
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Partially Oblivious Congestion Control for the Internet via Reinforcement Learning / Sacco, Alessio; Flocco, Matteo;
Esposito, Flavio; Marchetto, Guido. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN
1932-4537. - ELETTRONICO. - 20:2(2023), pp. 1644-1659. [10.1109/TNSM.2022.3215669]

Original

Partially Oblivious Congestion Control for the Internet via Reinforcement Learning

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNSM.2022.3215669

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2972499 since: 2023-07-08T09:44:09Z

IEEE

1

Partially Oblivious Congestion Control for the
Internet via Reinforcement Learning

Alessio Sacco, Student Member, IEEE, Matteo Flocco, Flavio Esposito, Member, IEEE,
and Guido Marchetto, Senior Member, IEEE, .

Abstract—Despite years of research on transport protocols,
the tussle between in-network and end-to-end congestion control
has not been solved. This debate is due to the variance of
conditions and assumptions in different network scenarios, e.g.,
cellular versus data center networks. Recently, the community
has proposed a few transport protocols driven by machine
learning, nonetheless limited to end-to-end approaches.

In this paper, we present Owl, a transport protocol based on
reinforcement learning, whose goal is to select the proper con-
gestion window learning from end-to-end features and network
signals, when available. We show that our solution converges to a
fair resource allocation after the learning overhead. Our kernel
implementation, deployed over emulated and large scale virtual
network testbeds, outperforms all benchmark solutions based on
end-to-end or in-network congestion control.

Index Terms—TCP, congestion control, reinforcement learning

I. INTRODUCTION

A performing congestion control protocol is fundamental
for proper network operation as it ensures telecommunication
stability, fairness in computer network resource utilization,
high throughput, and a low switch queuing delay. Although
many solutions have been proposed in the last decade, Trans-
port Control Protocol (TCP) still constitutes the overwhelming
majority of current Internet and Long Term Evolution (LTE)
communications, and the vast majority of congestion control
mechanisms are implemented on TCP [2].

Despite the wide deployment of TCP, various studies have
shown how it performs poorly in scenarios that require adapt-
ability or that departs from the original network conditions
on which it was designed in the ’70s [3]–[7]. In particular,
problems may occur in cellular and wireless networks, where
TCP, i.e., Cubic since the default on many devices, misinter-
prets the stochastic packet losses as congestion, hence leading
to performance degradation [7]. This issue has motivated many
authors to propose innovative congestion control approaches
that follow a domain-specific design philosophy, in which the
design is limited to a specific network scenario and it leverages
its specific characteristics to boost the performance. Examples
are in data centers [8], [9] and edge networks [6], [7].

This paper is an extended version of [1]
This work has been partially supported by NSF awards 1836906 and

1908574.
Alessio Sacco and Guido Marchetto are with DAUIN, Politec-

nico di Torino, 10129 Turin, Italy (e-mail: alessio sacco@polito.it,
guido.marchetto@polito.it).

Matteo Flocco and Flavio Esposito are with the Department of Computer
Science, Saint Louis University, St. Louis, MO 63103 USA (e-mail: mat-
teo.flocco@slu.edu, flavio.esposito@slu.edu).

The challenge of adequately updating the congestion win-
dow (cwnd) in resource-constrained networks, such as wireless
networks and IoT, is exacerbated by inherent problems arising
from their limited bandwidth, processing, and battery power,
as well as from their dynamic conditions [10]–[12]. The de-
terministic nature of TCP is indeed more prone to cause cwnd
synchronization problems and higher contention losses, due to
node mobility that continuously modifies wireless multi-hop
paths [11], [13]. Several TCP variations (e.g., PCC [14] and
Copa [15], to mention a few) have been recently proposed
to overcome these shortcomings. Nevertheless, the fixed rule
strategies used by these solutions are often inadequate to adapt
to the rapidly changing environment.

To solve the problem of an adequate congestion window
update strategy, we present Owl, a novel transport protocol
based on reinforcement learning (RL). Differently from other
Machine Learning-based approaches for transport protocols,
we conduct training at the source and decide the next value
of cwnd using also an in-network mechanism, when available.
Many transport protocols have been designed, with reinforce-
ment learning [16], [17] or without for a network-aware
solution [8], [18], [19]. The most recent solutions using RL,
however, do not exploit network intelligence fully.

An optimal cwnd update increases the throughput and
fairness while reducing the number of packets lost and delay.
Our transport protocol Owl is able to achieve these goals
by learning from several end-to-end and in-network metrics.
In particular, our contributions are summarized as follows.
We designed and implemented as a kernel module Owl, a
new congestion control protocol that leverages partial network
knowledge to train a reinforcement learning model based on
Deep Q-Learning [20], improving the network performance
with respect to recent work [21]. The outcome of Owl model
is the next congestion window value, a crucial and volatile
parameter for any reliable telecommunication. We then evalu-
ate our solution extensively: first, we compare Owl with other
seventeen transport implementations. Some of these solutions
were designed for wireless networks, such as Sprout [6] or the
more recent ABC [18], while others [22]–[25] were chosen
since they are widely deployed in several Linux distributions.

Our performance results (obtained using emulations with
real available traces from Verizon and T-Mobile and a deploy-
ment over the GENI testbed [26]) show that Owl has consistent
bandwidth and delay improvements across several scenarios.
We also evaluate the parameters of our deep neural network
used in our reinforcement learning and tested Owl’s fairness
performance, finding that our transport protocol behaves less

2

aggressively than others.
Besides, we evaluate the impact of partial network visibility,

and we demonstrate that our agent can efficiently operate with
partial or even without in-network congestion signals. Lastly,
we show that the sender can learn the optimal congestion win-
dow adjustment strategies in a variety of network deployments
and can adequately react to network changes.

The remainder of the paper is outlined as follows. Section II
presents the related work and most relevant mechanisms we
compare with. We then introduce our reinforcement learning
framework and some of its main functionalities in Section III.
In Section IV we explain our problem formulation and our
protocol design, while Section V shows the rate stability
analysis. Section VI summarizes our implementation, which
is then evaluated in Section VII, where we show the benefits
of our protocol. Finally, Section VIII concludes our paper and
indicates some future directions.

II. RELATED WORK

Congestion control and avoidance problems have been
widely discussed in the literature due to the great importance
in reliable data transmissions. To solve the optimal congestion
window inference problem, recent machine learning-based
algorithms have been proposed with promising results in
different network scenarios. In this section, we focus on
highlighting how these solutions differ from our protocol.
Congestion Control is a fundamental service offered by TCP,
so much so that significant improvements and variations have
been proposed over the years. A few examples are TCP
Vegas [24], Compound [27], Fast [28], Exll [29], BBR [25],
and Data Center TCP (DCTCP) [8]. Rather than relying on
indications of lost packets to adjust the cwnd as traditionally
happens, BBR considers RTT and average delivery rate mea-
surements to decide how fast to send data over the network.
This enables BBR to be resilient to the bufferbloat problem,
but it frequently exceeds the link capacity, causing excessive
queuing delays [18]. Other protocols, e.g., Compound [27]
and Fast [28], instead attempt to optimize losses, but they
rely on some predefined functions or rules to handle net-
work conditions. In summary, all these solutions share the
limitation of fixed-rule strategies, that is, their performance
is challenged in networks that require rapid adaptations. Our
solution, instead, uses a (reinforcement) learning approach to
overcome this limitation and predicts the best cwnd update at
each transmission event.
Learning for Congestion Control. As a recent trend, Machine
Learning (ML) has been widely applied to various problems
arising in network operation and management [30]. The ma-
jority of these approaches are specifically designed to cope
with a resource-constrained network, including IoT [10] and
WANETs [11], [13], [31]; others instead address a wider range
of network architectures [5], [14], [32]. Recent end-to-end
congestion control solutions, such as Remy [5], PCC [14],
PCC-Vivace [33], define an objective function to optimize
the process of online actions definition, e.g., on every ACK
or periodically. Remy [5], for example, offline trains every
possible network condition to find the optimal mapping with

the sender’s behavior. These mappings are stored a-priori in a
lookup table and rely on what has been seen and hence can
accommodate new network conditions only by recomputing
the lookup table. On the other hand, PCC [14] and its variants,
i.e., PCC-Proteus [34] and PCC-Vivace [33], perform online
optimizations. For instance, PCC adapts to the varying con-
ditions in the network by searching for more accurate actions
to change the sending rate. However, these online rules are
often complex and require considerable lags in estimating all
the parameters to be accurate.

Based on a similar utility-based behavior idea, Copa [15]
employs a delay-based congestion control algorithm, by ad-
justing the cwnd depending on whether the current rate is
lower or higher than a well-defined target rate. This approach
allows converging quickly to the correct fair rates, even in the
face of significant flow churn. Our protocol also uses a utility-
based approach, but exploiting a deep neural network to better
adapt to a specific network, leaving the utility customization
as a policy that can be tailored to more specific requirements.
Reinforcement Learning-based Congestion Control. Simi-
lar to previous solutions, we use ML to adapt the cwnd esti-
mation, but setting this problem by means of Reinforcement
Learning (RL). Recently, RL has permeated many congestion
control mechanisms, such as Orca [35] and Aurora [21],
where in Aurora, the previous Performance-oriented Conges-
tion Control (PCC) protocol was extended with a Deep-RL
approach. Our RL approach differs from prior work as our
design combines features from both the transport and the
network layers. Furthermore, our implementation uses inter-
process communication between user and kernel space of a
single host, without significant burden to the Linux kernel
module. Moreover, unlike other reinforcement learning-based
algorithms, the actions taken by our agents are guided by a
utility function that has stability guarantees.
In-Network versus End-to-End Congestion Control. Sev-
eral protocols leverage the Explicit Congestion Notification
(ECN) to provide network-level feedback to end hosts. For
example, DCTCP [8] modifies the Red Early Drop thresholds
of ECN to achieve high throughput, high burst tolerance,
while keeping queues empty hence experiencing low latency.
RCP [36], XCP [37], and D3 [9] modify switches behavior to
feedback rates to end-hosts, while recent NATCP [38] and
HPCC [39] leverages switches (or a centralized entity for
NATCP) to send information about bottleneck links. ABC [18]
instead improves on ECN by sending accelerate and brake
signals instead of merely random early drop signals, and hence
more accurately adjusts the source sending rate. More recently,
Swift [40], improved the intra-datacenter communication bas-
ing the congestion control on network delay. As ABC, Owl
also uses network-level information as well (when available),
however, our feedback comes from a network controller, e.g.,
a measurement agent or an SDN controller, that computes
statistics about device utilization. Also, Owl does not need
any modifications to packets headers or custom routing devices
logic, which leads to challenging deployments. In fact, Owl
only relies upon client-side changes and a network statistics
collector, a standard operation across multiple network scenar-
ios. On the one hand, our network-level feedback carries more

3

information than a simple bit in the TCP header. On the other
hand, Owl functions properly also without network knowledge,
while ABC and other ECN-based approaches require network
knowledge to work.

