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Abstract

In recent years, Unmanned Aerial Vehicle technology has been experimented as
antenna measurement solution for very large antennas that cannot be placed in an
anechoic chamber or have to be characterized in-situ. The UAV already proved to
be a powerful tool for Far-Field (FF) measurements, thanks to its portability, low
cost, and ability to perform arbitrary paths. In the first part of this thesis, UAV-
based FF measurements of a Square Kilometre Array prototype station in VHF
band are presented. One full SKA-Low station consists of 256 digital-beam-formed
dual-polarized elements randomly distributed on a 40-m size area. This activity
demonstrated the usage of the UAV to verify the large electromagnetic models of the
SKA in harsh environments such as the Australian desert.
However, Near-Field (NF) strategies become necessary when the Antenna Under
Test (AUT) is so large that the Fraunhofer distance is no longer compliant with
flight altitude regulations (hundreds of meters). In these cases, a Near Field to Far
Field (NF-FF) transformation must be used to determine the FF quantities of interest
from NF data. Such technique generally requires the knowledge of both magnitude
and phase of the sampled NF signal. However, in the UAV-based measurement
setup, where source and receiver are generally not connected, the measured phase is
continuously drifting during the flight. In current literature, different solutions have
been exploited in order to retrieve the correct phase information, e.g., a fiber optic
link connecting the UAV to the ground or phaseless techniques. In the second part
of this thesis, a known antenna (called reference antenna) placed in the proximity
of the AUT is instead used to reconstruct the phase of the measured NF signal.
UAV-based NF measurements on a SKA-Low prototype at 175 MHz are presented to
demonstrate the feasibility of the approach. The UAV equipped with a RF source is
exploited as a large (40 m x 40 m) horizontal planar NF scanner. An inverse source
NF-FF transformation is applied to such NF acquisitions. In this way, FF Embedded
Element Patterns, array calibration coefficients and pattern are obtained. NF-FF
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transformed results are validated with simulations and FF measurements.
The promising results suggest the usage of the presented technique in other applica-
tions such as radars, base stations and satellite antenna measurements.
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Chapter 1

Introduction

In recent years, the Unmanned Aerial Vehicle (UAV) technology has become rel-
evant in a variety of electromagnetic topics and applications such as multispectral
imaging, electromagnetic field measurements and communications. For example,
high-resolution images have been acquired using a Synthetic Aperture Radar (SAR)
on a UAV [2]. Furthermore, a UAV-based measurement system has been developed
for Radio Frequency (RF) exposure assessment [3]. As far as remote sensing is
concerned, a thermal imager mounted on a UAV has been exploited in order to
obtain land surface temperature [4]. Moreover, UAV-mounted base stations have
been proposed to improve network performances during some occasional especially
crowded events [5]. A UAV equipped with a camera has been also used in antenna
diagnostics to acquire images of base-station antennas in order to spot possible
defects [6].
The UAV has proved to be a powerful tool also for the antenna measurement commu-
nity [7]. In particular, a UAV-based procedure has been recently added to the IEEE
Recommended Practice for Antenna Measurements [8] to characterize an Antenna
Under Test (AUT) in terms of its radiation pattern. For example, a UAV equipped
with a power sensor can be used to acquire the radiation patten of a transmitting AUT.
Alternatively, the UAV can mount a transmitter if the AUT operates in receiving
mode. In both cases, the UAV allows to easily reach the Far-Field (FF) distance of the
AUT with virtually no need of infrastructures. However, when the AUT is very large,
the FF distance (greater than hundreds of meters) is no longer compliant with flight
altitude regulations. In this case, Near-Field (NF) approaches become necessary and
a Near Field to Far Field (NF-FF) transformation can be used to determine the FF



2 Introduction

quantities of interest from NF data.
The following Section summarizes the state of the art for UAV-based antenna mea-
surements. Finally, aim and problems addressed in this thesis are described in Section
1.2.

1.1 UAV-based Antenna Measurements: state of the
art

UAV-based FF measurements have been extensively addressed in recent literature.
For example, radiation patterns of log-periodic antennas have been measured through
a flying multicopter at 408 MHz [9], 433 MHz [10] and 750 MHz [11]. Furthermore,
a biconical antenna have been characterized in its principal planes through a flying
hexacopter at 150 MHz [9].
Radio telescopes represent an ideal application of UAVs, as they are usually placed in
open areas and can be characterized with simple flights with few safety-related issues.
This is particularly true for low-frequency radio telescopes based on phased-array
scheme, where UAVs have been employed also for the array calibration. For exam-
ple, experimental tests of the Low-Band Antennas (LBA) of the LOw Frequency
ARray (LOFAR) have been performed exploiting astronomical calibration sources
and RF sources mounted on cranes [12] or drones [13]. In-situ measurements of
radio telescope prototypes have also been performed in the 50 - 450 MHz frequency
band [14]1, [15], [16], [17]. Furthermore, dual-polarized dipoles of an hydrogen
observatory instrument have been calibrated at 137 MHz using a multi-rotor UAV
[18]. A 6-m dish antenna radio telescope for solar spectrography have been also
characterized at 328 MHz using an octocopter [19]. Moreover, an antenna array
prototype (6 m x 6 m) made of printed dipoles for mid-frequency radio astronomy
has been characterized at 350 MHz [20]. A UAV-mounted test source has been
also developed for a Q-band polarimeter, i.e., the Large-Scale Polarization Explorer
(LSPE) [21].
As far as radar antennas are concerned, radiation pattern of an HF oceanographic
radar has been measured through a quad-rotor UAV [22]. Measurements at HF and
X band have been also performed [23], [24]. Furthermore, a radar prototype for the
analysis of the icy crust of Jupiter’s moon Europa has been characterized at 60 MHz

1Chapter 3 of this thesis contains part of the work published in [14].
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[25].
As far as mobile networks and broadcast systems are concerned, radiation patterns
of base station antennas have been validated through an antenna (e.g., biconical or
commercial mobile phone antenna) and a portable receiver mounted on a UAV [26],
[27], [28].
For the sake of readability, Table 1.1 (first part) summarizes the previously cited
works on UAV-based FF measurements. These references are arranged in chrono-
logical order. The year of publication, the working frequency, if the UAV-mounted
antenna operates in transmitting (TX) or receiving (RX) mode, the UAV-mounted
antenna and the AUT are reported on columns. It can be seen from Table 1.1 that in
VHF and UHF bands the UAV-mounted antenna is usually a low-directive element
such as a monopole, biconical or dipole antenna. This choice of such low-directive
probes is usually made to reduce possible errors from wrong sampling of the UAV
position and orientation, e.g., due to abrupt movements of the UAV flying in adverse
wind conditions. In addition to Table 1.1, in other works in literature [35], [36] the
UAV does not rigorously satisfy the FF conditions but flies close to the FF region of
the AUT, obtaining good results.
NF strategies [31], [33] become necessary when the AUT is so large that the Fraun-
hofer distance 2D2/λ (greater than hundreds of meters; where D is the AUT size and
λ is the wavelength) is no longer compliant with flight altitude regulations. In these
cases, a NF-FF transformation can be used to determine the FF quantities of interest
from NF data. Such technique generally requires the knowledge of both magnitude
and phase of the sampled NF signal. However, in a UAV-based measurement setup,
where source and receiver are generally not connected, the measured phase is contin-
uously drifting during the flight. One solution to overcome this problem is to use an
additional (known) antenna placed in the proximity of the AUT [34]2.
Another solution is to connect (tether) the UAV to the ground equipment with a
RF-over-fiber link [32], [37] to provide a valid phase reference. This is a reliable
method, suitable with certain flight strategies. However, the UAV flight is constrained
by the presence of the cable that makes the flight more difficult to perform and to
setup. This is especially cumbersome for horizontal scans where the UAV flies above
the AUT.
Phaseless techniques have also been applied to UAV-based measurements [29], [30].

2The author of this thesis is the first author of [34]. Chapter 4 of this thesis contains part of the
work published in [34].
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Table 1.1 Summary of UAV-based antenna measurements. FF (first part) and NF (second
part) measurements are separated by the horizontal line. On columns: year of publication,
the working frequency, if the UAV-mounted antenna operates in transmitting (TX) or receiv-
ing (RX) mode, the UAV-mounted antenna and the AUT. A label "ND" is reported when
information is not available.

Year Freq. TX-RX UAV-antenna AUT Ref.
2014 150-408MHz TX dipole wire antennas [9]
2014 433MHz TX monopole log-periodic [10]
2015 30-80MHz TX biconical LBA-LOFAR [12]
2015 328MHz TX monopole dish [19]
2015 408MHz TX dipole MAD [16]
2016 250-450MHz TX dipole MAD-SAD [17]
2016 598MHz RX ND ND [26]
2016 3-50MHz TX dipole ND [22]
2017 9GHz TX monopole surface-wave-ant. [24]
2017 137MHz TX biconical dipole [18]
2018 750MHz TX dipole log-periodic [11]
2018 57MHz TX dipole LBA-LOFAR [13]
2018 350MHz TX dipole array [20]
2018 2GHz RX phone ND [27]
2018 473MHz RX directional tower [28]
2018 60MHz RX biconical dipole [25]
2019 13MHz TX monopole ND [23]
2020 44GHz TX horn horn [21]
2020 50-320MHz TX dipole AAVS1.5-EDA2 [14]-[15]
2017-9 4.65GHz RX monopole horn array [29]- [30]
2018 70MHz TX dipole LBA-LOFAR [31]
2019 2.7GHz RX patch horn [32]
2022 120-180MHz TX dipole HBA-LOFAR [33]
2022 175MHz TX dipole pre-AAVS1 [34]
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In this case, phase information is not acquired (i.e., magnitude-only measurements
are performed) and the measurement setup is highly simplified. However, these
methods minimize a non linear and non convex cost functional. For this reason, these
techniques could lead to an ill-posed problem that suffers of local minima.
As far as UAV-based NF measurements are concerned, NF measurements have been
compared with NF simulations [31] (without the application of a NF-FF transforma-
tion). Furthermore, the NF focusing method has been used to validate the radiation
pattern of the High-Band Antennas of LOFAR within a limited angular range around
the beam axis [33]. On the contrary, in [29], [30], [32], [34]3 a NF-FF transformation
has been applied to the measured NF data.
UAV-based NF measurements are reported in the second part of Table 1.1 (after the
horizontal black line). It is evident that so far NF strategies have not been exploited
as much as the FF ones.
To summarize, UAV-based antenna measurements are particularly convenient when
an in-situ validation of the AUT is required, i.e., the AUT must be characterized
in its operating environment, considering all possible reflections of the ground or
near scatterers. Moreover, the UAV measurement procedure is advantageous when
it is not convenient to mount the AUT inside an anechoic chamber either due to its
excessive dimension (e.g., the case of an antenna array in VHF band) or the low
operating frequency (at which the wall absorbers exhibit poor performance). As a
last remark, the UAV measurement setup is usually cheaper with respect to the one
found in anechoic chambers.
However, the UAV procedure introduces new challenges and difficulties to overcome.
For example, rigorously speaking, the UAV structure is not of the time-harmonic
type. This is because the UAV rotor blades are always rotating, i.e., the source
geometry is continuously changing during the flight. The impact of UAV rotor
blades and propellers on electromagnetic measurements has been recently studied
[38], [39], [40]. Furthermore, the non-regularity of the UAV path and orientation
makes the post-processing of measurements (e.g., AUT gain computation, NF-FF
transformation) more complex.
In conclusion, UAV-based FF measurements have been extensively studied in recent
years. On the other hand, UAV-based NF measurements are gaining a lot of atten-
tion thanks to their practicability (a flight at small distance from the AUT can be

3Chapter 4 of this thesis contains part of the work published in [34].
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performed). However, this measurement setup is more challenging and still presents
open problems.

1.2 Doctoral Research Activity

This thesis represents the natural evolution of [41], [9], [14], [13], [16], [17], [31] and
is focused on the characterization of antennas in terms of their radiation pattern from
FF or NF measurements performed using a UAV. In the previous works, UAV-based
measurements on reference antennas, small array demonstrators, and partially de-
ployed stations have been mostly presented. The FF distance was therefore satisfied.
NF measurements have also been performed [31] and compared with NF simulations
(without the application of a NF-FF transformation).
In this thesis, array of active antennas in VHF band with digital beamforming are
considered as AUT. More precisely, the AUT is represented either by an array ele-
ment (embedded element) or a subset of antennas (cluster) or a full station of the
Square Kilometre Array (SKA). The SKA is a radio-telescope under construction in
Australia and South Africa and it will be the biggest radio-telescope in the world.
SKA-low covers the low frequency part of the SKA, i.e., from 50 to 350 MHz. One
full SKA-low station consists of 256 digital-beamformed dual-polarized elements
pseudo-randomly distributed on a 40-m size area. Each element is equipped with a
Low Noise Amplifier (LNA) on top. Moreover, the two polarizations of each element
are connected to the analog inputs of a Tile Processing Module (TPM) [42] which
samples and digitizes the received signals in magnitude and phase (e.g., complex
voltages). Due to the presence of such acquisition system, the UAV is therefore
equipped with a continuous-wave synthesizer and a dipole antenna. While the UAV
flies over the array according to a pre-defined path, the signal received at each array
element is acquired through the TPM. During the UAV flight, the position of the UAV
is usually recorded by the drone through a differential Global Navigation Satellite
System (GNSS) which guarantees a few centimetres of accuracy (such position
accuracy can be considered acceptable at the considered VHF band). Furthermore,
the UAV orientation is also acquired during the flight in order to reach the required
measurement accuracy.
Because of the huge size of the considered AUT, the Fraunhofer distance can be
greater than hundreds of meters. This is not compliant with flight altitude regulations,
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i.e., the FF region is not accessible using a UAV. For this reason, NF strategies are
much more convenient. As a drawback, a NF-FF transformation must be applied to
the measured NF data.
In this thesis, FF and NF measurements of SKA prototypes using a UAV are pre-
sented and analyzed. In particular, a NF-FF transformation is applied to UAV-based
NF measurements. In this way, Embedded Element Patterns (EEPs)4 and array
pattern of the AUT are computed.
The measurement setup considered in this thesis should be distinguished from the
Over-The-Air (OTA) testing [43] of an antenna. In OTA testing, the AUT port is
usually not accessible and cannot be physically connected to the test equipment. Fur-
thermore, the considered signals are usually not time-harmonic (i.e., not sinusoidal).
In the UAV-based measurement setup considered in this thesis, source and receiver
are not connected, e.g., the UAV is not tethered to the ground through cables. Hence,
the measured phase is continuously drifting during the flight. In this thesis, the
correct phase information is retrieved through a known antenna (herein after referred
to as the reference antenna) that is placed in the proximity of the AUT. Signals
from both the AUT and reference antenna are sampled (magnitude and phase) by
a common receiver that is not phase-locked to the continuous-wave source placed
on-board the UAV. A phase reconstruction method is hence proposed. It uses the
measured phase difference between AUT and the reference antenna signals. This
method can be seen as a generalization of the standard procedure [44] found in
FF test ranges which uses a reference antenna to retrieve the phase information.
However, in the standard procedure, source and reference antenna are fixed while
the AUT rotates. In the present UAV-based measurement setup, the source is instead
moving with respect to both the AUT and the reference antenna. The proposed
technique allows to maintain the advantages of a non-tethered flight. Furthermore,
the NF-FF transformation problem remains linear through the availability of the
reconstructed phase information.
This thesis is organized as follows.
In Chapter 2, the phase retrieval method using the reference antenna is presented.
In Chapter 3, UAV-based FF measurements of SKA prototypes located in Australia
are considered. An element of the array under test (whose FF pattern is known from
simulations) is chosen as reference antenna for the phase retrieval method (described

4The EEP of an array element is the radiation pattern of an array with one element excited and all
the others terminated on a specified load.
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in Chapter 2). EEPs (magnitude and phase) are extracted and shown. Moreover, a
synoptic visualization of the agreement between measurements and simulations is
reported. Active element gain measurements and a position error estimation method
of array clusters are shown and discussed.
In Chapter 4, UAV-based FF and NF measurements of an SKA prototype located
in the United Kingdom are considered. The phase retrieval method through the
reference antenna proposed in Chapter 2 is applied to FF and NF measurements. The
considered reference antenna is a known external antenna which is placed approxi-
mately 15 m away from the array under test. Using the phase information retrieved
through the reference antenna, an inverse source NF-FF transformation is applied
to measured data. NF-FF transformed results are validated with measurements and
simulations.
In Chapter 5, some conclusions are drawn.
In Appendix A, a proof of the uniqueness of the inverse source problem is reported5.
In Appendix B, theoretical remarks on the inverse source NF-FF transformation and
reciprocity 6 are drawn.

5Understand the well-posedness of such problem is fundamental for the correct application of the
inverse source NF-FF transformation in Chapter 4

6It should be recalled that in the considered measurement setup the UAV-mounted antenna operates
in transmitting mode and the AUT in receving mode.



