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Abstract

This thesis presents the theory and development of a novel approach for the automated
design of metasurface antennas. The introduced method is fully numerical and can
be applied to the design of 3D metasurfaces, allowing the transformation of a given
incident �eld into a radiated �eld that satis�es mask-type amplitude constraints.

The design of metasurfaces is challenging due to their intrinsic multi-scale
features, as they are composed by many subwavelength scattering elements. The
process is made possible by the introduction of macroscopic models that describe
the behaviour of the metasurface in terms of an equivalent impedance boundary
condition (IBC), which de�nes the relationship between the tangential electric and
magnetic �elds on either side of the metasurface. To be implemented in practice, the
obtained impedance must be realizable, i.e., it must be passive and lossless, with
reactance values within practical manufacturing limits.

In this work the focus is on themacroscopic design of metasurfaces, i.e., the design
of the surface impedance pro�le that leads to the desired radiated �eld. Common
techniques for the macroscopic design of metasurface antennas rely on analytical
approximations for the incident and scattered �elds, as well as for the impedance
pro�le. This limits their application to simple geometries, and the ability to deal
with arbitrary speci�cations is minimal. To overcome these limitations, recently
new approaches have been proposed which frame the design as an inverse source
problem, allowing more generality in the de�nition of the incident and scattered
�elds. However, they are formulated as an input-output �eld transformation on the
two sides of a metasurface, preventing their application to cases where the incident
�eld is on the surface (e.g., surface wave based metasurface antennas).

The method introduced in this work is based on a formulation of the scattering
problems as an integral equation, where the unknown is the equivalent electric current
only. The process involves the synthesis of this current, constrained to correspond to a
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realizable impedance, and to radiate a �eld obeying the requirements. The impedance
is obtained from the synthesized current only at the end of the process. This method
requires no a-priori information or heuristics on the impedance distribution.

The current-based design avoids the solution of the forward problem at each
iteration, greatly reducing the computational burden, and the formulation is such
that all relevant operations in the iterative process can be evaluated with O(N logN)
complexity, where N is the number of unknowns for the current. Another bene�t
is the ability to enforce mask-type (inequality) constraints, as opposed to pattern
matching techniques adopted by previous methods, allowing to incorporate all
relevant �gures of merit (gain, side-lobe levels, polarization ratio, etc.) directly into
the design instance.

To demonstrate the validity of the proposed method, it has been applied to
the design of metasurface antennas of practical relevance. Application examples
concentrate on the case of on-surface incident �eld and far-�eld pattern speci�cations
in terms of realized gain. The obtained results con�rm the feasibility of the
macroscopic design for medium- and large-size circular metasurfaces, with pencil-
and shaped-beam patterns, and for both linear and circular polarization. Design
examples for di�erent geometries, i.e., elliptical and symmetric strip, are also included
to demonstrate the �exibility of the approach.
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Chapter 1

Introduction

In the last decade, the use of metasurfaces for the manipulation of electromagnetic
�elds has been a topic of continuously expanding relevance [1]. They �nd application
in several areas, from antennas to microwave components, and over a wide range
of frequencies, from microwaves to optical ones. Examples include low-pro�le
antennas, lenses, polarizers and radomes; re�ectarrays and transmitarrays have
also seen realization with metasurfaces. Recently, the concept of recon�gurable
intelligent surfaces (RIS) [2] has been proposed for 5G and beyond-5G environments.
In all these applications, the metasurface interacts with an incident, assigned �eld,
generating the radiated �eld; the metasurface is engineered so that this radiated �eld
has the desired properties.

From the structural point of view, metasurfaces are a class of arti�cial surfaces
that represent the two-dimensional version of metamaterials, as they are formed by
the arrangement (usually periodic) of sub-wavelength scattering elements on a thin
supporting layer. By varying the size and shape of these individual elements, it is
possible to tailor the electromagnetic behaviour of the surface, achieving properties
that cannot be commonly found in nature. They can be realized with a variety of
technologies: currently, the most popular ones are the use of printed conductive
elements (e.g., patches, slotted patches, meanders, etc.) and all-metal pillars (Fig.
1.1). Within printed-type structures, the main di�erence between the various classes
is in terms of the number of layers: low-pro�le antennas are usually single-layer,
while trasmit-type structures require more than one layer to ensure functionality and
absence of re�ection. Another di�erence is in the nature of the incident (source) �eld:
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(a) (b)

(c) (d)

Fig. 1.1 Di�erent technologies for the realization of spatially-variable metasurfaces: (a)
printed circular patches with variable radius, (b) slotted circular patches, (c) metallic pillars
with variable heights, and (d) grounded dielectric slab with variable thickness.

in low-pro�le antennas it is usually generated by a feed embedded in the surface (e.g.,
through a pin), which launches a guided surface wave in the grounded dielectric; in
all other cases, the feed is external and illuminates the metasurface.

The full-wave analysis of metasurface antennas is challenging due to their
multiscale features: many sub-wavelength unit cells are combined to form surfaces
that can have a large size in terms of wavelengths. However, their macroscopic
behaviour can be e�ectively modelled in terms of constitutive surface parameters,
that determine the appropriate boundary conditions [3]; these parameters are derived
through homogenization techniques that depend on the size of the unit cells and the
operating frequency.

The representation in terms of a continuous distribution of equivalent surface
impedance has not only enhanced the electromagnetic analysis of large metasurface
antennas, but it has also enabled their design, by allowing the process to be carried
out in two distinct phases. The design aims at �nding the spatial distribution of a
surface impedance; after that, the �nal layout is achieved by choosing suitable unit
cells and �nding their parameters so that they produce the previously determined
impedance pro�le. The unit cell analysis is usually done with the assumption of local
periodicity, which is the approach followed by virtually all published works (see [4]
for an application of this approximation). The choice of the unit cells is not part of
this work and can be realized with a variety of existing approaches, e.g., [5, 6].
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The conception and systematic design of spatially varying metasurfaces has been
initially based on wave physics and analytical considerations, e.g., [7, 8], [6, 9].
However, analytically-based approaches cannot accommodate for arbitrary design
speci�cations, which has prompted for research into automated design algorithms
based on numerical techniques. Ideally, the process would be totally automatic,
starting from the speci�cations and ending with the metasurface layout, requiring no
extra information or user intervention. The demand for such methods motivated the
research presented in this work.

1.1 State of the Art

The state of the art for the design of metasurface antennas can be conceptually
divided into two main categories: �2D� and �3D� methods. The cases in which
one spatial coordinate is considered invariant or periodic in the design � and thus
ignorable � are termed �2D�, while this restriction is not present for �3D� methods.
Another important distinction is between two di�erent types of �eld speci�cations:
pattern-matching and mask-type inequalities. In pattern-matching the objective is to
obtain a given �eld, i.e. minimizing the �error� from this given pattern. Mask-type
speci�cations, on the other hand, are more general (and more useful in practice): an
�ideal� pattern is not known, and instead the �eld amplitude is required to satisfy
inequalities, i.e., to lie within an upper and lower bound; the spatial variations of the
bounds are called �masks�. A practically relevant sub-class of this problem is the
one in which one seeks to maximize the main beam gain in the prescribed direction.
Consistent with the scope of this work, only those approaches that aim at the fully
numerical design of the metasurface will be reviewed.

2D methods The approach in [10] employs a dual optimization, considering
equivalent currents and impedance at the same time, with an alternating type of
optimization; this requires a solution of the forward problem at each step. A method
based on optimizing the currents only would dispense from the solution of the
forward problem during the iterations: an important step in this direction is in
[11, 12] where reactivity is enforced directly; the resulting (non-convex) optimization
instance is tackled with a global optimization algorithm, but this approach was
further improved in [13], employing a gradient-based optimization. Consistent with
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previous works, also [14] explicitly considers a transmission-re�ection problem
through the (stacked) metasurface layers, i.e., for an exciting �eld not generated
on-surface. For this problem, �elds are represented in terms of traveling waves in
each (sub-wavelength) unit cell: this allows to formulate the problem directly in
terms of circuit elements, with the currents expressed through them; as a result,
the circuit elements are the direct unknowns of the inverse problem, with passivity
and absence of losses intrinsically enforced. These important works address the
problem of (phaseless) pattern matching �as opposed to mask-type (inequality) �eld
speci�cations. A scattering approach to synthesis is also presented in [15]. In [16]
a multi-layer, dual-band method is presented for a transmission-type metasurface
with pattern-matching requirements; the method builds upon the work in [17]. The
design is done in two steps: in the �rst step, equivalent currents are synthesized
without passivity requirements and complex impedance values are obtained from
these; in the second step, reactance values are optimized to match the �eld produced
by the complex impedance. Finally, [18] addresses the electromagnetically consistent
optimization of the surface impedance in RIS at a design and system level.

3D methods Regarding �3D� methods, the work in [19�21] employs equivalent
currents only, expressed in terms of entire-domain basis functions for circular and
elliptical domains; the method requires to formulate the problem as an amplitude and
phase �eld matching. In [22] equivalent currents are �rst found from radiated �eld
mask-type requirements, and a 3D realizable metasurface is subsequently obtained
via optimization (involving machine learning) and exploiting the degrees of freedom
of non-radiating currents (similar to [23]). The work in [24] lies between 2D and 3D
methods. It performs the automated design of a 2D metamaterial with cylindrical
symmetry, using a 2D FEM forward problem with a constrained gradient-based
method. A similar approach is adopted in [25], where the forward problem is dealt
with in terms of a 2D circuit network solver, using reduced-order models of the unit
cells to reduce the computational load. Finally, the works in [26] and [27] employ a
global optimization. At each iteration, a solution to the forward problem is required;
to reduce its cost, [26] exploited the body-of-revolution (BOR) symmetry, while [27]
specialized entire-domain basis functions [28]. Finally, global optimization of unit
cell and limited size binary metasurfaces have also been reported in the literature,
e.g., in [29].
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1.2 Aim of this work

The present work introduces an automatic 3D method for the design of metasurface
antennas. The procedure aims to �nd a passive and lossless impedance pro�le
(as required for the physical implementation), with constraints on the values of the
surface reactance (imposed by technological limits), and allowing arbitrary mask-type
speci�cations on the radiated �eld. The dissertation focuses on the design of scalar
impedance pro�les, although the requirements of passivity and absence of losses are
formally derived for the general case of tensorial impedance.