III. REINFORCEMENT LEARNING FRAMEWORK

The proposed congestion control algorithm behind
Owl computes the next cwnd values by leveraging statistics
gathered by the sender. In this section, we overview the
reinforcement learning model that we use and describe the
overall idea of our approach.

A. Reinforcement Learning: Background

In every reinforcement learning problem [41], an agent, i.e.,
a decision-maker, tries to learn the behavior of a dynamic
system interacting with it in multiple iterations. Specifically,
at each iteration, an agent receives the current state and the
reward from the dynamic system and outputs an action that
optimizes a given objective.

Thus, state and reward are the values that the agent receives
from the system, whereas the action is the only input that the
system acquires from the agent. A reward value indicates the
success of the agent’s action decisions, and the agent learns
which actions to be selected to provide the highest accumu-
lated reward over time, i.e., the long-term revenue. Hence,
the critical feature for reinforcement learning is to perform
incentive solution searching with regards to the system reward.

Q-Learning [42] estimates the value of executing an action
from a given state. Such estimations are referred to as state-
action values, or sometimes simply Q-values, Q(s, a). This
quality function represents the quality for taking action a at
the current state s. Q-values are learned iteratively by updating
the current Q-value towards the observed reward and estimated
utility of the resulting state s′ according to:

Q(s, a) = Q(s, a)+α
(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
, (1)

where α ∈ [0, 1) is the learning rate that determines the
override extent of the newly acquired information to the old
one, γ ∈ [0, 1) is the discount factor that determines the
importance of future rewards, and r is the reward at time t.
In this case, the agent utilizes the highest quality function at
state s′ regarding all possible actions.

To handle the complexity of having to keep a separate state-
action pair for too many states, models that approximate the
Q-values are beneficial. To solve our congestion inference
problem, we select a Deep Q-Learning approach [20], in which
the model is a neural network parameterized by weights and
biases collectively denoted as θ.

B. Deep Reinforcement Learning

To deal with the large state and action spaces, we ap-
proximate the Q-table via neural networks, reducing the total
available actions. This technique is referred to as deep rein-
forcement learning and, specifically, deep Q-learning, that uses

neural networks, parameterized by θ, to approximate the Q-
function. Hence, the Q-values are now denoted as Q(s, a; θ),
and the neural network is referred to as Q-network. In our
algorithm, the Q-learning process consists of two parts: (i)
the approximation of Q-values for the action selection, (ii)
the Q-network update, where the loss between predicted Q-
values and target Q-values is used to update the Q-network
parameters θ, using the gradient method:

θ ← θ + α (target Q−Q(s, a; θ))∇θQ(s, a; θ). (2)

The “target Q” is a target value calculated as follows:

target Q = r + γ max
b∈actions

Q(s′, b; θ). (3)

However, it can happen that the Q-function diverges due to
dynamical and frequent changes in the target [41]. Therefore,
a separate network is introduced, the target network. It is a
copy of the Q-function and is used to calculate the target
value. This approach is usually denoted in the literature as
Deep Q Network (DQN), and we configure a periodic update
of the target network with the current Q-function. This ap-
proach, however, arises several challenges, such as a complex
and time-consuming learning phase, which can also cause
catastrophic forgetting: the phenomenon in which the agent
forgets how to perform previously trained tasks [43]–[45].
To efficiently solve these issues derived from using function
approximation, motivated by other studies [20], [46], we use
a technique called experience replay [47]. Experience replay
consists of storing, at each time step, model transitions in a
circular buffer called the replay buffer. Then, during training,
instead of using the latest transition to compute the loss and
its gradient, our agent computes them using a mini-batch of
transitions sampled from the replay buffer. This approach leads
to: better data efficiency by reusing each transition in many
updates and better stability using uncorrelated transitions in
a batch. However, since it can be difficult to use histories
of arbitrary length as inputs to a neural network [46], it is
common to have Q-function operate on fixed length repre-
sentation of histories produced by a function φ(st) or φt for
short. Although more recent versions of DQN have appeared
proposing the use of a dueling DQN [48] or double DQN [49],
we experienced that no particular differences are visible and,
therefore, we stand with a simpler and less memory-consuming
version as the one proposed in [20].

IV. PROBLEM FORMULATION AND PROTOCOL DESIGN

In this section, we present the mechanisms composing
our protocol, whose design aims to continuously select the
next action, i.e., congestion window size, that maximizes
the value of our utility function. Our protocol evaluates the
reinforcement learning action based on the reward perceived
by the sender, used to select the next cwnd adjustment. We
then describe this procedure in a schematic way.

A. Congestion Control via Reinforcement Learning

We now overview our primary components in the RL
method, starting with our considered state set, then with the

4

TABLE I: The network statistics gathered for estimating the
upcoming performance.

Features of the Owl congestion window predictor

1 Time-stamp [jiffies]
2 Congestion Window Size (cwnd) [packets]
3 Round Trip Time (RTT) [ms]
4 RTT variation between two consecutive samples [ms]
5 Maximum Segment Size (MSS) [bytes]
6 Number of delivered packets
7 Packets lost during a transport session
8 Current packets in-flight
9 Number of retransmissions [packets]
10 Partial Network Congestion (PNC) [packets]
11 Partial Network Availability (PNA)
12 Percentage of known network [%]

set of actions on the congestion windows, and finally, with the
utility that drives the choice of the next protocol action.
State Space. Table I summarizes the features that we selected
to build our model state space. We consider both end-to-
end statistics (features 1 to 8) and network-level statistics
(features 10, 11 and 12). Thus, the former set of features is
collected at the sender side at each time interval, any jiffy,
where jiffy is the finest time granularity on Linux systems.
Instead, the last three features represent the partial information
coming from the network (features 10 and 11), and a parameter
stating the quantity of knowledge, as a percentage of the whole
network (feature 12), respectively. In particular, the percentage
of the known network is defined as the fraction of controlled
network nodes in the path between a source and a destination
divided by the total number of nodes in such a path. This
value can be accessed for example via traceroute. Our partial
network knowledge is constituted by two main metrics: Partial
Network Congestion (PNC) and Partial Network Availability
(PNA). Partial Network Congestion (PNC) represents an
indicator of the known level of congestion within the network.
In particular, for each switch under control, let Pin be the
total number of packets received in a given time interval (one
second in our implementation), and Pout the total number of
outgoing packets. We then define diff as |Pin−Pout|. Given
a source receiving statistics or updates from z switches on the
path between a source and a destination, PNC is computed
using the following equation:

PNC = max(diff1, diff2, ..., diffz). (4)

While PNC informs about the current congestion level,
and consequently, the loss rate occurring in the network, Par-
tial Network Availability (PNA) informs about the available
(bandwidth) resources in the network. It indicates the spare
capacity of the network, in a similar way to [37]. For any link
j, given C its capacity and cr the current traffic rate, we define
the spare capacity on such a link, scj , as C−cr

C . Then, given
w links on the path between a source and a destination, we
define PNA as follows:

PNA = min(sc1, sc2, ..., scw). (5)

We choose PNC and PNA as they are easy to compute
and accessible by a vast number of protocols and network mea-

surement applications, such as OpenFlow or NetFlow. Further
information regarding the network environment whereby our
protocol performs best is in Section IV-B. Nonetheless, Owl is
able to automatically understand when network knowledge is
hidden, impractical to obtain, or simply misleading. Inspired
by the more known action masking [50], we decided to equip
the solution with a state masking mechanism so that the same
model has validity both in the presence and absence of the
network feedback, as explained later in this section.

In defining our states, we also consider a history window
of k values for each chosen feature of our state space. This
approach helps our algorithm to predict the network conditions
adequately and to adjust the congestion window accordingly.
The neural network of our deep reinforcement learning algo-
rithm receives a matrix N by k, where k are the historical
values for each of the N features. In our experiments, k has
been set to 5 (more details in Section VII-H). We augment our
state space with a history of generic length k to help the agent’s
learning. However, we do not set this hyperparameter to a large
value in order to prevent the state from growing unreasonably,
and because forgetting history faster is beneficial.
Actions. The congestion window (cwnd) is one of the per-
connection state variables that is used by TCP to limit the
amount of data a sender can transmit before receiving an
ACK. TCP was designed based on specific network conditions
and handles all packet losses as network congestion. As a
consequence, TCP in wireless lossy links unnecessarily lowers
its rate by reducing the cwnd at each packet loss, negatively
affecting the end-to-end performance. Hence, we exploit an
offline training algorithm based on RL to update the cwnd
properly.

The selection of actions is the key to the proposed al-
gorithm’s effectiveness. The list of actions specifies how
Owl should change the cwnd in response to every packet
acknowledge. The set of acceptable congestion window values
is large and tied to the reward of the RL system. Hence, there
is no unique solution across every network condition. After an
empirical evaluation, we converged on the set that has given
us the highest utility, that is:

A = {−10,−3,−1,+0,+1,+3,+10}. (6)

We allow the agent to change the cwnd in any direction with
different intensities. The first three options reduce the size
of the congestion window with a distinct extent, whereas the
last three increase it by three different values. Ultimately,
the intermediate action does nothing to the size of the cwnd,
letting it remains the same as before. We want to encourage
the agent to explore diverse ways to influence the connection
by assigning different magnitudes to the performed change.
Indeed, not only the learning agent should predict when
increasing or decreasing the cwnd, but also to what extent.
For example, our algorithm must learn when the network
state suggests that a large part of the bandwidth is unused
to aggressively increment the window size, while it must
only slightly increase it when the network approaches any
congestion. Our network module starts with an initial cwnd
of 10.