Chapter 2

Phase Reconstruction using a
Reference Antenna

In the simplest types of UAV-based measurement setups, where source and receiver
are not connected, the measured phase is continuously drifting during the flight.
Several phase retrieval algorithms [45], [46] (e.g., alternating minimization methods,
least squares formulations and lifting methods) have been proposed in literature.
These methods rely on magnitude-only measurements and minimize a non linear
and non convex cost functional. For this reason, these techniques could lead to an
ill-posed problem that suffers of local minima. A linear reconstruction method based
on multi-probe measurements to mitigate all these issues has been also recently
proposed [47]. Another possible solution to avoid phase measurements is the usage
of auxiliary hardware, e.g., other antennas, cables, and RF components. For this
purpose, an additional antenna and the cross-correlation between its signal and
the AUT signal can be exploited [48]. Other solutions rely on interferometric or
holographic techniques. In interferometric techniques [49], [50] magnitude-only
measurements of combinations of signals coming from two probes are exploited
in order to compute the required phase difference between signals. In holographic
techniques [51], [52], the signal under test is superimposed with the source signal,
forming the hologram. The signal under test is then reconstructed through magnitude-
only measurements of the summed signal.
In this thesis, the correct phase information is retrieved through a known antenna
(herein after referred to as the reference antenna) that is placed in the proximity of the
AUT. The distance between the reference antenna and the AUT must be sufficiently
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large in order not to perturb their field distribution. Signals from both the AUT and
reference antenna are sampled (magnitude and phase) by a common receiver that is
not phase-locked to the continuous-wave source placed on-board the UAV.
In the next part, an introductory analysis on AUT and reference antenna signals and
their phase difference is considered. The center frequency of the receiver is denoted
with f0 whereas the frequency of the continuous-wave transmitter on the UAV is
denoted by f0 +∆ f , where ∆ f represents the frequency offset between transmitter
and receiver. If the UAV has a stationary position (i.e., its position is fixed), voltages
vRX and vre f received at the AUT and reference antenna in time-domain are of
time-harmonic type, i.e.,vRX(t) = ARX cos(ω0 t +∆ω t +φRX)

vre f (t) = Are f cos(ω0 t +∆ω t +φre f )
(2.1)

where w0 = 2π f0 and ∆ω = 2π∆ f represent the angular frequencies whereas ARX ,
Are f and φRX , φre f represent the magnitudes and phases of the AUT and reference
antenna signals. The receiver output usually consists of magnitude and phase of
each signal, i.e., ARX and ∆ω t + φRX for the AUT and Are f and ∆ω t + φre f for
the reference antenna. Of course, such quantities are sampled on a set of discrete
and finite time instants; here, a continuous time index t is instead considered for
simplicity. It should be noted that the measured phase continuously drifts in time
due to the presence of the term ∆ω t. Considering the difference between the AUT
and reference antenna measured phases, one obtains the actual phase difference of
the signals, i.e.,

∆ω t +φRX − (∆ω t +φre f ) = φRX −φre f (2.2)

In this way, the phase drifting term ∆ω t is cancelled.
During the flight, i.e., with the UAV which is moving in space, the received signals
in (2.1) become amplitude and frequency modulated, i.e.,vRX(t) = ARX(t)cos(ω0 t +∆ω(t) t +φRX(t))

vre f (t) = Are f (t)cos(ω0 t +∆ω(t) t +φre f (t))
(2.3)

Nevertheless, the measured phase difference in (2.2) is still independent on the
frequency shift ∆ω . Such frequency shift ∆ω generally depends on the time, i.e.,
∆ω = ∆ω(t), because of possible instabilities at the transmitter (e.g., due to vibra-
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tions or temperature variations). However, if the transmitter is sufficiently stable, the
term ∆ω can be assumed to be almost constant during the flight.
In the following Section, a phase reconstruction method that uses the measured phase
difference between AUT and the reference antenna signals is proposed. In Section
2.1, the UAV and AUT are assumed to be in FF each other whereas in Section 2.2
the NF case (i.e., the UAV can fly in the NF of the AUT) is analyzed.
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2.1 Phase Reconstruction for Far-Field Measurements

Part of the theory presented in this Section has been already published in [33].
UAV-based FF measurements have been extensively studied in recent years (see
Chapter 1). In particular, a lot of attention has been devoted to gain measurements.
In the latter configuration, magnitude-only measurements are usually sufficient (the
phase of the signal is usually not sampled). However, as far as phased arrays are
concerned, the array pattern is computed by summation of the EEPs of all the array
elements. It is therefore necessary to acquire the complex signals from each embed-
ded element in order to correctly compute all the EEPs in their magnitude and phase.
In this Section, the phase retrieval method based on the phase difference between
AUT and reference antenna signals is considered. First, the single antenna case is
analyzed (see Section 2.1.1). Then, the general case of an antenna array is considered
(see Section 2.1.2). Equations for the computation of the phases of the EEPs are
shown and analyzed.
In this Section, the AUT and the UAV are assumed to be in FF each other. The
same condition is assumed between UAV and reference antenna. Furthermore, a
free-space approximation is made (reflections of the ground are not considered).

2.1.1 Single Element

In this Section, the case of a single element (not an array of elements) is analyzed. A
schematic of the measurement setup is shown in Fig. 2.1. The received open-circuit
voltage V oc

RX at the AUT is given by

V oc
RX(r) = hAUT (r̂) ·Es(r) (2.4)

where hAUT is the effective height of the AUT and Es is the incident field to the
AUT from the UAV source, with position r = rr̂. The dependency of Es on the UAV
orientation is understood and suppressed. Because of the FF assumption, Es can be
represented as

Es(r) =
e− jkr

4πr
es(r̂) (2.5)
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AUT

s

re f

rre fr

Fig. 2.1 Measurement schematics: the UAV (s), AUT and reference antenna. Position
vectors r and rre f are considered with respect to a reference system centered in the AUT and
reference antenna, respectively. Picture from [1].

where es is the FF pattern of the UAV-mounted source and k is the free-space
wavenumber. For reciprocity, the effective height hs of the source and its FF pattern
es are related by

es =− j
Z0

2λ
4πIshs (2.6)

where Z0 ≃ 377Ω is the free-space impedance and Is is the current source on the
UAV. Voltage Vs and current Is of the UAV-mounted source are related through the
impedance Zs by Vs = ZsIs (or equivalently through the admittance Ys = 1/Zs, i.e.,
Is = YsVs). Substituting (2.5) and (2.6) in (2.4), it can be proved that

V oc
RX(r) =− j

Z0

2λ
4πYsVs|hAUT (r̂)||hs(−r̂)|e

− jkr

4πr
p̂AUT (r̂) · p̂s(−r̂) (2.7)

where the polarization unit vectors are defined by p̂AUT = hAUT/|hAUT | and p̂s =

hs/|hs|. A similar equation can be written for the received open-circuit voltage V oc
re f

at the reference antenna

V oc
re f (r) =− j

Z0

2λ
4πYsVs|hre f (r̂re f )||hs(−r̂re f )|

e− jkrre f

4πrre f
p̂re f (r̂re f ) · p̂s(−r̂re f ) (2.8)

where hre f is the effective height of the reference antenna, the polarization unit vector
is p̂re f = hre f /|hre f | and rre f = rre f r̂re f is the position of the UAV with respect to
the reference antenna (see Fig. 2.1).
Dividing (2.7) by (2.8), once obtains

V oc
RX(r)

V oc
re f (rre f )

= e− jk(r−rre f )
rre f

r
|hAUT (r̂)||hs(−r̂)|
|hre f (r̂re f )||hs(r̂re f )|

p̂AUT (r̂) · p̂s(−r̂)
p̂re f (r̂re f ) · p̂s(−r̂re f )

(2.9)
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Considering the phase of (2.9), one finally obtains the phase difference

∠V oc
RX −∠V oc

re f = ∠(p̂AUT · p̂s)−∠(p̂re f · p̂s)− k(r− rre f ) (2.10)

where ∠ returns the phase of a complex number and the r dependence is understood.
Of course, all these phase equalities are valid up to addition of a multiple integer of
2π .
Let’s consider unit vectors û, v̂ : S2 −→ R3 such that {û(r̂), v̂(r̂)} forms a basis of
the plane (passing through the origin) with unit normal vector r̂, where S2 is the
sphere of unit radius in R3 (e.g., û = θ̂ , v̂ = φ̂ can be the unit vectors of spherical
coordinates). Hence, polarization unit vectors can be written as p̂s = p̂s,vv̂+ p̂s,uû
and p̂AUT = p̂AUT,vv̂+ p̂AUT,uû.

Phase of AUT pattern. Case: linearly polarized source, i.e., p̂s = ps,vv̂

If the source is linearly polarized along v̂, i.e., p̂s = ps,vv̂ then the phase of the FF
pattern of the AUT can be extracted from (2.10) by

∠ p̂AUT,v = ∠V oc
RX −∠V oc

re f +∠(p̂re f · p̂s)−∠ p̂s,θ + k(r− rre f ) (2.11)

where the r and rre f dependence is understood. Because the right hand side of (2.11)
is fully known, the phase of the FF pattern (v−component) can be computed.

Phase of AUT pattern. General case: p̂s = p̂s,vv̂+ p̂s,uû

The AUT pattern can be in principle be computed also when the source is not linearly
polarized (not yet applied to experimental data). However, two measurements must
be performed (ideally, the second with the probe 90° rotated with respect to the first
measurement).
When the source is not linearly polarized, both components of p̂s must be taken into
account p̂s = p̂s,vv̂+ p̂s,uû. From (2.9), it can be easily shown that

hs(−r̂) ·hAUT (r̂) =
r

rre f
e jk(r−rre f )

V oc
RX

V oc
re f

hre f (r̂re f ) ·hs(−r̂re f ) (2.12)
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In this case, for each direction r̂ two different UAV measurements (labeled by n = 1
and n = 2) are required, e.g., in the second measurement the UAV dipole direction
is orthogonal to the one of the first measurement. For each acquired direction r̂, a
linear system can be written[

hs,1,v hs,1,u

hs,2,v hs,2,u

][
hAUT,v

hAUT,u

]
=

[
b1

b2

]
(2.13)

where bn is a known term that comes from the right-hand-side of (2.12) and hs,n is
the effective height of the source for n-th measurement, for n = 1,2. The matrix on
the left-hand-side of (2.13) is sometimes called Jones matrix [53] and its condition
number is linked to the intrinsic cross-polarization ratio (IXR) of the UAV-mounted
source.
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2.1.2 Array

In this Section, the phase retrieval method is presented for an antenna array. In
this Section, FF interaction between the array and the UAV is assumed. Similarly
to the single element case (see (2.9)) the ratio between the received open-circuit
voltage V oc

RX at the n−th array element and the received open-circuit voltage V oc
re f at

the reference antenna is

V oc,n
RX (r)

V oc
re f (rre f )

= e− jk(r−rre f )
rre f

r
|hn(r̂)||hs(−r̂)|

|hre f (r̂re f )||hs(r̂re f )|
p̂n(r̂) · p̂s(−r̂)

p̂re f (r̂re f ) · p̂s(−r̂re f )
(2.14)

where hn is the effective height of the n−th element (considered as embedded
element, hn takes into account mutual-coupling phenomena) and r is the distance
between the array center and the UAV. Briefly, omitting the r dependence, (2.14)
becomes:

V oc,n
RX

V oc
re f

= e− jk(r−rre f )
rre f

r

(
1

|hre f ||hs|
1

p̂re f · p̂s

)
|hn||hs|p̂n · p̂s (2.15)

Similarly to the single element case (see (2.11)), if the source is linearly polarized,
i.e., p̂s = ps,vv̂ then the phase of the FF pattern of the n−th array element can be
extracted from (2.15) by

∠ p̂n
v = ∠V oc,n

RX −∠V oc
re f +∠(p̂re f · p̂s)−∠ p̂s,v + k(r− rre f ) (2.16)
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2.2 Phase Reconstruction for Near-Field Measure-
ments

Part of the work presented in this Section has been previously published in [1], [34].
In this Section, the phase retrieval method based on the phase difference between
AUT and reference antenna signals is considered for NF measurements, i.e., the
UAV can fly in the NF of the AUT. FF approximation between UAV and reference
antenna is assumed. Furthermore, a free-space approximation is made (reflections of
the ground are not considered1).
The phase difference needed to apply the NF-FF transformation to the n-th array
element can be expressed as ∠V n

RX −∠Vs. From the transmission equation between
reference antenna and UAV-mounted source, see (2.8), once obtains

∠V oc
re f = ∠Vs − krre f +∠(p̂re f (r̂re f ) · p̂s(−r̂re f )) (2.17)

It should be noted that V oc
re f does not generally coincide with the measured voltage

Vre f (see Section 2.1). The two voltages are related by Vre f = Cre fV oc
re f , where

Cre f = ZRX ,re f /(ZRX ,re f +ZA,re f ) is an adimensional constant and ZA,re f and ZRX ,re f

are the reference antenna and receiver impedances. More precisely, ZRX ,re f takes
into account all RF components from the reference antenna toward the digitizer i.e.,
cables, LNA and the receiver. It should be noted that if such RF components are
known and characterized then Cre f is known. However, in this thesis, the constant
Cre f was not known. It should be noted that the constant Cre f depends on the chosen
reference antenna polarization but is independent on the UAV position (it can depend
on instabilities due to temperature variations). In Section 2.2.1, a procedure to
compensate the phase shift between signals coming from the two reference antenna
polarizations is presented.
From (2.17), the received phase at the reference antenna is hence related to the
transmitter phase through

∠Vre f = ∠V oc
re f +∠Cre f = ∠Vs − krre f +∠(p̂re f (r̂re f ) · p̂s(−r̂re f ))+∠Cre f (2.18)

1this approximation is verified because antennas considered in this thesis are placed over a ground
plane. For a more accurate model, reflections of the UAV field from the ground and scattering from
the AUT to the reference antenna (and viceversa) must be taken into account.



18 Phase Reconstruction using a Reference Antenna

The desired phase difference ∠V n
RX −∠Vs is hence obtained from 2.18 by

∠V n
RX −∠Vs = ∠V n

RX −∠Vre f − krre f +∠(p̂re f (r̂re f ) · p̂s(−r̂re f ))+∠Cre f (2.19)

Equation (2.19) can be used when only one component of the electric field is mea-
sured (as in [1]), say the y-component. Then, NF-FF transformations exploiting only
the y-component of the field are applicable. For this purpose, only one flight (e.g., a
y-oriented raster, see Fig. 4.3) is needed and the constant phase shift ∠Cre f does not
affect the reconstruction and its presence in (2.19) can be neglected. However, as it
will be shown in Chapter 4 (Fig. 4.20), the usage of only one NF component in the
NF-FF transformation leads to inaccurate cross-polarization values in the computed
FF pattern.

2.2.1 Phase Reconstruction using a Dual-Polarized Reference
Antenna

The procedure presented in this Section will be applied to UAV-based antenna mea-
surements in Chapter 4 where a dual-polarized reference antenna (with polarizations
x and y) is available. When both components of the electric NF have to be considered
(e.g., as input for a NF-FF transformation), samples along two orthogonal UAV
flights must be acquired (e.g., in Chapter 4 an x-oriented and a y-oriented raster is
performed, see Fig. 4.4). In this case, when the source polarization is orthogonal (or
quasi-orthogonal) to the chosen reference antenna polarization, the signal received
at the reference antenna may have a low signal-to-noise ratio. This degradation of
the received signal may result in a poor phase reconstruction. For this reason, a
dual-polarized reference antenna should be used, and the signal received through
the polarization that matches the one of the source should be exploited. More pre-
cisely, for the data acquired along the x-oriented raster the x-polarized reference
antenna must be used whereas for the data acquired along the y-oriented raster the
y-polarized reference antenna must be exploited. In this way, polarization-matching
between source and reference antenna is obtained and high signal-to-noise ratio for
the measured receiving signal is ensured. For this purpose, the constants Cre f ,x and
Cre f ,y such that Vre f ,x = Cre f ,xV oc

re f ,x and Vre f ,y = Cre f ,yV oc
re f ,y are considered, where

Vre f ,x, Vre f ,y and V oc
re f ,x, V oc

re f ,y are the measured and open-circuit voltages at the x and
y polarized reference antenna, respectively. The phase transmission equation for the
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x and y reference antenna polarization (i.e., (2.18) with Cre f =Cre f ,y and (2.18) with
Cre f =Cre f ,x) would read

∠Vre f ,x = ∠Vs − krre f +∠(p̂re f ,x(r̂re f ) · p̂s(−r̂re f ))+∠Cre f ,x (2.20)

∠Vre f ,y = ∠Vs − krre f +∠(p̂re f ,y(r̂re f ) · p̂s(−r̂re f ))+∠Cre f ,y (2.21)

where p̂re f ,x and p̂re f ,y are the polarization unit vectors of the x and y polarized
reference antenna, respectively. Since Cre f ,y is generally different from Cre f ,x (hence
∠Cre f ,y ̸= ∠Cre f ,x) the phase reconstruction procedure leads to an unknown constant
phase shift ∠Cre f ,y −∠Cre f ,x between the two phase reconstructions from the two
orthogonal flights. Due to this phase shift, the whole phase reconstruction is not
coherent and cannot be directly used as input for a NF-FF transformation. The
unknown phase shift ∠Cre f ,y −∠Cre f ,x can be evaluated performing the difference
between equations (2.21) and (2.20) i.e., eliminating the common term ∠Vs

∠Cre f ,y −∠Cre f ,x = ∠Vre f ,y −∠Vre f ,x −∠(p̂re f ,y(r̂re f ) · p̂s(−r̂re f ))+

+∠(p̂re f ,x(r̂re f ) · p̂s(−r̂re f ))
(2.22)

Applying (2.22), the phase reconstructions of the two orthogonal flights can be
equalized through

∠

(
V n

RX
VsCre f ,x

)
= ∠V n

RX −∠Vs −∠Cre f ,x =

= ∠V n
RX −∠Vre f ,x − krre f +∠(p̂re f ,x(r̂re f ) · p̂s(−r̂re f ))

(2.23)

and

∠

(
V n

RX
VsCre f ,x

)
= ∠V n

RX −∠Vs −∠Cre f ,x =

= ∠V n
RX −∠Vre f ,y − krre f +∠(p̂re f ,y(r̂re f ) · p̂s(−r̂re f ))+

[
∠Cre f ,y −∠Cre f ,x

]
(2.24)

Finally, the phase reconstructions of the two orthogonal flights are now consistent to
each other and the NF-FF transformation can be applied.
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Coupling between x- and y-polarized Reference Antenna

In general, the x-polarized reference antenna and the y-polarized reference antenna
are coupled together and mutual coupling phenomena must be taken into account.
In this case, a 2 x 2 antenna impedance matrix ZA,re f must be considered (one
port for each reference antenna polarization). Then the received voltage at the two
reference antenna ports is Vre f = ZRX ,re f (ZRX ,re f +ZA,re f )

−1Voc
re f where ZRX ,re f

is the diagonal matrix with the receiver impedances for each polarization. For
Pre-AAVS1 array considered in Chapter 4, because the off diagonal terms are very
low with respect to diagonal terms, i.e., |ZA,re f ,xy/ZA,re f ,xx|2dB < −40dB 2 then the
coupling between the x and y polarized reference antenna has been neglected.

2|ZA,re f ,xx|= |ZA,re f ,yy| by symmetry of reference antenna geometry.



Chapter 3

Far-Field Measurements

This thesis is focused on the characterization of antennas in terms of their radiation
pattern from electromagnetic field measurements performed using a UAV. In this
Chapter, FF measurements of a large digital beamforming antenna array are consid-
ered.
Author contribution to this work: the author partecipated in the improvement of
the software that converts UAV and RF measured data into FF data (details can be
found in [41]). Elaborations of UAV and RF measured data, computation of magni-
tude EEPs (Section 3.3), active element gain measurement (Section 3.4), synoptic
visualization of magnitude EEPs (Section 3.5), computation of phase EEPs (Section
3.6) and the position error estimation method by phase pattern discrepancies (Section
3.7) is part of the work done by the author.
Motivation of this work: As the Square Kilometre Array progresses toward the
construction phase, the first prototypes of the low-frequency instrument have been
deployed in Australia. SKA-low will operate from 50 MHz to 350 MHz. In June
2019, a measurement campaign took place in the Murchison Radio-astronomy Ob-
servatory (MRO) area (see Fig. 3.1) to validate the electromagnetic models of two
SKA-low stations. The main purpose of the measurement campaign was to validate
the acquisition system and the electromagnetic models through an experimental
measurement of the amplitude EEPs. Besides these high priority objectives, further
scopes included the measurement of phases of EEPs. Moreover, end-to-end system
verifications were performed, such as cluster position verification, correctness of
port mapping and electrical connection, stability in terms of magnitude and phase
stability of the RF chains, instrumental calibration. More than 10 Gbyte of data
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from 14 flights have been collected in 2 days and a half. It should be noted that
experimental tests using astronomical calibration sources can also be performed [54].
However, the UAV procedure provides a completely known source and an higher
signal-to-noise ratio of the received signal.
This chapter is organized as follows: the considered SKA prototype stations are
described in Section 3.1 together with their acquisition system. The UAV measure-
ment setup is introduced in Section 3.2. Array elements are characterized in their
magnitude EEPs (Section 3.3) and active element gains (Section 3.4). A figure
of merit for the agreement between simulated and measured patterns is adopted
to obtain a direct synoptic visualization of the complete dataset (see Section 3.5).
Phases of EEPs are instead shown in Section 3.6. Finally, a method that computes a
possible position shift of sub-arrays from phase discrepancies in EEPs is presented
in Section 3.7.