The goal is reached by a formulation of the electromagnetic scattering problem
as a Surface Integral Equation (SIE), and involves the gradient-based optimization of
only the surface equivalent electric current derived from it. This allows to leverage
readily available numerical methods for the solution of integral equations. The
numerical challenges arising from a 3D problem and the size of the structure are
addressed by a formulation that is computationally e�cient, requiring a minimal
number of matrix-vector products per iteration. The objective function and its
gradient can be computed with almost-linear, O(N logN) complexity (N is the
number of unknowns for the current) via the so-called fast formulation of the forward
problem. Finally, the line search procedure is computed in a fast, iterative way with
consecutive approximation of the objective function with fourth-order polynomials
that are minimized analytically.

The incident �eld is arbitrary, although this work mainly deals with the case
where the source is embedded on the surface, as necessary in low-pro�le metasurface
antennas. This represents one of the most challenging design scenarios, as the
coupling between the source and the metasurface is much stronger than in externally-
fed antennas (e.g., re�ectarrays). Hence, controlling the re�ected power becomes
crucial.

1.3 Thesis outline

The thesis is composed of four main chapters, which are organized as follows:

� Chapter 1 introduces the concept of metasurface antennas and their design.
The state of the art is reviewed and the aim of the thesis is stated.
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� Chapter 2 presents the analytical and numerical formulation needed for the
analysis of metasurface antennas. The concept of impedance boundary
condition is introduced, and the requirement for passivity and losslessness are
derived for scalar and tensorial impedances. The SIE formulation is de�ned,
along with the numerical methods adopted for its solution. These concepts
form the basis for the design approach presented in the next chapter.

� In Chapter 3, the proposed approach for the automatic design of metasurface
antennas is described, both from the conceptual and the algorithmic point of
view. The constraints are formally de�ned, and the current-based optimization
algorithm is outlined. Lastly, the resulting numerical complexity is analyzed.

� Chapter 4 collects a series of numerical results for a variety of geometries
and target pattern con�gurations. The method is applied to design circular
metasurfaces of di�erent electrical size, as well as elliptical ones and strip
antennas. Both linear and circular polarizations are considered, with pencil
beam and shaped beam patterns. The e�ectiveness of the proposed approach
is validated by the solution of the forward EFIE-IBC system with the obtained
impedance pro�le.

� In Chapter 5, a brief summary of the presented material is given, along with
possible future developments and improvements.



Chapter 2

Analysis of Metasurface Antennas

In this chapter, the framework for the analysis of metasurface antennas is introduced.
Starting from the impedance boundary condition needed for the modelling of the
metasurface, the integral equation formulation is derived. Lastly, the numerical
methods commonly used to solve these electromagnetic problems are presented.

2.1 Impedance Boundary Condition

The metasurface is modelled as an Impedance Boundary Condition (IBC) [3], which
relates the tangential electric �eld to the jump of the tangential magnetic �eld:

Etan = Z �
�
n̂�(H+ �H�)

�
; (2.1)

where Z(r) is the space-varying value of the impedance parameter, which in general
is of tensorial nature. Superscripts + and � refer to the two sides of the surface (n̂
points toward the + side), and Etan =

�
I � n̂n̂

�
�E is the electric �eld tangential

to the surface. The term �impedance� comes from the fact that a discontinuity
of the tangential magnetic �eld is due to an equivalent surface electric current
J = n̂�(H+ �H�), and the IBC can be equivalently written as

Etan = Z � J : (2.2)

The value of the Z is derived from the geometry of the unit cell, through homoge-
nization techniques that di�er depending on the application (see, e.g., [6]). As this
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work deals only with the reconstruction of the impedance pro�le, these techniques
will not be discussed further.

A tensor impedance is modelled by choosing a local orthonormal basis (û; v̂),
and introducing four basis dyadics as follows [30]:

I = ûû+ v̂v̂; (2.3)

N = v̂û� ûv̂ = n̂�I; (2.4)

K = ûû� v̂v̂; (2.5)

L = v̂û+ ûv̂: (2.6)

Other basis can be used (e.g., ûû, ûv̂, v̂û and v̂v̂), but this choice o�ers some
advantages in the analysis of passive and lossless metasurfaces, as will be made clear
in the next section. The general form of a tensor impedance takes the form

Z = ZI I + ZNN + ZKK + ZLL: (2.7)

The four dyadic basis can be divided into two groups. I andN do not depend on
the direction (i.e., the choice of unit vectors, as long as they are orthonormal), and
are therefore isotropic. An impedance boundary is termed isotropic if its impedance
dyadic can be completely expressed in terms of two-dimensional isotropic dyadics.
On the contrary, an impedance boundary that has non-zeroK and/or L components
is termed anisotropic. An anisotropic impedance means that its response depends
on the direction of the applied electric �eld. This provides more �exibility in the
manipulation of the �elds, in particular for the control of polarization.

2.1.1 Passivity and losslessness condition

In all practical cases, the impedance must be passive and lossless. This ensures that
it can be physically implemented with printed conductive patches with negligible
losses, and without the need for active elements. The meaning of these conditions
from an energetic point of view can be investigated starting from the expression for
the surface complex power density absorbed by a surface (see App. A.1),

~p = Etan �
�
n̂�(H+ �H�)

�� = Etan � J�: (2.8)



2.2 Surface Integral Equation formulation 9

This general formula is valid whenever the surface introduces a discontinuity in the
magnetic �eld. The passivity and losslessness (PL) condition requires Re ~p = 0
everywhere on the impedance surface. If the considered impedance is scalar, i.e.,
Z = Z I , the PL condition reads

0 = Re (Etan � J�)

= Re (ZJ � J�)

= ReZ jJ j2 ;

(2.9)

which is true only if the impedance is purely reactive, i.e.,

ReZ = 0: (2.10)

The derivation of the PL condition for a general tensor impedance is much more
involved, and is reported in App. B. It requires

ReZI = ImZN = ReZK = ReZL = 0: (2.11)

In view of this, the general form of a passive and lossless impedance tensor is

Z = jXII +RNN + jXKK + jXLL: (2.12)

The term RN implies an instantaneous transfer of energy from one polarization to
the other. This is tipically achieved by resonant unit cells that exhibit a bianisotropic
behaviour (e.g., split ring or omega particle). However, the use of these geometries
complicates the layout design and is outside the scope of this work. Consequently,
only unit cells with RN = 0 will be considered.

2.2 Surface Integral Equation formulation

Electromagnetic problems involving metasurfaces can be analyzed with di�erent
formulations. In particular, for single-layer metasurfaces, the choice is between the
opaque and transparent impedance formulation. The opaque formulation assumes
that the impedance surface is impenetrable, and that �elds are only on one side
of it, which in turn implies that equivalent currents �ow only on that side and
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M �
eq

M +
eq

J �
eq

J +
eq

n̂
SIBC

Fig. 2.1 Representation of equivalent currents for the application of the Equivalence Theorem
to the case of a metasurface.

the background medium is usually homogeneous. On the contrary, a transparent
impedance allows the �elds to exist on both sides of the metasurface, with a multilayer
background medium. For reasons that will become clear later, the latter formulation
is employed in this work. It relies on the Surface Equivalence Theorem [31, p. 653],
which states that the solution of an electromagnetic problem external to a volume V ,
containing the sources, remains unchanged if one removes all sources and materials
inside the volume and places equivalent sources on the boundary @V , de�ned as

Jeq = n̂�H ; (2.13)

Meq = �n̂�E: (2.14)

Consider a volume that bounds a metasurface SIBC (Fig. 2.1). If the volume collapses
to the surface from both sides, the total equivalent currents are given by the sum of
the equivalent currents on each side,

Jeq = J+
eq + J�eq = n̂�

�
H+ �H�

�
; (2.15)

Meq = M+
eq +M�

eq = �n̂�
�
E+ �E�

�
; (2.16)

where the normal unit vector n̂ points toward the + side. A simplifying assumption
is that the metasurface introduces discontinuities in the magnetic �eld only, which
is practically the case for metasurfaces realized with printed conducting patches,
ensuringMeq = 0. With (2.15), (2.1) can be equivalently written as

Etan = Z � Jeq: (2.17)

The tangential electric �eld can be expressed as the sum of the incident �eld Einc,
radiated by the source in the absence of the metasurface, and of the scattered
�eld Esc = LJeq, radiated by the equivalent currents. This allows to express the
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electromagnetic problem as an Electric Field Integral Equation (EFIE-IBC):

[Einc(r) + LJeq(r)]tan = Z(r)Jeq(r); 8r 2 SIBC; (2.18)

where the unknown is the equivalent electric current Jeq; L is the Electric Field
Integral Operator (EFIO) de�ned as

LJ(r) =
�

SIBC

GEJ(r; r0) � J(r0) dS(r0); (2.19)

whereGEJ is the multilayer dyadic Green’s function for the background medium [32].
It is noted that here the problem is formulated in terms of a transparent IBC, which
requires the Green’s function of the layered background medium. This approach
has been shown to be signi�cantly more stable than the one involving the opaque
version of the IBC [33], which would not need the more complex mentioned Green’s
function. This approach also allows for a better description of spatial dispersion
(the dielectric medium e�ect is fully described), and eases the passage from the
impedance pro�le Z(r) to the design of the individual unit cells (which will not be
discussed in this work).

It is also of interest to look at the computation of the �eld radiated by equivalent
currents, as it is usually this �eld that is the target of the optimization process. If the
radiated �eld speci�cations are not in the the Fraunhofer (far �eld) region, radiation
is obtained via application of the EFIO, LJ . When the �eld speci�cations are in the
far �eld (FF), the radiation operator R is given by

RJ(r̂) =
jk0

2�
GFF(r̂) �

�

SIBC

J(r0) e jk0r̂�r0 dS(r0); (2.20)

where the multilayer FF tensor is de�ned as

GFF(r̂) = �gTM(r̂) �̂�̂� cos � gTE(r̂) ’̂’̂: (2.21)

Here, r̂, �̂ and ’̂ are the unit vectors for a spherical coordinate system, and

�̂ = cos� x̂+ sin� ŷ; (2.22)
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with gTM and gTE being the longitudinal transmission line transfer functions for the
TE and TM components [34, p. 1182] and � and � being the polar and azimuthal
angles describing the direction of radiation. Note that in the above the radiated far
�eld has been normalized to exp(�jk0r)=r. A detailed derivation of the far �eld
computation, for the relevant case of single-layer metasurfaces, is reported in App.
C.

