
28 May 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

AccelAT: A Framework for Accelerating the Adversarial Training of Deep Neural Networks through Accuracy Gradient /
Nikfam, Farzad; Marchisio, Alberto; Martina, Maurizio; Shafique, Muhammad. - In: IEEE ACCESS. - ISSN 2169-3536. -
ELETTRONICO. - 10:(2022), pp. 108997-109007. [10.1109/ACCESS.2022.3213734]

Original

AccelAT: A Framework for Accelerating the Adversarial Training of Deep Neural Networks through
Accuracy Gradient

Publisher:

Published
DOI:10.1109/ACCESS.2022.3213734

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2972458 since: 2022-10-19T14:26:48Z

IEEE



Received 7 August 2022, accepted 2 October 2022, date of publication 10 October 2022, date of current version 18 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3213734

AccelAT: A Framework for Accelerating the
Adversarial Training of Deep Neural Networks
Through Accuracy Gradient
FARZAD NIKFAM 1, (Graduate Student Member, IEEE),
ALBERTO MARCHISIO 2, (Graduate Student Member, IEEE),
MAURIZIO MARTINA 1, (Senior Member, IEEE),
AND MUHAMMAD SHAFIQUE 3, (Senior Member, IEEE)
1Department of Electrical, Electronics and Telecommunication Engineering, Politecnico di Torino, 10129 Turin, Italy
2Institute of Computer Engineering, Technische Universität Wien (TU Wien), 1040 Vienna, Austria
3eBrain Laboratory, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

Corresponding author: Farzad Nikfam (farzad.nikfam@polito.it)

This work was supported in part by the Doctoral College Resilient Embedded Systems, which is run jointly by the TU Wien’s Faculty of
Informatics and the UAS Technikum Wien; in part by the NYUAD Center for Interacting Urban Networks (CITIES) funded by Tamkeen
under the NYUAD Research Institute under Award CG001; in part by the Center for Cyber Security (CCS) funded by Tamkeen under the
NYUAD Research Institute under Award G1104; and in part by the Center for Arti�cial Intelligence and Robotics (CAIR) funded by
Tamkeen under the NYUAD Research Institute under Award CG010.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

ABSTRACT Adversarial training is exploited to develop a robust Deep Neural Network (DNN) model
against the malicious altered data. These attacks may have catastrophic effects on DNN models but are
indistinguishable for a human being. For example, an external attack can modify an image adding noises
invisible for a human eye, but a DNN model misclassi�es the image. A key objective for developing robust
DNN models is to use a learning algorithm that is fast but can also give model that is robust against different
types of adversarial attacks. Especially for adversarial training, enormously long training times are needed for
obtaining high accuracy under many different types of adversarial samples generated using different adver-
sarial attack techniques. This paper aims at accelerating the adversarial training to enable fast development of
robust DNN models against adversarial attacks. The general method for improving the training performance
is the hyperparameters �ne-tuning, where the learning rate is one of the most crucial hyperparameters.
By modifying its shape (the value over time) and value during the training, we can obtain a model robust
to adversarial attacks faster than standard training. First, we conduct experiments on two different datasets
(CIFAR10, CIFAR100), exploring various techniques. Then, this analysis is leveraged to develop a novel
fast training methodology, AccelAT, which automatically adjusts the learning rate for different epochs based
on the accuracy gradient. The experiments show comparable results with the related works, and in several
experiments, the adversarial training of DNNs using our AccelAT framework is conducted up to 2× faster
than the existing techniques. Thus, our �ndings boost the speed of adversarial training in an era in which
security and performance are fundamental optimization objectives in DNN-based applications. To facilitate
reproducible research this is the AccelAT open-source framework: https://github.com/Nikfam/AccelAT.
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INDEX TERMS Deep neural network (DNN), adversarial training, fast training, hyperparameters, learning
rate (LR), Foolbox, python, TensorFlow, adversarial attack.
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I. INTRODUCTION 22

Machine Learning (ML) [1], [2], [3] is an ever-expanding 23

�eld and has achieved wide proliferation in recent years 24
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FIGURE 1. FAT Training of ResNet-20 on the CIFAR10 natural images
dataset with different LR techniques.