5

Due to the opted approach, the protocol learns how to make
control decisions from experience and, thus, eliminates the
need for necessary pre-coded rules to adapt to the variety
of network environments. While the action set A in Eq. 6
represents our default setting, we designed the systems so that
it is a policy that can be tailored to specific use cases. For
example, the action of the RL model can be the value of the
congestion window size (as we did) or other parameters acting
upon other TCP parameters, e.g., timeout estimation or slow-
start threshold.
Utility function (RL reward). The selection of the congestion
control schema relies on a utility function that models the
application-level goal of “high throughput, few losses, and low
delay”. In particular, the utility Ui of sender i is a function of
throughput of client i (λi), packet loss rate for i (pi), and the
RTT of i (RTTi), as follows:

Ui = λi − δiλi
(

1

1− pi

)
− βi log

(
RTTi

RTTmini

)
(7)

where pi ∈ [0, 1), and RTTmini is the smallest RTT observed
over a sufficiently long period of time. In our implementation
we consider a period of 10 seconds as suggested by other
studies [15], [51]. The normalization of RTT

(
RTT

RTTmin

)
and the logarithm function enable the applicability to various
contexts and highly varying networks, e.g., cellular networks,
where RTT can abruptly change in a fraction of time; δi and βi
are two adjustable coefficients determining the importance of
the components. For example, a δi larger than βi implies that
lower packet losses are preferable to the packet delay. These
coefficients are per user as it is possible that applications might
have different preferences. The goal of each sender i is to
maximize its utility function Ui. In what follows, we better
motivate the reasons behind such an expression, studying
thoroughly the behavior of our solution when it considers both
aspects in the utility, i.e., loss and delay, or when β = 0 and
it works as a pure loss-based version. We refer to this latter
version with the name of Owl-Loss since it only considers
packet losses and not network delay.
State masking. Consider Table I, where we report the list
of the 12 features that are considered in the DRL model. In
some cases, only a subset of such 12 metrics is available.
Therefore, to make our DRL model general enough and suit-
able regardless from the presence of the network knowledge
(features 10 and 11 in Table I), we use a technique, known in
the literature as masking, over the state space. We refer to this
methodology as state masking, and consists of two steps. First,
the features list is padded to fit a given standard length, so that
the model always expects the same number of inputs. Once all
samples have a uniform length, the features to be ignored are
marked. By doing so, the model is informed of what are the
padded values so that they can be ignored by the DRL when
processing the data. Such state masking pre-processing can
be viewed as adding an extra layer in front of the Q-network
responsible for selecting the best action. The state masking
mechanism can be applied even if the network knowledge is
available, but it is not convenient to use, or it is convenient only
partially. As we show in Section VII, there exist circumstances
where weighting such information may lead to a significant

TCP module

State s:
RTT
Thr
Loss
…

Observe state s

Deep Neural Network

SENDER Reward r

Take action
a = new cwnd

RECEIVER

Partial Network
Knowledge

Network
Measurements

Agent

Fig. 1: Owl Overview: reinforcement learning sender’s agent
interaction with the network.

performance increase of our solution. The extreme case is
when this information is fully considered or ignored, while in
between reside possible values of weight representing a model
parameter learned by our algorithm during training.

B. Owl Protocol Design

Consider Fig. 1, where we detail the main actions performed
by the sender. All collected metrics are given to the Neural
Network, and the protocol starts (Algorithm 1).

Algorithm 1 Owl cwnd update

1: Let t be the time step, and T total number of steps
2: Let S and D be the target source and destination
3: F← flow connecting S and D
4: At time t = 0 initialize Q0(s, a) with random wights and

set reward r as in Eq. (7)
5: for t = 1 to T do
6: Collect state vector st for flow F
7: cwnd?(t) ← maxcwnd Q(φ(st), st; θ)
8: Set cwnd to cwnd?(t)
9: Observe r and s′

10: Set φt+1 = φ(s′)
11: Store transition (φt, cwnd, r, φt+1) in replay memory
12: Perform a gradient descent step according to Eq. (2)

Specifically, we collect the state of the end-to-end com-
munication, e.g., RTT and throughput, exploiting the TCP
Linux API. Concerning the network feedback, the network
measurement agent computes PNC and PNA by controlling
the underneath topology and notifies these quantities to the
sender. Note that even when the network knowledge (feature
10 and 11 in Table I) is incomplete or unavailable, the neural
network does not use the in-network features but our protocol
can still provides valuable results (Section VII).

Once Owl has collected such values, it selects the next cwnd
by choosing the “action” according to the mapping policy.
During the training phase, the next cwnd value is selected
according to the ε-greedy policy: With probability ε it selects
the action randomly (exploration), and with probability 1− ε
it selects the best action on the basis of the highest expected
reward (exploitation). During the testing phase, the algorithm

6

Time

State

Ack/Data

Action

Kernel
space

User
space

Owl User Module (Server)

RL Model Update

Owl Kernel Module (Client)

NIC
Host

Metrics

Fig. 2: Packets transmission with asynchronous interaction
between the sender agent and the RL model agent.

avails the states, actions, and reward to select the best value
for the cwnd (as shown in Algorithm 1); once the action is
set, the program updates the experience memory and the Q-
functions. The prediction of the best cwnd occurs every time
a packet is acknowledged to guarantee an adequate refresh of
the cwnd used in the congestion avoidance phase. The state set
is then updated to assure k historical values for each metric
at any interval.

We clarify the process dictating the packet transmission and
the learning phase in Fig. 2. We design our solution with the
goal of processing data efficiently and swiftly by an asyn-
chronous communication between the kernel and user-space.
By separating the responsibilities, we are able to transmit at
line rate, but properly handling the complexity of keeping an
RL process. The kernel module component can thus collect
data and let the user-space module handle them, at a larger
time scale using the logic to select the next cwnd. In particular,
the reinforcement learning-based congestion controller agent
accumulates network statistics from ACKs over a fixed period
and sends the action asynchronously in a separate thread. Such
separation of concerns between user and kernel space is also
necessary since the RL model requires a considerable amount
of memory, which may not be available within the kernel. At
the same time, the user-space component provides immediate
feedback to the kernel, communicating the new increment or
decrement of the window using the model trained so far. In
such a way, the TCP state can evolve regularly.

V. STABILITY ANALYSIS

In this section, we focus on the utility’s motivation, referring
to the Eq. 7 when the weight βi = 0. In particular, we
show that processes running our Owl-Loss converge to a
stable rate assignment. We demonstrate how no sender has the
incentive to deviate its sending rate from the strategy defined
by our Owl protocol objective function, hence reaching a Nash
equilibrium. At the equilibrium condition, we have the n-tuple
of sending rates defined as (λ1, ..., λn). Formally we have that:

Ui(λ1, ..., λi, ..., λn) > Ui(λ1, ..., x, ..., λn), ∀i, (8)

where Ui(λ1, ..., λi, ..., λn) denotes the sender i’s payoff as a
function of its and other strategies, and x is any non-negative
sending rate. The following theorem holds.

Theorem V.1. (Stability). Consider n senders sharing a bot-
tleneck link, and λi to be the rate of sender i; if for every
sender i the objective function is defined by Equation 7, the
sending rates converge to a stable equilibrium. Moreover for
every sender i, we have:

λi =
C
(
n
δi
− ẑ
)

n+ 1
, (9)

where ẑ =
∑
j 6=i

1
δj

.

Proof. We need to show the existence of a Nash equilibrium,
i.e., no sender can increase its objective function value by
unilaterally changing its rate. We consider a network model
with n competing senders sharing a bottleneck link of capacity
C and a FIFO-queue. Assuming a tail drop queue eviction
policy, the loss rate function can be described as:

pi =

{
1− C∑

i λi
if
∑
i λi > C

0 otherwise
(10)

Let us denote the arrival rate in the queue by S =
∑
i λi.

Since the term 1 − C
S = S−C

S is independent of i and it is
equal for all senders, all senders should experience the same
loss rate, we denote pi simply by p. By substituting these new
terms into Equation 7, we obtain:

Ui = λi − δiλi
S

C
.

First we compute the partial derivative, ∂Ui

∂λi
, and we split

S into the two addends S = λi +
∑
j 6=i λj . Thus, for each i

yields:

∂Ui
∂λi

= 1− 2
δi
C
λi −

δi
C

∑
j 6=i

λj .

We then compute the second derivative of Ui, with respect
to the rate, and we obtain the negative quantity − 2δi

C . Hence,
the utility is concave and the Nash equilibrium is achieved
if, and only if, ∂Ui

∂λi
= 0. Next, to find the rate at which the

equilibrium condition is achieved, we introduce ẑ defined as
ẑ =

∑
j 6=i

1
δj

. Hence we have:

1− 2
δi
C
λi −

δi
C

∑
j 6=i

λj = 0

2λi +
∑
j 6=i

λj =
C

δi

The solution to the stated system of linear equations is:

λi =
C
(
n
δi
− ẑ
)

n+ 1
,

which is the desired sending rate of sender i.

7

VI. OWL PROTOTYPE IMPLEMENTATION

Network Scenario. In designing our protocol, we considered
practical scenarios in which networks are partially unknown.
Wide-area networks may require (undesirable) cooperation and
coordination of multiple (federated) gateways, and unstable
network conditions may hide information. Part of our evalu-
ation in Section VII focuses on the performance analysis of
our protocol with such partial network knowledge, showing
that the in-network information may add value if available,
but it is not required as in other in-network congestion control
mechanisms.

To analyze and respect this partial unavailability constraint,
we designed and implemented a system in which a software-
defined network (SDN) controller acts as a measurement
collector and manages only some of the deployed (virtual)
switches. While we use an SDN controller in our implemen-
tation, our approach is not limited to this specific technology.
The controller interacts periodically with the switches to
collect statistics about the number of packets transmitted and
received. Such statistics are then used by our implementation
to learn and predict the end-to-end action to take given the
level of congestion. In our implementation, the controller
receives packets’ statistics from all switches with a (re-
configurable) sampling rate of one-second, a good trade-off
between overload and freshness of information. The controller
also runs a simplistic web server and exposes REST API to
obtain these values, which are part of the input of our RL
algorithm.
Kernel Module. The Owl module is responsible for setting
the optimal congestion window. To operate, it obtains net-
work states by communicating with a measurement agent,
for example, an SDN controller. Fig. 3 shows the main
architecture components of our implementation. Our prototype
is composed of two main processes: one running in the kernel
and one in user-space. The kernel module exploits functions
included in the classical tcp cong.c to have access to the
underlying congestion control functionalities of TCP. Like any
other module, our kernel implementation can be mounted as
a pluggable congestion control algorithm. It can set and get
end-to-end transport states such as Sequence Number, ACKed
Packets, RTT, and efficiently compute the throughput.

