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Abstract—We propose a novel optimization method for a Neu-
ral Network based Digital Pre-Distorter (DPD), applied in Inten-
sity Modulation-Direct Detection transmission systems leveraging
Multi-Modal Fiber and Vertical-Cavity Surface-Emitting Laser.
We train the DPD using End-to-end Deep Learning of the optical
link, together with a Direct Learning Approach leveraging ex-
perimental measurements for modeling the transmission channel.
The optimization considers VCSEL amplitude constraints, the
use of an FFE at the receiver side, and the presence of a receiver
non-flat Colored Gaussian Noise (CGN). We verify our optimized
DPD on an experimental setup transmitting a 92 Gbps PAM-4
modulated signal. We achieve, for BER=0.01, a performance gain
of more than 1 dB in terms of Optical Path Loss with respect to
the best performing non-pre-distorted scenario.

Index Terms—Deep learning applications on communication
systems, nonlinear equalization, VCSEL, optical PAM-4 IM-DD
systems, Data Center Interconnects

I. INTRODUCTION

Emerging applications such as the Internet of Things, Cloud
Computing and ultra-high-definition multimedia streaming re-
quire communication networks with very high data rates.
Specifically, in Data Centers Interconnects (DCI) the short-
term goal is to increase their link capacity beyond 100 Gbps/λ
using the same hardware that now allows them to transmit
up to 28 Gbps per lane. Current solutions leverage Intensity
Modulation and Direct Detection (IM-DD) optical links, using
binary On-Off Keying (OOK) modulation around 100 meters
of optical fiber. Around 50% of optical links are using Multi-
Modal Fibers (MMF) [1], mostly paired to Vertical-Cavity
Surface-Emitting Lasers (VCSEL). These optical sources have
a low cost per chip production, high power efficiency, and long
device lifetime. However, pushing these MMF-VCSEL links
to the extreme of their data rate capabilities leads to linear and
nonlinear distortions (i.e., bandwidth limitations and VCSEL
nonlinearities), that severely affect the transmitted signals.
To thus counteract these impairments, the use of higher-
order modulation formats such as Pulse Amplitude Modulation
(PAM) and Digital Signal Processing (DSP) techniques seems
to be the most feasible solution. In particular, nonlinear
equalizers have been investigated for VCSEL-MMF IM-DD
systems, with a focus on PAM-4 modulated signals [2]. These
DSP devices can be adopted at the receiver (RX) as post-
equalizers, implemented in several forms such as Volterra-
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series nonlinear equalizers (VNLE) [3], Support Vector Ma-
chines (SVM) [4] and Artificial Neural Networks (ANN) [5].
Nonlinear equalization can be moreover applied at the trans-
mitter (TX), where the devices are called Digital Pre-Distorters
(DPD). In short-reach IM-DD optical links, the usage of DPDs
is favored with respect to nonlinear post-equalization, as DSP
algorithms are more easily implementable at TX with respect
to RX. Several technologies have been proposed for nonlinear
DPD, such as VNLE [6] [7], Look-up Tables (LUT) [8] [9]
and ANN [10] [11] [12] [13]. Recent attention has been posed
on determining the best approach to optimize these devices:
solutions based on Indirect Learning (ILA) [6] and Direct
Learning Architectures (DLA) [7] [13] [11] are the mostly
adopted (having the latter proved to give better performances
[13]), but recently have also been proposed techniques based
on reinforcement learning [12] and End-to-end (E2E) deep
learning of the optical transmission system [14] [15]. The latter
is supposed to be the optimal approach since it involves the
joint training of a DPD at TX together with a post-equalizer
at RX: in this way it should be possible to achieve the best
absolute performances over an optical communication link.
However, optimization of nonlinear DPD for VCSEL-MMF
IM-DD systems requires considering amplitude constraints at
the Digital-to-Analog Converter (DAC) output and VCSEL
input, as well as noise with a non-flat power spectral response
at the receiver. In this paper, we propose a novel E2E neural
network, based on FIR-based Neural Networks (FIRNN), that
is able to optimize a nonlinear DPD natively taking into
account a VCSEL input amplitude constraint, an RX non-white
Gaussian noise, and a linear Feed-Forward Equalizer at RX.
We evaluate the performances of our DPD on an experimental
setup, transmitting a 92 Gbps PAM-4 signal transmitted with
P̄TX = 5 mW, and using a VCSEL with B3dB = 20 GHz.
Finally, we compare the results with respect to using only FFE
at RX, assessing the achieved gain.

II. THE PROPOSED END-TO-END SYSTEM

The optimization of the ANN-based nonlinear DPD lever-
ages the use of the End-to-end system illustrated in Fig. 1.
This architecture is a neural network composed of the cascade
of an ANN TX (i.e., the DPD), an ANN model for the
optical transmission channel (CH), and an ANN RX (i.e.,
an FFE). The E2E system, working at a sample-per-symbol



Fig. 1. a) The End-to-end system optimization scheme; b) structure of the RX ANN (i.e., a FFE); c) structure of the TX ANN and the CH ANN; d) structure
of an hidden nonlinear neuron (present in TX and CH). TX and CH can be equivalently be viewed as FIR-based Neural Networks, with synapses extended
to FIR filters only in their first layer.