2.3 Numerical methods

The framework in which the electromagnetic problem has been formulated requires
the adoption of numerical methods for its solution. In particular, the discretization
follows the usual Method of Moments approach [35]: the surface SIBC is represented
as a triangular mesh, and the sought currentJ is approximated as a linear combination
of Rao-Wilton-Glisson (RWG) basis functions �n [36], de�ned on the N internal
mesh edges,

J(r) =
NX

n=1

In �n(r): (2.23)

The linear system corresponding to the discretized problem is obtained by testing the
integral equation (2.18) with the same set of basis functions (Galerkin’s method),
where testing is carried out by means of the bilinear form

ha ; b i =
�

SIBC

a � b dS: (2.24)

With this discretization, the integral equation (2.18) transforms into the linear system

Vinc + LI = ZI; (2.25)

where the array I collects the RWG basis coe�cients In, and

(L)mn = h�m ;L�n i; (2.26)

(Z)mn = h�m ; Z�n i; (2.27)

(Vinc)m = h�m ;Einc i: (2.28)
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In presence of an impedance surface, the problem of �nding the equivalent electric
current coe�cients I requires the solution of the linear system

�
Z� L

�
I = Vinc: (2.29)

Enforcement of radiated �eld speci�cations involves sampling the �eld at a
discrete set of points; for the case of speci�cations in the FF region, the sampling
points r̂j are on the unit sphere, and de�ned by the spherical coordinates (�j; �j).
There are two tangential polarizations per sampling point. The radiated �eld samples
at r̂j; j = 1; : : : ; Nf are assembled in column vectors E�;E’ 2 CNf and, considering
the discretization of the current in (2.23), they may be expressed as:

E� = E0
� + R�I; (2.30)

E’ = E0
’ + R’I; (2.31)

where the �elds E0
� and E0

’ are those due to the incident �eld (present in the absence of
the metasurface), and the radiation matrices R�;R’ 2 CNf�N are de�ned as follows:

(R�)jn = �̂j � R�n(r̂j); (2.32)

(R’)jn = ’̂j � R�n(r̂j): (2.33)

2.3.1 Fast algorithms

In the design of electrically large antennas, it is necessary to exploit fast numerical
algorithms for feasibility reasons. The optimization strategy must take this into
account, as will be detailed later. Fast factorizations (e.g., [37]) are related to
iterative solutions of the forward problem (2.25); they allow to store only near-�eld
interactions of the EFIO matrix L (i.e., with O(N) storage requirement) and to
perform matrix-vector products LI in O(N logN) complexity (i.e., with O(N logN)
operations per product). Fast factorizations are also required in the computation of
the radiated �elds in (2.30), (2.31) to avoid computation and storage of the radiation
matrices.

In this work, thematrix-vector products involving the EFIO operator are performed
by means of a GIFFT algorithm [38, 39]. The computation of the far-�eld radiation
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is done by an upward pass of the multilevel fast multipole algorithm (MLFMA) with
FFT interpolation on a regular grid of far-�eld points in the u-v space [37, Sec. 3.5.5].

2.3.2 Conditioning of the EFIE-IBC linear system

The solution of (2.29) requires the use of iterative methods when dealing with
electrically large antennas. The convergence properties of these methods strongly
depend on the condition number of the matrix representing the linear system.
Algebraic preconditioning techniques are available to improve the conditioning of
the EFIE-IBC system, but they do not constitute the focus of the present work and
will not be discussed further.

For the EFIE-IBC, the average surface impedance Zavg is linked to the condition
number of the matrix (Z� L), as discussed in [33]. In this regard, it is helpful to
analyze the behaviour of the condition number as a function of the imaginary part
of the average impedance. The results, shown in Fig. 2.2, have been obtained for a
square plate of side 4�0, with a mesh size of �0=10.

-1,500 -1,000 -500 0 500 1,000 1,500 2,000 2,500 3,000

10-1

1

101

102

103

Im Zavg

co
nd

(Z
�

L
)

Fig. 2.2 Condition number of the matrix (Z � L) as a function of the average reactance
ImZavg. The interval of numerical instability (high condition number) is highlighted.

As it is clear, there is a well de�ned interval of reactance values for which the
condition number grows to very large values. This fact must be taken into account
when establishing the admissible range for the reactance, in such a way that the
resulting average falls outside of the problematic interval.



Chapter 3

Automated Design of Metasurface
Antennas

In this chapter, the automated design procedure is described. Starting from the
geometry and the source �eld, the constraints are de�ned. The design begins with
a current-based optimization, which results in an equivalent current distribution
satisfying the requirements, followed by the computation of the actual impedance
pro�le. The complete design procedure is outlined in Fig. 3.1. The work presented
in this chapter has been submitted for publication and is available as a preprint (see
Publications section).

3.1 Geometry and source �eld

The geometry of the antenna and of the background medium is the starting point of
the design. This choice, together with the feed speci�cation, dictates the achievable
performances (maximum gain, etc.); therefore, the user should carefully consider
these points. The focus will be on the design of planar, single-layer metasurfaces on
a dielectric substrate, excited by a surface wave (Fig. 3.2).

The proposed procedure is numerical and as such requires the discretization of
the solution domain; owing to the surface integral formulation presented in Sec. 2.2,
only the impedance surface SIBC needs to be meshed. This is done by considering
a tessellation composed of Nc triangular cells Si (see Fig. 3.3 for an example).
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� Geometry + Mesh
� Source �eld

(Sec. 3.1)

� Reactance bounds
� Pattern mask

(Sec. 3.2)

Current-based optimization
(Sec. 3.4)

Impedance computation
(Sec. 3.5)

Fig. 3.1 Flowchart of the complete design procedure

(a)

"r

SIBC

h

J
Einc

(b)

Fig. 3.2 Example of geometry for the considered metasurface antenna layout: (a) 3D view,
for the case in which the source of the incident �eld is on-surface, (b) cross section with the
equivalent currents J .
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Fig. 3.3 Example of mesh employed in the design. Only the impedance surface is discretized,
and the e�ect of the grounded substrate (background medium) is taken into account by the
multilayer Green’s function.

The current is approximated as a linear combination of N RWG basis functions (as
detailed in Sec. 2.3).

The source �eld de�nes how the antenna is excited. The feed can be on the
surface level, exciting a guided surface wave in the dielectric substrate, or external,
illuminating the aperture from a distance. The case of an on-surface feed is more
susceptible to the re�ection of power at the input, a problem which must be addressed
in the design procedure. In all cases, one needs to estimate the input power of the
source �eld, as needed in the de�nition of the optimization instance (the calculations
for the particular case of a vertical pin exciting a surface wave are reported in App.
A.4).

It must be stressed that the setup of the design procedure is not restricted to planar,
single-layer geometries in a multilayer environment, but can be applied in general
to arbitrarily shaped surfaces in heterogeneous background media. However, as the
algorithm requires the formulation of a surface integral equation, the computation of
the required matrices and of the incident �eld can become cumbersome. Moreover,
the availability of fast methods for the computation of matrix-vector products is
limited in the case of arbitrary geometries.

3.2 Constraint de�nition

The aim of the design procedure is to obtain an impedance pro�le that is physically
and technologically realizable, and that radiates a �eld pattern obeying the �eld
speci�cations when it interacts with the source �eld. Therefore, it is important to
examine what these constraints mean and how they can be enforced.
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3.2.1 Realizability

To obtain a physically realizable impedance, the metasurface must be locally passive
and lossless, meaning that for each point on the surface, the active power should
neither be dissipated, nor provided. This translates in the following condition for the
impedance:

ReZ(r) = 0; 8r 2 SIBC: (3.1)

Moreover, the range of realizable reactance (imaginary part of the impedance)
values depends on the chosen unit cell type, employed technology and practical (e.g.,
size) limits; these bounds must be taken into account in the design process, i.e.,

XL � ImZ(r) � XU; 8r 2 SIBC: (3.2)

These two requirements ensure that the metasurface can be implemented by means
of the chosen unit cells. Numerical considerations can also in�uence the range of
acceptable reactance values, as analyzed in Sec. 2.3.2, since the full design cycle
includes a validation process in which the optimized impedance pro�le is used in the
solution of the forward problem. In fact, if the resulting linear system (2.29) is badly
conditioned, noise in the solution can prevent convergence of the iterative solver,
even if the physical design is satisfactory.

3.2.2 Field speci�cations

The radiated �eld speci�cations may be both in the far �eld region or closer; in this
work, the focus is on far �eld speci�cations, as these are the most common ones in
the design of antennas. They are expressed in terms of the �eld amplitude (power
density); both the total (�t�) amplitude and the co- (�co�) and cross-polarized (�x�)
components are considered:

F co(r̂; I) = jE(r̂; I) � p̂�(r̂)j2 ; (3.3)

F cx(r̂; I) = jE(r̂; I) � q̂�(r̂)j2 ; (3.4)

F tot(r̂; I) = jE(r̂; I)j2 : (3.5)
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where p̂ and q̂ = r̂� p̂� are the co- and cross-polarization unit vectors, respectively.
Tab. 3.1 lists the choice of unit vectors for the most common types of polarization.
The de�nitions for linear polarization are taken from [40].

Field speci�cations are of the mask type, i.e., de�ned in general via inequalities
of the kind

ML(r̂; I) � F (r̂; I) �MU(r̂; I); (3.6)

for each considered far �eld direction r̂. The mask values must typically be de�ned
in terms of directivity or gain. Observe that pattern-matching, i.e., �tting a speci�c
(amplitude) �eld pattern, is a special case of the above, i.e.,

F (r̂; I) = M(r̂; I) �! M(r̂; I) � F (r̂; I) �M(r̂; I); (3.7)

withML = MU = M , that is easier to address as it does not require inequalities.