The application process running in user-space collects in-
formation about the current TCP socket and uses them to
build the input matrix of a Deep Neural Network running the
reinforcement learning algorithm. The module takes actions in
line with the RL feedback and modifies the cwnd as a reaction
to events (Section IV).

Storing the required states to run a reinforcement learning
algorithm and to keep communications with the network
controller can be costly at the kernel level. As emerged
in [52], exposing congestion signals, i.e., RTT, losses, etc., to
an external module would enable providing new capabilities.
A user-space application can leverage a more extensive set
of libraries to fit the learning algorithm’s needs. Besides,
the transmission of packets to/from the network controller
could arise issues (e.g., delays and losses) and requires proper
management of the socket channel. For these reasons, we

Cwnd update logic

User Space

Controller

Communication

Trained model

Reinforcement Learning

Historical values

Application

requirements

Throughput Estimate

Prediction and

Inference Logic

Socket Interface

RTT Estimate

Netlink server

Kernel Space

Netlink clientACKed Packets

RTT

Throughput
Current cwnd

New cwnd

Fig. 3: Owl has a component that runs in the Linux kernel,
and a component that runs at user-space to collect statistics to
be used by our reinforcement learning algorithm.

implemented the network management components of our
congestion control algorithm at the user-space and marshall
current TCP socket states between user-space and kernel via
the Netlink service, commonly used for this purpose [53].

Moreover, our RL component is in charge of setting con-
gestion window only during congestion avoidance phase of
TCP. As we rely on Cubic for setting other TCP parameters,
such as timeouts and threshold (ssthresh), we also adhere to
the separation into two main phases during cwnd increment:
slow start and congestion avoidance. The former starts with the
initial cwnd and lasts until one packet gets lost or the window
exceeds the ssthresh value. After overcoming this threshold,
the congestion avoidance phase begins. Although the initial
strategy is referred to as slow start, its congestion window
growth is quite aggressive, and certainly more aggressive
than the congestion avoidance phase. We have experienced
that the most critical stage is the latter, since (as the name
suggests) it attempts to avoid sending more data than the
network is capable of forwarding, that is, to avoid causing
network congestion. For this reason, we modify the traditional
behavior of TCP only in the congestion avoidance phase, but
we exploit years of research about TCP. This approach also
balances the disadvantages of RL-based systems, well-known
in the literature [21], [35].

VII. PROTOCOL EVALUATION

To evaluate our proposal, we tested Owl against seventeen
other transport protocols. In this section, we describe such an
evaluation scenario and our application testbed deployment,
followed by our performance results.

A. Trace-Driven Emulation Results

To evaluate our congestion control algorithm, we compare
it with other solutions over LTE networks. We use a virtual
network testbed and Mahimahi [54], an emulator that allows
testing of various network conditions, also by means of real
(cellular) traces. In particular, we run comparisons over traces
collected from three of the largest US telecommunication
providers, Verizon, T-Mobile, and AT&T. The network is
emulated through namespaces via Mininet [55] and consists
of the 14-node NSFNET topology. The transmission goes
through a Software-Defined Network (SDN), where switches

8

23456
95th %tile Q delay (ms)

0

10

20

30

40

50

T
hr

ou
gh

pu
t(

M
bp

s)

Sprout Owl-Loss
OwlCubic

VegasBBR

Copa

Aurora

FillP-Sheep
Indigo

LEDBAT PCC-Allegro

ABC

SCReAM

TaoVA-100x

VerusPCC-Vivace

WebRTCXCP

(a) Verizon LTE

20406080100
95th %tile Q delay (ms)

0

5

10

15

20

T
hr

ou
gh

pu
t(

M
bp

s)

Sprout

Owl-Loss

Owl

Cubic

Vegas

BBR Copa

Aurora
FillP-Sheep

Indigo

LEDBAT

PCC-Allegro

ABC

SCReAM
TaoVA-100x

Verus

PCC-Vivace

XCP

(b) T-Mobile LTE

681012
95th %tile Q delay (ms)

0

10

20

30

40

T
hr

ou
gh

pu
t(

M
bp

s)

Sprout

Owl-Loss
Owl

Cubic

Vegas

BBR

Copa

Aurora

FillP-Sheep

Indigo

LEDBAT
PCC-Allegro

ABC

SCReAM

TaoVA-100x
Verus

PCC-Vivace

WebRTC XCP

(c) AT&T LTE

Fig. 4: LTE Trace-driven emulation. Owl vs. previous schemes (using RL or not) tested over three cellular network traces
(top-right are better). In all cases, Owl outperforms our benchmark, and has the highest performance trade-off, on average, in
our tested use cases.

TABLE II: RL model parameters used for training and com-
puter network settings.

Model parameter Value

Episodes/Epochs 500000
Steps 5000
Learning rate 0.006
batch train True
warmup steps 10
γ 0.93
policy Epsilon Greedy
neurons per-layer 512-256

Comp. Network parameter Value

bottleneck link bandwidth [Mbps] 6 - 100
min RTT [ms] 1 - 40
buffer size [pkts] 3 - 2000

interact with a centralized controller (in our implementation,
we used Ryu [56]). We also evaluate the performance over
real hosts, and we deployed Owl over the GENI testbed [26].
Throughout our experimental campaign, we use the utility
function described in Eq. 7, where δ = β = 0.5 to give
equal importance to packet loss and delay. Unless otherwise
specified, we set a default percentage of known paths to be
20%, the Mininet network to have 1000-packet queue, and
0% random loss. To evaluate each protocol, we used a 95%
confidence intervals, and average 30 experiments in which
each sender-receiver pair runs TCP iperf3 for 100 seconds.
Our RL model is trained offline over an Intel(R) Core(TM)
i7-7500U CPU @ 2.70GHz for 12 hours, varying different
network conditions, e.g., cellular and wired, with different
knowledge percentages (0-100). The intervals of cellular traces
(Verizon, T-Mobile, AT&T as explained later) are different
from the ones of the testing phase in order to avoid visible
tailoring to specific network scenarios and overfitting. We
summarize in Table II the main parameters of our network and
our RL model, such as the number of epochs and learning rate
(see [57] for a full explanation of involved variables).

To understand how Owl performs compared to other so-
lutions, we deployed our protocol over an emulated network
created with Pantheon [58], a well-known fairly recent testbed
developed to evaluate congestion control schemes. In partic-

ular, we compared Owl against seventeen other protocols,
divided into five categories: (i) end-to-end TCP designs:
Cubic [22], Vegas [24], BBR [25], Tao-VA [59], Copa [15],
PCC [14] and its variants; (ii) end-to-end cellular, i.e., LTE
protocols: Verus [7], Sprout [6]; (iii) Machine Learning-based
transport protocols: Indigo [58] and Aurora [21]; (iv) explicit
congestion control: ABC [18] and XCP [37]; and (v) mixed
schemes: LEDBAT [60], SCReAM [61], WebRTC [62]. For
our LTE evaluation settings, we use the publicly available [54]
Verizon and T-Mobile traces, with separate packet delivery
for uplink and downlink. The traces were captured directly on
those networks. These traces are also loaded on our local SDN-
based virtual network testbed. Our OpenFlow controller is only
aware of the virtual switches (instances of Open Virtual Switch
(OVS) [63]) that are connected to the SDN controller. For
in-network algorithms, such as ABC, we emulate compliant
routers as Mininet hosts that marks the packets according to
the algorithm’s logic.

Fig. 4a-b-c shows that Owl performs efficiently in all tested
scenarios. To study separately the Owl’s loss-related properties
from its latency-related properties, our experiments sometimes
involve evaluating our protocol when the latency weight is β =
0, i.e., studying a purely loss-based variant. We refer to this
version as Owl-Loss and to the default combination of weights
simply as Owl, since its utility function is a combination of
loss and delay-based components. In the case of Verizon LTE
traces (Fig. 4a) Owl achieves both good throughput and 95th

percentile per-packet-delay, and no other solution has shown
a better combined throughput-delay performance. At the same
time, we can observe that also Owl-Loss can simultaneously
lower the delay, despite the fact that the RL reward was
designed to achieve high throughput and low loss rate. Similar
conclusions hold even for T-Mobile traffic (Fig. 4b) and AT&T
(Fig. 4c), where both versions of Owl provide a desirable
trade-off between throughput and delay. It is worth noticing
that none of the other algorithms outperform Owl in these
tested environments: our solution appears to be more stable
across traces. Our solution, thus, offers the ability to adapt
to different scenarios, as in diverse cellular networks, given
the effective learning process performed by our agent. This
adapting behavior is a consequence of the effective learning

9

performed by our agent, which motivates the choice of the RL
framework.

Fig. 5 shows the shortcomings of transport protocols in
use and the lack of adaptation required for a good transport
protocol. The Fig. 5a represents a sample of the throughput
evolution over the Verizon LTE downlink traces for 60 sec-
onds. For the sake of clarity, we report only our comparison
to Cubic, as it is the default in many Linux implementations,
PCC, as it is one of the best performing within utility-based
approaches, and the loss-based version of Owl, given its ability
to foster high throughput in general and in cellular networks
as manifested in previous results. Owl adapts its sending
rate so as to closely match the bottleneck link’s available
bandwidth (dashed black line in the figure). In contrast, Cubic
slowly reacts to changes in the network, and PCC partially
approximates the link capacity. Our protocol can cope with
rate variations in a reactive manner and closely approximates
the desired behavior by learning the optimal action.

This result is also confirmed in Fig. 5b where we plot the
utility (Eq. 7) obtained with different algorithms over AT&T
LTE downlink. This time, we compare against ABC [18] as
it is the most representative of explicit congestion control
and Aurora as a novel RL-based congestion control algo-
rithm. Moreover, to generalize the findings about throughput-
delays of Fig. 4, we now consider the combined effects over
throughput and losses by means of the loss-based version of
the utility. Likewise, we can observe how Owl-Loss regularly
provides a higher utility than the benchmarks over time. This
is due to the ability of the framework to learn the optimal
behavior during training and then react efficiently during
network dynamics. We can also observe how Aurora and Cubic
fail to react promptly to the events, confirming how our state
space constitutes a valid indicator of the network conditions
and our mechanism can properly react.