(sps) ratio equal to 2, emulates the behavior of the considered
communication link in the form of an autoencoder [16]. The
E2E optimization consists thus of training the whole E2E
neural network, keeping fixed the ANN CH coefficients, to
jointly optimize the DPD and the post-equalizer. To properly
take into account the memory of the channel, the DPD, as well
as the ANN CH, is modeled as a FIRNN: this kind of ANN is
characterized to generalize their ”synapses” (i.e., the branches
from a node to another) to be FIR filters. In our case, for
the DPD and the channel model, the branches are FIR-based
only in the first layer: this is equivalent to modeling them as a
Feed-Forward Neural Network whose inputs are the successive
samples stored in a digital delay line (Fig. 1.c). Likewise, the
FFE can be viewed as a simplified FIRNN without nonlinear-
ities. As a consequence, the whole E2E system is a FIRNN
itself, whose loss gradients can be computed by exploiting
the temporal backpropagation algorithm proposed in [17].
Moreover, to impose an amplitude peak-to-peak constraint
relative to the VCSEL input and DAC output dynamics, we
model the DAC as a hard-limiter function, applied as output
nonlinear activation of the DPD. In addition, to include the
effects of a Colored Gaussian noise (CGN) at RX, we assume
introducing at the FFE input the outcome of a White Gaussian
Noise (WGN) filtered by an FIR filter, whose taps are modeled
according to the desired noise spectral behavior.

III. EXPERIMENTAL OPTIMIZATION OF THE DPD

We applied experimentally our DPD optimization on a
setup whose schematics are illustrated in Fig.2. The procedure
consists of the following steps:

1) Acquisition of the RX signal: On the experimental
transmission setup, we acquire more than 1000 periods of a
46 GBaud PAM-4 modulated PRBS sequence a[n] (period
215). After TX shaping using a Gaussian filter with order
2 and B3dB = 0.75 · Rs (where Rs is the Baud rate),
the resulting signal x[n] is transmitted from an Arbitrary

Fig. 2. The experimental VCSEL-MMF IM-DD transmission channel

Waveform Generator (AWG) with sampling rate equal to 92
GSample/s. The AWG is driven by imposing a certain peak-to-
peak modulation voltage to control the VCSEL input swing.
After bias current addition, the signal is injected into an 850
nm VCSEL, which emits light in free space. The optical
waveform is guided into an OM4 fiber through a free-space
lens setup. The signal is then attenuated through an Optical
Variable Attenuator, and after passing through 2 meters of
OM4 fiber and an isolator (to avoid backward reflections) it is
converted into the electric domain through a PIN Photodiode
RX. Finally, the sequence is digitally acquired through a Real-
Time Oscilloscope with a sampling frequency equal to 200
GSample/s.

2) RX signal denoising and experimental noise retrieval:
After the acquisition, the RX signal y[n] is averaged over
the repetitions of the PRBS period, minimizing the noise
impairments. The resulting noiseless signal ȳ[n] is then sub-
tracted from the original acquired signal, obtaining a signal



Fig. 3. BER vs OPL performances on the experimental setup, with and without applying a ANN-based Digital Pre-Distorter, transmitting PAM-4 symbols
at 92 Gbps: a) VCSEL driven in linear condition; b) VCSEL driven in nonlinear condition; c) overall comparison between best DPD performances and non
predistorted scenarios with different VCSEL input swings.

r[n] = y − ȳ[n] which represents a stochastic realization of
the experimental noise.

3) ANN channel and RX noise modelization: The experi-
mental setup from the AWG to the RTO is directly modeled
by the ANN channel model, which is trained according to the
DLA illustrated in [13]: the sequence x[n] is used for the input
training examples, and the sequence y[n] for the output labels.
Since the ANN is working at a 2 sample-per-symbol ratio, the
two sequences are resampled accordingly. The experimental
RX noise instead is modeled as a White Gaussian random
process, passed through an FIR filter whose taps are modeled
so that the magnitude response fits the Powers Spectral Density
of the signal r[n].