Speci�cation of an absolute lower bound to the main lobe (co-polarization) may
be a requirement in some designs; on the other hand, sidelobe and cross-polarization
levels have to be de�ned relative to the actual level in the main beam. This way, the
relative levels comply with the speci�cations even when the main lobe requirement is
not met by the solution. This can be made speci�c as follows. Let r̂0 be the speci�ed
beam pointing direction; the reference main-lobe level Fref is de�ned as the average
over a small angular region 
0 around the maximum radiation direction r̂0,

Fref(I) =
1


0

�


0

F co(r̂; I) d
(r̂): (3.8)

The above is an extension of the amplitude in the speci�ed beam direction, F co(r̂0),
to which it reduces in a trivial manner; use of this averaged level typically makes
the optimization instance more robust especially in shaped-beam design instances
(e.g. �at-top). Given a lower boundM0 for the reference level, the only absolute
requirement will thus be

Fref(I) �M0; (3.9)

with all others becoming relative to Fref .

It is convenient to break down the speci�cations in the main lobe (ML) region

ML and in the side-lobe (SL) region 
SL, as they are functionally di�erent. Overall,
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this results in the following set of speci�cations:

M co
L (r̂; I) � F co(r̂; I) �M co

U (r̂; I); r̂ 2 
ML; (3.10)

where

M co
L (r̂; I) = �co

L (r̂)Fref(I); (3.11)

M co
U (r̂; I) = �co

U (r̂)Fref(I); (3.12)

with the upper requirement being absent in pencil-beam type speci�cations. The
parameters �co

L and �co
U represent the lower and upper relative levels for the co-

polarization component in the main beam. For the cross-polarization and total
magnitude, the masks take the form

F cx(r̂; I) �M cx
U (r̂; I); r̂ 2 
ML; (3.13)

F tot(r̂; I) �M tot
U (r̂; I); r̂ 2 
SL; (3.14)

where

M cx
U (r̂; I) = �cx(r̂)Fref(I); (3.15)

M tot
U (r̂; I) = �SL(r̂)Fref(I): (3.16)

angle

�e
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) Fref
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�SL
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F cx
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Fig. 3.4 Example of far-�eld speci�cations: objective levelM0, reference level Fref , main
lobe co-pol masksM co

L ,M co
U (green), cross-pol maskM cx

U (red) and side lobes maskM tot
U

(blue). Vertical arrows indicate relative levels.
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The parameter �cx de�nes the cross-polarization ratio in the main lobe, while �SL

represents the desired relative level for the side lobes. An example of mask-type
constraints, with all the parameters, is depicted in Fig. 3.4.

3.3 Alternate Projection Algorithm

In the search for an e�ective algorithm for the design of metasurfaces obeying
the realizability constraints and the �eld speci�cations, the initial focus was on
an Alternate Projection Algorithm, inspired by well-known algorithms for pattern
synthesis [41�43], and adapted to include the constraints on the impedance. This
attempt resulted in the algorithm listed in Algorithm 1 [44]. Starting from the
reactance bounds and the �eld speci�cations, it tries to �nd a current that radiates
a �eld obeying the requirements, as well as being consistent with the EFIE-IBC
equation for a feasible choice of the impedance. It does that by alternatively projecting
the current on the set corresponding to feasible impedances, and on that of currents
radiating a feasible �eld, hence its name.

The impedance on each cell is computed as the ratio of the local power to the
magnitude squared of the current (averaged over the cell surface),

Z =
�
S E � J

� dS
�
S jJ j

2 dS
; (3.17)

as will be detailed in Sec. 3.5, and is easily projected in the feasible set by setting
the real part to zero and clipping the imaginary part if it goes out of bounds. The
impedance projection operator is de�ned as

PZ(Z) =

8
>>><

>>>:

j ImZ; if XL � ImZ � XU

jXL; if ImZ < XL

jXU; if ImZ > XU

(3.18)

Then, a new current is obtained from the solution of the EFIE-IBC (2.29), and
the radiated �eld is computed. The radiated �eld is then projected inside the mask
speci�cations by clipping the values that are out bounds, by means of the �eld
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projection operator,

PE(E) =

8
>>>>>>><

>>>>>>>:

E; ifML � jEj2 �MU

E

s
ML

jEj2
; if jEj2 < ML

E

s
MU

jEj2
; if jEj2 > MU

(3.19)

The next iterate for the current is obtained by �nding the one that radiates a �eld
that best approximates the projected one (least-squares inversion), i.e.,

Ik+1 = arg min
I2CN

kE� RIk2 : (3.20)

Finally, the relative variation of the current is computed,

"I =
kIk+1 � Ikk

(kIk+1k+ kIkk)=2
; (3.21)

and its value is compared with the threshold � that de�nes the minimum variation
allowed. If the relative variation is less than � , it means that the two currents are
equal within the tolerance, which in turn implies that the current complies with all
the requirements and the process has reached convergence.

Algorithm 1 Alternate Projection Algorithm for the design of Metasurface Antennas.
Input: reactance bounds, �eld specs
Output: Z

while k = 0; : : : ; Kmax � 1 and "I < � do
Compute Z with (3.128)
Project Z with (3.18)
Solve (Z� L)Ik = Vinc
Compute radiated �eld E = RIk
Project radiated �eld with (3.19)
Compute Ik+1 with (3.20)
Compute "I with (3.21)
k  k + 1

end while

This algorithm guarantees that the impedance and the current are always consistent
with the EFIE-IBC. However, this is obtained at the expense of solving the resulting
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linear system (2.29), and the inverse-source problem (3.20) at each iteration. As
a result, the computational complexity becomes prohibitively large already for
medium-sized antennas, even if fast algorithms are used. Note that this complexity is
comparable to that of analogous approaches, e.g., [10]; however, keeping in mind that
the target was the 3D design of large surfaces, the alternate projection approach was
not pursued further. The focus has then shifted on a di�erent formulation, presented
in the next section, which overcomes this drawback.

3.4 Current-based Optimization Algorithm

In this section, the proposed approach for the design of metasurface antennas is
detailed. The outcome of the design process must be the spatial distribution of
the surface impedance; however, the optimization is formulated in such a way that
it involves only the equivalent current�not the impedance. On exit, the process
yields the optimized current, from which a corresponding impedance is obtained (as
described in Sec. 3.5). This current-based design process avoids the solution of the
forward problem (2.25) at each step, with obvious advantages in terms of numerical
complexity. Of course, this is possible only if the current being sought-for can be
constrained to correspond to a passive and lossless surface, in addition to radiating a
�eld that satis�es the related requirements. Moreover, the reactance associated to the
current must be bounded by practical realizability limits�again, without computing
this reactance explicitly during the process.

The �optimal� current is obtained as the solution of an unconstrained optimization
problem, where the �tness is expressed in terms of cost functionals to be minimized:

I? = arg min
I2CN

f(I); (3.22)

where the overall functional f is composed of a term frlz that expresses the compliance
with realizability constraints, and a term frad that quanti�es the �tness of the radiated
�eld,

f(I) = frlz(I) + frad(I): (3.23)

As explained above, it is crucial to express these terms as functions of the current
only; this point will be addressed in Secs. 3.4.1 and 3.4.2.
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An important observation is that requirements involving inequalities, like those
of �eld masks in (3.6) or reactance bounds (3.2), are conveniently expressed as
quantities to be minimized by means of the ramp function

r(x) = max(x; 0); (3.24)

with which a condition of the type a � b becomes r(a� b) = 0.

For the class of constraints of relevance here, the associated minimization instance
is non-convex. Hence, strategies to overcome the non-convexity shortcomings, and in
particular local trappings, are very important. Inspired by [12], the choice is to resort
to functionals that are of polynomial type in the current coe�cients, in particular
fourth-degree polynomials, with added recti�cation (via the ramp function) where
needed. The most general expression for the functional takes the form

f(I) =
X

d

qd(I) sd(I) +
X

d

r2(td(I))

=
�
q(I)
�Ts(I) + r

�
t(I)
�Tr
�
t(I)
�
;

(3.25)

with

q(I) = [� � � qd(I) � � � ]T; (3.26)

s(I) = [� � � sd(I) � � � ]T; (3.27)

t(I) = [� � � td(I) � � � ]T: (3.28)

The function r2(x) = max(x; 0)2 is continuous with continuous �rst derivative,
while qd, sd and td are multivariable quadratic functions of the current coe�cients,
i.e., of the form

qd(I) = �
�
IHAdI + IHbd + cd

�
; � = Re or Im; (3.29)

where Ad 2 CN�N are positive de�nite matrices, bd 2 CN are column vectors and
cd 2 C are constants. The advantage of this choice is apparent: for even-degree
polynomials, the functional is bounded below, and goes to +1 as kIk �! +1.
Moreover, a polynomial of degree four limits the number of possible local minima,
while still allowing enough �exibility in the de�nition of the functional. Finally, in the
adopted formulation the matrices Ad are chosen in such a way that the computation
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of each term of (3.25) can be accelerated (either Ad is sparse or the matrix-vector
product AdI can be computed with fast algorithms).

For the minimization of (3.22), a non-linear conjugate gradient algorithm [45,
p. 121] is employed (Algorithm 2). Given the large size of the problem, the numerical
cost of computing the functional and its gradient at each iteration is an issue of
paramount importance. In particular, all operations corresponding to computing
the near- or far �eld of a given current can be performed with the so-called �fast
factorizations� mentioned in Sec. 2.3.1, with O(N) memory requirements and
O(N logN) complexity. The proposed approach, as will be seen in Sec. 3.4.3, is
able to fully exploit these methods for the computation of the functional and of its
gradient.

Algorithm 2 Non-linear conjugate gradient algorithm.
Input: I0
Output: I?
Computerf(I0)
p0  �rf(I0)
for k = 0; : : : ; Kmax � 1 do

Compute �k by minimizing f(Ik + �kpk)
Ik+1  Ik + �kpk
Computerf(Ik+1)
Compute �k
pk+1  �rf(Ik+1) + �kpk

end for
I?  IKmax

The other relevant step is the line search that must be carried out at each step
of the iterative process. This is a deceivingly simple task, as it involves only a
one-dimensional minimization along the search direction, which in principle can
be performed with a variety of standard approaches. However, as well known in
the literature, the di�cult part is in �nding the interval in which this search must
be carried out. The devised polynomial approach will allow to perform this in an
analytical (possibly iterative), de�nite manner (Sec. 3.4.4).

Finally, it is possible to enforce a smoothing of the resulting current prior to
the impedance computation; this can be done with a variety of standard approaches
(see, e.g., [14]). However, the choice has been to avoid this step, in order to check
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the intrinsic degree of regularity of the solution, without introducing additional
parameters in the process.