B. Network Knowledge Impact

We now discuss our experiments regarding the impact of the
required network state knowledge that Owl needs to train the
RL system effectively. Fig. 6 display the (a) throughput and
the (b) RTT, when different transport protocols run over the
same 14-node topology emulated on our local virtual network
testbed. We set up our network where the maximum length
of a path is 7 switches, all links are 100 MBps, the network
load is at 40%, the base RTT is 30 ms, and the buffer size
of 1 BDP. This network load is generated by sending UDP
packets (via iperf3) until the desired network load is reached.
Specifically, we compare against Cubic [22], as a reference
end-to-end congestion control, Aurora [21], as a reference RL-
based congestion control, and ABC [18], as a reference in-
network control. The performance of Cubic and Aurora are
not affected by the lack of in-network knowledge since they
are both end-to-end congestion control algorithms.

We can observe that when the number of known (or
ABC-compliant) switches is more than 60%, our solution
(i) provides better performance than ABC, (ii) speeds up
the transmission in terms of throughput and (iii) reduces
the end-to-end latency. Besides, ABC performs significantly

worse than Owl when the number of ABC-compliant routers
is relatively low. In conclusion, our evaluation reveal that even
when either limited or very high number of the switches are
utilized to collect statistics, our solution outperforms both end-
to-end approaches (like Cubic) and novel in-network protocols
(like ABC). However, we can also observe how the worst
performance of Owl are seen approximately when half of
the devices are controlled, leading to a lower throughput and
higher delay than Cubic. We attribute such results to the fact
that the RL agent cannot assign the proper importance to the
incoming network states, resulting in occasionally misleading
values. In such particular conditions, the performance of Owl
are worse than those obtained using other end-to-end protocols
(Cubic and Auorora) and a network-assisted solution (ABC).

This issue motivates us to use state masking and weight
the incoming PNA and PNC information, as detailed in
Section IV. Aside from enabling our solution to work as a
pure end-to-end solution or as hybrid in-network / end-to-end,
this technique allows to neglect the network feedback values
when not beneficial. We then show the improvements obtained
by this choice in Fig. 6d-e. In the case only partial network
knowledge (around 50%) is available, Owl can still improve
the overall performance. By masking the state space, the model
does not suffer from a only partial visibility and can consis-
tently outperform other protocols. Furthermore, these results
validate that the value of PNC and PNA are beneficial to
the algorithm, where PNC is a signal of slowing down the
transmission given some traffic congestion, and PNA signals
to increase the rate as some resources are underutilized.

Throughput performance with respect to network size. In
this experiment we compare Owl against a few representative
protocols as we increase the number of informing switches
over randomly generated topologies, i.e., links are randomly
generated while we fix the network size. The link capacity
is also uniformly distributed at random between 50 and
100 Mbps. We are interested in assessing the impact of the
network size on our congestion control algorithm. To this aim,
we compare the perceived throughput when our solution has
no in-network congestion feedback, and when the network is
as informative as it can be, i.e., the in-network feedback arrives
from 100% of the switches. In Fig. 6c, these two Owl policies
are denoted with Owl-0, namely, zero-percent of total switches
are communicating with the source, and Owl-100, respectively.
It is notable how a full network awareness is beneficial and
allows a less prominent (and inevitable) performance degrada-
tion when an increasing number of switches compose an end-
to-end path. However, we note how even Owl-0 provides better
results than recent end-to-end congestion control solutions
based on RL [21]. The efficient solution design, as well as
the set of information chosen to drive the experience, are
key to this positive outcome. Another reason behind such
improvements compared to other RL-based models is that,
since we used the in-network information in different scenarios
during the training, the general policy learned by the system is
valid even when such network feedback is absent, as in Owl-0.

10

0 10 20 30 40 50 60
Time (s)

20

40

60

T
hr

ou
gh

pu
t(

M
bp

s)

Owl-Loss
Cubic
PCC
Capacity

(a) Verizon LTE

0 20 40 60 80 100 120
Time (s)

0.35

0.40

0.45

0.50

0.55

U
til

ity

Owl-Loss
Cubic
PCC
Aurora
ABC

(b) AT&T LTE

Fig. 5: Our protocol best follows the available bandwidth. (a) A 60-seconds throughput’s evolution compared to the actual
link capacity. Owl fits best the Verizon LTE trace; while, especially for Cubic, overshoots in throughput lead to large standing
queues. The curves shown have been selected for visual clarity. (b) A 120-seconds utility’s evolution. Owl guarantees an
adaptive response to the network dynamic changes.

0 20 40 60 80 100
Known Network (%)

20

25

30

T
hr

ou
gh

pu
t(

M
bp

s)

Owl
ABC

Cubic
Aurora

(a)

0 20 40 60 80 100
Known Network (%)

70

80

90

R
T

T
(m

s)

Owl
ABC

Cubic
Aurora

(b)

5 10 15 20 25 30
Number of switches

30

40

50

60

T
hr

ou
gh

pu
t(

M
bp

s)
Owl-100
Owl-0
ABC

Cubic
Aurora

(c)0 20 40 60 80 100
Known Network (%)

20

25

30

T
hr

ou
gh

pu
t(

M
bp

s)

Owl
ABC

Cubic
Aurora

(d)

0 20 40 60 80 100
Known Network (%)

70

80

90

R
T

T
(m

s)

Owl
ABC

Cubic
Aurora

(e)

Fig. 6: Network Knowledge Impact on Performance. (Without masking) (a) Throughput and (b) RTT of Owl protocol for
increasing percentage of known network. (With masking) (c) Throughput performance with or without network knowledge
averaged over different network topologies and increasing number of informing switches. (d) Throughput and (e) RTT of
Owl protocol for increasing percentage of known network.

C. Buffer Size Impact

Later, we consider the bottleneck saturation with varying
buffer sizes. We run a single flow for 100 seconds on an
emulated bottleneck link, comparing the throughput, the RTT
inflation, and the overall power. The network is set up with
30ms of base RTT and capacity on the bottleneck link of
50 Mbps. The RTT inflation is calculated as:

RTT inflation = RTT − base RTT, (11)

while the Power is:

Power =
throughput

delay
, (12)

following the definition in [64]. A high power indicates a high
throughput as well as a low delay in the network.

Starting by analyzing the throughput in Fig. 7a, we com-
pare against a utility-based protocol as PCC-Vivace that can
efficiently handle large and small buffers. Rather than Vegas,
which performs similarly to Cubic, we consider a delay-driven

protocol as Copa. For the sake of clarity, confidence intervals
in the graphs are omitted because they are negligible. From the
graph, we can observe how Owl needs almost the same buffer
size of PCC-Vivace to achieve at least 90% capacity utilization
(45Mbps). However, Owl converges to a higher throughput
value.

Regarding the delay evolution shown in Fig. 7b, Owl can
prevent the bufferbloat phenomena, as opposed to Cubic (used
here as baseline). Having the delay notion in the reward
function, our solution can learn when to reduce the cwnd to
avoid filling up the buffer. Owl and PCC-Vivac can maintain
the inflation a quarter of Cubic’s inflation when the buffer is
greater than 150kB. Fig. 7c confirms the ability of Owl to
jointly maximize the throughput while minimizing delay. Our
protocol can achieve this objective even more accurately than
PCC-Vivace.

11

1 10 100
Buffer size (kB)

0

10

20

30

40

T
hr

ou
gh

pu
t(

M
bp

s)

Owl
Copa
PCC-Vivace

Cubic
BBR

(a)

100 1000
Buffer size (kB)

0.00

0.25

0.50

0.75

1.00

1.25

R
T

T
In

fla
tio

n
(n

or
m

.t
o

C
ub

ic
)

Owl
Copa
PCC-Vivace

Cubic
BBR

(b)

100 1000
Buffer size (kB)

0.9

1.0

1.1

1.2

1.3

1.4

Po
w

er
(n

or
m

.t
o

C
ub

ic
) Owl

Copa
PCC-Vivace

Cubic
BBR

(c)

Fig. 7: Buffer Size Impact. The evolution of (a) Throughput, (b) RTT inflation, and (c) Power of Owl for increasing size of
buffer of bottleneck link.

Cubic Vegas Owl Reno BRR
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A
vg

(T
hr

/I
de

al
T

hr
)

Ideal
Scheme under test’s throughput
Owl’s throughput

(a)

Cubic Vegas Owl Reno BRR
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
A

vg
(T

hr
/I

de
al

T
hr

)
Ideal
Scheme under test’s throughput
Cubic’s throughput

(b)

2 4 6 8 10
Number of flows

0.2

0.4

0.6

0.8

1.0

Fa
ir

ne
ss

In
de

x,
J

Owl
Vegas
Reno

Cubic
BBR

(c)

Fig. 8: Fairness and Friendliness Analysis. (a) Different schemes utilization and how they share the available bandwidth. The
ideal fairness value is 1. Owl-Loss is fair, especially when used in conjunction with other Owl users. (b) We then compared
Cubic’s fairness to assess improvement over existing solutions. (c) We summarize the impact on the fairness using the Jain’s
index when the same protocol is employed for an increasing number of competing flows.

n = 2 n = 3
0

10

20

30

40

50

A
vg

T
hr

(M
bp

s)

Actual Thr
Theoretical Thr

Fig. 9: Experimental analysis of throughput when multiple
Owl-Loss senders transmit concurrently. The results confirm
the theoretical analysis in Eq. 9.

D. Owl Fairness and Friendliness

In this subsection we evaluate the fairness among several
flows all running Owl-Loss and competing with each other, as
a verification of the stability analysis. We also assess Owl’s
friendliness, i.e., fairness when a Owl flow compete against
different protocols, such as Cubic.

