)

4 + χ
(i,i†,i,i†)
4 +

+ χ
(p,s,p†,s†)
4 + χ

(p,s,s†,p†)
4 + χ

(s,p,p†,s†)
4 + χ

(s,p,s†,p†)
4 + χ

(p,p†,s,s†)
4 + χ

(s,s†,p,p†)
4 +

+ χ
(p,i,p†,i†)
4 + χ

(p,i,i†,p†)
4 + χ

(i,p,p†,i†)
4 + χ

(i,p,i†,p†)
4 + χ

(p,p†,i,i†)
4 + χ

(i,i†,p,p†)
4 +

+ χ
(s,i,s†,i†)
4 + χ

(s,i,i†,s†)
4 + χ

(i,s,s†,i†)
4 + χ

(i,s,i†,p†)
4 + χ

(s,s†,i,i†)
4 + χ

(i,i†,s,s†)
4 (D.18)
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ξp ≡ 3χ(p,p,p†,p†)
4 + 2χ(p,p†,p,p†)

4 + χ
(p,p†,p†,p)
4 + χ

(p†,p,p,p†)
4 − χ

(p†,p†,p,p)
4 +

+ χ
(p,s,p†,s†)
4 + χ

(p,s,s†,p†)
4 + χ

(s,p,p†,s†)
4 + χ

(s,p,s†,p†)
4 + χ

(p,p†,s,s†)
4 + χ

(s,s†,p,p†)
4 +

+ χ
(s,p†,p,s†)
4 + χ

(s,s†,p†,p)
4 + χ

(s,p†,s†,p)
4 + χ

(p†,p,s,s†)
4 + χ

(p†,s,p,s†)
4 + χ

(p†,s,s†,p)
4 +

+ χ
(p,i,p†,i†)
4 + χ

(p,i,i†,p†)
4 + χ

(i,p,p†,i†)
4 + χ

(i,p,i†,p†)
4 + χ

(p,p†,i,i†)
4 + χ

(i,i†,p,p†)
4 +

+ χ
(i,p†,p,i†)
4 + χ

(i,i†,p†,p)
4 + χ

(i,p†,i†,p)
4 + χ

(p†,p,i,i†)
4 + χ

(p†,i,p,i†)
4 + χ

(p†,i,i†,p)
4 (D.19)

ξs ≡ 3χ(s,s,s†,s†)
4 + 2χ(s,s†,s,s†)

4 + χ
(s,s†,s†,s)
4 + χ

(s†,s,s,s†)
4 − χ

(s†,s†,s,s)
4 +

+ χ
(p,s,p†,s†)
4 + χ

(p,s,s†,p†)
4 + χ

(s,p,p†,s†)
4 + χ

(s,p,s†,p†)
4 + χ

(p,p†,s,s†)
4 + χ

(s,s†,p,p†)
4 +

+ χ
(p,s†,s,p†)
4 + χ

(p,p†,s†,s)
4 + χ

(p,s†,p†,s)
4 + χ

(s†,s,p,p†)
4 + χ

(s†,p,s,p†)
4 + χ

(s†,p,p†,s)
4 +

+ χ
(s,i,s†,i†)
4 + χ

(s,i,i†,s†)
4 + χ

(i,s,s†,i†)
4 + χ

(i,s,i†,s†)
4 + χ

(s,s†,i,i†)
4 + χ

(i,i†,s,s†)
4 +

+ χ
(i,s†,s,i†)
4 + χ

(i,i†,s†,s)
4 + χ

(i,s†,i†,s)
4 + χ

(s†,s,i,i†)
4 + χ

(s†,i,s,i†)
4 + χ

(s†,i,i†,s)
4 (D.20)

and

ξi ≡ 3χ(i,i,i†,i†)
4 + 2χ(i,i†,i,i†)

4 + χ
(i,i†,i†,i)
4 + χ

(i†,i,i,i†)
4 − χ

(i†,i†,i,i)
4 +

+ χ
(p,i,p†,i†)
4 + χ

(p,i,i†,p†)
4 + χ

(i,p,p†,i†)
4 + χ

(i,p,i†,p†)
4 + χ

(p,p†,i,i†)
4 + χ

(i,i†,p,p†)
4 +

+ χ
(p,i†,i,p†)
4 + χ

(p,p†,i†,i)
4 + χ

(p,i†,p†,i)
4 + χ

(i†,i,p,p†)
4 + χ

(i†,i,p,p†)
4 + χ

(i†,p,p†,i)
4 +

+ χ
(s,i,s†,i†)
4 + χ

(s,i,i†,s†)
4 + χ

(i,s,s†,i†)
4 + χ

(i,s,i†,s†)
4 + χ

(s,s†,i,i†)
4 + χ

(i,i†,s,s†)
4 +

+ χ
(s,i†,i,s†)
4 + χ

(s,s†,i†,i)
4 + χ

(s,i†,s†,i)
4 + χ

(i†,i,s,s†)
4 + χ

(i†,i,s,s†)
4 + χ

(i†,s,s†,i)
4 (D.21)