4) End-to-end optimization: After obtaining the ANN
channel model and the RX noise FIR filter, we fix the retrieved
coefficients in the E2E system, to jointly train the DPD and the
FFE. The E2E optimization consists of a Stochastic Gradient
Descend algorithm to minimize the Mean Square Error (MSE)
between a random PAM-4 sequence a[n] (different from the
one used during experimental acquisition to avoid overfitting
issues) given in input to the E2E system and the produced
output. The MSE is computed after delaying a[n] by D
symbols, being D the delay introduced by the E2E system.
In our method, the RX Colored Gaussian Noise (CGN) is
not directly injected in the time domain at the RX FFE
input, but its effect is introduced analytically as an additive
regularization term in the FFE SGD update [18]: we verified
that this reduces the variance of the back-propagated gradient,
facilitating the convergence of the system. Moreover, as the
amplitude constraints tend to penalize the PAM-4 outer levels
(i.e., overshoots for counteracting bandwidth limitations can-
not exceed the dynamics), in the MSE loss computation more
weight is given to the external symbols. Therefore, the loss is
computed as follows:

Loss =

{
(a[n−D]− â[n])

2 |a[n−D]| = 1

h · (a[n−D]− â[n])
2 |a[n−D]| = 3

(1)

where h is an gain factor that has been heuristically found to
be optimal when set to 50.

Concerning the optimization hyperparameters, for simplicity
in our experiments every FIR filter in the E2E system (i.e.,
belonging to TX and CH ANN, FFE, CGN FIR) has been
set to have 31 taps. The same number has been used for the
number of hidden neurons in the ANN, where to keep low
the DPD complexity the number of hidden layers has been set
to 1 (with ReLU activation function). Moreover, 1e5 samples
with a learning rate (lr) equal to 0.001 have been used in the
channel modelization, while 3e5 samples and lr=0.0001 have
been used during the E2E optimization.

IV. EXPERIMENTAL RESULTS

Fig. 4. Digitally Pre-Distorted transmitted PAM-4 signal a) Driving the laser
in a linear condition ( VCSEL input swing = 400 mV) b) Driving the laser
in a nonlinear condition ( VCSEL input swing = 600 mV)

To assess the performances of our DPD, we trained the
structure for several values of Optical Path Loss (OPL) adopt-
ing 2 different VCSEL input swing constraints. First, we
imposed through the AWG a VCSEL input swing equal to 400
mV (i.e., to drive the laser in a linear condition). Secondly,
we augmented the dynamics to 600 mV, to operate with the
VCSEL driven in a nonlinear condition. In Fig. 4 an eye-
diagram related to the pre-distorted signal obtained in the
two conditions (for OPL∼ 9.5 dB) is illustrated. It can be
observed that when the DPD is trained to bound the output in
a linear region (Fig.4.a), it pre-equalizes the internal PAM-4
levels with time-domain overshoots (i.e., to compensate for
the low-pass system response): in the outer levels instead
are modulated with almost square pulses. When predistortion



is applied in a nonlinear laser condition (Fig.4.b), the DPD
seems still to produce overshoots in the inner levels, but
the predistorted eye is visibly asymmetric: in this condition,
the nonlinear skew caused by the VCSEL is indeed pre-
compensated by the ANN.

In both situations, we applied the DPD on a PAM-4
modulated PRBS sequence different from the one used in
the training acquisition (period 216), and after transmission
through the experimental setup we post-processed the acquired
signal using an FFE and evaluated the BER. For comparison
we performed the experiment also shaping the sequence with
a Gaussian filter (the same used for training), keeping the
same amplitude constraint for both the pre-distorted and non-
predistorted signals. The BER vs OPL experimental curves are
illustrated in Fig. 3.a and 3.b. It can be observed how applying
nonlinear DPD gives a performance gain (∼0.3 dB of OPL
for BER=0.001) even in a linear lasing condition (Fig. 3.a).
The performance gain is however enhanced when the laser is
driven with a higher input swing, as the DPD compensates
for the nonlinear distortions (Fig. 3.b). Finally, in Fig. 3.c
a comparison is illustrated between the best DPD and the
non-pre-distorted scenario for different VCSEL input swings.
It can be noticed that the performances using the nonlinear
DPD are better than any non-pre-distorted scenario, with an
improvement of at least 1 dB of OPL for BER=0.01 and 0.7 dB
for BER=0.001. Without DPD, as the input swing is increased
the OMA is higher (i.e., +1.76 dB moving from 400 mV to
600 mV if the VCSEL was linear), and so is the signal-to-
noise ratio. However, for BER=0.001 the gain in OPL doesn’t
increase accordingly (0.7 dB from 400 to 600 mV) since
the nonlinear distortions become more relevant: our proposed
DPD can be thus applied to overcome this limitation.

V. CONCLUSION AND DISCUSSION

In this paper, we showed a new End-to-end system to
optimize a nonlinear DPD for a VCSEL-MMF IM-DD link.
The proposed solution is able to natively satisfy the VCSEL
and DAC amplitude constraints, together with assessing the
effects of a non-flat Gaussian noise at the receiver input as
an additive regularization term in the FFE optimization. The
obtained DPD provides a consistent gain in terms of BER vs
OPL performances, even if compared with a non-pre-distorted
signal having the same amplitude peak-to-peak swing. The
illustrated method is however properly applicable only when
the DPD works with an sps ratio equal to 2, limiting the Baud
Rate to half of the DAC sampling frequency: further study is
thus required to extend this technique at different bit rates and
sps ratios.
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