We set up an experiment where the network has a bottleneck
link of 30ms RTT and a bandwidth of 50 Mbps. First,
we evaluate the friendliness against all congestion control
solutions that are installed on Linux by default (Fig. 8a).
We compare the average ratios between throughput values

0 50 100 150 200 250
Flow Duration (s)

20

30

40

50

T
hr

ou
gh

pu
t(

M
bp

s)

Owl
ABC
Aurora

Cubic
BBR

Fig. 10: Throughput evolution for increasing duration of the
communication. Owl is suitable for diverse type of applica-
tions.

achieved by each flow with respect to their ideal fair share. We
found that Owl has a higher level of friendliness when multiple
flows run Owl and when Owl competes with other transport
protocols (Fig. 8a.) While perfect friendliness does not hold
for any of the tested schemes, we note how Cubic (that has best
throughput-delay performance among its Linux counterparts),
has a worse level of friendliness than Owl (Fig. 8b). By
having the objective of minimizing the losses in combination
with some network knowledge, our protocol can understand
when reducing the sending rate to improve its and others’
performance. Second, from the same graphs, we can also
derive the level of fairness of our solution compared to Cubic’s

12

one. It is easy to conclude that Owl results in a higher level
of fairness.

To further support this conclusion, we also consider the
Jain’s fairness index [65], one of the most widely used
measures of fairness. The Jain’s index is formally defined as:

J =

(∑k
i=1 fi

)2
k
∑k
i=1 f

2
i

, (13)

where fi is the throughput for the i-th connection, k is the
number of flows, and 0 ≤ J ≤ 1. One of the advantages
of this metric is its intuitiveness, i.e., a large value of J
represents a more fair resource allocation. We investigate
how the Jain’s index evolves over time for multiple flows.
Results given in Fig. 8c confirm that Owl can increase the
fairness when compared to other protocols and outperforms
other learning-based solutions. In particular, even when more
flows contend the same resources, our solution is able to
accommodate the demands and provide an equal throughput
to these transmissions.

Finally, to demonstrate the validity of Eq. 9, we quantify the
throughput of multiple Owl-Loss flows sharing a bottleneck
of capacity 100 Mbps. We measure the average throughput
when the number of senders varies between 2 and 3, and all
of them set the value of δ = 0.7 (and β = 0). As shown
in Fig. 9, where we report both the theoretical value and
the obtained one, the empirical analysis confirms the stability
results expressed in Section V.

E. Evaluating the Impact of Traffic Flows Duration Diversity

In this subsection, we analyze the effects of shorter flows
(Fig. 10). We observe how diverse approaches to explicit
congestion control perform well for long-lived flows, where
the devices have time to notify the hosts and the traffic can be
optimized. The performance of end-to-end congestion control
protocols is generally suboptimal for longer communications.
We can see how our solution outperforms the other protocols
picked as benchmarks for both short-lived and long-lived
flows. We attribute the reason for such better performance to
our proposed integration of in-network signals into a learning
module; such technique mitigates the drawbacks of the pure
explicit congestion notification à la ABC [18] and standard
end-to-end approaches as Cubic [22]. This result made explicit
the ability of Owl to adhere to the network conditions it
encounters.

F. Evaluation over the GENI Testbed

To establish the practicality of our approach and understand
how Owl performs over wide-area Internet paths with real
cross-traffic and real packet schedulers, we deploy our solution
on the GENI testbed [26]. In these experiments, we evaluate
how the congestion control schemes under consideration be-
have across two federated GENI aggregates. We measure the
performance of each schema when competing with other flows.
To evaluate our protocol in these realistic settings, we average
the throughput and end-to-end delays obtained over 60-second
flows, while the senders share a bottleneck link with 3ms RTT
and a bandwidth of 100 Mbps.

We compared the performance of our protocol with all other
protocols currently available on Linux, considering also the
loss version of Owl. The results are summarized in Fig. 11a,
where we evaluate the ability to achieve the goal of high
throughput and low loss rate defined by our utility function.
Our prototype evaluation deployed in real settings matches
our emulation results: Our implementation can jointly achieve
high throughput and a low loss rate when compared to other
solutions, effectively balancing the two components. Not only,
but the two versions provide similar results, with a slight
improvement in the loss rate for the loss-based version. Since
the general version of Owl provides valid results, we continue
the experiments with this version in what follows.

We then analyze if our solution is agnostic to the flow
duration, as in our emulated scenarios. To this end, we perform
a set of experiments and report the results in Fig. 11b.
Comparing the obtained throughput, we observe how Owl is
beneficial regardless of the flow duration.

Moreover, we consider how an increased number of concur-
rent flows damages the single transmission (Fig. 11c). Clearly,
as the competing flows increase, the loss rate increases as well.
However, Owl is able to maintain a low loss rate, ensuring
stable transmissions.

G. Study of Our State and Action Space

In the rest of this section we show the results that motivated
our design choice. In particular, we analyzed what is the
most performant state and action set that our reinforcement
learning algorithm should use? This analysis is often omit-
ted in prior reinforcement learning work, while it has been
always lacking in previous work on RL for TCP congestion
control [17], [21], [35].
State Space. We start by considering different set of states
and we define the following policies: (i) State-set-1 or simply
State-1 a state space limited to three features, as described
in [21]. This vector of statistics consists of: latency gradi-
ent, i.e., the derivative of latency with respect to time; the
latency ratio, i.e., the ratio of the current’s mean latency
within the time interval to minimum latency observed in the
connection’s history; sending ratio, i.e., the ratio of packets
sent to packets acknowledged by the receiver. (ii) State-2 a
twenty features list as mentioned in [51]. This list includes
features as in-flight bytes, RTT, RTT variation, and is thus
partially overlapped with our state space, but includes more
statistics regarding the throughout and lost packets. 1 (iii)
State-3 in which we consider nine metrics, as in [35]. This
policy considers the current cwnd, together with both statistics
calculated during the monitoring interval, i.e., throughput, loss
rate, delay, ACKs, elapsed time, and metrics regarding the
overall communication, i.e., the minimum delay, maximum
throughput, and smooth RTT measured since the transmission
started. It is worth noticing that all these space-set policies,
similar to Owl, consider a fixed-length history. Our proposed

1The complete list of features is as follows: last RTT, smooth RTT, min
RTT, standing RTT, RTT variance, delay, cwnd, inflight bytes, writable bytes,
sent bytes, received bytes, re-transmitted packets and bytes, ACKed bytes,
lost packets and bytes, throughput, number of retransmission due to timeout,
number of timeouts, flag indicating congestion. For further details refer to [51].

13

2345
Packet Loss (%)

40.0

42.5

45.0

47.5

50.0

52.5

T
hr

ou
gh

pu
t(

M
bp

s)

Owl-Loss
Owl

Cubic

Vegas

BBR
PCC

(a)

0 50 100 150 200 250
Flow Duration (s)

35

40

45

50

55

T
hr

ou
gh

pu
t(

M
bp

s)

Owl
Vegas
PCC

Cubic
BBR

(b)

5 10 15 20 25 30
Number of Flows

0.05

0.10

0.15

Pa
ck

et
L

os
s

R
at

e

Owl
Owl-Loss
Vegas

PCC
Cubic
BBR

(c)

Fig. 11: GENI testbed evaluation. (a) Throughput-loss rate trade-off for kernel-level solutions over real networks. Owl
optimizes the two quantities simultaneously. (b) Effect of diverse flow duration over the achievable throughput. (c) Performance
degradation when the number of communications increases. Our solution can well mitigate this circumstance.

3.03.54.0
Packet Loss (%)

46

48

50

T
hr

ou
gh

pu
t(

M
bp

s)

State-1

State-2 State-3

State-4

(a)

2.53.03.54.04.5
Packet Loss (%)

40

42

44

46

48

50

T
hr

ou
gh

pu
t(

M
bp

s)

Action-1

Action-2

Action-3

Action-4

(b)

Fig. 12: Design evaluation. Analysis of different (a) state
spaces and (b) action spaces. The results motivate our assump-
tions and our choices.

space set, detailed in Section IV, is denoted in our evaluation
figures with State-4. We offline trained these alternatives under
the same conditions encountered by ours.

In Fig. 12a we show our evaluation results on the impact of
such state set policy in the throughput / losses diagram. The
considered scenario refers to the same GENI network, when
two flows compete on this bottleneck, in order to accentuate
the possible congestion occurrences. We observe how our
design (State-4) successfully balance the importance of having
information from each feature and the complexity of handling
such a large state space. In particular, this experiment shows
how our choice of network statistics that we use as features
represents effectively the TCP transmission state. Aside from
the in-network metrics, all other statistics are easily obtained
by our kernel module, thus having a minor impact on the
data collection process. Besides, the results suggest that also
network knowledge is precious and beneficial rather than a
burden.
Action Space. After analysing the impact of the state space,
we focus on the action space to assess what is the most
effective set. Specifically, we evaluate alternative modification
of the congestion window, as proposed in other RL-based
approaches. We denote with an action set the following:
(i) Action-1 {0,−10,+10,×2, /2} as in [51], (ii) Action-2
cwnd×2α where −2 < α < 2, α ∈ R , as in [35], (iii) Action-
3 {x×(1+0.025a), x/(1−0.025a)} where a ∈ R and x is the
sending rate, as in [21]. Comparing the performance of these
action set allows us to evaluate (i) a different set of discrete
actions operating directly on the TCP window, but including

Owl’s features

Cwnd

RTT

RTT variation

MSS

Delivered pkts

Lost pkts

In-flight pkts

Retransmitted pkts

Partial Network Congestion (PNC)

Partial Network Availability (PNA)

Percentage of known network

Owl’s features

Cwnd

RTT

RTT variation

MSS

Delivered pkts

Lost pkts

In-flight pkts

Retransmitted pkts

Partial Network Congestion (PNC)

Partial Network Availability (PNA)

Percentage of known network

(a) Known net=20%

Owl’s features

Cwnd

RTT

RTT variation

MSS

Delivered pkts

Lost pkts

In-flight pkts

Retransmitted pkts

Partial Network Congestion (PNC)

Partial Network Availability (PNA)

Percentage of known network

Owl’s features

Cwnd

RTT

RTT variation

MSS

Delivered pkts

Lost pkts

In-flight pkts

Retransmitted pkts

Partial Network Congestion (PNC)

Partial Network Availability (PNA)

Percentage of known network

(b) Known net=70%

Fig. 13: Features Importance Analysis. Visualization of the
role of each feature in the decision process from the highest
degree of importance (dark red) to the lowest (dark green)
when (a) the percentage of known network is low and (b)
high.

more aggressive actions that multiply and divide the current
value; (ii) a large action space, composed by continuous values
(α), and used by an agent acting on the window; (iii) a large
action space, composed by continuous values (a), and used
to set the sending rate. We report results in Fig. 12b, where
we refer to the actions of Section IV as Action-4. It is worth
noticing that these alternatives only refer to the action space
and not to the algorithm applied in the congestion control
protocol. Besides, also in this case, we offline trained the
alternatives before the test experiments.