3.4.1 Enforcement of realizability constraints

As discussed, realizability requires local passivity and absence of losses, as well as
bounds on the impedance values. Passivity and losslessness can be expressed directly
in terms of the (local) active power density; the magnitude of the reactance, instead,
can be expressed in terms of (local) stored energy density. Hence, all realizability
constraints can be cast in terms of power densities; this allows to express them
as functions of the current only, and also to satisfy the requirement of being of
polynomial nature.

The discussion starts with the de�nition of the power density absorbed by a
surface (see App. A.1),

~p(r) = E � J�; (3.30)

that is related to the local impedance, via the IBC (2.1), as

~p(r) = Z jJ j2 = ReZ jJ j2 + j ImZ jJ j2 : (3.31)

The requirement for passivity and losslessness imposes that P = 0, i.e.,

Re (E � J�) = 0: (3.32)

It is important to note that, in order to preserve global passivity, one needs to enforce
(3.32) locally in an explicit manner [12] (otherwise, one could have zero global
dissipated power but with active terms with P < 0 compensating losses). This will
be achieved by minimizing the square of the local power density, P 2, thus preserving
the polynomial nature of its de�nition.

The requirement (3.2) is closely related to the stored (reactive) energy density. In
fact, looking at the imaginary part of (3.31), the bounds in (3.2) imply

XL jJ j2 � Im (E � J�) � XU jJ j2 : (3.33)

It is important to recall that inequality conditions like (3.33) can be expressed in
terms of the ramp function; however, this function does not have a continuous
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Fig. 3.5 Squared ramp function r2(x) = max(x; 0)2.

derivative. This problem can be overcome by using the squared ramp function
r2(x) = max(x; 0)2, which is a continuous function with continuous derivative
(Fig. 3.5). This allows the use of inequalities in the functional gradients at the only
expense of having piecewise polynomial functions, but everywhere continuous and
di�erentiable.

As a �nal remark, since the impedance does not appear in the conditions above,
there is no guarantee that the obtained current is such as to correspond to a scalar
impedance; if required by the design constraints, this condition must be enforced
explicitly. In presence of a scalar impedance, the current and the electric �eld have
the same direction (in the complex sense). From Schwarz’s inequality, it follows that
the (complex) inner product of two parallel vectors is equal to the product of their
magnitudes, giving the scalarity condition

jE � J�j = jEj jJ j : (3.34)

All the above conditions must hold locally everywhere on the surface; in
accordance with the cell-based spatial discretization scheme, they will be enforced in
the average sense over each triangular cell. In particular, the local power (3.30) for
each cell is de�ned as the integral of the power density over the domain of the cell,

~pi = hE ; ISiJ
� i =

�

Si

E � J� dS; (3.35)
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where

ID(r) =

8
<

:
1; if r 2 D

0; elsewhere
(3.36)

is the indicator function of domain D.

With the above stipulations, the conditions of passivity and losslessness (�act�),
of the reactance bounds (�rct�), and of scalarity (�scal�) result in a cost function that
is the sum of three contribution over the total number of triangular cells Nc:

frlz(I) = wact

NcX

i=1

�act
i (I) + wrct

NcX

i=1

�rct
i (I) + wscal

NcX

i=1

�scal
i (I): (3.37)

The weights wact, wrct and wscal have to be assigned a priori, like in all optimization
problems of multi-objective nature. The cell-wise terms are de�ned as follows:

�act
i (I) = Pi2(I); (3.38)

�rct
i (I) = r2�XLJi(I)�Qi(I)

�
+ r2�Qi(I)�XUJi(I)

�
; (3.39)

�scal
i (I) = Ei(I)Ji(I)�

�
Pi2(I) +Qi

2(I)
�
; (3.40)

where the individual terms are conveniently written in the form (3.29):

Pi(I) = Re
�

Si

E � J� dS = Re (IH�iV)

= Re
�
IH(�iK)I + IH(�iV0inc)

�
;

(3.41)

Qi(I) = Im
�

Si

E � J� dS = Im (IH�iV)

= Im
�
IH(�iK)I + IH(�iV0inc)

�
;

(3.42)

Ji(I) =
�

Si

jJ j2 dS = IH�iI; (3.43)

Ei(I) =
�

Si

jEj2 dS = VH�iV

= Re
�
IH(KH�iK)I + 2IH(KH�iV0inc) + V0Hinc�iV

0
inc
�
:

(3.44)
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For convenience of notation, the following quantities have been introduced:

V0inc = G�1Vinc; (3.45)

K = G�1L; (3.46)

V = G�1(Vinc + LI) = V0inc + KI: (3.47)

Here, G 2 RN�N is the Gram matrix of the RWG basis functions,

(G)mn =
�

SIBC

�m(r) ��n(r) dr; (3.48)

and the corresponding local Gram matrix �i 2 RN�N for the i-th cell is de�ned as

(�i)mn =
�

Si

�m(r) ��n(r) dr: (3.49)

At most three RWG basis have their support on a single cell, therefore each matrix �i
is extremely sparse, with O(1) non-zero entries.

The computation of the functionals above is always amenable to at most
O(N logN) complexity and O(N) storage. In fact, the product LI can be com-
puted with fast factorizations as described in Sec. 2.3.1, and terms of the kind
y = G�1x are evaluated directly as solution of the linear system G y = x; the
Gram matrix is O(N) sparse, positive-de�nite and with O(1) condition number, and
therefore the above system can be solved iteratively (e.g., with a conjugate gradient
algorithm) in O(1) iterations, thus resulting in O(N) total operations. Lastly, each
matrix �i, having a constant number of non-zero terms, can be multiplied by a vector
in O(1) operations.

In conclusion, the �template� polynomial formula (3.25) encompasses all the
terms introduced above. To show this, consider the active power term (3.38), which,
using (3.41), can be expressed as

qd = Pd(I); sd = Pd(I); td = 0; d = 1; : : : ; Nc (3.50)
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For the reactance term (3.39), with (3.42) and (3.43), one has

qd = 0; sd = 0; td = XLJd(I)�Qd(I); d = 1; : : : ; Nc

qd = 0; sd = 0; td = Qd(I)�XUJd(I); d = Nc+1; : : : ; 2Nc

while, for the scalar term (3.40),

qd = Ed(I); sd = Jd(I); td = 0; d = 1; : : : ; Nc

qd = �Pd(I); sd = Pd(I); td = 0; d = Nc+1; : : : ; 2Nc

qd = �Qd(I); sd = Qd(I); td = 0; d = 2Nc+1; : : : ; 3Nc:

3.4.2 Enforcement of �eld speci�cations

The fact that the unknown current is associated with a given incident �eld (thus
with a known source power) allows to de�ne bounds on the maximum achievable
radiated power. This is in contrast to most pattern synthesis problems, where the
source amplitude is not intrinsically bounded. In turns, this permits to transform
the maximization of the radiated power into the minimization of the di�erence with
respect to its theoretical maximum.

The power Pinc is associated with the (given) incident �eldEinc; it is then natural
and practically relevant to normalize the radiated �eld in terms of realized gain [46],

Gr(r̂; I) =
jE(r̂; I)j2 =�0

Pinc=4�
; (3.51)

where �0 is the free-space impedance, and E(r̂; I) is the far �eld radiated by a given
current, with the normalization of Sec. 2.3. This quantity takes into account the
re�ection of power at the input of the antenna, as the denominator considers the
incident power, i.e., the power that the source would provide if the antenna has a
perfect input matching. Hence, the speci�cation mask in (3.6) will be given by

M(r̂; I) =
�0

4�
Pinc Gr(r̂; I): (3.52)

This allows to directly account for possible anomalous re�ection due to bandgap
(typical in 1D leaky wave structures) in this automatic design; otherwise said, the
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present design process also indirectly optimizes re�ection of the source �eld by the
metasurface.

The radiated �eld requirements in (3.10), (3.13)�(3.14) are all expressed as
inequalities; using the approach described above, they can be cast directly in terms
of functionals to be minimized employing the sampling and the expression of the
radiation operator described in Sec. 2.3. The reference level Fref in (3.8) is made
explicit as

Fref(I) =
1


0

X

j2
0

F co
j (I)�
j �

1
N0

X

j2
0

F co
j (I); (3.53)

where the shorthand notation F co
j (I) = F co(r̂j; I) is used. Maximization of the

reference level in (3.9) is obtained as a minimization of the di�erence between the
desired lower boundM0 and the main lobe (average) value Fref(I),

M0 � Fref(I) � 0; (3.54)

and the related functional is immediately found to be

�ref = r2�M0 � Fref(I)
�
: (3.55)

With the above expressions the mask bounding values result in

M co
U=L;j(I) = �co

U=L(rj)Fref(I); (3.56)

M cx
j (I) = �cx(r̂j)Fref(I); (3.57)

M SL
j (I) = �SL(r̂j)Fref(I): (3.58)

With these, �eld constraints result in the following functional:

frad(I) = �ref(I) + wML

X

j2ML

�
�co
j (I) + �cx

j (I)
�

+ wSL

X

j2SL

�tot
j (I); (3.59)

where

�co
j (I) = r2�M co

L;j(I)� F
co
j (I)

�
+ r2�F co

j (I)�M co
U;j(I)

�
; (3.60)

�cx
j (I) = r2�F cx

j (I)�M cx
U;j(I)

�
; (3.61)

�tot
j (I) = r2�F tot

j (I)�M tot
U;j (I)

�
; (3.62)
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with again the shorthand notation F x;t
j = F x;t(r̂j) (3.3). The �eld magnitude for the

di�erent polarizations can be evaluated as

F co
j (I) =

��Ej(I) � p̂�j
��2 =

��E�
j (I) p̂

��
j + E’

j (I) p̂’�j
��2

=
��E�

j (I)
��2 ��p̂�j

��2 +
��E’

j (I)
��2 ��p̂’j

��2 + 2 Re(E�
j (I)E

’�
j (I)p̂�j p̂

’�
j );

(3.63)

F cx
j (I) =

��Ej(I) � q̂�j
��2 =

��E�
j (I) q̂

��
j + E’

j (I) q̂’�j
��2

=
��E�

j (I)
��2 ��q̂�j

��2 +
��E’

j (I)
��2 ��q̂’j

��2 + 2 Re(E�
j (I)E

’�
j (I)q̂�j q̂

’�
j );

(3.64)

F tot
j (I) = jEj(I)j2 =

��E�
j (I)
��2 +

��E’
j (I)

��2 ; (3.65)

where p̂j = p̂(r̂j), q̂j = q̂(r̂j), and the elements

��E�
j (I)
��2 =

�
E�(I)� E��(I)

�
j; (3.66)

��E’
j (I)

��2 =
�
E’(I)� E�’(I)

�
j; (3.67)

E�
j (I)E

’�
j (I) =

�
E�(I)� E�’(I)

�
j (3.68)

may be evaluated exploiting fast matrix-vector product routines for the computation
of E� and E’ through (2.30), (2.31). In the above, � indicates the element-wise
product.