due to the development of highly-ef�cient hardware, such as25

GPUs. Nevertheless, the advanced and complex ML models26

require gigantic training time. Therefore, its acceleration not27

only has a direct impact on the usage of large GPU-based28

datacenters in which typically the training is conducted but29

will also enable training on low-cost multi-GPU worksta-30

tions, as well as will ease the development of new research31

directions, such as continuous learning. On the other hand,32

in the last decade, it has been discovered that models are33

highly vulnerable to external attacks, and nowadays, the ML34

models need to be robust against such attacks to be deployed35

in safety-critical applications.36

A. TARGET RESEARCH PROBLEM AND CHALLENGES37

Adversarial training [4] has become a popular method for38

training Deep Neural Networks (DNNs) [5] with robustness39

against the adversarial attacks. Unfortunately, robust DNNs40

are not always easy to be trained, as it takes 3× to 30× longer41

time [6] to obtain high accuracy when adversarial (noisy)42

samples are added to the training dataset, compared to the43

standard (i.e., non adversarial) training. Hence, it is essential44

to create DNN models that are not only robust but also quite45

fast to be trained. To obtain the above-discussed properties,46

we propose to employ fast training techniques for advanced47

adversarial training of DNNs, and show the feasibility of this48

design strategy by designing a novel fast training method,49

called AccelAT.50

B. MOTIVATIONAL CASE STUDY51

Nowadays, advanced methods for adversarial training - such52

as, Free Adversarial Training (FAT) [6], YOPO [7], and53

Trades [8] - are currently used to obtain DNN models54

which are robust against adversarial attacks. In our anal-55

yses, we focus on the FAT method, which is already56

highly optimized compared to the original adversarial train-57

ing method [4]. To further accelerate the training process,58

we employ various fast training techniques, focusing mainly59

on the study of hyperparameters. Since the learning rate (LR)60

has a strong in�uence on the convergence of the DNN training61

process, we analyze and how its variation affects the train-62

ing speed for accurate and robust DNN models. The fast63

training techniques analyzed are linear decay, exponential64

FIGURE 2. Overview of our novel contributions.

decay, one cycle [9], and warm restarts [10], [11]. The results 65

applied to the ResNet-20 DNN for the CIFAR10 dataset (see 66

Fig. 1) con�rm that fast training techniques can be used 67

with success also for adversarial training. Compared to the 68

original FAT method, performing the training with a LR that 69

follows the behavior of one of these above-discussed fast 70

training policy can reduce the training time by around 2× 71

(see pointer À - Fig. 1), while obtaining a similar accuracy 72

level (see pointer `). 73

C. OUR NOVEL CONTRIBUTIONS 74

The main contributions of this paper are (see Fig. 2): 75

• We analyze the prominent fast training techniques 76

applied to adversarially trained DNNs, showing sig- 77

ni�cant training time reduction in terms of training 78

epochs (Sec. IV). 79

• We design a novel framework, AccelAT, which automat- 80

ically reduces the LR when the accuracy gradient starts 81

decreasing, i.e., when the accuracy curve starts falling 82

into a plateau region (Sec. V). 83

• The experimental results on multiple DNNs (ResNet, 84

MobileNet) trained on CIFAR10 and CIFAR100 85

datasets with our AccelAT framework obtain up to 8% 86

higher adversarial robustness against the most common 87

attacks such as LinfPGD, Fast Gradient Sign Method 88

(FGSM), and DeepFool (Sec. VI). 89

Open Source: To facilitate the research and developments in 90

this �eld, and for reproducible research, this is the AccelAT 91

open-source framework: https://github.com/Nikfam/AccelAT. 92

Before proceeding to the main technical sections, 93

we present an overview of adversarial attacks and defenses, 94

and fast training policies for DNNs, in Sec. II and Sec. III, 95

respectively, with a level of detail necessary to understand 96

the rest of the paper. 97

II. OVERVIEW OF ADVERSARIAL ATTACKS AND 98

DEFENSES FOR DNNs 99

Adversarial training [12] is a branch of ML that deals with 100

creating robust models against adversarial attacks [13], for 101

instance, by augmenting the adversarial samples to the train- 102

ing dataset. For years, the training has only focused on achiev- 103

ing high accuracy. However, there exist malicious attacks 104

that mine the algorithms correct behavior. If a DNN model 105

is attacked, it will incorrectly execute its process, which 106

can lead to severe consequences for safety-critical appli- 107

cations [14]. For example, for cases where facial, voice, 108

or �ngerprint recognition is used to unlock certain services, 109
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FIGURE 3. An example of adversarial attack, where strawberries are
misclassified as chestnuts [15].