The total Hamiltonian can finally be rewritten as

Ĥ4 = ℏξ0 + ℏξpâ
†
pâp + ℏξsâ

†
sâs + ℏξiâ

†
i âi+

+ ℏξppâ
†
pâpâ

†
pâp + ℏξssâ

†
sâsâ

†
sâs + ℏξiiâ

†
i âiâ

†
i âi+

+ ℏξpsâ
†
pâpâ

†
sâs + ℏξpiâ

†
pâpâ

†
i âi + ℏξsiâ

†
sâsâ

†
i âi+

+ ℏχ{p,p,s,i}
4 (â†pâ†pâsâi + âpâpâ

†
sâ
†
i ) (D.22)
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Appendix E

Solution of the coupled mode
equations for âCRs (t) and âCRi (t)

To solve the system composed by

dâCR
s

dt
= −iχ3|Ap,0|

(︂
âCR

i

)︂†
e−iΨt (E.1)

and
dâCR

i

dt
= −iχ3|Ap,0|

(︂
âCR

s

)︂†
e−iΨt (E.2)

we can first time-derivate Eq. (E.1)

d2

dt2

[︂
âCR

s

]︂
= d

dt

[︄
dâCR

s

dt

]︄
= d

dt

[︃
−iχ3|Ap,0|

(︂
âCR

i

)︂†
e−iΨt

]︃
=

= −iχ3|Ap,0|

⎛⎜⎝d
(︂
âCR

i

)︂†
dt

e−iΨt +
(︂
âCR

i

)︂†
(−iΨ)e−iΨt

⎞⎟⎠ (E.3)

and substituting the expression for d
(︂
âCR

i

)︂†
/dt obtained from Eq. (E.2):

d2

dt2

[︂
âCR

s

]︂
= −iχ3|Ap,0|

(︃(︂
iχ3|Ap,0|âCR

s eiΨt
)︂

− iΨ
(︂
âCR

i

)︂†)︃
e−iΨt =

= χ2
3|Ap,0|2âCR

s − χ3|Ap,0|Ψ
(︂
âCR

i

)︂†
e−iΨt (E.4)

From Eq. (E.1) we also obtain

(︂
âCR

i

)︂†
= i

χ3|Ap,0|
dâCR

s

dt
eiΨt (E.5)

Substituting Eq. (E.5) in Eq. (E.4) we obtain
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Solution of the coupled mode equations for âCR
s (t) and âCR

i (t)

d2

dt2

[︂
âCR

s

]︂
= χ2

3|Ap,0|2âCR
s − χ3|Ap,0|Ψ

(︄
i

χ3|Ap,0|
dâCR

s

dt
eiΨt

)︄
e−iΨt = χ2

3|Ap,0|2âCR
s − iΨdâ

CR
s

dt
(E.6)

that can be recasted as

d2âCR
s

dt2
+ iΨdâ

CR
s

dt
− χ2

3|Ap,0|2âCR
s = 0 (E.7)

also known as Sturm-Liouville equation. Similarly, one can demonstrate that

d2âCR
i

dt2
+ iΨdâ

CR
i

dt
− χ2

3|Ap,0|2âCR
i = 0 (E.8)

The general solution of these two uncoupled equations are

âCR
s (t) = (αs cosh (gt) + βs sinh (gt)) e−i(Ψ/2)t (E.9)