In practical applications, one often seeks to maximize the gain in the main lobe,
i.e., without the speci�cation of an absolute lower bound for it. This is simply
obtained by setting the lower bound M0 to a theoretical maximum for the given
antenna under consideration, e.g., the one that would be obtained by a constant
current and assuming the radiated power equal to the incident one. In the design of
pencil beam antennas, the upper boundM co

U is not present, with related simpli�cation
of the ML functional �co. In addition, a sensible choice of the averaging ML region

0 allows to use only the functional �ref .

3.4.3 Gradient computation

The proposed formulation allows to e�ectively make use of fast algorithms also for
the gradient computation. In particular, the quadratic form of the terms result in
linear gradients, and the sum over all terms allows to isolate the computationally
intensive parts and drastically reduce the number of matrix-vector products required.
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Matrices and vectors introduced in the previous sections are complex. On the
other hand, optimization algorithms usually deal with real vectors; in an e�ort to keep
all computations in the complex domain for numerical convenience, the approach
proposed in [47] has been followed. The use of the complex gradient operator
~r, de�ned in App. D, signi�cantly simpli�es the mathematical derivation. The
introduction of this new operator is justi�ed by the fact that, for a real-valued function
f : CN ! R, ~rf corresponds to the direction of maximum increase of the function
and the condition ~rf = 0 is necessary and su�cient to determine a stationary point
for f . In App. D, the mathematical proofs of these statements are detailed.

The required gradients are expressed in complex format by using the properties
reported in App. D, yielding

~rPi =
1
2

(�iV + KH�iI) ; (3.69)

~rQi =
1
2j

(�iV �KH�iI) ; (3.70)

~rJi =
1
2

(�i + �H
i ) I = �iI; (3.71)

~rEi = KH�iV; (3.72)

where the matrix K was de�ned in (3.46), and the products involving its hermitian
transpose are computed in the following way:

KHz = (G�1L)Hz = LHG�1z; (3.73)

having exploited the symmetry of G�1. An important observation is that the EFIO
matrix L is symmetric, i.e., LT = L, but not self-adjoint. Thus, matrix-vector products
involving its complex transpose are computed as

LHz = (LTz�)� = (Lz�)�; (3.74)

which allows to leverage fast algorithms to multiply L by a vector. The total gradient
is obtained by linearity as a sum of all individual gradients. As an example, the
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gradient of the �act functional is given by

~r
hP

i P
2
i

i
= 2

P
i Pi ~rPi

= 2
P

i Pi
1
2

�
�iV + KH�iI

�

=
hP

i Pi�iV
i

+ KH
hP

i Pi�iI
i
:

(3.75)

The interchange of the summation with the operator KH is key as it allows to compute
the total gradient by requiring only one computationally intensive matrix-vector
product. The remaining products, involving extremely sparse matrices �i, are
computed individually, as their complexity remains negligible with respect to the
total one.

The same is true for the inequality terms; in the case of �rct, by de�ning
	i = Qi �XJi and noting that d

dxr2(x) = 2 r(x), one has

~r	i = ~rQi �X ~rJi

=
1
2j

(�iV �KH�iI)�X�iI

=
1
2
�
� j�iV + (jKH � 2X)�iI

�
;

(3.76)

and so

~r
hP

i r
2(	i)

i
= 2

P
i r(	i) ~r	i

= �j
hP

i r(	i)�iV
i

+ (jKH � 2X)
hP

i r(	i)�iI
i
;

(3.77)

where, again, only one matrix-vector product with KH is required. Regarding the
functional for the �eld speci�cations, the gradients of the �eld magnitude samples
read

~rF co
j =

��p̂�j
��2E�

j RH
�ej +

��p̂’j
��2E’

j RH
’ej

+ p̂�j p̂
’�
j E

�
j RH

’ej + p̂��j p̂
’
jE

’
j RH

�ej;
(3.78)

~rF cx
j =

��q̂�j
��2E�

j RH
�ej +

��q̂’j
��2E’

j RH
’ej

+ q̂�j q̂
’�
j E

�
j RH

’ej + q̂��j q̂
’
j E

’
j RH

�ej;
(3.79)

~rF tot
j = E�

j RH
�ej + E’

j RH
’ej; (3.80)
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where (ej)k = �jk. The gradient for the total �eld term in (3.59) is found in a way
similar to what has been shown before. By de�ning �j = F tot

j �M tot
U;i , the gradient

is expressed as

~r�j = ~rF tot
j � ~rM tot

U;j

= ~rF tot
j = E�

j RH
�ej + E’

j RH
’ej;

(3.81)

where the simplifying assumption of absolute masks, i.e., ~rM tot
U;j = 0, has been

made to avoid complicate expressions. Employing relative masks does not change
the overall complexity, as they are just linear combinations of �eld samples. Then

~r
hP

j r2(�j)
i

= 2
P

j r(�j) ~r�j

= 2
P

j r(	j)
�
E�
j RH

�ej + E’
j RH

’ej
�

= RH
�

h
2
P

j r(	j)E�
j ej
i

+ RH
’

h
2
P

j r(	j)E’
j ej
i
:

(3.82)

Once again, by rearranging summations and products, the computationally intensive
matrix-vector products are done only once per gradient evaluation. The adjoints
of the radiation matrices, RH

� and RH
’, are found by considering that the radiation

operator (2.32) is symmetric, i.e.,R = RT, which leads to

(RH
�)nj = (RT

�)
�
nj =

�
�n �

�
RT�̂j

���

=
�
�n �

�
R�̂j

���

= �n �
�
R�̂j

��:

(3.83)

In the derivation, the fact that ��n = �n is used. The same applies to the matrix RH
’,

upon substitution of �̂j with ’̂j .

3.4.4 Line search

As anticipated, the minimization of the functional f(I) described in previous sections
is carried out with a non-linear conjugate gradient algorithm [45, p. 121]; this means
that the iteration update is of the type

Ik+1 = Ik + �k pk; (3.84)
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with k = 0; : : : ; Kmax, where �k 2 R is to be found so that the functional is
minimized, and pk 2 CN is the update direction, which incorporates gradient
information,

pk =

8
<

:
� ~rfk; if k = 0

� ~rfk + �k pk�1; if k > 0
(3.85)

Di�erent formulas have been proposed in the literature for the parameter � 2 R. The
following are the main ones (expressed with complex gradients),

�FR
k =



 ~rfk


2



 ~rfk�1


2 ; Fletcher-Reeves (3.86)

�PR
k =

Re
� ~rfH

k ( ~rfk � ~rfk�1)
�



 ~rfk�1


2 ; Polak-RibiŁre (3.87)

�HS
k =

Re
� ~rfH

k ( ~rfk � ~rfk�1)
�

Re
�
pH
k�1( ~rfk � ~rfk�1)

� ; Hestenes�Stiefel (3.88)

�CD
k = �



 ~rfk


2

Re
�
pH
k�1

~rfk�1
� ; Conjugate-Descent (3.89)

�DY
k =



 ~rfk


2

Re
�
pH
k�1( ~rfk � ~rfk�1)

� ; Dai-Yuan (3.90)

�LS
k =

Re
� ~rfH

k ( ~rfk � ~rfk�1)
�

Re
�
pH
k�1

~rfk�1
� : Liu-Storey (3.91)

They all reduce to the classical conjugate-gradient formula when f is a quadratic
function. In practice, the choice depends on the application and may require
experimentation.

As seen above, at each step of the minimization process, one updates the solution
by looking for the optimum along the chosen direction; this step is known as line
search, and is formally indicated as the process of �nding the optimum step �? such
that:

�? = arg min
�2R

f(I + � p): (3.92)

Here, and in the following, the dependence of all quantities on the iteration index k
has been dropped for clarity. This line optimization is performed at each step of the
process, thus its numerical cost is of paramount importance. Both the computation
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of the cost function evaluated along the search direction I+� p,

g(�) = f(I + � p); (3.93)

and the optimization process are greatly expedited by the choice to employ only
polynomial functionals of the form (3.25) (see Sec. 3.4).

First of all, the polynomial structure is made explicit for each term, when evaluated
in (3.93). The procedure is outlined for the term qd only, but the same applies for sd
and td. Starting from (3.25) evaluated along the direction p, one �nds

qd(I+� p) = �
�
(I+� p)HAd(I+� p) + (I+� p)Hbd + cd

�

= q0d + � q1d + �2q2d;
(3.94)

where � = Re or Im. The coe�cients of the second order polynomial are given by

q0d = �(IHAdI + IHbd + cd); (3.95)

q1d = �(IHAdp + pHAdI + pHbd); (3.96)

q2d = �(pHAdp); (3.97)

where Ad indicate the matrices appearing in the de�nition of the objective function
terms. By de�ning the arrays of coe�cients

q0 = [� � � q0d � � � ]T; (3.98)

q1 = [� � � q1d � � � ]T; (3.99)

q2 = [� � � q2d � � � ]T; (3.100)

for the polynomials q and, accordingly, for s and t ones, (3.93) can be conveniently
expressed as

g(�) = (q0 + � q1 + �2q2)T (s0 + � s1 + �2s2)

+ r(t0 + � t1 + �2t2)T r(t0 + � t1 + �2t2):
(3.101)

This formulation allows to evaluate the objective function (3.93) for any value of
� at the cost of computing the matrix-vector products involving Ad only once, to
evaluate Adp, as terms AdI are already computed and stored during the evaluation of
the objective function.
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The polynomial expression (3.94) can be made explicit for the terms appearing
in the objective function. Consider the current magnitude term de�ned in (3.43);
evaluating it along a direction p results in the following expression:

Ji(I + � p) = (I + � p)H�i(I + � p)

=
�
IH�iI + � (IH�ip + pH�iI) + �2 pH�ip

�

= (IH�iI) + � 2 Re (IH�ip) + �2 (pH�ip) :

(3.102)

The same can be done for the active power term (3.41), which gives

Pi(I + � p) = Re ((I + � p)H�i(V + �Kp))

= Re
�
IH�iV + � (IH�iKp + pH�iV) + �2 pH�iKp

�

= Re (IH�iV) + � Re (IH�iKp + pH�iV) + �2 Re (pH�iKp) :

(3.103)

As a last example, each of the �eld magnitude terms for the co- or cross-polarization
(3.63)�(3.65) can be expressed as

Fj(I + � p) =
��

E + �Rp
�
�
�
E + �Rp

���

j

= (E� E�)j + �
�
E� (Rp)� + (Rp)� E�

�
j + �2 �(Rp)� (Rp)�

�
j

= (E� E�)j + � 2 Re
�
E� (Rp)�

�
j + �2 �(Rp)� (Rp)�

�
j:

(3.104)

An analytical solution for the minimization of g(�) is important for avoiding
scaling issues of the step length, which is known to be a crucial problem of line search
procedures [45]. It can be shown by starting with the simplest case of functionals
without inequalities (i.e., without ramp functions), that corresponds to a phaseless
pattern �tting with no bounds on the reactance values. In this case the objective
function g(�) reduces to a fourth-order polynomial and the line search procedure
is direct: the derivative dg

d� is a third-order polynomial, and its roots may be found
in closed form. A closed form solution not only reduces the cost of �nding the
stationary point, but it also avoids the need to determine the interval in which to look
for the optimum step length.