Fig. 3.1 Aerial view of the AAVS1.5 and EDA2 stations at the MRO site. Picture from
https://virtualtours-external.csiro.au/MRO/.

3.1 The Antenna Under Test and Acquisition System

The two considered SKA-low stations are named Aperture Array Verification System
2.0 (AAVS2.0) and Engineering Development Array 2 (EDA2) and operate from
50 MHz to 350 MHz. Both the stations share an aperiodic (random) array layout of
256 dual-polarized antennas mounted on a ground plane with a diameter of about
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40 m. When the MRO campaign was carried out, only 48 antennas of 256 were
deployed in three clusters of 16 elements for AAVS2.0 (for this reason, its name
was AAVS1.5), see Fig. 3.2. The EDA2 was fully deployed but only 48 antennas
were connected to the receiver1. The AAVS1.5 is composed of dual-polarized log-
periodic SKALA4.1-AL antennas [55], [15] (see Fig. 3.3), whereas EDA2 [56] is
composed of dual-polarized bowtie dipoles (see Fig. 3.4). One polarization is along
South-North (y-axis) direction whereas the orthogonal polarization (x-axis) is in the
West-East direction. In this chapter, South-North (y-axis) polarized elements have
been selected as AUT. Both AAVS1.5 and EDA2 elements are equipped with a Low
Noise Amplifier (LNA) integrated on the top of the antenna and digital beamforming
hardware. Groups of 16 elements (32 channels) are connected to an in-field “Smart-
Box” in which the signals are converted to be transmitted via optical fiber to the
control building [57]. Here, the signals are amplified, filtered, and digitized by a Tile
Processing Module (TPM). Complex voltages are acquired by the TPM and stored
in hdf5 files. The channel bandwidth is 0.78125 MHz that corresponds to a timestep
∆t0 = 1.28∗10−6 s between successive samples. Then by digital filtering there is an
undersampling factor of 128 and an oversampling of 32/27. The obtained timestep
between two successive samples is then ∆t = [27 ∗128/32]∆t0 = 1.3824×10−4 s
(in the hdf5 files). This setting produces a data rate of about 27 Mbyte/min for each
cluster of 16 antennas for both polarizations. As far as a UAV flight is concerned,
the length of time series was about 3 min for each field cut. During the campaign
more than 10 GB of data were collected in 2 days (corresponding to 14 flights).
For this reason, data have been undersampled over 1024 samples (only for some
computations) in order to reduce the large amount of required memory and processing
time.

3.2 UAV Test Source

The UAV hereby considered is a commercial 3D Robotics X8,+ which has been cus-
tomized in order to carry a frequency synthesizer, a balun and a dipole antenna (see
Fig. 3.5). The UAV can perform autonomous GNSS-guided navigation according
to a pre-programmed flight path. The pre-programmed flight path is specified as
a set of commands contained in a text file. This text file is generated by a Matlab

1The disconnected elements are included in simulations of the EDA2 model.
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Fig. 3.2 Antenna positions of the Aperture Array Verification System 1.5 (AAVS1.5). The
Engineering Development Array 2 (EDA2) share the same layout. Dashed vertical green and
dashed horizontal black lines represent E-plane and H-plane (scanned by the UAV) for the
South-North polarized elements, respectively.

Fig. 3.3 Log-periodic elements of the Aperture Array Verification System 1.5 (AAVS1.5).

script according to the required flight strategy. The UAV position is measured using
a real-time differential GNSS system, which provides an accuracy of 2-3 centimeters.
The UAV orientation is measured by the on-board Inertial Measurement Unit with an
accuracy of about 2 Degrees. The UAV-mounted RF transmitter is a continuous-wave
RF synthesizer with a maximum RF power of 3-7 mW and a bandwidth less than
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Fig. 3.4 Bow-tie dipoles of the Engineering Development Array 2 (EDA2).

100 Hz. The synthesizer is then connected to the dipole antenna through a balun. A
set of dipoles with different lengths has been manufactured. The proper dipole was
used at the corresponding measurement frequency. Measurements were performed at

Fig. 3.5 Photo of the UAV during the measurement campaign.

50, 70, 110, 160 and 320 MHz. For each frequency, the UAV flight consisted of two
orthogonal linear scans (see horizontal and vertical dashed lines in Fig. 3.2) passing
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through the array center at constant height. Such a flying height was originally
programmed to 160 m for all measurements. Nevertheless, some measurements were
executed at 120 m due to adverse wind conditions. Through these flights, radiation
patterns have been characterized within an angular coverage of ±45deg from zenith.
The flight height regulation limit defined by CASA2 is of 120 m. If a special autho-
rization is available, the flight height could be extended to about 250 m. Above this
value, there are some technical limits of the present UAV such as telemetry link, and
overall flight duration (take-off and landing would take too much time).
Fig. 3.6 shows the FF conditions for different array sizes within the frequency
range 50-320 MHz. The 10λ far-field condition is depicted with solid yellow line3.
This condition is mainly significant at 50 MHz. The Fraunhofer distance 2D2/λ

is evaluated for one cluster of AAVS1.5 (blue) and for the full AAVS1.5 station
(orange). It can be seen that the FF condition is satisfied to 160 MHz at cluster level
(see Fig. 3.6). Rigorously speaking, the UAV generally flies in the NF of AAVS1.5
and EDA2 full stations. However, FF interaction between UAV and array under test
has been assumed and EEPs have been extracted accordingly [58]. As it will be
shown in Section 3.3, the agreement between simulated and measured EEPs is quite
satisfactory. This is an indirect confirmation that the radius of influence of each array
element is not very large and certainly below the sub-array diameter.
As a last remark, note that the UAV flight paths (dashed lines in Fig. 3.2)) did not lie
in the E and H planes of all the clusters. Neverthless, hereinafter they are referred to
as E and H planes for simplicity. Both measurements and simulations were computed
on the actual measured path.

2The Civil Aviation Safety Authority (CASA) is the Australian authority for civil aviation regula-
tions.

3The FF condition dictates that the distance between source and observation point must be much
greater than λ . Here, such minimum distance is assumed to be 10λ .
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Fig. 3.6 Fraunhofer distance (Fd) 2D2/λ for single cluster (blue line) and full AAVS1.5
station (orange line) and 10λ limit (yellow line). UAV flight height was at most 160 m
(dashed black line).

3.3 Embedded Element Patterns (magnitude)

EEPs were extracted from the measured power at each array element (this was
possible through the full digital beam-forming hardware described in Section 3.1)
through the procedure described in [41], [58]. For the sake of completness, a brief
introduction on the AUT gain computation from UAV-based FF measurements is
here reported. The gain gAUT of the AUT can be extracted from the transmission
link equation (also known as Friis equation) between AUT and UAV-mounted source

PRX(r,γγγ)
PT X

=
gAUT (r̂)gs(r̂,γγγ)

(4πr
λ
)2

|p̂AUT (r̂) · p̂s(r̂,γγγ)|2 (3.1)

where PRX is the available (measured) power at the AUT which depends on the
position vector r = rr̂ from the AUT to the UAV and the UAV orientation γγγ , PT X

and gs are the transmitted power and gain of the UAV-mounted source antenna, p̂s

and p̂AUT are the polarization unit vectors of source and AUT and λ is the free-
space wavelength. The UAV orientation γγγ is specified through a set of three angles
(yaw, pitch and roll) [41]. A possible impedance mismatch factor between AUT
and receiver is understood inside PRX . A free-space approximation is also assumed
(reflections of the ground are not considered).
Let’s consider unit vectors û, v̂ : S2 −→ R3 such that {û(r̂), v̂(r̂)} forms a basis of
the plane (passing through the origin) with unit normal vector r̂, where S2 is the
sphere of unit radius in R3 (e.g., û = θ̂ , v̂ = φ̂ can be the unit vectors of spherical
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coordinates). Polarization unit vectors can be written as p̂s = p̂s,vv̂+ p̂s,uû and
p̂AUT = p̂AUT,vv̂+ p̂AUT,uû. If the source is linearly polarized along the unit vector v̂,
i.e., p̂s = p̂s,vv̂, then the partial AUT gain gAUT,v = gAUT |p̂AUT,v|2 along the direction
v̂ can be extracted from (3.1) by

gAUT,v(r̂) =
(

4πr
λ

)2 1
gs(r̂,γγγ)

PRX(r,γγγ)
PT X

(3.2)

Through knowledge on the UAV position r, the orientation γγγ and source gain gs, the
AUT gain gAUT,v is finally computed from (3.2). This approach will be also adopted
in Chapter 4 to obtain the AUT gain from FF measurements. From now on, the EEPs
extracted from measurements using (3.2) are referred to as the measured EEPs.
E-plane and H-plane measured EEPs at 50, 70, 160, 320 MHz of elements 8, 12,
13, 15 for cluster #0, #1 and #2 are shown with blue lines in Fig. 3.7, 3.8, 3.9, 3.10,
3.11 and 3.12, respectively. Elements 8 and 15 are located in the inner part of the
clusters whereas elements 12 and 13 are located near their boundaries (see Fig. 3.2).
In each figure, rows refers to frequencies (50, 70, 160, 320 MHz) whereas columns
to elements (8, 12, 13, 15). Each curve is normalized to its maximum. For the sake
of comparison, simulated EEPs are shown with dashed black lines. Good agreement
can be observed between measured and simulated EEPs. As previously mentioned,
these cuts (see dashed lines in 3.2) are not E-plane and H-planes for all the clusters,
e.g., the South-North cut (see green dashed line in 3.2) made by the UAV does not
pass over cluster #1 and #2. However, both measurements and simulations were
computed on the actual measured path.
It can be seen that some curves are not reported in a little angular region around
zenith (for zenith angles near zero), e.g., see Fig. 3.8. This is because the UAV did
not exactly pass above the array center, i.e., in the point (x = 0,y = 0,z = h), where
h is the UAV altitude. For this reason, samples near zenith were not acquired.
It can be seen that some measured EEPs suffer from some peaks, e.g., element 13
at 50 MHz in Fig. 3.7 (first row, third column). These peaks are already present
in the measured power and are related to wrong time labels assigned to packets
in the receiving acquisition system. This confirms the capability of the proposed
end-to-end procedure to find issues in the complete system under test (i.e., antennas
with acquisition system).
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Fig. 3.7 Normalized E-plane Embedded Element Patterns (magnitude) of the four South-
North polarized elements (8, 12, 13, 15) in cluster #0 of AAVS1.5 at 50, 70 MHz, 160 and
320 MHz. Columns refer to different frequencies, whereas rows to different array elements.
Blue: measurements, dashed black: simulations.
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Fig. 3.8 Normalized H-plane Embedded Element Patterns (magnitude) of the four South-
North polarized elements (8, 12, 13, 15) in cluster #0 of AAVS1.5 at 50, 70 MHz, 160 and
320 MHz. Columns refer to different frequencies, whereas rows to different array elements.
Blue: measurements, dashed black: simulations.
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Fig. 3.9 Normalized E-plane Embedded Element Patterns (magnitude) of the four South-
North polarized elements (8, 12, 13, 15) in cluster #1 of AAVS1.5 at 50, 70 MHz, 160 and
320 MHz. Columns refer to different frequencies, whereas rows to different array elements.
Blue: measurements, dashed black: simulations.
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Fig. 3.10 Normalized H-plane Embedded Element Patterns (magnitude) of the four South-
North polarized elements (8, 12, 13, 15) in cluster #1 of AAVS1.5 at 50, 70 MHz, 160 and
320 MHz. Columns refer to different frequencies, whereas rows to different array elements.
Blue: measurements, dashed black: simulations.
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Fig. 3.11 Normalized E-plane Embedded Element Patterns (magnitude) of the four South-
North polarized elements (8, 12, 13, 15) in cluster #2 of AAVS1.5 at 50, 70 MHz, 160 and
320 MHz. Columns refer to different frequencies, whereas rows to different array elements.
Blue: measurements, dashed black: simulations.
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Fig. 3.12 Normalized H-plane Embedded Element Patterns (magnitude) of the four South-
North polarized elements (8, 12, 13, 15) in cluster #2 of AAVS1.5 at 50, 70 MHz, 160 and
320 MHz. Columns refer to different frequencies, whereas rows to different array elements.
Blue: measurements, dashed black: simulations.



32 Far-Field Measurements

3.4 Active Element Gain Measurement

Part of the work presented in this Section has been previously published in [14].
In this Section, the active element gain of one element of AAVS1.5 and EDA2 is
estimated from measurements. Here, such gain is referred to the whole structure
before the receiver, i.e., antenna with its LNA and cable. The active element gain
has been extracted using both a UAV flight and a reference measurement. In the
latter, the transmitter was directly connected to the receiver. In this way, the un-
known contributions (i.e., the transmitted power PT X and receiver gain gRX ) have
been calibrated out through the reference measurement. Knowledge of the devices
used during the campaign (e.g., attenuators, balun, source antenna) have been also
exploited.
For simplicity, each device has been modeled as ideal. For example, each attenuator
has been modeled by a scattering matrix S′ with zero diagonal entries

S′ =

(
0 S′12

S′21 0

)
(3.3)

Through this assumption, the scattering parameter S21 of two connected devices
is simply the multiplication of the scattering parameters of the single devices, i.e.,
S21 = S′21S′′21, where S′21 and S′′21 are the scattering parameters 21 of the first and
second device, respectively. Furthermore, assuming an impedance matched load,
the output (active) power Pout of the global device is related to the input power Pin

through Pout = |S21|2Pin. In dBm, this relation simply becomes a summation, i.e.,

10 log10
Pout

1mW
= 20log10 |S21|+10log10

Pin

1mW
=

= 20log10 |S′21|+20log10 |S′′21|+10log10
Pin

1mW

(3.4)

The same argument has been used for the in-flight RF chain in Fig. 3.13. The
received (measured) power PRX is related to the transmitted power PT X by (dB units
are understood)

PRX = PT X −AT X −Abalun +gs −Amis −PL+gAUT +gLNA −Acable −ARX +gRX

(3.5)
where AT X , ARX are attenuations of the attenuators used during the campaing (one
located after the transmitter and one before the receiver, see Fig. 3.13). gAUT , gLNA
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gs, gRX are gain values of the AUT, LNA, UAV-mounted source antenna and receiver,
respectively4. Values Abalun, Amis, PL, Acable are attenuations of the balun, AUT-
source mismatch, path loss and cable, respectively.
The reference measurement [59] was exploited to calibrate out the unknown con-
tributions, i.e., the transmitted power PT X and receiver gain gRX . In this reference
measurement, the UAV-mounted synthesizer was directly connected to the input of
the receiver chain (i.e., input of the smartbox, where the cables of array elements are
collected). Two attenuators (with attenuations AT X ,re f and ARX ,re f ) were exploited
between transmitter and receiver. Hence, the reference power PRe f measured during
the reference measurement (see Fig. 3.14) is related to the transmitter power PT X

through
PRe f = PT X −AT X ,re f −ARX ,re f +gRX (3.6)

Performing the difference between equations (3.5) and (3.6), the active element gain
gAUT +gLNA −Acable is computed from

gAUT +gLNA −Acable = PRX −PRe f +AT X +Abalun +Amis +PL+

+ARX −AT X ,re f −ARX ,re f −gs
(3.7)

The measured (by (3.7)) and simulated active element gain of the South-North
polarized element 8 in cluster #2 of AAVS1.5 are shown in table 3.1. The same
procedure has been applied to the South-North polarized element number 2 in cluster
#2 of EDA2, see table 3.2. Discrepancies at 50 and 70 MHz could be due to the
mismatched dipole mounted on the UAV. The error for the considered element of
AAVS1.5 generally decreases at higher frequencies, whereas the EDA2 element
shows a more variable discrepancy. The error may be improved with a further
refinement of the considered models, with particularly for the interaction between
LNA and the antenna.

4Rigorously speaking, because the source is linearly polarized in the considered UAV paths (see
dashed lines in Fig. 3.2), i.e., gs ≃ gs,co, the extracted AUT gain is the co-polar gain gAUT,co and
not the overall gain gAUT = gAUT,co + gAUT,cx as reported in (3.5). However, if gAUT,cx ≃ 0 then
gAUT,co ≃ gAUT .
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Transmitter

Attenuator

Balun

UAV

AUT

LNA

Attenuator

Cable

Receiver

PT X

AT X

ABalun

gs

gAUT

gLNA

Acable

ARX

gRX

Amis,PL

PRX

Fig. 3.13 Schematic diagram of the in-flight RF measurement chain. On the right: quantities
considered for the active element gain measurement, see (3.5). Dashed red horizontal line
represents the section where reference measurement was made.
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gRX
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Fig. 3.14 Schematic diagram of the reference RF measurement. On the right: quantities
considered for the active element gain measurement, see (3.6).
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Table 3.1 Measured and simulated active element gain at zenith for element 8 (South-North
polarization) in cluster #2 of AAVS1.5. Table from [14].

Frequency (MHz) Measured gain (dBi) Simulated gain (dBi) Discrepancy (dB)
50 34.29 36.47 -2.18
70 46.69 48.80 -2.11
110 52.52 51.90 0.62
160 51.58 52.24 -0.66
320 50.50 49.92 0.58

Table 3.2 Measured and simulated active element gain at zenith for element 2 (South-North
polarization) in cluster #2 of EDA2. Table from [14].