âCR
i (t) = (αi cosh (gt) + βi sinh (gt)) e−i(Ψ/2)t (E.10)

where αs, βs, αi and βi are coefficients whose values are fixed by the boundary
condition. The complex factor g can be determined substituting these solutions,
and their time-derivatives, in the Sturm-Liouville equations. For instance, we have

d

dt

[︂
âCR

s

]︂
= d

dt

[︂
(αs cosh (gt) + βs sinh (gt)) e−i(Ψ/2)t

]︂
=

= (αs g sinh (gt) + βs g cosh (gt)) e−i(Ψ/2)t + (αs cosh (gt) + βs sinh (gt))
(︄

−iΨ2

)︄
e−i(Ψ/2)t

(E.11)
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s (t) and âCR

i (t)

and

d2

dt2

[︂
âCR

s

]︂
= d

dt

⎡⎣g (αs sinh (gt) + βs cosh (gt)) e−i(Ψ/2)t+

+ (αs cosh (gt) + βs sinh (gt))
(︄

−iΨ2

)︄
e−i(Ψ/2)t

⎤⎦ =

= g2 (αs cosh (gt) + βs sinh (gt)) e−i(Ψ/2)t+

+ g (αs sinh (gt) + βs cosh (gt))
(︄

−iΨ2

)︄
e−i(Ψ/2)t+

+ g (αs sinh (gt) + βs cosh (gt))
(︄

−iΨ2

)︄
e−i(Ψ/2)t+

+ (αs cosh (gt) + βs sinh (gt))
(︄

−Ψ2

4

)︄
e−i(Ψ/2)t =

=
(︄
g2 − Ψ

4

)︄
[αs cosh (gt) + βs sinh (gt)] e−i(Ψ/2)t−

− (igΨ) [αs sinh (gt) + βs cosh (gt)] e−i(Ψ/2)t (E.12)

Substituting Eq. (E.11) and Eq. (E.12) in Eq. (E.7) we obtain:(︄
g2 − Ψ2

4

)︄
[αs cosh (gt) + βs sinh (gt)] e−i(Ψ/2)t −

˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂

(igΨ) [αs sinh (gt) + βs cosh (gt)] e−i(Ψ/2)t+

+
˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂

(igΨ) [αs sinh (gt) + βs cosh (gt)] e−i(Ψ/2)t − iΨ
(︄
i
Ψ
2

)︄
[αs cosh (gt) + βs sinh (gt)] e−i(Ψ/2)t+

− χ2
3|Ap,0|2 [αs cosh (gt) + βs sinh (gt)] e−i(Ψ/2)t = 0 (E.13)

that can be rewritten as(︄
g2 + Ψ2

4 − χ2
3|Ap,0|2

)︄
[αs cosh (gt) + βs sinh (gt)] e−i(Ψ/2)t = 0 (E.14)

This means that it must be

g2 = −Ψ
4 + χ2

3|Ap,0|2 hence g =

⌜⃓⃓⎷χ2
3|Ap,0|2 −

(︄
Ψ
2

)︄2

(E.15)

The same solution can be found considering the second Sturm-Liouville equation
(i.e, the one for âCR

i ).

To determine the expressions for the coefficients αs, βs, αi and βi we can exploit,
as boundary conditions, that at t = 0 it must be

âCR
s (0) = âCR

s,0 and âCR
i (0) = âCR

i,0 (E.16)
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s (t) and âCR

i (t)

Imposing this condition in Eq. (E.9) and Eq. (E.10) we obtain

αs = âCR
s,0 and αi = âCR

i,0 (E.17)

Thus, we obtain

âCR
s (t) =

(︂
âCR

s,0 cosh (gt) + βs sinh (gt)
)︂
e−i(Ψ/2)t (E.18)

and
âCR

i (t) =
(︂
âCR

i,0 cosh (gt) + βs sinh (gt)
)︂
e−i(Ψ/2)t (E.19)

Substituting Eq. (E.18) and Eq. (E.19) in Eq. (E.1) we obtain:

d

dt

[︂(︂
âCR

s,0 cosh (gt) + βs sinh (gt)
)︂
ei(Ψ/2)t

]︂
=

= g
(︂
âCR

s,0 sinh (gt) + βs cosh (gt)
)︂
e−i(Ψ/2)t +

(︂
âCR

s,0 cosh (gt) + βs sinh (gt)
)︂(︄

−iΨ2

)︄
e−i(Ψ/2)t =

= −iχ3|Ap,0|
[︃(︃(︂

âCR
i,0 cosh (gt) + βi sinh (gt)

)︂†)︃
ei(Ψ/2)t

]︃
e−iΨt (E.20)

from which

g
(︂
âCR

s,0 sinh (gt) + βs cosh (gt)
)︂

− i
Ψ
2
(︂
âCR

s,0 cosh (gt) + βs sinh (gt)
)︂

(E.21)

= −iχ3|Ap,0|
(︂
âCR

i,0 cosh (gt) + βi sinh (gt)
)︂†

(E.22)