The obtained results strongly support our choice. First, a
discrete and limited set of actions shortens the convergence
time while assuring adequate exploration. Second, operating
directly on the window reduces the operations in both user
and kernel space. Third, our possible actions allow moderately
increasing and decreasing the cwnd without incurring drastic
and sharp changes, which are harmful to TCP communication
states.

In our considered state space then, we study the importance
of each feature in the decision process. Although more recent
and more advanced techniques can be used, such as PCA [66],
Occlusion and Saliency Maps [67], they mostly find appli-
cability in supervised and unsupervised learning problems.

14

0 1 2 3 5 10
0

2

4

6

8

10

Po
w

er
,×

10
3

(a) History length, k

128-
128

256-
128

512-
256

256-
256-
128

512-
512-
256

0

2

4

6

8

10

Po
w

er
,×

10
3

(b) Neurons per layer

0.1 0.5 0.7 1 1.5 2
0

2

4

6

8

10

Po
w

er
,×

10
3

(c) Requests Interval Period (s)

0.1-
0

0.2-
0.2

0.5-
0.5

1-
1

10-
10

100-
100

0

2

4

6

8

10

Po
w

er
,×

10
3

(d) δ − β combinations

Fig. 14: Sensitivity analysis. This analysis is used to justify the choice of our default algorithm parameters; (a) k historical
values of feature are used to make the next cwnd prediction; (b) Neurons per layer for Owl’s neural network configuration;
(c) Time interval for requests of network devices metrics. (d) Combinations of the coefficients δ and β in the reward function.

Therefore, given the deep RL nature of our model, we use an
approach based on observing the weights of the neural network
(NN), where the relative importance of a specific variable
can be determined by identifying all weighted connections
between the nodes of interest [68]. This procedure is based on
the observation that the weights dictate the relative influence
of information that is processed in the NN such that input
variables that are not relevant in their correlation with a
response variable are suppressed by the weights. Then, since
we have a matrix in input, we average the obtained results over
the historical k values to determine the importance of each
single feature. We report in Fig. 13 the graphical visualization
of the features’ importance for (a) limited visibility of the
network and (b) higher visibility. We can observe how the
network feedback plays a minor role when the visibility is
limited while, among the end-to-end signals, the values of
cwnd, RTT, its variation, and delivered packets guide the
model’s decision for the next cwnd value.

H. Sensitivity Analysis

In this subsection, we report our experimental results con-
ducted to establish the best parameter set in our congestion
control algorithms and discuss their sensitivity. In particular,
we focus on the Neural Network (NN)’s shape, the parameter
k of the algorithm (for how long do we need to remember
history for a more accurate cwnd prediction), the frequency
at which we should collect in-network measurements, and the
default values of coefficients δ and β of the utility function.
We evaluate how these values affect performance with 95%
confidence intervals, obtained with 30 trials on the GENI
testbed with the same network conditions of the previous
subsection. First, we examine the impact of the length of the
action history in the augmented state space. Fig. 14a shows
the power obtained at training for varying values of the state
history length k. We can observe that models with k = 0 or 1
struggle to learn, while the best performance is attained with
k = 5 with diminishing returns beyond that value of k.

Further, we also run the same experiment with various
Neural Networks to analyze how this choice may affect
performance. Fig. 14b exhibits the power measured during
the RL testing phase for the following Neural Networks
configurations: (a) two layers comprised of 128 neurons each,
(b) two layers with 256 and 128 neurons respectively, (c)
512 and 256 neurons, (d) three layers with 256, 256, and

128 neurons, (e) 512, 512, and 256 neurons. These results
suggest that a two-layer neural network architecture works
well, and that the combination 512-256 ((c)) provides the best
combination of throughput and delay. Hence, we empirically
set this configuration as the default of our system, but we
realize that this configuration is a policy.

We then investigate the selection of the most valuable
measurement request interval (Fig. 14c). We note that, when
the network measurements are gathered every 1-second, the
power is at its maximum. This value also guarantees the
freshness of data without incurring in too frequent updates.

Finally, we consider how the coefficients δ and β in Eq. 7
impact the power performance. Empirically, we can observe
how giving equal importance to the delay and packet loss, i.e.,
δ = β = 0.5 leads to the highest power value. As mentioned
for previous analyses, we set these values as default, but they
constitute a policy that can be changed if different desiderata
hold, e.g., if a very low delay in the transmission is preferable
in spite of higher losses, it is advisable to set a β higher than
δ.

VIII. DISCUSSION AND CONCLUSION

In this paper, we presented Owl, a reinforced learning-based
transport protocol designed to learn from end-to-end and in-
network signals. Our evaluation, with a kernel implementation
and real traces, confirms that Owl is effective under various
network conditions, and it can speed up transmissions and
reduce delays and loss rate better than most existing protocols
in the vast majority of the tested scenarios. We also analyzed
the stability condition of Owl and evaluated its fairness demon-
strating that it is less aggressive than other performant solu-
tions when it competes with other protocols and when it com-
petes with itself across other sources. Finally, we showed how
taking into account information involving the network layer
leads to increasingly better results, especially when at least
50% of the network congestion state is available at the source.

Since our solution uses reinforcement learning, it inevitably
inherits its shortcomings. For example, its performance de-
pends on the balance between exploration and exploitation
of the learning policy. Moreover, in computer networks with
conditions different from those tested in our evaluation results,
e.g., satellite or data center networks, performance results of
Owl may not hold. As such, despite the obtained promising

15

results, we believe that exploring whether or not the reinforce-
ment learning model used in Owl can be transferred to other
computer network scenarios is an interesting open problem.
Knowledge transfer [69], [70] in general and generalizability
of reinforcement learning in particular [71]–[73] are active
areas of research in AI/ML, and hence may apply even in
congestion control.

REFERENCES

[1] A. Sacco, F. Matteo, F. Esposito, and G. Marchetto, “Owl: Congestion
control with partially invisible networks via reinforcement learning,”
in IEEE INFOCOM-IEEE Conference on Computer Communications.
IEEE, 2021, pp. 1–10.

[2] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing TCP’s
retransmission timer,” RFc 2988, November, Tech. Rep., 2000.

[3] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen,
and O. Spatscheck, “An in-depth study of LTE: effect of network
protocol and application behavior on performance,” in ACM SIGCOMM
Computer Communication Review, vol. 43. ACM, 2013, pp. 363–374.

[4] H. Jiang, Y. Wang, K. Lee, and I. Rhee, “Tackling bufferbloat in
3G/4G networks,” in Proceedings of the 2012 Internet Measurement
Conference. ACM, 2012, pp. 329–342.

[5] K. Winstein and H. Balakrishnan, “Tcp ex machina: Computer-generated
congestion control,” ACM SIGCOMM Computer Communication Re-
view, vol. 43, no. 4, pp. 123–134, 2013.

[6] K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic forecasts
achieve high throughput and low delay over cellular networks,” in 10th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13), 2013, pp. 459–471.

[7] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C. Görg, “Adaptive
congestion control for unpredictable cellular networks,” in ACM SIG-
COMM Computer Communication Review, vol. 45. ACM, 2015, pp.
509–522.

[8] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),”
in Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’10), 2010, p. 63–74.

[9] C. Wilson et al., “Better never than late: Meeting deadlines in datacen-
ter networks,” in ACM SIGCOMM Computer Communication Review,
vol. 41. ACM, 2011, pp. 50–61.

[10] W. Li, F. Zhou, W. Meleis, and K. Chowdhury, “Learning-based
and data-driven TCP design for memory-constrained IoT,” in 2016
International Conference on Distributed Computing in Sensor Systems
(DCOSS). IEEE, 2016, pp. 199–205.

[11] B. V. Ramana, B. Manoj, and C. S. R. Murthy, “Learning-TCP: A novel
learning automata based reliable transport protocol for ad hoc wireless
networks,” in 2nd International Conference on Broadband Networks
(BROADNETS). IEEE, 2005, pp. 484–493.

[12] A. Sacco, F. Esposito, and G. Marchetto, “Rope: An architecture for
adaptive data-driven routing prediction at the edge,” IEEE Transactions
on Network and Service Management, vol. 17, no. 2, pp. 986–999, 2020.

[13] V. Badarla and C. S. R. Murthy, “Learning-TCP: A stochastic approach
for efficient update in TCP congestion window in ad hoc wireless
networks,” Journal of Parallel and Distributed Computing, vol. 71, no. 6,
pp. 863–878, 2011.

[14] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “PCC:
Re-architecting Congestion Control for Consistent High Performance,”
in 12th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 15), Oakland, CA, 2015, pp. 395–408.

[15] V. Arun and H. Balakrishnan, “Copa: Practical delay-based congestion
control for the internet,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), 2018, pp. 329–342.

[16] Y. Kong, H. Zang, and X. Ma, “Improving tcp congestion control with
machine intelligence,” in Proceedings of the 2018 Workshop on Network
Meets AI & ML, 2018, pp. 60–66.

[17] W. Li, F. Zhou, K. R. Chowdhury, and W. Meleis, “Qtcp: Adaptive
congestion control with reinforcement learning,” IEEE Transactions on
Network Science and Engineering, vol. 6, no. 3, pp. 445–458, 2018.

[18] P. Goyal, A. Agarwal, R. Netravali, M. Alizadeh, and H. Balakrishnan,
“ABC: A simple explicit congestion controller for wireless networks,”
in 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), 2020, pp. 353–372.

[19] S. Floyd, “TCP and explicit congestion notification,” ACM SIGCOMM
Computer Communication Review, vol. 24, no. 5, pp. 8–23, 1994.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[21] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep
reinforcement learning perspective on internet congestion control,” in
Proceedings of the 36th International Conference on Machine Learning
(ICML). PMLR, 2019, pp. 3050–3059.

[22] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp
variant,” ACM SIGOPS operating systems review, vol. 42, no. 5, pp.
64–74, 2008.