Frequency (MHz) Measured gain (dBi) Simulated gain (dBi) Discrepancy (dB)
50 -3.81 -1.99 -1.82
70 17.04 14.48 2.57
110 19.94 18.88 1.06
160 26.23 26.30 -0.07
320 20.44 24.06 3.61

3.5 Synoptic Visualization for Magnitude EEPs

Part of the work presented in this Section has been previously published in [14].
Magnitude of E-plane EEPs have been shown in Section 3.3. In order to provide a
synoptic visualization for the discrepancy between simulated and measured E-plane
EEPs, the Root Mean Square (RMS) of the logarithmic difference (RMS discrepancy
hereinafter) between simulated and measured EEPs was adopted as a figure of
merit. To allow for a direct comparison of the agreement between measurements
and simulations regardless of the level (which depends on the receiver gain and
transmitted power, see Section 3.4), EEPs must be equalized somehow before the
computation of the RMS discrepancy. Due to the presence of peaks in some measured
EEPs (see Section 3.3), EEPs were not normalized to the their maximum. Instead, a
constant gain gshi f t is added to each measured EEP in order to minimize the RMS
discrepancy. The constant gain gshi f t for the EEPs normalization5 has been computed

5the constant gain gshi f t depends on the chosen element. Considered the element number n, it will
be denoted as gshi f t,n in the next part. It should be noted that the constant gshi f t is used only for plot
purposes in order to compare simulated and measured patterns; gshi f t does not represent the gain of
an array element.
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from

gshi f t =
N

∑
n=1

20log10 |esim(θn)|−20log10 |emeas(θn)| (3.8)

where emeas and esim denote the measured and simulated E-plane EEP of a selected
element and θn are the zenith angles where the EEPs are sampled (the number of
samples N is approximately 400). The equalized measured pattern is hence defined
as 20log10 |e

eq
meas(θn)|= gshi f t +20log10 |emeas(θn)|. The logarithmic difference (see

(6) in [60]) between the simulated and measured pattern is then considered

logdi f f (θn) = 20log10 |esim(θn)|−20log10 |eeq
meas(θn)| (3.9)

Logarithmic difference between the simulated (dashed black line) and equalized
measured pattern (solid blue line) is reported with yellow line in Fig. 3.15 for
element 8 in cluster 0 at 320 MHz. Finally, the RMS discrepancy is computed as the

-50 -40 -30 -20 -10 0 10 20 30 40 50

zenith angle (deg)

-5

0

5

10

15

(d
B

)

meas eq

sim

log diff

meas

Fig. 3.15 Simulated, measured (without equalization) and equalized measured E-plane EEPs
at 320 MHz of element 8 in cluster 0 are reported with dashed black, dashed blue and solid
blue lines, respectively. Yellow line: logarithmic difference between simulated and equalized
measured EEPs (see (3.9)).

RMS of the logarithmic difference, i.e.,√
1
N

N

∑
n=1

(
logdi f f (θn)

)2

(3.10)
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The RMS discrepancies computed by (3.10) are shown with cyan or magenta dots
in Fig. 3.16 and 3.17 for all elements of AAVS1.5 and EDA2, respectively. Each
cluster or frequency is arranged in a different row or column. Larger values are
concentrated at 50 MHz and 160 MHz for AAVS1.5 and at 320 MHz for EDA2.
The magenta dots of some elements of EDA2 at 70 MHz indicate that the low-noise
amplifier (LNA) at the antenna level was close to the saturation point. The clipped
signal caused a distortion in the measured pattern; however, the final RMS was still
comparable to the other elements.
In Fig. 3.16 and 3.17, the bars report instead the measured relative active element
gain distribution. Element 8 of cluster 2 and element 2 of cluster 2 were adopted as
gain reference antennas for AAVS1.5 and EDA2, respectively6, to focus the analysis
on the relative differences between the array elements. The constant gain gshi f t

computed through (3.8) of these gain reference elements is denoted with gre f . For
each element (say the n-th element), the quantity (gre f − gshi f t,n) is shown in Fig.
3.16 and 3.17 with blue bars. The low gain level of element 14 of AAVS1.5 (black
bar) highlights a damage in the optical link between the LNA and the receiver that
caused a high signal loss. Other elements show a considerably low gain (e.g., EDA2,
10 of cluster 0 and 15 of cluster 1), which reduces the signal-to-noise ratio, increasing
the RMS discrepancy.
As a last remark, the quality of the UAV flight obviously affects the measured EEPs,
e.g., an abrupt movement of the UAV that is not properly sampled could result in
a poor reconstruction of the measured EEPs. In the last row of Fig. 3.16 and 3.17,
a plot concering the UAV flight quality for each frequency is reported. As a figure
of merit, the maximum deviation from average (orange histogram) and the Root
Mean Square of the deviation from average (blue histogram) have been adopted
for the three UAV angles (yaw, pitch and roll [41]). Even though the adverse wind
conditions, a good overall quality of the UAV flights can be observed.

6the measured active element gain of these elements is shown in Section 3.4
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Fig. 3.16 Synoptic visualization of the AAVS1.5 results. Clusters from 0 to 2 in each row.
Frequencies from 50 MHz to 320 MHz in each column. Dots: RMS discrepancy between
measured and simulated EEP. Bars: measured relative active element gain. The actual value
of the black bar is out of range (damaged wired link). Picture from [14].
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Fig. 3.17 Synoptic visualization of the EDA2 results. Clusters from 0 to 2 in each row.
Frequencies from 50 MHz to 320 MHz in each column. Dots: RMS discrepancy between
measured and simulated EEP. Bars: measured relative active element gain. Picture from [14].
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3.6 Embedded Element Patterns (phase)

Magnitude of EEPs have been already shown in Section 3.3. In this Section, phases
of EEPs are instead considered. The highest measured frequency, i.e., 320MHz,
has been selected because of the larger variations in the phase patterns (at lower
frequencies phase patterns are more flat). It should be noted that the transmitter on
the UAV is not phase-locked to the receiver on the ground. Then, the phase of the
received signal is constantly drifting with respect to the receiver reference. For this
reason, phase patterns were computed through the procedure described in Chapter 2
(see (2.16)) using element 0 of cluster #2 (South-North polarization) as reference
antenna. A full-wave simulation of its EEP has been used as known information in
order to retrieve phases of EEPs for the other elements. In this way, mutual coupling
phenomena between the reference element and array have been taken into account.
Our choice of a reference antenna inside the cluster was dictated by the absence of
an isolated and calibrated reference antenna outside the array (reference antenna
outside the array is exploited in chapter 4).
Phases of H-plane measured EEPs (co-polar component) at 320 MHz of elements 8,
12, 13, 15 are shown with blue lines in Fig. 3.18, 3.19, 3.20 for cluster #0, #1 and #2,
respectively. For the sake of comparison, simulations are reported with dashed black
lines. Differences between simulations and measurements are reported with orange
lines in Fig. 3.18, 3.19, 3.20. An overall good agreement between measurement
and simulations for cluster #0 and #2 can be observed. On the contrary, phases of
cluster # 1 (see orange curves in Fig. 3.19) present more significant discrepancies
with respect to cluster #0 and #2. Such discrepancies (which resemble a function of
parabolic type) are in the order of ±40 deg. It should be mentioned that this value is
significant for beamforming performance. In Section 3.7, these phase discrepancies
will be explained in terms of a possible position shift of the entire cluster #1 (with
respect to its nominal position).
As previously mentioned in Section 3.3, a little portion of measured data suffered
from peaks (e.g., see element 13 in Fig. 3.18). This issue was due to wrong time
labels assigned to packets in the receiving acquisition system.
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Fig. 3.18 H-plane Embedded Element Patterns (phase) of the four South-North polarized
elements (8, 12, 13, 15) in cluster #0 of AAVS1.5 at 320 MHz. Blue: measurements, dashed
black: simulations, yellow: their difference.
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Fig. 3.19 H-plane Embedded Element Patterns (phase) of the four South-North polarized
elements (8, 12, 13, 15) in cluster #1 of AAVS1.5 at 320 MHz. Blue: measurements, dashed
black: simulations, yellow: their difference.
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Fig. 3.20 H-plane Embedded Element Patterns (phase) of the four South-North polarized
elements (8, 12, 13, 15) in cluster #2 of AAVS1.5 at 320 MHz. Blue: measurements, dashed
black: simulations, orange: their difference.

3.7 Position Error Estimation of Array Clusters by
Phase Discrepancies in EEPs

Part of the work presented in this Section has been already published in [61]. Phases
of H-plane EEPs have been already shown in Section 3.6. In this Section, phase
discrepancies between measured and simulated EEPs are attributed to a position
offset (with respect to the nominal position) common to all elements belonging to
the same cluster. A method that estimates this position shift is presented and applied.
The resulting position shift could be due to both non-regularity (non-flatness) of the
ground and installation errors.

3.7.1 Fitting Strategy

For the considered H-plane cut, the UAV-flight is close to a linear path along West-
East (x-axis) direction at constant altitude (see dashed black line in Fig. 3.2). For
this reason, cartesian coordinates xz (with origin centered on the reference antenna)
to denote the UAV position are used. In these coordinates, the nominal position
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of the AUT is denoted with (xaut ,yaut ,0) whereas (xaut ,yaut ,0)− (∆x,∆y,∆z) is the
perturbed position i.e., affected by the position error (∆x,∆y,∆z). The position of the
UAV is represented by the vector (x,0,z) whereas Raut and raut denote the nominal
and perturbed distance between the AUT and the UAV7. The dependency of variables
on xz is understood. Assuming a small position error (∆x,∆y,∆z), the distance raut

can be approximated as

raut =
√
(xaut −∆x − x)2 +(yaut −∆y)2 +(z+∆z)2 =√

x2
aut +∆2

x + x2 −2xaut∆x −2xautx+2∆xx++y2
aut +∆2

y −2yaut∆y + z2 +∆2
z +2z∆z ≃

≃
√

x2
aut + x2 −2xaut∆x −2xautx+2∆xx++y2

aut −2yaut∆y + z2 +2z∆z =

= Raut

√
1+2

(x− xaut)∆x − yaut∆y + z∆z

R2
aut

≃ Raut +
x− xaut

Raut
∆x −

yaut

Raut
∆y +

z
Raut

∆z

(3.11)
where terms ∆2

x , ∆2
y , ∆2

z have been neglected and a 1st order Taylor expansion8
√

1+ x ≃ 1+x/2 has been used. It should be noted that the term yaut/Raut is smaller
and practically constant (only Raut depends on the UAV position xz) with respect to
the other terms (x− xaut)/Raut and z/Raut . Hence, the variation ∆y along the y-axis
was not considered in this fitting strategy because its contribution (for the considered
UAV-path along the x-axis) is almost constant and its variation is negligible with
respect to the other errors. For this reason, (3.11) was applied with ∆y = 0.
The position of the UAV is known through a Real Time Kinematic (RTK) differential
GNSS that provides centimeter-level accuracy. These data together with the nominal
antenna position are used to compute Raut and the distance rre f between source and
reference antenna.

7It should be noted that in the present approach a different distance Raut is considered for each
array element. It is clear that the simulation of the EEP phase must be performed with the considered
array element in the origin (simulations for different elements do not share the same origin). Similarly,
a distance R (equal for all array elements) from source to the cluster center could be adopted. In the
latter case, simulations must be performed (for all array elements) with the origin coinciding with the
cluster center.

8assuming |(x− xaut)∆x − yaut∆y + z∆z|/R2
aut << 1
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Substituting (3.11) in (2.16)9, one obtains

∠ p̂aut,v +∠V oc
re f −∠V oc

aut −∠(p̂re f · p̂s)+∠ p̂s,v,aut + k0(rre f −Raut) =

= k0
x− xaut

Raut
∆x + k0

z
Raut

∆z
(3.12)

where raut (rre f ) is the distance between the considered array element (reference
antenna) and the UAV, p̂aut,v is the polarization unit vector of the considered array
element, V oc

aut and V oc
re f are the measured voltages at the array element and refer-

ence antenna, p̂re f and p̂s are the polarization unit vectors of reference antenna and
UAV-mounted source whereas p̂s,v,aut is the polarization unit vector of the source (v
component) toward the considered array element. For the considered array element,
say the n-th element, a linear system an∆∆∆ = bn can be obtained by (3.12) considering
all the different positions of the UAV, where ∆∆∆ = [∆x;∆z]. Here, the symbol of
semicolon “;” denotes (as in MATLAB) the operation of stacking scalars as a column
vector. The term bn comes from the left-hand side of (3.12). Enforcing an equal
position error to a set of elements within a cluster leads to the definition of an ag-
gregated linear system A∆∆∆ = B, where A = [a1;a2;a3; . . . ] and B = [b1;b2;b3; . . . ].
This assumption models a position offset between clusters (see Fig. 3.2) due to both
nonregularity (flatness) of the ground and installation errors. The linear system has
to be solved in a least squares sense because A is rectangular.

Position Error Estimation of the UAV by Phase Discrepancies in EEPs

A similar formulation has been developed considering the UAV position offset as
unknown instead of the AUT one. As in the previous Section, the considered UAV
flight is a linear path along the x axis. For this reason, cartesian coordinates xz (with
origin centered on the reference antenna) to denote the UAV position are used. In
these coordinates, the nominal position of the UAV is denoted with (x,0,z) whereas
(x,0,z)− (∆x,∆y,∆z) is the perturbed position i.e., affected by the position error
(∆x,∆y,∆z). The position of the AUT is (xaut ,yaut ,0) whereas Raut and raut denote
the nominal and perturbed distance between the AUT and the UAV. Similarly, Rre f

9More precisely, a little variant of (2.16) is used. The origin has been considered at the n-th array
element.
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and rre f denote the nominal and perturbed distance between the reference antenna
and the UAV. The distance raut is approximated as

raut =
√

(xaut +∆x − x)2 +(yaut +∆y)2 +(z−∆z)2 =√
x2

aut +∆2
x + x2 +2xaut∆x −2xautx−2∆xx++y2

aut +∆2
y +2yaut∆y + z2 +∆2

z −2z∆z ≃

≃
√

x2
aut + x2 +2xaut∆x −2xautx−2∆xx++y2

aut +2yaut∆y + z2 −2z∆z =

= Raut

√
1+2

(xaut − x)∆x + yaut∆y − z∆z

R2
aut

≃ Raut +
xaut − x

Raut
∆x +

yaut

Raut
∆y −

z
Raut

∆z

(3.13)
whereas the distance rre f is approximated as

rre f ≃ Rre f −
x

Rre f
∆x −

z
Rre f

∆z (3.14)

Subtracting (3.14) to (3.13), one obtains

raut − rre f ≃ Raut −Rre f +

(
xaut − x

Raut
+

x
Rre f

)
∆x +

yaut

Raut
∆y +

(
− z

Raut
+

z
Rre f

)
∆z

(3.15)
Similarly to the previous Section, this equation can be substituted in (2.16) to obtain
a linear system and compute the UAV position offset (∆x,∆y,∆z).

3.7.2 Results

The fitting method described in Section 3.7.1 has been used to explain phase dis-
crepancies in EEPs. First, cluster #1 is considered. Results for the four considered
elements 8, 12, 13, 15 of cluster #1 are shown in Fig. 3.21. The fitted phase errors
(dashed black curves in Fig. 3.21) approximate well the phase discrepancies (orange
curves) between measurements and simulations. The fitted position shift for cluster
#1 is ∆x ≃ 0.02 m and ∆z ≃−0.62 m. The shift along the x-axis is negligible because
it is within the position measurement accuracy. On the contrary, the method predicts
a significant ∆z that could be explained by a little slope in the area of the AAVS1.5
array (the soil could be not perfectly flat).
Similar results have been obtained by using other elements of cluster 2 as reference
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antenna.
The previous analysis is repeated on cluster # 2. In this case, the reference antenna
(element 0 in cluster #2) is located in the same cluster of the analyzed elements
(element 8, 12, 13, 15). The phase discrepancy fitting is shown in Fig. 3.22. The
fitted phase error approximates well the discrepancy between measurements and
simulations. In this case, the resulting position shift ∆x ≃ 0.03 m and ∆z ≃ 0 m of
cluster 2 is much smaller than in cluster # 1. This is consistent with the flat ground
within the subarray. Similar results, not shown here, have been achieved for cluster
0.
The fitting formulation using the UAV position offset as variable has been also ap-
plied to the data. However, the achieved offsets were not consistent with the expected
differential GNSS-accuracy of few centimeters. Hence, the AUT position offset can
represent a good candidate to explain the phase discrepancies. However, position
measurement of reference points (e.g., array centers, UAV GNSS base-station) has
been found to be affected by inaccuracies10. For this reason, the observed phase
discrepancies in EEPs could be due to a combination of the two errors that cannot be
disentangled (AUT and UAV position offset). For future works, position measure-
ment of the reference points must be carefully performed and verified.

10It should be noted that the position of the UAV is computed using such reference points.
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Fig. 3.21 Phase error fitting of four elements (8, 12, 13, 15) of cluster 1. Orange and dashed
black curves represent the measured and reconstructed error, respectively. The estimated
position shift of cluster 1 is ∆x ≃ 0.02 m and ∆z ≃ - 0.62 m. Picture from [61].
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Fig. 3.22 Phase error fitting of four elements (8, 12, 13, 15) of cluster 2. Orange and dashed
black curves represent the measured and reconstructed error, respectively. The estimated
position shift of cluster 2 is ∆x ≃ 0.03 m and ∆z ≃ 0 m. Picture from [61].



Chapter 4

Near-Field Measurements

This thesis is focused on the characterization of antennas in terms of their radiation
pattern from electromagnetic field measurements performed using a UAV. In this
Chapter, FF and NF measurements of a large digital beamforming antenna array are
considered.
Part of the work described in this chapter has been previously published in [34], [1].
Author contribution to this work: elaborations of UAV and RF measured data,
elaboration of the inverse source NF-FF transformation data, definition and tuning
of the NF-FF transformation parameters is part of the work done by the author.
Motivation of this work: the large size of this radio telescope prototype oriented the
development of the large NF scanner presented in this work. Moreover, the presence
of active antennas constrained the UAV to operate in TX mode. A previous prototype
has been already characterized using a FF flights [62] with good results. The NF
approach presented in this work has been investigated as a valuable alternative for
the test of even larger arrays, e.g., SKA-low full stations. For such arrays, the FF
condition cannot be reached within the flight altitude regulation limits, generally of
120 meters.
This chapter is organized as follows: the array under test and its acquisition system
are described in Section 4.1 whereas the UAV-based scanner is described in Section
4.2. The NF data acquired through the UAV are presented in Section 4.3. Results
of the inverse source NF-FF transformation applied on such measured NF data are
discussed in Section 4.4. Finally, FF and NF flights are compared (in terms of time
needed to perform the flight) in Section 4.5.



50 Near-Field Measurements

Fig. 4.1 The UAV flies over the array under test i.e., the Pre - Aperture Array Verification
System. On the right (white circle): reference antenna used for phase reconstruction. Picture
from [34].
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Fig. 4.2 Positions of elements in Pre-AAVS1 array.