This relation must be fulfilled in each instant t, at t = 0 we have

gβs−i
Ψ
2 â

CR
s,0 = −iχ3|Ap,0|

(︂
âCR

i,0

)︂†
hence βs = i

g

(︄
Ψ
2 â

CR
s,0 − χ3|Ap,0|

(︂
âCR

i,0

)︂†)︄
(E.23)

Similarly, we obtain

βi = i

g

(︄
Ψ
2 â

CR
i,0 − χ3|Ap,0|

(︂
âCR

s,0

)︂†)︄
(E.24)

Thus, the solutions of Eq. (E.1) and Eq. (E.2) are:

âCR
s(i)(t) =

[︄
âCR

s(i),0 cosh (gt) + i

g

(︄
Ψ
2 â

CR
s(i),0 − χ3|Ap,0|

(︂
âCR

i(s),0

)︂†)︄
sinh (gt)

]︄
e−i(Ψ/2)t =

=
[︄
âCR

s(i),0

(︄
cosh (gt) + iΨ

2g sinh (gt)
)︄

− iχ3|Ap,0|
g

â†i(s),0 sinh (gt)
]︄

(E.25)
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Appendix F

Identities for the squeezing
spectrum calculation

Proof of the identity (3.109).
We first express the integrand of Eq. (3.109) in terms of the definition (3.108)

⟨∆Ŷ θ(ω)∆Ŷ θ(ω′)⟩ = ⟨(Ŷ θ(ω) − ⟨Ŷ
θ(ω)⟩)(Ŷ θ(ω′) − ⟨Ŷ

θ(ω′)⟩)⟩

= ⟨Ŷ
θ(ω)Ŷ θ(ω′) − Ŷ

θ(ω)⟨Ŷ θ(ω′)⟩ − ⟨Ŷ
θ(ω)⟩Ŷ θ(ω′) + ⟨Ŷ

θ(ω)⟩⟨Ŷ θ(ω′)⟩⟩

= ⟨Ŷ
θ(ω)Ŷ θ(ω′)⟩ − ⟨Ŷ

θ(ω)⟩⟨Ŷ θ(ω′)⟩ − ⟨Ŷ
θ(ω)⟩⟨Ŷ θ(ω′)⟩ + ⟨Ŷ

θ(ω)⟩⟨Ŷ θ(ω′)⟩

= ⟨Ŷ
θ(ω)Ŷ θ(ω′)⟩ − ⟨Ŷ

θ(ω)⟩⟨Ŷ θ(ω′)⟩ (F.1)

Now using the definition of Ŷ θ(ω) given in (3.108) we can write that

Ŷ
θ(ω)Ŷ θ(ω′) = i(ei θ

2 â†ω − e−i θ
2 âω) · i(ei θ

2 â†ω′ − e−i θ
2 âω′)

= −(eiθâ†ωâ
†
ω′ − â†ωâω′ − âωâ

†
ω′ + e−iθâωâω′) (F.2)

and then calculating the expectation value

⟨Ŷ
θ(ω)Ŷ θ(ω′)⟩ = − (eiθ⟨â†ωâ

†
ω′⟩ − ⟨â†ωâω′⟩ − ⟨âωâ

†
ω′⟩ + e−iθ⟨âωâω′⟩) (F.3)

⟨Ŷ
θ(ω)⟩⟨Ŷ θ(ω′)⟩ = − (eiθ⟨â†ω⟩⟨â†ω′⟩ − ⟨â†ω⟩⟨âω′⟩ − ⟨âω⟩⟨â†ω′⟩ + e−iθ⟨âω⟩⟨âω′⟩) (F.4)
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Identities for the squeezing spectrum calculation

We can non substitute (F.1) into (3.109), exploiting also (F.3) and (F.4)