[23] J. C. Hoe, “Improving the start-up behavior of a congestion control
scheme for tcp,” ACM SIGCOMM Computer Communication Review,
vol. 26, no. 4, pp. 270–280, 1996.

[24] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion
avoidance on a global Internet,” IEEE Journal on selected Areas in
communications, vol. 13, no. 8, pp. 1465–1480, 1995.

[25] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” Queue, vol. 14, no. 5, pp.
20–53, 2016.

[26] Geni, Exploring Networks of the Future. Accessed: 2022-10-15.
[Online]. Available: https://www.geni.net/

[27] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound tcp approach
for high-speed and long distance networks,” in IEEE INFOCOM-IEEE
Conference on Computer Communications. IEEE, 2006, pp. 1–12.

[28] C. Jin, D. X. Wei, and S. H. Low, “Fast tcp: motivation, architecture,
algorithms, performance,” in IEEE INFOCOM-IEEE Conference on
Computer Communications, vol. 4. IEEE, 2004, pp. 2490–2501.

[29] S. Park, J. Lee, J. Kim, J. Lee, S. Ha, and K. Lee, “Exll: An extremely
low-latency congestion control for mobile cellular networks,” in Pro-
ceedings of the 14th International Conference on emerging Networking
EXperiments and Technologies (CoNEXT ’18), 2018, pp. 307–319.

[30] R. Boutaba et al., “A comprehensive survey on machine learning for
networking: Evolution, applications and research opportunities,” Journal
of Internet Services and Applications, vol. 9, 05 2018.

[31] H. Jiang, Y. Luo, Q. Zhang, M. Yin, and C. Wu, “TCP-Gvegas with
prediction and adaptation in multi-hop ad hoc networks,” Wireless
Networks, vol. 23, no. 5, pp. 1535–1548, 2017.

[32] V. Badarla and C. Siva Ram Murthy, “A novel learning based solution
for efficient data transport in heterogeneous wireless networks,” Wireless
Networks, vol. 16, no. 6, pp. 1777–1798, 2010.

[33] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira, “PCC vivace: Online-learning congestion control,” in 15th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), 2018, pp. 343–356.

[34] T. Meng, N. R. Schiff, P. B. Godfrey, and M. Schapira, “PCC proteus:
Scavenger transport and beyond,” in Proceedings of the Annual Con-
ference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’20), 2020, pp. 615–631.

[35] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic meets modern:
A pragmatic learning-based congestion control for the internet,” in
Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’20), 2020, p. 632–647.

[36] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and implementation of a routing control
platform,” in USENIX Symposium on Networked Systems Design and
Implementation (NSDI 05), 2005, pp. 15–28.

[37] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” in Proceedings of the Conference
on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications (SIGCOMM ’02). Association for Computing
Machinery, 2002, pp. 89–102.

[38] S. Abbasloo, Y. Xu, H. J. Chao, H. Shi, U. C. Kozat, and Y. Ye, “Toward
optimal performance with network assisted TCP at mobile edge,” in 2nd
USENIX Workshop on Hot Topics in Edge Computing (HotEdge), 2019.

[39] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh et al., “HPCC: High precision
congestion control,” in Proceedings of the ACM Special Interest Group
on Data Communication (SIGCOMM ’19). Association for Computing
Machinery, 2019, pp. 44–58.

[40] G. Kumar, N. Dukkipati, K. Jang, H. M. G. Wassel, X. Wu, B. Mon-
tazeri, Y. Wang, K. Springborn, C. Alfeld, M. Ryan, D. Wetherall, and
A. Vahdat, “Swift: Delay is simple and effective for congestion control
in the datacenter,” in Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’20), 2020,
p. 514–528.

16

[41] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

[42] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[43] R. M. French, “Catastrophic forgetting in connectionist networks,”
Trends in cognitive sciences, vol. 3, no. 4, pp. 128–135, 1999.

[44] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, vol. 114, no. 13, pp.
3521–3526, 2017.

[45] D. Kumaran et al., “What learning systems do intelligent agents need?
complementary learning systems theory updated,” Trends in cognitive
sciences, vol. 20, no. 7, pp. 512–534, 2016.

[46] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[47] L.-J. Lin, “Reinforcement learning for robots using neural networks,”
Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, Tech.
Rep., 1993.

[48] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
Proceedings of The 33rd International Conference on Machine Learning
(ICML). PMLR, 2016, pp. 1995–2003.

[49] H. Van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-Learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, no. 1, 2016.

[50] S. Huang and S. Ontañón, “A closer look at invalid action masking in
policy gradient algorithms,” arXiv preprint arXiv:2006.14171, 2020.

[51] V. Sivakumar, T. Rocktäschel, A. H. Miller, H. Küttler, N. Nardelli,
M. Rabbat, J. Pineau, and S. Riedel, “Mvfst-rl: An asynchronous rl
framework for congestion control with delayed actions,” arXiv preprint
arXiv:1910.04054, 2019.

[52] A. Narayan, F. Cangialosi, D. Raghavan et al., “Restructuring endpoint
congestion control,” in Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM ’18).
Association for Computing Machinery, 2018, pp. 30–43.

[53] P. Neira-Ayuso, R. M. Gasca, and L. Lefevre, “Communicating between
the kernel and user-space in linux using netlink sockets,” Software:
Practice and Experience, vol. 40, no. 9, pp. 797–810, 2010.

[54] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,
and H. Balakrishnan, “Mahimahi: Accurate record-and-replay for http,”
in 2015 USENIX Annual Technical Conference (USENIX ATC ’15),
2015, pp. 417–429.

[55] R. L. S. De Oliveira, C. M. Schweitzer, A. A. Shinoda, and L. R.
Prete, “Using mininet for emulation and prototyping software-defined
networks,” in 2014 IEEE Colombian Conference on Communications
and Computing (COLCOM). IEEE, 2014, pp. 1–6.

[56] Ryu controller. Accessed: 2022-6-7. [Online]. Available: https://ryu-
sdn.org/

[57] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[58] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis, and
K. Winstein, “Pantheon: the training ground for internet congestion-
control research,” in 2018 USENIX Annual Technical Conference
(USENIX ATC ’18), 2018, pp. 731–743.

[59] A. Sivaraman, K. Winstein, P. Thaker, and H. Balakrishnan, “An experi-
mental study of the learnability of congestion control,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4, pp. 479–490, 2014.

[60] S. Shalunov, G. Hazel, J. Iyengar, M. Kuehlewind et al., “Low extra
delay background transport (LEDBAT),” in RFC 6817, 2012.

[61] I. Johansson, “Self-clocked rate adaptation for conversational video in
lte,” in Proceedings of the 2014 ACM SIGCOMM workshop on Capacity
sharing workshop (CSWS ’14), 2014, pp. 51–56.

[62] A. Bergkvist, D. C. Burnett, C. Jennings, A. Narayanan, and B. Aboba,
“Webrtc 1.0: Real-time communication between browsers,” Working
draft, W3C, vol. 91, 2012.

[63] N. Networks, “Open vswitch: An open virtual switch,” 2020. [Online].
Available: http://www.openvswitch.org/

[64] A. Giessler, J. Haenle, A. König, and E. Pade, “Free buffer allo-
cation—an investigation by simulation,” Computer Networks (1976),
vol. 2, no. 3, pp. 191–208, 1978.

[65] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measure
of fairness and discrimination,” Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA, 1984.

[66] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley
interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433–
459, 2010.

[67] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
arXiv preprint arXiv:1312.6034, 2013.

[68] J. D. Olden and D. A. Jackson, “Illuminating the “black box”: a
randomization approach for understanding variable contributions in
artificial neural networks,” Ecological modelling, vol. 154, no. 1-2, pp.
135–150, 2002.

[69] Z. Zhu, K. Lin, and J. Zhou, “Transfer learning in deep reinforcement
learning: A survey,” arXiv preprint arXiv:2009.07888, 2020.

[70] I. Higgins, A. Pal, A. Rusu, L. Matthey, C. Burgess, A. Pritzel,
M. Botvinick, C. Blundell, and A. Lerchner, “DARLA: Improving zero-
shot transfer in reinforcement learning,” in International Conference on
Machine Learning (ICML). PMLR, 2017, pp. 1480–1490.

[71] Z. Allen-Zhu et al., “Learning and generalization in overparameterized
neural networks, going beyond two layers,” in Advances in neural
information processing systems (NeurIPS), 2019, pp. 6158–6169.

[72] H. Wang, S. Zheng, C. Xiong, and R. Socher, “On the generalization
gap in reparameterizable reinforcement learning,” in International Con-
ference on Machine Learning (ICML). PMLR, 2019, pp. 6648–6658.

[73] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying
generalization in reinforcement learning,” in International Conference
on Machine Learning (ICML). PMLR, 2019, pp. 1282–1289.

Alessio Sacco received the received the M.Sc. de-
gree (summa cum laude) and the Ph.D. degree
(summa cum laude) in computer engineering from
the Politecnico di Torino, Torino, Italy, in 2018
and 2022, respectively, His research interests include
architecture and protocols for network management;
implementation and design of cloud computing ap-
plications; algorithms and protocols for service-
based architecture, such as Software Defined Net-
works (SDN), used in conjunction with Machine
Learning algorithms.

Matteo Flocco received the M.Sc. degree in Com-
puter Science from Saint Louis University, where
he worked as a research assistant in the networking
group with Dr. Flavio Esposito. His research inter-
ests mainly involve computer networks, with a par-
ticular focus on Software-Defined Networking and
congestion control algorithms, and machine learning
applied to network management. Currently, he works
as a Full Stack Developer for Blue Reply where he
develops logistics softwares for large companies.

Flavio Esposito is an Associate Professor with the
Department of Computer Science at Saint Louis
University (SLU). He received an M.Sc. degree in
Telecommunication Engineering from the University
of Florence, Italy, and a Ph.D. in computer science
from Boston University in 2013. Flavio’s main re-
search interests include network management, net-
work virtualization, and distributed systems. Flavio
is the recipient of several awards, including several
National Science Foundation awards and the Com-
cast Innovation Award in 2021.

Guido Marchetto received the Ph.D. degree in com-
puter engineering from the Politecnico di Torino, in
2008, where he is currently an Associate Profes-
sor with the Department of Control and Computer
Engineering. His research topics cover distributed
systems and formal verification of systems and pro-
tocols. His interests also include network protocols
and network architectures.