4.1 The Antenna Under Test and Acquisition System

The Pre - Aperture Array Verification System (Pre -AAVS1) (see Fig. 4.1) is an an-
tenna array located in Mullard Observatory in Cambridge (UK). It is composed of 16
active dual-polarized log-periodic elements arranged in a pseudorandom (aperiodic)
configuration (see Fig. 4.2). Each element, called SKALA-2 [63], is equipped with
a Low Noise Amplifier (LNA) integrated on the top of the antenna. The array has a
size of 9.2 m and is placed over a ground plane of 16-m diameter. One polarization
is along South-North (y-axis) direction whereas the orthogonal polarization (x-axis)
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Fig. 4.3 Yellow and blue line represent the UAV path for the y-oriented raster #1 (view from
above). Black and green dots represent the array and reference antenna, respectively.

is in the West-East direction. In order to test the presented procedure, the y-polarized
elements of Pre-AAVS1 have been selected as AUT. In this receiving system, the two
polarizations of each antenna are connected to the analog inputs of a Tile Processing
Module 1.2 (TPM) [42], [64], [65], the precursor to the TPM that is used for Phase
One of the SKA. The TPM houses 32 Analog to Digital Converters (ADCs), with
a programmable amplifier connected to each, and two Field Programmable Gate
Arrays (FPGAs). The voltage signals are sampled with an observable band of 400
MHz. The digitized and amplified signals pass through a polyphase filter bank which
splits the band into 512 frequency channels resulting in a channel bandwidth of 400
MHz / 512 = 781.25 kHz. The time-step between two successive samples is hence
∆t0 = 1/(781.25 kHz) = 1.28×10−6s. Then, by digital filtering, an oversampling
factor of 32/27 is applied. In order to reduce the large amount of data, data have
been averaged over 1024 samples. The final time-step ∆t between two successive
samples is then ∆t = ∆t0×1024×27/32 = 0.0011s. In this receving system a digital
beamformer is present. However, all the digitized signals have been exploited in this
work to achieve more flexibility.
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Fig. 4.4 The extracted path for the two UAV flights: y-oriented raster #2 (blue line) and
x-oriented raster (green line). Picture from [34].

4.2 Near-Field Planar Scanner

Planar NF scanning is a well-established technique for antenna characterization
[66]. The probe usually scans a rectangular grid with constant spacing (usually half
wavelength) on a plane. Other planar acquisitions are also possible, e.g., spiral [67]
or planar with non constant spacing [68]. The measurement is usually combined
with a NF-FF transformation in order to obtain the AUT pattern.
In standard planar NF scanner, several requirements have to be fulfilled in order to
apply the NF-FF transformation properly:

• the probe pattern must have no nulls in the AUT direction.

• the probe has to be distant enough from the AUT, so that the mutual coupling
between them is negligible.

• the probe has to cover a sufficiently large area in order to have a negligible
AUT field outside of that area.

• contrary to spherical scans, probe correction is generally significant and has to
be applied.

First two points are trivially fulfilled by the measurement configuration. Last two
points are addressed in Section 4.4.2.
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The core of the proposed strategy is an Unmanned Aerial Vehicle (UAV) (Fig. 4.1)
equipped with a continuous-wave RF source. Through a preprogrammed flight path,
the UAV is capable to perform autonomous navigation. Quasi-planar flights (Fig.
4.3-4.4) were performed by the UAV acting as a NF scanner. More precisely, the
micro hexacopter was equipped with a continuous-wave synthesizer, a balun and a
dipole antenna. The UAV position was acquired by a differential GNSS system with
a few centimeters of accuracy. Such position accuracy can be considered acceptable
at the considered frequency of 175 MHz (wavelength 1.7 m). The UAV orientation
was measured by the onboard Inertial Measurement Unit with an accuracy of about
2 degrees. Overall, three planar flights were performed, labeled by: x-oriented raster,
y-oriented raster #1 and y-oriented raster #2. For the sake of redundancy, two flights
were performed as a cartesian raster along the y-axis (y-oriented raster #1-2 ) (these
two flights are almost equivalent for the present analysis). The UAV path of the
y-oriented raster #1 is shown in Fig. 4.3 as a 2D view whereas x-oriented raster and
y-oriented raster #2 are shown together in Fig. 4.4 in a 3D fashion. In each one
of these two quasi-planar scans a square area of approximately 40 m x 40 m was
covered. From each flight, a scan of 36 m x 36 m has been extracted as input for the
NF-FF transformation. This is because measurement points where the UAV curved
(yellow points in Fig. 4.3) are source of uncertainty due to the rapidly changing
UAV angles (UAV angles are not properly sampled in these regions). For this reason,
these points were discarded and rectilinear paths only (e.g., blue points in Fig. 4.3)
were considered as input of the NF-FF transformation. During each flight, complex
voltages were acquired at each array element by a complete digital back-end (already
described in section 4.1 ). With a maximum speed of 3 m/s, the UAV flight time was
about 15 minutes (without landing and takeoff) for each flight. The mean altitude
of the UAV flight was approximately 24 meters. Hence, the NF region of the array
under test was scanned. Flights were programmed as constant altitude rasters with
a constant spacing of half wavelength (0.9 meters) between the parallel linear cuts.
However, because the irregularity of the scan the half wavelength sampling criterion
was not fulfilled in all the scanning regions (orthogonally to the UAV path direction,
e.g., along x-axis for y-oriented raster #1, see Fig. 4.3). On the other hand, the
field is heavily oversampled along the UAV path thanks to the very fast receiving
acquisition system on the ground. In order to assess the validity of the acquired set of
measurement points, a NF-FF transformation has been applied with simulated data
on y-oriented raster #1 measurement points (blue path in Fig. 4.3) obtaining good
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results. This demonstrates that the non-compliance of the half wavelength criterion
in few regions of the NF scan could be neglected in a first approximation. During
each flight, the dipole over the UAV was almost tangential to the UAV path e.g., in
the x-oriented raster the dipole was almost aligned with the x-axis whereas in the
y-oriented raster with the y-axis (see Fig. 4.5). In standard planar NF scans, the
two tangential components of the electric field are acquired. Note that these two
components are usually measured over the same spatial points. On the contrary, in
the present measurement setup, the two components were acquired over two different
sets of points (see Fig. 4.4). It is evident that such points follow surfaces that are
not planar and not regular either. For this reason, standard NF-FF transformations
are hardly applicable. Here, an inverse source technique (see Section 4.4) capable to
efficiently deal with a set of measurement points with arbitrary locations has been
adopted.

Fig. 4.5 Direction of the UAV-mounted dipole for the y-oriented raster #1.
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4.3 Measured Near-Field Data

Fig. 4.6 Element 5. On columns (from left to right): y-oriented raster #1 - #2, x-oriented
raster. On rows: magnitude and reconstructed phase of the received signal.

Fig. 4.7 Element 10. On columns (from left to right): y-oriented raster #1 - #2, x-oriented
raster. On rows: magnitude and reconstructed phase of the received signal.
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Fig. 4.8 Element 12. On columns (from left to right): y-oriented raster #1 - #2, x-oriented
raster. On rows: magnitude and reconstructed phase of the received signal.

Fig. 4.9 Element 15. On columns (from left to right): y-oriented raster #1 - #2, x-oriented
raster. On rows: magnitude and reconstructed phase of the received signal.

In this section, measured NF data of four array elements are presented. These
elements (numbered with 5, 10, 12, 15) are located from the origin to the array
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Fig. 4.10 Measured (purple) and simulated (blue) power at element 5 in dB for y-oriented
raster # 1, cut at x = 2.1 m. Black dots represent the scattering parameter |S21|2 (dB) between
UAV and AUT. Each curve is normalized at its maximum.

boundary (see Fig. 4.2).
All measured data suffered from non-linearity at RF level and truncation phenomena
at digital level. In fact, a better quality can be appreciated in signals which exhibits a
lower power level. Furthermore, these artifacts are usually present where the AUT
(simulated) field is particularly strong (as it will be shown in Table 4.1)1. As it will
be shown in this Section, such issues are appreciable for element 5 and reference
antenna and particularly relevant for element 10. On the contrary, signals of elements
12 and 15 appear to be more reliable. Further optimization of the acquisition system
setup will probably lead to smaller overall discrepancies.
Figures 4.6, 4.7, 4.8, 4.9 (first row) show the measured NF power at 175 MHz along
the UAV path (in a 2D view) received by the four selected elements, respectively.
For the y-oriented rasters (first two columns), each measured NF pattern resembles a
low-directivity radiating element whose position is highlighted with the red dot. As
previously mentioned, signals of elements 5 and 10 are corrupted in some regions
of the UAV scan (as it will be shown in this Section, the same regions of distorsion

1A complete debug and understanding of such issues at the receiver level is out of focus of this
thesis.
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Fig. 4.11 Magnitude of the signal received at the reference antenna. On columns (from left
to right): y-oriented raster #1, y-oriented raster #2, x-oriented raster. On rows: y-polarized
and x-polarized reference antenna, respectively. Each flight (i.e., column) is equalized at the
global maximum of the two polarizations.

appear in the phase plots). In a first attempt, this distortion was attributed to an
interaction between UAV and array. This hypothesis has been rejected after a
simulation of the scattering parameter S21 between element 5 and UAV (including
array and grounplane) (see Fig. 4.10) along a cut where the measured signal is
corrupted.
It should be noted that, in some regions near the boundary of the scanned area, the
measured power is only 5 dB lower than the maximum. As it will be stated in section
4.4.2, this is not enough considering that a level of -30 dB from the maximum is
generally required along the boundary of the scan plane [69]. Such limited NF scan
size was dictated by the UAV flight duration.
Received power at reference antenna is shown for all flights in Fig. 4.11. For the
y-oriented raster #2 (second column, first row), the signal is a little distorted in the
region near the reference antenna position. As it will be shown in Section 4.4.1,
this affects negatively the phase reconstruction (of all array elements) for y-oriented
raster #2, in the region near the reference antenna position. It should be noted that
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the y-oriented raster for the y-polarized reference antenna is not symmetric with
respect to the x-oriented raster of the x-polarized reference antenna. This is because
the dipole-like reference antenna pattern is more directive in its E-plane with respect
to its H-plane.
The phase information has been retrieved according to the procedure described in
Chapter 2 through the dual-polarized reference antenna (see (2.23) and (2.24)). The
phase equalization constant ∠Cre f ,y −∠Cre f ,x between the two orthogonal reference
antenna polarizations computed through (2.22) is approximately 70°. Reconstructed
phases of the four selected elements are shown in Fig. 4.6, 4.7, 4.8, 4.9 (second row).
For y-oriented rasters (first two columns) the element phase diagrams are consistent
with the characteristic phase pattern of a spherical wave centered at the element
position.
For the sake of comparison, measured powers and reconstructed phases of the four
considered elements are reported with their simulated counterparts in tables 4.1 and
4.2. For all simulated quantities, the electric field component along the UAV-mounted
dipole direction has been computed from a complete NF simulation in FEKO. It
should be noted that, for elements 5 and 10, regions of distortion for the measured
signals (left column) correspond approximately to regions where the simulated field
is strong (right column). This may confirm the previously mentioned issues in the
acquisition system (e.g., packet loss phenomena).
As a further verification, the reconstructed phase is compared to the simulated
one along a quasi-rectilinear cut at x = 1.5 m for the y-oriented raster. Very good
agreement can be observed between the blue markers (simulation) and purple solid
line (reconstructed) in Fig. 4.12.
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Fig. 4.12 Reconstructed phase (deg) (purple solid line), FEKO simulation (dotted blue
markers) and phase of the NF field radiated by inverse source currents (dashed orange) along
a quasi-linear cut at x=1.5 m (y-oriented raster) for element 12. Picture from [34].
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measurement simulation

Table 4.1 Measured (left column) and simulated (right column) magnitude of the received
signal at elements 5, 10, 12, 15 for y-oriented raster #1.
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reconstruction from measurement simulation

Table 4.2 Reconstructed (left column) and simulated (right column) phase of the received
signal at elements 5, 10, 12, 15 for y-oriented raster #1.
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4.4 Results

In this Section, data on the NF-FF transformation are presented. The presented
results have been achieved using two UAV flights, i.e., the x-oriented raster and
y-oriented raster #2 as input for the NF-FF transformation. Similar results have been
obtained using the x-oriented raster and y-oriented raster #1.

4.4.1 Inverse Source and Near-Field Results

The UAV path (see Fig. 4.3, 4.4) is not regular (neither planar nor uniformly spaced)
and thus standard NF-FF transformations cannot be applied. For this reason, an
inverse source2 approach [75] has been adopted as NF-FF transformation method
This approach is based on equivalent electric and magnetic currents placed over a
virtual (non-physical) surface surrounding the AUT. These unknown currents are
computed enforcing a null radiated field inside the virtual surface and a field equal
to the measured one on the UAV measurement points (e.g., for element 15 second
and third column of Fig. 4.9). Through this choice, Love’s currents (null field inside
the virtual surface) are exploited. In this way, the computed currents are directly
related to the actual electromagnetic field radiated by the AUT. The complexity of
the operator that has to be inverted is increased by the addition of the null field
condition. However, this choice drastically improves the condition number of the
operator, resulting also in a more stable solution. Different configurations of the
inverse source can be also considered [76], [77]. It should be noted that reciprocity is
exploited (see Appendix B) since the AUT is actually in receive mode. It should be
noted that differently from other applications of inverse source [75] the measurement
points belong to two different rasters, one for each polarization (see Fig. 4.4). A
vertical cylinder of 5 m radius and 3.5 m height has been used as virtual surface (the
array presented in Section 4.1 has 4.6-m radius). The presence of the ground-plane
has been taken into account into the inverse-source process. The surface of the
cylinder has been discretized with approximately 36.000 RWGs [78] for a total
number of 72.000 unknowns for the electric and magnetic currents. The total number
of measurement points was 900.000, considering both x and y-oriented rasters. The

2Other NF-FF transformation approaches based on plane-wave expansions [70], [71] or single-cut
NF-FF transformations [72], [73] or non-redundant representations [74] have been also proposed in
literature.
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linear system arising from the discretization has been solved in a least squares sense
using an iterative method coupled with a memory saving matrix factorization and
a fast matrix-vector multiplication [79], [80]. In this way, for each array element,
the computation of the currents took approximately 16 GB of the Random Access
Memory (RAM) and 32 minutes (27 for the matrix factorization and 5 minutes for
the linear system solution) on a workstation with a processor Intel Xeon E5-2697
v2. Electric equivalent currents are shown in Fig. 4.13, 4.14 for element 12 and 15,

Fig. 4.13 Magnitude of the electric equivalent current for element 12. Picture from [34].

Fig. 4.14 Magnitude of the electric equivalent current for element 15. Picture from [34].

respectively. The red dot marks the position of the considered antenna on the ground.
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Although currents are mainly concentrated on the upper part of the cylinder, they are
non-vanishing also on its lateral part because of the finite dimension of the cylinder.
Magnetic equivalent currents are not shown due to their similarity to electric ones.
As a verification example, the phase of the NF radiated from the computed equivalent
currents (along a cut at x = 1.5 m for the y-oriented raster) is also reported in Fig.
4.12 with the orange dashed line. A good agreement can be observed between these
curves, with a maximum discrepancy of approximately 10 degrees. For a comparison
over the whole UAV path, magnitude and phase of the field radiated by the inverse
source currents are reported on the right column in Fig. 4.15 and 4.16, respectively.
On the left column, the input quantities used for the NF-FF transformation (i.e., the
measured magnitude and the reconstructed phase) are reported. It can be observed
that the field strength of inverse source currents is very low where the reconstructed
phase is corrupted (see first row, first column of Fig. 4.16, right part of the UAV
scan). As it will be shown in Section 4.4.2 and 4.4.3, a similar phenomenon can be
appreciated in the H-plane of the NF-FF transformed EEPs.
For the x-oriented raster (Fig. 4.15, second row), a good agreement between mea-
sured and radiated by inverse source currents field can be observed.

Fig. 4.15 Left column: measured magnitude of the signal at element 12 (used as input for
the inverse source NF-FF transformation). Right column: magnitude of the field radiated by
inverse source currents. First row: y-oriented raster #2, second row: x-oriented raster.
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Fig. 4.16 Left column: reconstructed phase of the signal at element 12 (used as input for the
inverse source NF-FF transformation). Right column: phase of the field radiated by inverse
source currents. First row: y-oriented raster #2, second row: x-oriented raster.

4.4.2 Embedded Element Patterns (EEPs)

The radiated FF patterns at 175 MHz are computed from the equivalent currents
over the cylindrical surface. NF-FF transformations exploiting larger cylinders (with
radius r = 8 m and r = 10 m) were also performed. Tables 4.3 and 4.4 show the
transformed FF EEPs (magnitude and phase of the co-polar component) on their
E-plane and H-plane, respectively. All curves are equalized at zenith. The three
NF-FF transformations considering cylinders of radius r = 5, 8 and 10 m as virtual
surface are reported with solid, dotted and dashed orange lines for elements 5, 10,
12, 15.
For the sake of comparison, a FF flight was performed due to the feasible Fraun-
hofer distance. Magnitude and phase of the FF EEPs have been extracted from this
measurement as in [33], [58] (i.e., the phase has been extracted from (2.16) whereas
the magnitude from (3.1)). Hereinafter, they are referred to as the “measured FF
EEPs” and are reported with purple lines in tables 4.3 and 4.4. In particular, the
reference antenna has been used also in this FF case for the computation of each
EEP measured phase.
As further verification, a FF simulation has been performed in FEKO and is also
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reported in tables 4.3 and 4.4 with a blue line.
It is well known that NF planar scans suffer from some limitations. First, the trans-
formed FF pattern of the AUT is valid only over a limited angular range. The angular
bound for the validity of such transformed EEPs depends on the aperture of the AUT
and both the scan size and height. Considering the array size of 9.2 m, the angular
validity for the transformed FF can be estimated in the order of ± 29° [81]. On the
other hand, considering the dimension of the array with its ground plane, i.e., 16
m, the maximum angle of validity reduces to ± 22°. In tables 4.3 and 4.4, solid
and dashed vertical black lines represent the validity range of the reconstruction
corresponding to 22° and 29°, respectively.
Second, as a standard requirement for NF measurement [69], the signal level at the
edges of the planar scan must be 30 (or even 40) dB below the maximum. In this
work, the measured power is however only 5 dB from the maximum (see Section
4.3) in some regions along the boundary. This happens because the scan size (36
- 40 m) is not large enough for the considered scan height (about 20 m). These
two parameters have been selected considering flight duration and safety (to avoid
collision between UAV and top of the AUT). For this reason, an even smaller angular
validity (with respect to criteria discussed above) is expected in the EEPs3.
It should be also mentioned that the (UAV-mounted) source dipole-like pattern has
been found almost constant within the angular validity range discussed above. There-
fore, probe correction issue has not been addressed in this work. Nevertheless, results
are still quite satisfactory.
As a general remark, in table 4.3 the three NF-FF transformed E-plane EEPs (orange
curves) show good consistency within the ± 22° angular region, for both elements 12
and 15. In particular, in table 4.3 the agreement between NF-FF transformed and FF
measurement magnitude patterns of element 12 is reasonably good4 (less than 1 dB
discrepancy) within the ± 22° angular region. The discrepancy is a little bit higher
for element 15 5. This is related to the more significant truncation effect (see Fig.
4.9) i.e., the element is closer to the boundary of the scan area. On the contrary, the

3In this work, the radiation pattern has been retrieved using the inverse source technique. However,
in a classical planar NF-FF transformation, the radiation pattern is computed from the aperture field
through a Fourier transform. Truncation of the spatial domain is equivalent to multiply the aperture
field to a rectangular function which is equal to one on the measurement domain and zero outside.
The desired pattern is hence distorted by a convolution with a sinc function. As a result, oscillations
can appear in the reconstruction. This truncation effect is also known as Gibbs phenomenon.