S(ω) =
∫︂ ∞

0
dω′(−eiθ⟨â†ωâ

†
ω′⟩ + ⟨â†ωâω′⟩ + ⟨âωâ

†
ω′⟩ − e−iθ⟨âωâω′⟩+

+ eiθ⟨â†ω⟩⟨â†ω′⟩ − ⟨â†ω⟩⟨âω′⟩ − ⟨âω⟩⟨â†ω′⟩ + e−iθ⟨âω⟩⟨âω′⟩) =

= 2N(ω) +
∫︂ ∞

0
dω′(−eiθ⟨â†ωâ

†
ω′⟩ − e−iθ⟨âωâω′⟩ + eiθ⟨â†ω⟩⟨â†ω′⟩ + e−iθ⟨âω⟩⟨âω′⟩ + δ(ω − ω′)) =

= 2N(ω) + 1 +
∫︂ ∞

0
dω′(−eiθ⟨â†ωâ

†
ω′⟩ − e−iθ⟨âωâω′⟩ + eiθ⟨â†ω⟩⟨â†ω′⟩ + e−iθ⟨âω⟩⟨âω′⟩) =

= 2N(ω) + 1 −
∫︂ ∞

0
dω′eiθ(⟨â†ωâ

†
ω′⟩ − ⟨â†ω⟩⟨â†ω′⟩) −

∫︂ ∞
0

dω′e−iθ(⟨âωâω′⟩ − ⟨âω⟩⟨âω′⟩) =

= 2N(ω) + 1 −M∗(ω)e−iθ −M(ω)eiθ =
= 2N(ω) + 1 − |M(ω)|e−iθeiθ − |M(ω)|eiθe−iθ =
= 2N(ω) + 1 − 2|M(ω)| (F.5)

Where we have used the definition of the squeezing angle M(ω) = |M(ω)|eiθ and
its complex conjugate.

Proof of the identity (3.110).
It is first good to compute N(ω) for an input vacuum state.

N(ω) =
∫︂ ∞

0
dω′(⟨vac| â†ωâω′ |vac⟩ − ⟨vac| â†ω |vac⟩ ⟨vac| âω′ |vac⟩)

=
∫︂ ∞

0
dω′ ⟨vac| â†ωâω′ |vac⟩

We can now notice that the integrand is just the photon number operator, already
used to calculate the gain G in (3.95). Hence, for example, in the 3WM case
(similarly for 4WM)

N(ω) =
∫︂ ∞

0
dω′ ⟨vac| â†ωâω′ |vac⟩

=
∫︂ ∞

0
dω′ ⟨vac|

(︃
u∗(ω, t)â†ω,0 − iv∗(ω, t)âωp−ω,0

)︃(︃
u(ω′, t)âω′,0 + iv(ω′, t)â†ωp−ω′,0

)︃
|vac⟩

=
∫︂ ∞

0
dω′ ⟨vac|

(︃
u∗(ω, t)u(ω′, t)â†ω,0âω′,0 + v∗(ω, t)v(ω′, t)âωp−ω,0

(︃
âωp−ω′,0

)︃†
+

+ iu∗(ω, t)v(ω′, t)â†ω,0

(︃
âωp−ω′,0

)︃†
− iv∗(ω, t)u(ω′, t)âωp−ω,0âω′,0

)︃
|vac⟩

= v∗(ω, t)
∫︂ ∞

0
dω′v(ω′, t) ⟨vac|

(︃
â†ωp−ω,0âωp−ω′,0 + δ(ω′ − ω)

)︃
|vac⟩

= |v(ω, t)|2

=
⃓⃓⃓⃓
⃓Υg sinh g(ω)t

⃓⃓⃓⃓
⃓
2

(F.6)
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Appendix G

Calculation of resonator plus Cg
equivalent impedance

Calculating the equivalent impedance of the cluster formed by the resonator
plus Cg requires the knowledge of the impedances of all the circuit elements that
compose it. We recall that the impedance of a simple capacitance and inductance
are

ZC = 1
iωC

ZL = iωL

The impedance of the cluster resonator + Cg is found as

1
Zres+Cg

= 1
Zres

+ 1
ZCg

= 1
ZCc + ZLr//ZCr

+ 1
ZCg

(G.1)

where Cc is the coupling capacitance, Cr is the resonator capacitance, Lr is the
resonator inductance and the symbol Zx//Zy stands for the parallel impedance of
the elements x and y. Thus, we find

1
ZLr//ZCr

= 1
iωLr

+ iωCL

= 1 − ω2LrCr

iωLr

→ ZLr//ZCr = iωLr

1 − ω2LrCr
(G.2)
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and

Zres = 1
iωCc

+ iωLr

1 − ω2LrCr

= 1 − ω2LrCc − ω2LrCc

iωCc(1 − ω2LrCr)
(G.3)

The impedance of the cluster is then found as

1
Zres+Cg

= iωCc(1 − ω2LrCr)
1 − ω2LrCc − ω2LrCc

+ iωCg

→ Zres+Cg = 1 − (Cc + Cr)Lrω
2

iω
(︃
Cg(1 − (Cc + Cr)Lrω2) + Cc(1 − CrLrω2

)︃ (G.4)
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