In the presence of functions r2(x), the objective g(�) is still a fourth-order
polynomial, but it is piecewise so (see Fig. 3.6 for a graphical example); because
of the continuity of the derivative of r2(x), the derivative dg

d� is also a piecewise
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Fig. 3.6 Example of a piecewise fourth-order polynomial function f(x). It is the sum of two
terms: a(x) is the square of a second-order polynomial, while b(x) is obtained by applying
the squared ramp to a second-order polynomial. Vertical lines identify the intervals where
the function has a �xed polynomial behaviour.

continuous polynomial, and the determination of its roots can be done with an
iterative process that again does not require to estimate the interval in which to look
for a solution. The devised iterative algorithm for the line search is described in the
form of a pseudo-code in Algorithm 3. It can be described as follows: note that for a
generic function �(x),

r(�(x)) = u(�(x))�(x); (3.105)

where u(x) is the unit step function; hence, the non-linear (rectifying) behavior of a
ramp can be represented as an on/o� switch. Then, consider the ramp-less �switched�
version gs(�; u) of (3.101) in which all terms of the kind r(td(�)) are replaced by
ud td(�), with ud = u(td(�)) 2 f0; 1g and where u = [u1; :::; uNs ] is the switch
pattern vector (Ns is the number of switches, i.e., of ramp terms). For any given
pattern of switch states, the function gs(�; u) is always a fourth-order polynomial
whose minimum point is computed in closed form as anticipated above. One starts by
computing the switch pattern for � = 0, which yields u0, and �nds the minimum �?0
of gs(�; u0). With this new value of �, one now evaluates the switches again, which
results in the pattern u1, and the determination of the minimum point is repeated
for gs(�; u1), yielding �?1. The process is iterated until the switch pattern remains
unchanged, i.e., un = un�1: at that point, gs(�; un) = g(�), and �?n = �? is the
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sought-for minimum point. The algorithm usually converges in much less than Ns

iterations.

Algorithm 3 Algorithm for the line minimization of functionals of type (3.101)
containing inequality terms. The procedure minpoly4 �nds the minimum point of the
4th order polynomial de�ned by coe�cients a0; : : : ; a4 by computing the stationary
points in closed-form and evaluating the polynomial in all such points to �nd the
global minimum.

procedure LineSearch(q0; q1; q2; s0; s1; s2; t0; t1; t2)
b0  qT

0s0
b1  qT

1s0 + qT
0s1

b2  qT
2s0 + qT

1s1 + qT
0s2

b3  qT
1s2 + qT

2s1
b4  qT

2s2

u u(s0)
repeat

t00  u� t0
t01  u� t1
t02  u� t2

a0  b0 + t00Tt00
a1  b1 + 2 t01Tt00
a2  b2 + 2 t02Tt00 + t01Tt01
a3  b3 + 2 t02Tt01
a4  b4 + t02Tt02
� minpoly4(a0; a1; a2; a3; a4)
uold  u
t  t0 + � t1 + �2t2
u u(t)

until u = uold
return �

end procedure

3.4.5 Complexity analysis

As anticipated in the introduction to the chapter, a bene�t of the proposed formulation
is the potential for low numerical complexity, when the relevant matrix-vector
products are computed using fast algorithm. Table 3.2 summarizes the complexity of
all matrix-vector operations; the total count includes all operations needed for the
evaluation of the objective function, of its gradient, and for the line-search.
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Table 3.2 Summary of the matrix-vector operations needed for each iteration, with their
respective complexity and total number of occurrences. All operations are considered in
complex format, and a 2 CN is a generic array.

Operation Complexity Count

La O(N logN) 5

Ra O(Nf logN) 3

G�1a O(N) 5

�i a O(1) 6Nc

Given that the number of sampling points in the far �eld,Nf , is largely independent
of the number of unknowns N , and the number of cells Nc is approximately propor-
tional to N , the total asymptotic complexity (neglecting multiplicative constants)
results in

O(N logN) +O(logN) +O(N) +NO(1) = O(N logN):

In this estimation, vector-vector operations have been omitted since their complexity
is negligible with respect to matrix-vector ones.

3.5 Impedance computation

Once the optimum current coe�cients I? have been obtained with the process
described in the previous section, the corresponding total electric �eld is also known,
and the sought impedance Z(r) can be obtained via (2.25) and the de�nition of Z
(2.27).

In order to formulate an equation for the impedance spatial distribution Z(r),
one must start with its representation in terms of L assigned basis functions  ‘(r),

Z(r) =
LX

‘=1

z‘  ‘(r); (3.106)

where the array z 2 CL collects the expansion coe�cients. Note that this step�
including the choice of the impedance basis functions�is completely independent
from the solution of the optimization process described above, and any post-processing
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to it. Indeed, more than one representations of Z(r) and ensuing impedance
reconstructions could be done for ensuring a stable result. Inserting (3.106) into
(2.27), the IBC matrix Z can be expressed as

(Z)mn =
LX

‘=1

z‘ g‘mn; g‘mn = h�m ;  ‘ �n i; (3.107)

and after some elaboration one �nds

ZI? = Cz; (3.108)

where C(I?) 2 CN�L is de�ned as

(C)m‘ =
NX

n=1

g‘mnI
?
n: (3.109)

Consistency with the discretized EFIE-IBC (2.25) requires

Cz = Vtot; (3.110)

with the total electric �eld Vtot = Vinc + LI?, so that

z? = arg min
z2CL

kCz� Vtotk2 ; (3.111)

which corresponds to a linear least-squares minimization problem that can be solved
with standard techniques. Even when the optimization converges with a low residual
value, it is unlikely that the PL condition (3.1) and the bounds on the reactance
value (3.2) are veri�ed for every cell. For this reason, the least-squares problem is
complemented with these two conditions explicitly, ensuring that the �nal impedance
pro�le is compliant. The optimization problem becomes

min
z2CL

kCz� Vtotk2

s.t. Re z‘ = 0; 8‘ = 1; : : : ; L

XL � Im z‘ � XU; 8‘ = 1; : : : ; L

(3.112)

which is a convex problem that can be e�ciently solved with available specialized
softwares, e.g., CVX [48].
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Of course, one can choose to test (3.110) with a di�erent set of P testing functions
�p, and the related linear system is obtained by premultiplying both sides of (3.110)
by the change of basis matrix BG�1,

BG�1Cz = BG�1Vtot; (3.113)

where
(B)pm = h �p ;�m i: (3.114)

The inverse of the Gram matrix G (3.48) is needed since the RWG basis functions
are not orthonormal. The least-squares problem becomes

z? = arg min
z2CL



BG�1(Cz� Vtot)


2 ; (3.115)

which is the general formulation for �nding an impedance pro�le which minimizes
the error in the EFIE-IBC equation, with arbitrary basis and testing functions.

In the following, the impedance is expanded as a linear combination of piece-wise
constant basis functions

 ‘(r) = I‘(r) =

8
<

:
1; for r 2 S‘
0; elsewhere

(3.116)

with L = Nc and the shorthand notation I‘ = IS‘ is used. A relevant case of the
minimization problem (3.115) is that in which the testing functions are chosen equal
to the conjugate of the current over each individual cell:

�p(r) = Ip(r)J�(r) =

8
<

:
J�(r); for r 2 Sp
0; elsewhere

(3.117)

where J =
P

n In�n(r) and P = Nc. In this case, the system (3.113) is diagonal
and square,

(C0)pp zp = (V0tot)p; p = 1; : : : ; Nc (3.118)

where C0 = BG�1C and V0tot = BG�1Vtot. The solution is easily found to be

zp =
(V0tot)p
(C0)pp

=
hE ; IpJ� i
h IpJ ; IpJ� i

=
IH�pG�1Vtot

IH�pI
; p = 1; : : : ; Nc: (3.119)
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In this case, conditions (3.1) and (3.2) can be directly enforced by neglecting the real
part of the computed impedance, and clipping the reactance value if it is outside the
prescribed bounds. Eq. (3.119) can be given a variational interpretation: beginning
with the least-squares minimization of the error in the de�ning EFIE-IBC equation,

z? = arg min
z2CL

kE � Z(z)Jk2 ; (3.120)

where the impedance Z(r) is expanded with piece-wise constant basis functions
(3.116). The cells Si have non overlapping support, so that, for a function f(r),

kfk2 =
NcX

i=1

kIifk2 : (3.121)

Moreover, given the choice of pulse basis functions (3.116), a single zi is involved
in each cell, which simpli�es the minimization instance (3.120) into a system of
decoupled cell-wise minimization problems:

z?i = arg min
zi 2C

kIi(E � ziJ)k2 ; 8i = 1; :::; Nc: (3.122)

The optimum z?i for each coe�cient is found by looking at the stationary point of
(3.122) with respect to the real and imaginary parts of zi = z0i + jz00i . The error
functional can be expressed as

kIi(E � ziJ)k2 = hE � ziJ ; Ii(E�tan � z
�
i J
�) i

= kIiEk2 � 2z0i RehE ; IiJ� i

� 2z00i ImhE ; IiJ� i+ (z02i + z002i ) kIiJk2 ;

(3.123)

and the partial derivatives with respect to the real and imaginary parts of the
impedance are given by

@
@z0i
kIi(E � ziJ)k2 = �2 RehE ; IiJ� i+ 2z0i kIiJk

2 ; (3.124)

@
@z00i
kIi(E � ziJ)k2 = �2 ImhE ; IiJ� i+ 2z00i kIiJk

2 : (3.125)
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Setting both derivatives to zero yields

z0?i =
RehE ; IiJ� i
kIiJk2 ; (3.126)

z00?i =
ImhE ; IiJ� i
kIiJk2 : (3.127)

Putting all together, the �nal expression is identical to (3.119):

z?i = z0?i + jz00?i =
hE ; IiJ� i
kIiJk2 =

IH�iG�1Vtot

IH�iI
: (3.128)

This stationary point does indeed correspond to a minimum, as follows from the
evaluation of the Hessian matrix,

H =

"
2 kIiJk2 0

0 2 kIiJk2

#

; (3.129)

which is positive de�nite.