4element 12 is located near the array center, see Fig. 4.2
5element 15 is located near the array boundary, see Fig. 4.2
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corrupted signals of elements 5 and 10 result in a worse agreement between the three
NF-FF transformed EEPs. Furthermore, for element 5 and 10 a worse agreement
between NF-FF transformed EEPs and FF measurement can be observed.
Results are similar for H-plane EEPs in table 4.4. As mentioned in Section 4.3, all
elements suffer from a corrupted phase reconstruction 6 in the UAV scanning region
near the reference antenna position. This affects negatively the NF-FF transformed
EEPs, in particular in their H-plane.
As far as the phase of E-plane EEPs is concerned, good agreement can be observed
in table 4.3 between NF-FF transformations and FF measurement. Although the
phase of the FF measurement suffered from some noise in the positive zenith angle
region of H-plane EEPs (see 4.4), a good agreement can be observed between NF-FF
transformations and FF measurement.
As a figure-of-merit for the E-plane, the root mean square of the logarithmic dif-
ference [60] is shown in Fig. 4.17 for all array elements. Such error measures for
simulated and NF-FF transformed EEPs are reported with blue and orange dots,
respectively. The measured FF EEPs are considered as reference. The considered
angular range is ± 22°. Fig. 4.17 suggests that the quality of the E-plane NF-FF
transformed EEPs is comparable to the simulation one. Data for element 8 are not
available because that receiver channel was connected to the reference antenna. On
the contrary, the error value for the NF-FF transformed EEP of element 11 is not
reported because the corresponding NF measured signal exhibited lower quality.

6because the signal of the reference antenna is corrupted in the region near the reference antenna
position, see Fig. 4.11
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Fig. 4.17 Orange (blue) dots represent the Root Mean Square of the log-difference between
FF measurement and NF-FF transformed (simulated) EEPs in the angular range 22° degrees.
Picture from [34].
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Table 4.3 Magnitude (left column) and phase (right column) of E-plane Embedded Element
Patterns (EEPs) of elements 5, 10, 12, 15 for three different NF-FF transformations (r is the
radius of the cylinder used as equivalent surface).
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Table 4.4 Magnitude (left column) and phase (right column) of H-plane Embedded Element
Patterns (EEPs) of elements 5, 10, 12, 15 for three different NF-FF transformations (r is the
radius of the cylinder used as equivalent surface).
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4.4.3 Array pattern

Array calibration is a fundamental task for phased array with digital beam-forming.
Calibration coefficients need to be accurately determined to focus/steer the array
beam in a particular direction. Such coefficients depend on both the antennas and
acquisition system. The presented method represents a viable solution to determine
calibration coefficients from NF measurements.
As reported in section 4.4.2, all the EEPs have been obtained by NF-FF transfor-
mation from NF measurements. The calibration coefficients can be obtained by
equalizing all such EEPs (in magnitude and phase) for a particular observation direc-
tion. In this way, both antenna and receiver contributions are accounted for.
The sum of all the equalized EEPs produce the full array beam. Fig. 4.18 shows the
co-polar component of the E-plane beam pattern for the array under test pointed at
zenith. Simulated and measured FF EEPs are reported with blue and purple lines,
respectively. The NF-FF transformation describes the main lobe and first nulls quite
well. Fig. 4.19 shows the co-polar component of the H-plane. The NF-FF trans-
formed pattern has a null in the positive zenith angle region. This can be explained
by the corrupted phase signal of the reference antenna (described in Section 4.3).
In fact, the direction where the NF signal is distorted corresponds in FF to positive
zenith angle values of the H-plane.
The E-plane cross-polar component is shown in Fig. 4.20. The result represented
with orange solid line has been obtained with both x and y-oriented rasters in Fig.
4.4 whereas the orange dashed line only uses the y-oriented raster. The lack of the
x-component information in the latter is clearly visible in Fig. 4.20. The simulated
cross-polar pattern is reported with blue line (measured cross-polar FF data are not
available). Even if sampling both NF components doubles the UAV flight time, this
is necessary to achieve an acceptable accuracy for the cross-polar component. The
good agreement between simulation (blue line) and NF-FF transformation (solid
orange line) confirms the validity of the sampling approach based on two different
rasters (see Fig. 4.4), one for each polarization. For a complete comparison over
the full azimuthal angle, Fig. 4.21, 4.22 show the magnitude (i.e., |eθ |2 + |eφ |2)
of the NF-FF transformed and simulated 2D FF array patterns pointing at zenith.
Quantities θ and φ correspond to the zenith and azimuth angles of the spherical
coordinate system, respectively. Solid and dashed black circles correspond to 22°
and 29°, respectively. As reported in Section 4.4.2, these angle values denote the
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Fig. 4.18 Array beam magnitude, E-plane cut, co-polar component. Blue, orange and purple
curves represent the far-field from simulation, NF-FF transformation and FF measurement,
respectively. Picture from [34].
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Fig. 4.19 Array beam magnitude, H-plane cut, co-polar component. Blue, orange and purple
curves represent the far-field from simulation, NF-FF transformation and FF measurement,
respectively.

validity of the NF-FF transformation across the zenith angular range. The agreement
between the 2D patterns is quite satisfactory, i.e., main lobe size and first sidelobe
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locations and levels are in agreement. The 2D FF measured pattern is not available
due to its prohibitive time duration (only a few FF cuts can be scanned by the UAV
in a single flight [33]).
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Fig. 4.20 Array beam magnitude, E-plane cut, cx component. Blue, solid orange and dashed
orange curves represent the far field from simulation and NF-FF transformation (two electric
field components as input) and NF-FF transformation (only one electric field component as
input), respectively. Picture from [34].
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Fig. 4.21 NF-FF transformed array beam magnitude (2D view). The black circles show the
angular validity range of the NF-FF transformation (see Section 4.4.2). Picture from [34].

Fig. 4.22 Simulated array beam magnitude (2D view). The black circles show the angular
validity range of the NF-FF transformation (see Section 4.4.2). Picture from [34].
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4.5 FF vs NF flights

In this Section, FF and NF flights are compared in terms of time duration. This
comparison is motivated by future characterizations of fully deployed (40-m size)
SKA stations. As far as FF flights are concerned, azimuthal rasters are considered.
These flights consist of several circular concentric paths with constant azimuthal
angular step ∆θ and constant distance from the AUT (see Fig. 3 in [82]), where ∆θ

is the azimuthal angle between two successive concentric paths. If N circular paths
are performed, this flight allows to obtain the FF pattern within the θFF = N∆θ

angular range with a ∆θ resolution. As far as NF flights are concerned, a cartesian
raster (e.g., a y-oriented cartesian raster, see Fig. 4.3) with constant step ∆y = λ/2
is considered. The size of the cartesian raster is chosen in order to obtain an angular
validity θFF [81] in the NF-FF transformed pattern, i.e., the same θFF is fixed for
both FF and NF flights.
In Fig. 4.23, path lengths of the FF and NF flights are compared considering different
values of array sizes. A frequency of 350 MHz and a validity angle of θFF = 60
degrees are chosen. For the FF flights, two different values of ∆θ = 5, 10 degrees
are considered (see blue and orange line, respectively). The altitude of the FF flights
is chosen as the minimum FF distance, i.e., max{10λ ,2D2/λ}. For the NF flight,
an altitude of 20 meters is fixed.
Assuming a constant UAV speed of 3 m / s, the time needed for the FF and NF flights
is shown in Fig. 4.24. As Fig. 4.23 and 4.24 show, FF flights becomes dramatically
time-consuming for big apertures. On the contrary, NF flights are faster to perform.
Moreover, NF flights are much more feasible, i.e., the UAV can fly at low altitude. It
should be also mentioned that the resolution ∆θ of the NF-FF transformed pattern
can be arbitrary small, i.e., radiation integrals of the inverse source currents can be
evaluated over arbitrary sets of angles (e.g., ∆θ = 0.1 degrees can be chosen).
In conclusion, UAV-based NF measurements can represent a valuable alternative
with respect to FF measurements to test fully deployed (40-m size) SKA stations.
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Fig. 4.23 Path length (kilometres) of UAV flights in case of FF (blue and orange lines) and
NF (black line) measurements. Different array sizes are considered on the x - axis.

Fig. 4.24 Time duration (minutes) of UAV flights in case of FF (blue and orange lines) and
NF (black line) measurements. Different array sizes are considered on the x - axis.



Chapter 5

Conclusion

The characterization of large antenna arrays is a very challenging task. In recent
years, Unmanned Aerial Vehicle (UAV) technology has been widely experimented as
antenna testing solution for FF pattern measurements. As far as power measurements
are concerned, the main source of error is usually represented by the uncertainty on
the UAV orientation and modeling (the UAV position error can usually be neglected
in a first approximation because it causes an error that decays with respect to the
distance from the AUT). For example, at lower frequencies (e.g., 50MHz) the UAV-
mounted source usually shows a low-directivity dipole-like pattern. In this case, the
UAV orientation error affects mainly the expected source polarization whereas the
gain remains approximately constant. For this reason, UAV-based measurements
of the AUT cross-polarization still remains a challenging task. Furthermore, as far
as the UAV modeling is concerned, the UAV usually mounts a mismatched load at
lower frequencies. Therefore, a precise evaluation of the reflection coefficient at
source level (and hence the power delivered to the transmitting antenna) can be not
trivial. On the other hand, at higher frequencies, the UAV usually mounts a more
directive antenna with the UAV structure acting as a ground plane. In this case,
the UAV orientation error significantly affects the expected source gain as well as
polarization.
However, when the AUT is very large, the FF distance (greater than hundreds of
meters) is no longer compliant with flight altitude regulations. In this case, NF
approaches become necessary and a NF-FF transformation can be used to determine
the FF quantities of interest from NF data. Hence, UAV-based NF measurements rep-
resent a valuable alternative to FF ones. This is because a complete FF measurement
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over a portion of the sphere (not single FF cuts) is dramatically time-consuming for
big apertures. Furthermore, NF flights are much more feasible, i.e., the UAV can fly
at low altitude. However, in the latter setup, the UAV position accuracy becomes
crucial. In this thesis, such accuracy was in the order of 10 cm in altitude and 3 cm
in the transverse plane. This means that the maximum measurable frequency is 300
MHz if a maximum position error of λ/10 is allowed.
In this thesis, both the FF and NF approaches are analyzed and tested on measure-
ments of SKA prototypes. The presented UAV-based measurement setup faces the
problem of the missing information of the transmitter phase, i.e., the measured phase
is continuously drifting during the flight. A phase reconstruction method using a
reference antenna has been presented for both the FF and NF case (see Chapter
2). This method has been applied to UAV-based FF and NF measurements of SKA
prototypes to retrieve the correct phase information (see Chapters 3 and 4). The
accuracy of this method relies on the knowledge of position and orientation of the
UAV and reference antenna, and their radiation patterns.
An inverse source technique has been used as NF-FF transformation (see Chapter 4).
This method allows to deal with arbitrary located measurement points. On the other
hand, it is not easy to implement, probe correction can be difficult to include and
point-matching weights must be carefully chosen1. Such NF-FF transformation has
been applied to a large horizontal scan made by the UAV. Such a planar acquisition
is particularly stable due to the simple rectilinear path the UAV has to follow. As
a drawback, the NF-FF transformed data are valid only in a limited angular range.
A satisfactory agreement between the NF-FF transformed results and a set of FF
measurements has been reached for both EEPs (magnitude and phase) and array
pattern. Both are consistent with simulated data.
The presented results demonstrate the feasibility of the NF approach as an effective
and fast way to characterize large antenna arrays in their operating environment. This
method is capable to characterize digital beamforming arrays by means of two planar
NF flights at low altitude. It can be also applied to aperture antennas and analog
beamformed arrays by exploiting a receiver with three phase-coherent channels (one
for the AUT and two for the dual-polarized reference antenna).
Future studies will be devoted to application of planar NF flights over a fully de-
ployed SKA station (40-m size). Considering the low-directivity elements under
test, the UAV altitude must be carefully chosen. In fact, once fixed the desired

1see Appendix B, Section "Inverse Source NF-FF Transformation: numerical implementation".
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angular validity range of the NF-FF transformation, a smaller altitude would result
in a smaller measurement area and hence a faster flight. On the other hand, shorten-
ing the UAV altitude increases the multiple reflections between the UAV structure
and the AUT. Furthermore, reflections from the ground and from the AUT to the
reference antenna could corrupt the reference antenna signal affecting negatively
the phase reconstruction. For these reasons, the position of the reference antenna
must be carefully chosen (with the possibility to consider more than one reference
antenna). Another interesting application is the use of the UAV indoor, e.g., in ane-
choic chambers. In this case, the UAV position can be acquired through an optical
device (e.g., laser tracker system). The measurement accuracy of such instruments is
much improved with respect to the GNSS one considered in this thesis. In this way,
higher frequencies could be also measured.
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Appendix A

Uniqueness of the Inverse Source
Problem

In this Appendix, uniqueness of the inverse source problem for time-harmonic
Maxwell’s equations is addressed. Aim of the chapter is to prove mathematically the
uniqueness of such problem (see lemma A.2.1). For this reason, the chapter has a
rigorous mathematical approach.

A.1 Motivations

Inverse source is a well known method that has been successfully exploited in the
electromagnetic community in order to obtain information on a radio-frequency
source. In particular, this technique has been widely used for NF-FF transformations
and antenna diagnostics. For this reason, it is fundamental to understand if the
problem is well.posed. In particular, in this work uniqueness of the inverse source
problem is considered.
The inverse source problem is substantially a back-propagation problem. Known the
tangential electric field over a virtual surface Γ (where the field is usually measured),
the tangential electromagnetic field over a surface Σ must be determined. The virtual
(non-physical) surface Σ is located in the region enclosed by the measurement surface
Γ.
It is well know that the inverse source problem for volume currents is ill-posed (the
solution is not unique) [83], [84], [85]. This is due to the fact that there exist volume
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currents that radiate a null field. Other researches has shown that through the inverse
source problem is possible to compute the minimum energy solution [85], [86], [87],
[88] whereas it is not possible to obtain the non-radiating part. In [85] the inverse
source problem for an electric surface current only (no magnetic current, no null
field condition inside the virtual surface) is addressed.
Here, the inverse source problem for time-harmonic Maxwell’s equations for equiva-
lent surface electric and magnetic currents with Love’s condition (null field inside
virtual surface) is instead considered.

A.1.1 Equivalence Theorem

In this Section, the equivalence theorem [89] (and its connection to the inverse source
problem) is briefly presented and analyzed.
A surface Σ that encloses the source and possible scatterers is considered. In this
way, the region outside Σ consists of free space. The equivalence theorem states that
there exist electric J and magnetic M currents defined over Σ that radiate the same
field of the source in the region exterior to Σ.
More precisely, an arbitrary electromagnetic field E−,H− ∈C1(B,C3)∩C(B,C3) in
B and E+,H+ ∈C1(R3\B,C3)∩C(R3\B,C3) in R3\B, i.e. solutions of Maxwell’s
equations (for R3 \B, the Silver Muller radiation condition must be included) can be
considered1. Equivalence theorem states that surface currents M := (E+−E−)×n
and J := n× (H+−H−) radiate fields E−,H− in B and E+,H+ in R3 \B, where n
is the unit normal outward vector over Σ. In this Chapter, Love’s currents (null field
inside B, i.e., E− = H− = 0 in B) are considered, i.e., J := n×H+ and M := E+×n.
Using the equivalence theorem, the problem of determining the field E+ is trans-
formed to the determination of the unknown currents J and M. The usual way to find
these currents is to enforce that such currents radiate a field equal to the measured
one, over the finite set of points in Γ where measurements are made. Of course, a
discretization of the radiation operator which maps currents over Σ to the field over
measurement points in Γ is needed. In this way, once obtained (an approximation of)
currents J and M, fields in R3 \B can be computed. In particular, the far-field of the
considered source is obtained.
It should be noted that the equivalence theorem gives a proof on the existence of the
considered currents J and M that radiates the measured tangential electric field on Γ.

1Definition of the function spaces C1(B,C3) and C(B,C3) can be found in Appendix B.
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However, (to the best of the author’s knowledge) the equivalence theorem does not
answer to the uniqueness problem considered in this Chapter.

A.2 Uniqueness of Inverse Source Currents

Aim: prove that E×n over the measurement surface Γ uniquely determines the
tangential fields E×n and n×H over Σ. Magnetic M and electric J currents are
defined as M := E×n and J := n×H over Σ. Currents J and M are also called
equivalent currents. Aim of this chapter is to prove that E× n over Γ uniquely
determines currents J and M over Σ. The proof can be found in lemma A.2.1.
A schematic of the inverse source problem is shown in Fig. A.1. Domains Ω ⊂ R3

and B ⊂ R3 with B ⊂ Ω are open bounded (connected with connected complement)
smooth domains. It is recalled that the electromagnetic field E,H satisfy

∇×E =− jωµH in R3 \B

∇×H = jωεE in R3 \B

Silver Muller radiation condition

(A.1)

where the Silver Muller radiation condition is

E(x)−Z0H(x)× x
|x|

= O(
1
|x|2

) |x| −→+∞ (A.2)

uniformly with respect to x/|x| ∈ S2.

Guidelines for the reader: The proof is divided in the following points:

• from the tangential electric field E×n over the measurement surface Γ it is
possible to uniquely determine the electric field E in the region exterior to Γ,
i.e., R3 \Ω.

• the electric field E satisfies Helmholtz equation in R3 \ B. Solutions of
Helmholtz equation are analytic.

• roughly speaking, if two analytic functions are equal over a small set, then
they are equal over the bigger set where they are analytic (see lemma A.3.1).
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Γ

Σ

B

Ω

J

M

E×n

Fig. A.1 Schematic of the inverse source problem. The surface Γ (dashed black line)
represents the surface where the tangential electric field E×n is measured. Currents J and M
over the virtual surface Σ (solid black line) are determined from the tangential electric field
E×n over Γ. The domain B (green) is the inner domain with boundary ∂B = Σ. Similarly,
the domain Ω (yellow) is the inner domain with boundary ∂Ω = Γ

In this way, E must be equal to any other possible field which exists in R3 \B
(with the same E×n over Γ).

• finally, currents E×n and n×H over Σ are uniquely determined.

Notation:

• Γ = ∂Ω is the surface where the tangential electric field is known (e.g., mea-
sured).

• Ω is the volume enclosed by the measurement surface Γ.

• Σ = ∂B is the surface where equivalent currents are placed.

• B is the volume enclosed by Σ.

• n = is the unit outward normal vector.

• Z0 =
√

µ/ε is the free space impedance.
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It should be recalled that H(Curl, Ω) is the space of functions e : Ω −→C3 such that
e ∈ L2(Ω,C3) and ∇× e ∈ L2(Ω,C3), where L2(Ω,C3) is the space of vector fields
with each component in L2(Ω).
In this work, spaces H−1/2(Div, Σ) and H−1/2(Curl, Σ) are not introduced, for their
definitions see [90].
The space Hloc(curl, R3 \B) is defined as

Hloc(curl, R3 \B) = {e : R3 \B −→ C3 s.t.

e|BR\B ∈ H(curl, BR \B) for any R ≥ R0}

where BR is the open ball centered at origin of radius R and R0 is the radius of the
ball which contains B.
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Lemma A.2.1 (uniqueness of inverse source). Given
E, H ∈ Hloc(curl, R3 \B) such that

∇×E =− jωµH in R3 \B

∇×H = jωεE in R3 \B

E(x)−Z0H(x)× x
|x| = O( 1

|x|2 ) |x| −→+∞

(A.3)

then currents J, M ∈ H−1/2(Div, Σ) such that J = n×H and M = E×n on Σ are
uniquely determined by E×n over the measurement surface Γ.

Proof. Let’s assume that there exist an electromagnetic field
(e,h) ∈ Hloc(curl, R3 \B)×Hloc(curl, R3 \B) such that e×n = E×n on Γ. The
proof consists in demonstrating that this implies e = E and h = H in R3 \B and
hence e×n = E×n and n×h = n×H on Σ.
The electromagnetic field e, h must satisfy

∇× e =− jωµh in R3 \B

∇×h = jωεe in R3 \B

e(x)−Z0h(x)× x
|x| = O( 1

|x|2 ) |x| −→+∞

(A.4)

Because (e,h) ∈ Hloc(curl, R3 \B)×Hloc(curl, R3 \B) then (e,h) ∈ Hloc(curl, R3 \
Ω)×Hloc(curl, R3 \Ω).
From the uniqueness of the exterior boundary value problem (see pages 303- 309,
theorem 5.64 in [90]), given an arbitrary λλλ ∈ H−1/2(Div, Γ), there exists a unique
solution (e,h) ∈ Hloc(curl, R3 \Ω)×Hloc(curl, R3 \Ω) of:

∇× e =− jωµh in R3 \Ω

∇×h = jωεe in R3 \Ω

e×n = λλλ on Γ

e(x)−Z0h(x)× x
|x| = O( 1

|x|2 ) |x| −→+∞

(A.5)

Considering λλλ = E×n on Γ then e = E in R3 \Ω from the uniqueness of the exterior
boundary value problem.
Each cartesian component of E (or equivalently e) is analytic over the open connected
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set R3 \B (see the proof below). Because e|R3\Ω
= E|R3\Ω

, then e = E on R3 \B by
lemma A.3.2. This implies h = H on R3 \B. The proof of lemma A.2.1 is concluded.
In next part, it is proved that each cartesian component of the electric field E (or
equivalently e) is analytic over R3 \B. Because E satisfies

∇×∇×E− k2E = 0 over R3 \B (A.6)

(where k = ω
√

εµ) then each cartesian component E of E satisfies Helmholtz
equation, i.e.,

∆E + k2E = 0 in R3 \B (A.7)

Given A = (−1,1)⊂R, we define v : A×R3 \B −→C as v(u,x) = ekuE(x), ∀u ∈ A
and ∀x ∈ R3 \B. We note that E is locally square integrable over R3 \B and then v
is locally square integrable over A×R3 \B.
Note that v satisfies ∆u,xv = 0 in A×R3 \B, where ∆u,x = ∂ 2/∂u2 +∆x.
Then v satisfies also the weak form of Laplace equation:∫

A×R3\B
v∆ψ dxdy = 0 ∀ψ ∈C∞

0 (A×R3 \B) (A.8)

From lemma A.3.1 (Weyl’s lemma), v is analytic. Then also E is analytic on R3 \B
because

E(x) = v(0,x) ∀x ∈ R3 \B (A.9)

Because E is an arbitrary cartesian component of E (or equivalently e), each cartesian
component of E (or equivalently e) is analytic.
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A.3 Useful Lemmas

It should be recalled that an analytic function is a function which can be locally
expanded as a power series. Moreover, the set C∞(Ω) is defined as the set of infinitely
differentiable functions with compact support in Ω.
Some useful lemmas that have been used in Section A.2 are now listed.

Lemma A.3.1 (Weyl’s lemma: regularity of Laplace equation solutions). [91] Given
a region Ω ⊂ Rn, if v : Ω −→ C is locally square integrable over Ω and v satisfies∫

Ω

v∆ψ dx = 0 ∀ψ ∈C∞
0 (Ω) (A.10)

then v is almost everywhere equal to a harmonic analytic function.

Lemma A.3.2 (Unique continuation of real-analytic functions). Let V ⊆ R3 a con-
nected open set, U ⊆ V an open (not empty) set and f1, f2 : V −→ C analytic
functions such that f1|U = f2|U .
Then f1 = f2 over V .

Proof. This is a well know result. A proof for the single-variable case can be found
in corollary 1.2.6 of [92]. For the sake of completeness, a proof is here reported.
The function g : V −→ C as g = f1 − f2 over V is defined. The aim is to prove that
g = 0 over V .
It should be noted that g is analytic on V .
The set Z is defined as the set where g and all its derivatives vanish, i.e.,

Z = {x∈V s.t. Dn g(x) = 0 for all n∈N3}=
⋂

n∈N3

{x∈V s.t. Dn g(x) = 0} (A.11)

where |n|= n1 +n2 +n3 and

Dn =
∂ |n|

∂xn1∂yn2∂ zn3
(A.12)

Aim of this part is to prove that Z is both open and closed.
The set Z is closed because Z is intersection of each closed set
{x ∈ V s.t. Dn g(x) = 0}. In fact, the latter set is closed because it is the inverse
image of zero, i.e., it is (Dn g)−1({0}) and {0} ⊂C is closed and Dn g is continuous
∀n ∈ N3.
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The set Z is also open. Given an arbitrary point x ∈ Z, there exist an open neighbor-
hood Wx ⊂ Z. In fact, given x ∈ Z, g can be expanded as a Taylor series in x. All
coefficients of the series must be zero, then g and all its derivatives are zero on Wx,
i.e., Wx ⊂ Z.
Finally, Z is a non-empty open and closed set, then Z =V . Hence, g = 0 and f1 = f2

over V .



Appendix B

AUT Characterization through
Equivalent Sources and Reciprocity

In Chapter 4 an inverse source NF-FF transformation has been applied to measured
data using a UAV. The UAV operated in transmitting mode whereas the receiving
voltage was acquired at the AUT. For this reason, reciprocity must be applied in order
to characterize the AUT. In this Chapter, the application of the reciprocity theorem
in its integral form (also known as Lorentz’s lemma) is applied to the considered
UAV-based measurement setup.

B.1 Reciprocity

In this Section, Lorentz’s reciprocity lemma is briefly recalled. The case of an
anisotropic medium is considered. The medium can be inhomogeneous and tempo-
rally dispersive (spatially dispersive media are not considered here). In this case,
constitutive relations1, i.e., equations linking the electric D and magnetic B induc-
tions to the electric E and magnetic H fields, are D = εεε ·E and B = µµµ ·H, , where εεε

and µµµ are the electric permittivity and magnetic permeability tensors, respectively.
If the medium is a conductor, the conduction current Jc = σσσ ·E must be taken into
account, where σσσ is the conductivity tensor. In the free-space case, the electric
permittivity, magnetic permeability and conductivity tensors become εεε = εIII, µµµ = µIII
and σσσ = 0, where ε and µ are the free-space electric permittivity and magnetic

1In this work, constitutive relations are considered in frequency domain.
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permeability, respectively.
Reciprocity in its integral form is known as Lorentz’s lemma which is based on
the Gauss Theorem (Divergence theorem). For this reason, Gauss Theorem is
here reported for completeness. The set Cn(D,C3) is defined as the set of vector
fields E : D −→ C3 which are n-times continuously differentiable on D whereas
Cn(D,C3) is the set of vector fields E ∈ Cn(D,C3) which have continuous exten-
sions (together with its derivatives of order n) to the closure D of D. For n = 0, the
notation C(D,C3) =C0(D,C3) is used. Similar definitions for Cn(D) and Cn(D) are
understood for scalar functions E : D −→ C.

Theorem B.1.1. [90][Theorem of Gauss, Divergence Theorem] Consider a smooth
bounded domain D ⊂ R3 with boundary ∂D with normal (outward pointing) unit
vector n, Consider a vector field E ∈C(D,C3) with ∇ ·E ∈C(D). Then∫

D
∇ ·Edx =

∫
∂D

E ·nds (B.1)

Proof. See Theorem A.11 in [90].

Lemma B.1.2 (Lorentz’s lemma). (from (1.10) in [93]) Consider a smooth bounded
domain D ⊆ R3 with boundary ∂D with normal (outward pointing) unit vector n.
The domain D can be constituted by a union of M disjoint subdomains Dm, i.e., open
sets Dm ⊂ D for m = 1, ...,M such that D = ∪M

m=1Dm.
Consider an electromagnetic field (En,Hn) with sources (Jn,Mn) solution of Maxwell’s
equations on ∪M

m=1Dm, i.e.,
∇×En =− jωµµµ

n
·Hn −Mn

∇×Hn = jωε̃εε
n
·En +Jn

on Dm ∀m = 1, ...,M

(B.2)

where ε̃εε
n
(r) = εεε

n
(r)− j

ω
σσσ

n
(r), for n = 1,2.

Sources Jn,Mn and tensors ε̃εε
n
,µµµ

n
are assumed to be sufficiently smooth such that

fields En,Hn solutions of (B.2) satisfy hypotheses of theorem B.1.1 on each subdo-
main Dm for all m = 1, ...,M and n = 1,2. Furthermore, assume that the tangential
fields n×E and n×H are continuous across the subdomains Dm for both fields
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n = 1 and n = 2. Then∫
D
(J1 ·E2 −M1 ·H2)dx−

∫
D
(J2 ·E1 −M2 ·H1)dx+

+ jω
∫

D
H1 ·

(
µµµ

2
−µµµ

T
1

)
·H2 dx− jω

∫
D

E1 ·
(

ε̃εε
2
− ε̃εε

T
1

)
·E2 dx =

=
∫

∂D
(E1 ×H2 −E2 ×H1) ·n ds

Proof. The proof can be found in [93] and it is based on the Gauss divergence
theorem (see theorem (B.1.1)) applied on each subdomain Dm and manipulations of
(B.2).

It should be noted that in lemma (B.1.2) the tangential fields n×E and n×H are
continuous across the subdomains Dm if no surface currents are present between the
subdomains (where n is the unit normal vector on the surface across two neighbour
subdomains).
In the next part, well-known corollaries useful for the application of the reciprocity
are reported.

Corollary B.1.3. Consider the same hypoteses of Lorentz’s lemma B.1.2 in free-
space. Consider the surface ∂D = S2(R), where S2(R) = {x ∈R3 s.t. |x|= R} is the
sphere of radius R centered at the origin. Furthermore, assume that fields E1,H1

and E2,H2 satisfy the Silver-Muller radiation condition at infinity:

E1(x)−Z0H1(x)×
x
|x|

= O(
1
|x|2

) |x| →+∞ (B.3)

E2(x)−Z0H2(x)×
x
|x|

= O(
1
|x|2

) |x| →+∞ (B.4)

uniformly for x/|x| ∈ S2, where Z0 =
√

µ0/ε0 is the free space impedance. Then,
the following surface integral tends to zero:

lim
R→+∞

∫
S2(R)

(E1 ×H2 −E2 ×H1) ·n ds = 0 (B.5)

Proof. It can be proven using the Silver-Muller radiation condition and the property
that

lim
R→+∞

∫
S2(R)

O(
1
|x|3

) ds = 0 (B.6)
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Corollary B.1.4. Consider the same hypoteses of Lorentz’s lemma B.1.2. Consider
a surface Σc and consider the unit normal vector n to the surface Σc. Assuming that
Σc is the surface of a Perfect Electric Conductor (PEC), i.e. assuming vanishing
tangential electric fields E1 ×n = E2 ×n = 0 on Σc, the following integral is equal
to zero: ∫

Σc

(E1 ×H2 −E2 ×H1) ·n ds = 0 (B.7)

Proof. It can be proven using the PEC condition of vanishing tangential electric
field.

Corollary B.1.5 (Lorentz’s lemma in free space). Consider two bounded disjoint
smooth domains V1 and V2 with normal (outward pointing) unit vector n. Consider
an electromagnetic field (En,Hn) solutions of Maxwell’s equations

∇×En =− jωµHn

∇×Hn = jωεEn

on R3 \ (V1 ∪V2)

Silver-Muller radiation condition

(B.8)

Then ∫
∂V1∪∂V2

(E1 ×H2 −E2 ×H1) ·n ds = 0

If n×E1 = 0 on ∂V1 and n×E2 = 0 on ∂V2, then

∫
∂V1

(n×H1) ·E2 ds =
∫

∂V2

(n×H2) ·E1 ds

where the tangential magnetic fiels are sometimes denoted with Js,1 = n×H1 and
Js,2 = n×H2.

Proof. It can be proven from lemma B.1.2 in case of free-space.
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B.2 Single Antenna

In this section, the reciprocity theorem (Lorentz’s lemma (B.1.2)) is applied to the
case of UAV-based antenna measurement of an AUT. Firstly, the simpler case of
a single antenna (not an antenna array) is analyzed. Choices of fields E1,H1 and
E2,H2 in lemma B.1.2 are analyzed and specified.

Choice of Fields/Sources 1

The electromagnetic field E1,H1 is chosen as the field of the AUT in transmitting
(TX) mode with the UAV which is not present. This is the unknown field that has
to be determined from measurements. This field is produced by unknown currents
J1 and M1 at the transmitter level (see Fig. B.1, left part). In lemma (B.2.1)
(single antenna case) and lemma (B.3.1) (array case) the field E1 is assumed to be
equivalently produced by an electric current J0

1 radiating in free-space and defined
over the AUT surface (see Fig. B.1, right part).

Choice of Fields/Sources 2

The electromagnetic field E2,H2 is chosen as the field of the UAV in TX mode, in
presence of the receiving antenna, i.e., the AUT. The equivalence theorem (Love’s
version) on the volume of the UAV (denoted with Vuav) is applied. This step allows
to cancel the presence of the UAV, considering free-space in the UAV volume Vuav.
In this way, the AUT field E1 which propagates in free-space (without the UAV
structure) can be retrieved (see proof of lemma B.2.1). This can be done because J1

and J2 radiate in the same medium, i.e., in presence of the AUT (see Table B.1, left
part). Similarly, J0

1 and J0
2 radiate in the same medium, i.e., free-space.

For simplicity, the surface Suav = ∂Vuav of the UAV is assumed to be a Perfect Electric
Conductor (PEC) 2 such that the electric field produced by the UAV-mounted antenna
is given by the electric current J2 = (n×H2)δSuav = Js,2δSuav over the UAV surface
Suav, where Js,2 = n×H2 and δSuav is a surface Dirac delta over Suav. The current
J2 radiates a null electromagnetic field in Vuav, i.e., E2(r) = H2(r) = 0 for r ∈Vuav.
In the next part, J2 will be approximated with the current J0

2, i.e., J2 ≃ J0
2, where

2we consider the case where the field on the UAV is completely described by an electric current
(no magnetic current).
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J0
1

E1, H1

z = AΣ

VJ1

M1

E1, H1

Fig. B.1 The AUT produces an electromagnetic field E1 and H1 in transmitting mode. On the
left: the transmitter is placed in the volume V (where possible sources J1 and M1 are present)
highlighted in red (see proof of lemma B.2.1). In V , sources J1 and M1 produces fields E1
and H1 in presence of the AUT structure. On the right: fields E1 and H1 are produced by an
electric current J0

1 defined over the AUT surface SAUT radiating in free-space.

J0
2 is the current defined over the UAV surface and radiating in free-space, i.e., in

absence of the AUT (see Table B.1, right part). The tangential magnetic field is hence
approximated with J0

s,2 ≃ n×H2. This assunption is fulfilled if the mutual coupling
between AUT and UAV can be neglected. Finally, the incident electromagnetic field
produced by the UAV i.e., produced by the current J0

s,2, is denoted with E0
2, H0

2.
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UAV

AUT

J2

UAV

J0
2

Table B.1 On the left: UAV and AUT. The current J2 radiates in presence of the AUT
structure (in the UAV volume Vuav free-space can be placed using the equivalence theorem).
On the right: the current J0

2 ≃ J2 radiates in free-space (the AUT is not present).

B.2.1 J on AUT Surface

In this Section reciprocity for a single antenna (not an antenna array) is analyzed.
The AUT field E1 is assumed to be completely described by an electric current J1

defined over the AUT surface SAUT . Equivalent currents placed over a virtual surface
enclosing the AUT will be considered in next Section.

Lemma B.2.1. Consider the previous assumptions on fields E1,H1 and E2,H2. Then

c
[

ZA

ZRX
+1
]

IT XVRX =−
∫

Suav

J0
s,2 ·E1dx =−

∫
SAUT

J0
s,1 ·E0

2dx (B.9)

Proof. A reference surface Σ separating the AUT from the transmitter is considered
(see Fig. B.2). The volume occupied by the transmitter is denoted with V , see Fig.
B.2. It should be noted that V must contain the Low Noise Amplifier (LNA) of the
antenna and all other non-reciprocal components. Lorentz’s lemma B.1.2 is applied
over the volume3 D = R3 \V .
The right-hand-side of Lorentz’s lemma: This surface integral has to be consid-
ered: ∫

∂V
(E1 ×H2 −E2 ×H1) ·n ds (B.10)

3more rigorously, we have to apply Lorentz’s lemma over a finite volume contained in a sphere of
radius R and then, for R →+∞, the surface integral over S2(R) tends to zero for corollary B.1.3.
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z = A

ẑ

Σ

V

Fig. B.2 The AUT and the volume V considered for the reciprocity (highlighted in red).