3.5.1 Impedance regularization

In computing the impedance values by the method outlined in the previous section,
sensitivity may arise, as the computation involves the ratio of the electric �eld E
and the current J . Di�erent combinations of limiting cases are possible: when E in
(2.18) is zero and the current J is not, the surface corresponds to a PEC boundary
condition (equivalent to Z = 0). When the current J is zero and the �eld E is not,
it coincides with an open circuit condition (Z = 1), which implies that there is
no IBC there (i.e., only the dieletric substrate). This last condition can be easily
implemented numerically by removing the corresponding degrees of freedom from
the discretization. Finally, when both the �eld and the current are zero, the impedance
is not de�ned and thus will be obtained by interpolating nearby values. All these
cases are summarized in Tab. 3.3.
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Table 3.3 Summary of all possible cases in the reconstruction of impedance values.

jJ j = 0 jJ j 6= 0

jEj = 0 unde�ned Z = 0

jEj 6= 0 open circuit Z = E=J

In practice, this regularization step is done by setting thresholds �I and �V for
the current and �eld values, which de�ne how small the quantities must be in order
to be considered negligible. The whole process is described in algorithmic form in
Algorithm 4.

Algorithm 4 Impedance pro�le computation

Input: I;V = G�1Vtot; �I ; �V
Output: z

for i = 1; : : : ; Nc do
jIji  IH�iI
jV ji  VH�iV
if jIji < �I then

if jV ji < �V then . Don’t care
Interpolate zi from nearby values

else . Open circuit
Remove cell from mesh

end if
else

zi =
IH�iV
IH�iI

end if
end for

Sensitivity may still be present in the impedance computation due to the current
at the denominator of (3.119), or in the subsequent solution of the forward problem
because current and impedance appear as a product in (2.29). Handling the above
limiting cases avoids most of the problems, but more sophisticated regularization
processes may be necessary to yield smoother pro�les.



Chapter 4

Numerical results

This chapter presents a series of design cases obtained using the presented method.
Preliminarily, the setup is illustrated: the background medium and the source
(incident) �eld are de�ned, the optimization parameters are listed and the validation
procedure is explained. Then, designs for di�erent combinations of geometries and
�eld speci�cations are shown and, for each of them, the current and impedance
pro�le, along with the realized gain patterns, are reported.

4.1 Setup

Background medium In all cases, the considered supporting structure is a single-
layer grounded dielectric slab with "r = 3 and height h = 0:76 mm (see Fig. 3.2b
for reference); the dielectric layer and the ground plane extend in�nitely in the x-y
plane. This approximation is commonly used in the design of printed antennas and is
needed for the use of fast numerical methods, introduced in Sec. 2.3.1. The design
frequency is 32 GHz.

Source �eld The source �eld is generated by a (short) centered vertical dipole,
and approximated with its asymptotic form as a TM0 cylindrical surface wave (as
in, e.g., [28]). The analytic expression of this �eld can be obtained by a TE/TM
decomposition and matching of the boundary conditions at the ground plane and at
the air-dielectric interface. The resulting tangential electric �eld of the TM0 surface
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wave mode is �
Einc(�; ’)

�
tan = E0 H(2)

1 (�sw�)�̂; (4.1)

whereE0 is the amplitude constant, chosen such that the incident power is normalized
to 1 W (see App. A.4), H(2)

1 is the Hankel function of the second kind of order 1 and
the propagation constant �sw is the solution of the dispersion equation

8
>>><

>>>:

�z "r = �z tan(�zh)

�z =
p
�2

sw � k2
0

�z =
p
k2

0"r � �2
sw

(4.2)

where �z is the transverse propagation constant in the dielectric, and �z is the
transverse attenuation constant in air.

Impedance constraints In the following, the requirement is for the impedance
to be scalar, with explicit enforcement through the term introduced in Sec. 3.4.1.
Moreover, the allowed reactance is capacitive-only (which greatly simpli�es the
design of unit cells by means of printed patches), with values in the range from
�600 
 to �100 
, as dictated by physical and numerical motivations (see Sec.
2.3.2).

Field speci�cations The �eld speci�cations are enforced by sampling the �eld on
a regular grid of 40� 40 points in the u-v space, as shown in Fig. 4.1a. The mask
requirements are consequently de�ned on the same grid (Fig. 4.1b). The choice
of a u-v grid, instead of a spherical one, is motivated by the fact that a spherical
grid has an higher density of sampling points near the broadside direction, and this
would cause a bias in the cost functional for the �eld. The adopted grid guarantees
that the considered points are (more) uniformly distributed on the spherical upper
surface. All reported examples incorporate the requirement of gain maximization in
the main beam. This is achieved by considering a value ofM0 (Sec. 3.4.2) equal to
the �eld magnitude that would be radiated by an antenna with 100% e�ciency in the
main beam region, which corresponds to a physical upper limit for the antenna. The
co-polarization region 
ML is set to the desired 3 dB beam-width and, trivially, its
relative level is �co

L = �3 dB with respect to Fref .
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(a) (b)

Fig. 4.1 Example of a pattern mask with 
ML (red) and 
SL (blue): (a) sample on a regular
u-v grid represented on the upper half hemisphere, (b) mask levels for the same samples.

Optimization parameters The weights for the various components of the objective
function were set by experimentation. The values are reported in Table 4.1 for all the
presented designs; since each component has a di�erent normalization, this re�ects
in a variation of the order of magnitude for the weights. The algorithm was stopped
on stagnation, and the number of iterations was in all cases limited to 500.

Validation It is important to recall that the optimization process avoids the solution
of the forward problem (2.29); this fact can be used to verify the consistency and
stability of the obtained impedance pro�le. The procedure, outlined in Fig. 4.2, is the
following: from the optimized current I?, the impedance pro�le Z(r) is determined
by computing the values for each cell with (3.128), keeping only its imaginary part,
and applying the regularization procedure in Sec. 3.5.1, where thresholds for currents
and �elds have been set to 3% of their maximum value. Next, a new current is
computed by solving the forward problem (2.29) for this impedance pro�le and the
speci�ed source �eld. All the radiation patterns shown in this chapter have been
obtained this way; hence, the results take into account a possible e�ciency reduction
due to the impedance reconstruction process. In order to assess the e�ect of the
impedance computation step, the co-polar component of the �eld radiated by the
optimized current will also be reported.
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Table 4.1 Weights for the components of the objective function.

Antenna Pattern wact wrct wscal wML wSL

circular, 6�0

pencil, circ. pol. 1 0:1 1 10�15 10�15

pencil, lin. pol. 1 0:5 1 10�16 10�16

squinted, lin. pol. 1 0:1 1 10�12 10�12

circular, 10�0

pencil, circ. pol. 1 0:1 1 10�15 10�15

pencil, lin. pol. 1 0:1 1 10�15 10�15

�at-top, lin. pol. 1 0:1 1 10�15 10�15

elliptical pencil, circ. pol. 1 0:01 0:1 10�15 10�15

symmetric strip pencil, lin. pol. 1 10�3 10�3 10�16 10�16

Current
optimization

Impedance
computation

EFIE-IBC
solution

Far-�eld
pattern

DESIGN

VALIDATION

Fig. 4.2 Flowchart of the design and validation process.
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Radiation performance In the following, radiation results will be given in terms
of the realized gain, as explained in Sec. 3.4.2; losses in the conductors and the
dielectric substrate are not considered. The post-processing of results also includes
the computation of the total radiated power, Prad; the total radiation e�ciency
e0 = Prad=Pinc � 1 allows to compute also the directivity (which will be larger or
equal to the realized gain). The aperture e�ciency, de�ned as

eap =
Ae�

Aphy
; where Ae� = Dmax

�2
0

4�
; (4.3)

will also be reported in the relevant cases (e.g., for pencil beam antennas); Aphy is
the physical aperture area, while Ae� is the e�ective one and Dmax is the maximum
directivity. Each far �eld pattern is shown along with the corresponding mask
speci�cations. Consistent with the example in Fig. 3.4, green lines represent the
main lobe co-polarization mask, red lines correspond to the cross-polarization mask
and blue lines to the side lobe masks. The dotted line identi�es the reference level
for each case, and the arrows denote relative quantities.

4.2 Circular Metasurface

As the �rst application, the design method has been applied to the case of a circular
metasurface antenna. This shape was chosen for its practical relevance and prevalence
in the literature. As common, the metasurface has a hole in the center to host the
feed.

Twogeometries are considered: amedium-sized antennawith a diameterD = 6�0

(�0 = c=f ), shown in Fig. 4.3a, and a large one with a diameter D = 10�0 (Fig.
4.3b). The former involves Nc = 16 206 degrees of freedom for the impedance, with
N = 24 046 RWG basis functions, while the latter hasNc = 23 616 andN = 35 241.

The current is initialized to an everywhere ŷ-directed current with a raised-cosine
radial pro�le with roll-o� toward the inner and outer edges (Fig. 4.4). This current
radiates broadside with linear polarization, and is (obviously) not realizable with
a passive lossless metasurface. It will be used as the starting current even when
seeking to design a squinted beam and/or for circular polarization, as this will allow
to assess the robustness of the algorithm.






























































