Note that because ∂V = Σc ∪Σ. The surface Σc (i.e., the surface of the transmitter
part) is modeled as a PEC. Then∫

∂V
=
∫

Σc

+
∫

Σ

=
∫

Σ

(B.11)

where the integral
∫

Σc
= 0 vanishes for corollary B.1.4. It should be noted that the

normal component of fields in the integral over Σ vanishes because, writing each
field then:

Ei ×H j = (Et
i +En

i n)× (Ht
j +Hn

j n) = Et
i ×Ht

j +Hn
j Et

i ×n+En
i n×Ht

j

where each field Ei has ben written as a sum of a transverse Et
i and a normal En

i n part,
i.e., Ei = Et

i +En
i n for i = 1,2, i ̸= j. Using a scalar product for n and n · (a×n) = 0

∀a, next equation is obtained:

n · (Ei ×H j) = n · (Et
i ×Ht

j) (B.12)
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The surface integral (B.10) is then∫
∂V

(E1 ×H2 −E2 ×H1) ·n ds =
∫

Σ

(Et
1 ×Ht

2 −Et
2 ×Ht

1) ·n ds =⊘

where the symbol ⊘ denotes that all the computations refer to the same quantity, i.e.,
the surface integral in (B.10).
Consider the z axis as the longitudinal axis along the cable connecting AUT and
transmitter whereas x,y axis are the transverse axis. A reference plane at z = A
is chosen. If the cable is single-mode and is sufficiently long, then fields can be
approximated with only one propagating mode. Then 4 (see Fig. B.3, B.4 for the
equivalent circuit of the AUT in receiving and transmitting mode)Et

1(x,y,z = A) =VT X e(x,y)

Ht
1(x,y,z = A) =−IT X h(x,y)

Et
2(x,y,z = A) =VRX e(x,y)

Ht
2(x,y,z = A) = IRX h(x,y)

(B.13)

V oc
RX

ZA

ZRX

z = A

IRX

VRX

ẑ

Fig. B.3 Circuit of AUT in receiving (RX) mode with Thevenin equivalent circuit of the
antenna and incident field.

V oc
T X

ZT X

ZA

z = A

IT X

VT X

ẑ

Fig. B.4 Circuit of AUT in TX with Thevenin equivalent circuit of the transmitter.

The surface integral becomes

⊘=

[
VT X IRX +VRX IT X

]∫
Σ

(e×h) ·n ds = c
[
VT X IRX +VRX IT X

]
=⊘

4note the minus sign at IT X for the choice of z axis.
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where c :=
∫

Σ
(e×h) ·n ds is a dimensionless constant.

In receiving mode, the receiver is seen as a load with impedance ZRX . The receiving
voltage (see Fig. B.3) VRX and current IRX are linked by VRX = ZRX IRX . On the
contrary, in transmitting mode (see Fig. B.4), the voltage VT X and the current IT X at
section Σ are linked by VT X = ZAIT X .
In conclusion, the right hand side of Lorentz’s lemma is:

∫
∂V

(E1 ×H2 −E2 ×H1) ·n ds = cIT XVRX

[
ZA

ZRX
+1
]

The left-hand-side of Lorentz’s lemma: The left-hand-side of Lorentz’s lemma is∫
D
(J1 ·E2 −M1 ·H2)dx−

∫
D
(J2 ·E1 −M2 ·H1)dx+

+ jω
∫

D
H1 ·

(
µµµ

2
−µµµ

T
1

)
·H2 dx− jω

∫
D

E1 ·
(

ε̃εε
2
− ε̃εε

T
1

)
·E2 dx =⊞

where the symbol ⊞ denotes that all the computations refer to the volume integral in
the left-hand-side of Lorentz’s lemma.
In D = R3 \V , there are no sources for fields 1, i.e. J1 = M1 = 0 in D. Furthermore,
the medium in D is the same for both fields 1 and 2 and is also reciprocal (note that
the LNA has been included inside V ), i.e.:ε̃εε

1
(r) = ε̃εε

T
1
(r) = ε̃εε

2
(r) = ε̃εε

T
2
(r)

µµµ
1
(r) = µµµT

1
(r) = µµµ

2
(r) = µµµT

2
(r)

(B.14)

∀r ∈ D. Then, the left-hand-side of Lorentz’s lemma reduces to:

⊞=−
∫

D
J2 ·E1dx =⊞ (B.15)

Note that J2 is the current over the UAV in presence of the AUT. The current J2

could be computed from simulations. However, the computation of E1 would be
prohibitive for the time-cost. Because the UAV in practical applications is several
wavelengths far from the AUT, the mutual coupling between AUT and UAV can be
neglected. More precisely, the current J2 is approximated with J0

2 where J0
2 is the

current over the UAV in free space (in absence of the AUT). Hence

⊞=−
∫

Vuav

J2 ·E1 dx =−
∫

Suav

Js,2 ·E1 ds =−
∫

Suav

J0
s,2 ·E1 ds =⊞ (B.16)
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The field E1 is assumed to be produced by an electric current only 5 radiating in free
space. In this way, standard reciprocity (see corollary B.1.5) can be applied 6:∫

Suav

J0
s,2 ·E1dx =

∫
SAUT

J0
s,1 ·E0

2dx (B.17)

where E0
2 is the incident field produced by the UAV in free-space, i.e., E0

2 is the field
radiated by J0

2.
Matching right and left hand side, the result is proved.

Comparison with Similar Equations in Literature

Because (see Fig. B.3)

VRX =
ZRX

ZA +ZRX
V oc

RX (B.18)

then equation (B.9) can be written as

cIT XV oc
RX =−

∫
Vuav

J0
2 ·E1dx =−

∫
VAUT

J1 ·Einc
2 dx (B.19)

Enforcing c = 1, the previous equation is in line with similar results in literature
[70], [94] 7, [95]8.

VRX is not the Actual Measured Voltage

As a last remark, VRX is the voltage before the LNA, hence it is not the actual
measured voltage. The LNA and its scattering matrix must be taken into account to
obtain a more accurate model.

B.2.2 J and M on Equivalent Surface

In this part, reciprocity with equivalent sources over the virtual surface enclosing the
AUT is considered.

5We consider the case where the field of the AUT is completely described by an electric current
(no magnetic current).

6because J0
s,2 ≃ n×H2 and J0

s,1 ≃ E1 ×n
7there is a minus sign w.r.t. our equation
8there is a minus sign w.r.t. our equation
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Lemma B.2.2. Consider the assumptions of this section on E1,H1 and E2,H2. Then

c
[

ZA

ZRX
+1
]

IT XVRX =−
∫

Suav

J0
s,2 ·E1dx =−

∫
S

J0
s,1 ·E0

2 −M0
s,1 ·H0

2ds

(B.20)

Proof. The proof of lemma B.2.1 is almost valid. More precisely, only the part
after equation (B.17) has to be modified. A closed surface S enclosing the AUT is
considered. Equivalent sources J0

1 = J0
s,1δS and M0

1 = M0
s,1δS with J0

s,1 = n×H1 and
M0

s,1 = E1 ×n are placed over S, where n is the unit outward directed normal vector
of S (see Fig. B.5). Sources J0

s,1 and M0
s,1 radiate a null field inside S and radiate

E1,H1 outside S. Applying lemma (B.1.5), next equation is obtanied∫
Vuav

J0
2 ·E1dx =

∫
S

Js,1 ·Einc
2 −Ms,1 ·Hinc

2 ds (B.21)

J0
s,1M0

s,1

E1,H1

S

Fig. B.5 The equivalent virtual surface S encloses the AUT. Over S, currents J0
s,1 and M0

s,1
are defined. These currents radiate an electromagnetic field E1,H1 (i.e. the field produced by
the AUT) outside S.
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B.3 Array

In this Section, reciprocity for an antenna array is analyzed. Definitions of quantities
used in this Section are here reported.

• E1,H1 is the electromagnetic field of the array in TX mode.

• Saut is the union of the surfaces of all array elements.

• S is a virtual surface enclosing the array. On S, equivalent (Love’s version)
currents Js,1 and Ms,1 are defined. These currents radiate in free space an
eletromagnetic field E1,H1 which is the field of the array in TX mode.

• IT X is the vector containing input currents when the array is in TX mode (see
Fig. B.7). The vector IT

T X denotes its transpose.

• VRX is the vector containing receiving (measured) voltages when the array is
in RX mode, with the UAV in TX mode.

• ZA is the impedance matrix of the array.

• ZRX is a diagonal matrix with load impedances of the array (in RX mode) on
the diagonal.

• I is the identity matrix.

As in the previous Section, Suav is the UAV surface and Js,2 is the electric current
over Suav radiating in presence of the array. Then J0

s,2 is the electric current over Suav

radiating in free-space fields E0
2,H

0
2.

B.3.1 J on AUT Surface

Lemma B.3.1. Consider the assumptions of this chapter on E1,H1 and E2,H2. Then

cIT
T X

[
ZAZ−1

RX + I
]

VRX =−
∫

Suav

J0
s,2 ·E0

1 dx =−
∫

Saut

J0
1 ·E0

2 dx

(B.22)



B.3 Array 113

Proof. A reference surface Σn, separating the n−th antenna from the TX, is consid-
ered (see Fig. B.6). The volume Vn is the volume occupied by the TX at antenna
number n. Lorentz’s lemma B.1.2 is applied over the volume D = R3 \V where
V =V1 ∪V2 ∪ ....∪VNant .

ẑ
Σ1

V1

Σ2

V2

Fig. B.6 Example with Nant = 2. Considered volumes V1 and V2 for reciprocity.

The right-hand-side of Lorentz’s lemma: the next surface integral has to be
considered:

∫
∂V

(E1 ×H2 −E2 ×H1) ·n ds =
Nant

∑
n=1

∫
Σn

(E1 ×H2 −E2 ×H1) ·n ds = (B.23)

=
Nant

∑
n=1

cn

(
V n

T X In
RX +V n

RX In
T X

)
=⊘ (B.24)

where the index n refers to the n−th antenna. If all cables are equal then all sections
Σn coincide and then cn = c =

∫
Σ
(e×h) ·nds is constant ∀n = 1, ...,Nant . Because

V n
RX = Zn

RX In
RX ∀n = 1, ...,Nant (see Fig. B.7) and VT X = ZAIT X , next equation is

obtained

⊘= c
Nant

∑
n=1

(
V n

T X In
RX +V n

RX In
T X

)
= cVT

RX

[
Z−1

RX ZA + I
]

IT X (B.25)

Taking the transpose, using that ZRX is diagonal and ZA = ZT
A is symmetric, once

obtains

VT
RX

[
Z−1

RX ZA + I
]

IT X = IT
T X

[
ZAZ−1

RX + I
]

VRX (B.26)

The right-hand-side of Lorentz’s lemma: see the proof for the single antenna case,
i.e., proof of lemma B.2.1.



114 AUT Characterization through Equivalent Sources and Reciprocity

ZA

V oc,1
T X V oc,Nant

T X

z = A

Z1
T X ZNant

T X

ZA

I1
T X

V 1
T X

ZNant
RXZ1

RX

I1
RX V 1

RX

V oc,1
RX

Fig. B.7 On the left: array in transmitting mode. For each element, the Thevenin equivalent
of the generator is considered (for the n-th element, an impedance Zn

T X with open circuit
voltage V oc,n

T X are considered). On the right: array in receiving mode. The horizontal line is
the section z = A.

B.3.2 J and M on Equivalent Surface

Lemma B.3.2. Consider the assumptions of this section on E1,H1 and E2,H2. Then

cIT
T X

[
ZAZ−1

RX +I
]

VRX =−
∫

Vuav

J0
2 ·E1dx=−

∫
S

J0
s,1 ·E0

2−M0
s,1 ·H0

2ds

(B.27)

Proof. For the right-hand-side of Lorentz’s lemma, see the proof of lemma B.3.1.
For the right-hand-side of Lorentz’s lemma, see the proof for the single antenna case
with equivalent sources, i.e., lemma B.2.2 and Fig. B.8.
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J0
s,1M0

s,1

E1,H1

S

Fig. B.8 Example with Nant = 2. Equivalent currents J0
s,1 and M0

s,1 radiate the same field E1
of the array in TX mode outside S.

B.4 Inverse Source NF-FF Transformation: theoreti-
cal implementation

In this Section, reciprocity lemma (B.3.1) is analyzed for the application of the
inverse source NF-FF transformation. Dividing the result of lemma (B.3.1) for the
source voltage Vs = IsZs, next equation is obtained

cIT
T X

[
ZAZ−1

RX + I
]

VRX

Vs
=− 1

Zs

∫
Vuav

J0
2

Is
·E1dV (B.28)

Assuming that the UAV-mounted dipole can be approximated as an elementary dipole
at location r then

J0
2(y) = Is L û(r)δ (r−y) (B.29)

where L is a constant with unit of length and û is the unit vector which represents the
direction of the dipole over the UAV. All array elements are assumed to be loaded
on the same impedance, i.e., ZRX = ZRX I. Furthermore, all elements are assumed to
be equal and de-coupled i.e. ZA = ZAI. If the n−th array element is excited with a
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current IT X , i.e., (IT X)m = IT X δmn
9, substituting (B.29) in (B.28), next equation is

obtained

cIT X

[
ZA

ZRX
+1
]

VRX ,n(r)
Vs

=− L
Zs

û(r) ·E1(r) (B.30)

Hence, the measured voltage divided by the source voltage is proportional to the
electric field of the AUT, i.e., VRX ,n/Vs ∝ û ·E1 where E1 is the electric field of the
array exciting the n−th antenna only. It should be noted that VRX ,n/Vs is fully known
(magnitude and phase) through the procedure described in Chapter 2. Equation
(B.30) has been used in the inverse source NF-FF transformation to compute the
surface equivalent currents J0

s,1 and M0
s,1 (E1 depends on J0

s,1 and M0
s,1 through

radiation integrals, see Section B.5).
As a further development, (B.27) could be implemented in order to compute the
unknown equivalent currents from UAV-based measurements. In this case, the pattern
of the UAV-mounted source antenna could be taken into account in the inversion
process resulting in a more accurate NF-FF transformation (still not demonstrated).

B.5 Inverse Source NF-FF Transformation: numeri-
cal implementation

In this Section, the numerical implementation of the inverse source NF-FF transfor-
mation is discussed. For the sake of readability, the field E1 is here denoted with E
and represents the unknown field produced by an array element. Aim of the inverse
source algorithm is to obtain the desired electric field E through equivalent currents
defined over a virtual surface S. For this purpose, (B.30) has been used to compute
such unknown currents. The electric field E(rm) along the UAV-dipole direction
û(rm) on the set of measurement points {rm , m = 1, ...,M} is extracted from the
UAV-based measurements by (B.30) (rm are points of the UAV path and û is a unit

9Note that it is hard to make a physical interpretation of the equality (IT X )m = IT X δmn. It seems
that the n-th array element is feeded with a current IT X whereas the other elements are loaded with an
open circuit. However, because VT X = ZAIT X hence (VT X )m = ZAIT X δmn. This could be read as the
n-th array element is feeded with a voltage ZAIT X and the other elements are closed on a short circuit.
This contradiction arises from the hypotheses that ZA = ZAI, i.e., all elements are de-coupled. Once
assumed de-coupled array elements in RX mode, it is not possible to restore coupling in TX mode. In
conclusion, E1 is defined as the electric field of the array with the n-th element feeded. Using this
model with de-coupled elements, impedance loads on the other elements do not affect the field E1,
because E1 is the electric field of the n-th element treated as a single element (not embedded in the
array).
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vector). For the sake of readability, equivalent currents J0
s,1 and M0

s,1 are denoted
with J and M, respectively. Such currents must satisfy two conditions. First, J and
M must radiate the measured field E · û over {rm , m = 1, ...,M}. Furthermore, the
field radiated by J and M inside S must be null. The electric field E is linked to
currents J and M through radiation integral operators, i.e.,

L (J)(r)+K (M)(r) = E(r) (B.31)

where L and K are radiation operators of electric and magnetic currents, respec-
tively. Hence, enforcing equality between the radiated field on measurement points
rm along û and the measured field, one obtains

û(rm) ·
[
L (J)(rm)+K (M)(rm)

]
= û(rm) ·E(rm) ∀m = 1, ...,M (B.32)

In order to improve the inverse source algorithm, a set of weights wm ∈ R is used

wm û(rm) ·
[
L (J)(rm)+K (M)(rm)

]
= wm û(rm) ·E(rm) ∀m = 1, ...,M (B.33)

Considering a triangular tessellation of the surface S, currents J and M are approxi-
mated as linear combination of Rao Wilton Glisson (RWG) basis functions of order
zero [78], i.e.,

J =
N

∑
n=1

jnfn M =
N

∑
n=1

mnfn (B.34)

In this way, (B.33) can be stated as

WTx = WE (B.35)

where x contains the unknown coefficients jn and mn, the matrix T is derived by L

and K whereas matrix W is the diagonal matrix containing the weights (W)mm =wm.
It should be noted that (B.35) is not the final linear system that will be solved.
Currents J and M must satisfy Love’s condition (null field inside S), i.e.,

L (J)(r)+K (M)(r) = 0 (B.36)
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∀r inside the surface S. This equation is discretized in the matrix vector multiplication
(see the theoretical remark below for the details)

TLx = 0 (B.37)

Finally, conditions (B.35) and (B.37) can be casted in a single linear system

Ax = b (B.38)

where A = [TL;WT] and b = [0;WE] with A ∈ C(N+M)×2N and b ∈ CN+M . Once
solved (B.38) in a least squares sense, equivalent currents J and M are known. The
FF pattern of the AUT is hence computed through radiation integrals of such currents.
Theoretical remark (choice of inner surface for Love’s condition): Love’s con-
dition must be enforced, i.e., the field radiated by J and M must be null inside S.
An arbitrary closed surface Q completely enclosed by S is considered. It should be
noted that if the tangential electric field is zero on Q, then the electric field inside
Q must be zero (if the considered frequency f0 is not a resonance for the cavity Q).
Moreover, enforcing null field inside Q is equivalent to enforce null field inside S.
This is because if the field is null inside S then it is null inside Q (trivial). However,
the converse is also true. If the field is null inside Q, from the analicity of the electric
field inside S (see appendix A), then the electric field must be null everywhere inside
S. In conclusion, the choice of the surface Q where tangential null field is enforced
is theoretically arbitrary. In fact, an arbitrary (but closed) surface Q inside S can be
chosen. However, a proper choice of Q is fundamental from a numerical point of
view.
In order to enforce null field inside S, the surface Q = Sτ is defined in the following
part. Consider the normal (outward pointing) unit vector n to the surface S. Chosen
a positive τ > 0, the surface Sτ is defined as:

Sτ = {x− τ n(x), x ∈ S} (B.39)

A null tangential field is enforced over Sτ . This is equivalent to enforce that the field
is null inside Sτ and then the field must be null everywhere inside S. Considering a
triangular mesh over Sτ with RWGs {gn, n = 1, ...,N}, next condition is considered

(L (J)+K (M), gn) = 0 ∀n = 1, ...,N (B.40)
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where the symmetric product is defined as (f,g) =
∫

Sτ
f ·g ds. In this way, (B.37) is

obtained. The choice of τ is dictated by the considered wavelength λ (e.g., τ = λ/10
[96]). It should be noted that the choice τ > 0 allows to avoid singularities in the
test integral (B.40).
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