an external attack can cause severe damage. Thus, it is desired110

that DNN models are robust against such external attacks.111

However, it is known that complex DNN models are vulner-112

able to malicious attacks, which could make their accuracy113

drop from near 100% to nearly 0% [15]. To counter these114

attacks, we need to develop and deploy robust models that115

can maintain high accuracy in the presence of these malicious116

variations.117

Adversarial training leverages clean images as well as the118

noisy images (following a certain adversarial attack model)119

for training the DNN models, thereby enabling the trained120

DNN models to classify correctly even in the presence of an121

adversarial attack during the inference. However, this robust-122

ness is achieved at the expense of signi�cantly longer training123

time, proportional to the amount of adversarial samples and124

attack models.125

A. ADVERSARIAL EXAMPLES126

The basic foundation of an adversarial attack algorithm is127

to create imperceptibly-modi�ed examples [15] that mislead128

the DNN model. On the other hand, if the examples were129

modi�ed with a random logic, the problem would not arise130

since the model would fail, but a human being would eas-131

ily recognize and detect the modi�cations. However, some132

examples could be modi�ed to mislead a DNN model through133

a malicious attack without any evident variation perceived134

by the human eye. For example, as shown in Fig. 3, the two135

images (original and modi�ed by attack) are identical to the136

human eye. However, every single pixel has been modi�ed137

according to the noise seen in the middle [16].138

The consequence is that DNN models can be attacked139

without obvious external signs. In reality, with certain types140

of attacks, it is possible to generate modi�ed images indis-141

tinguishable from a human being, which the DNN model142

can still correctly recognize. The latter case is not a critical143

problem, as they would be images discarded by a human.144

In this work, we will focus on the misclassi�cation of DNN145

models.146

B. ADVERSARIAL ATTACKS147

A DNN model can learn to recognize images, but in an148

entirely different way from how humans do it. Therefore, var-149

ious adversarial attacks algorithms have been proposed [17].150

For example, some attacks are based on changing a single151

FIGURE 4. Two ways of fooling a classifier.

pixel [18], others on certain image features, but the most 152

common approach consists of calculating the division line, 153

called decision boundary, that distinguishes one class from 154

another. 155

In a simple case with two classes, the decision boundary 156

looks like as in Fig. 4a. A targeted attack would perturb all the 157

borderline examples. For image classi�cation applications, 158

the attack would vary the last layer features, closest to the 159

line edge, just enough to make them cross the line (Fig. 4b). 160

In this way, the classi�cation is completely distorted without 161

actually changing the image much overall. This process deals 162

with two almost identical images, which are instead classi�ed 163

in different ways. In some cases, the pixels do not change 164

the position. On the contrary, the attack moves the separation 165

line that distinguishes the classes (Fig. 4c), thus leading to a 166

misclassi�cation due to the shifted decision boundary. 167

C. WHITE-BOX ATTACKS 168

There are mainly two categories of attacks, namely white-box 169

and black-box [19]. In this work, we focus on white-box 170

attacks, which are the most accessible and powerful type of 171

attacks to perform considering that the adversary has more 172

knowledge about the system [4]. While a black-box attack 173

has access only to the inputs and outputs, a white-box attack 174

also leverages the knowledge of the internal structure of the 175

model to be attacked. Therefore, the attack is more speci�c 176

and powerful, and the caused damage increases. 177

D. ADVERSARIAL TRAINING 178

There exist various techniques to train robust models, such as 179

data augmentation, second model control, and hyperparame- 180

ters �ne-tuning [17], [20]. 181

The most common technique to counter attacks is data aug- 182

mentation, that is, the DNNs are trained not only on correct 183

images, but also on already attacked images or adversarial 184

samples generated based on given attack models [21]. This 185

procedure signi�cantly increases the DNN accuracy against 186

attacks [22], [23]. However, as a drawback, the accuracy of 187

clean images decreases, and often falls below the required 188

accuracy level [24]. 189

The second model control uses two DNN models. This 190

technique examines the main DNN and its internal character- 191

istics to predict whether the analyzed example is adversarial 192

or not [25], [26]. In practice, this technique uses an ‘‘external 193

guard’’ logic that controls the whole process to verify its 194

effective operation. However, the study of its effectiveness 195

and complexity is still immature. 196
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Moreover, the performance of the adversarial training can197

be improved by changing the values of the hyperparameters,198

such as weight decay, batch size, or LR [27], [28].199

E. ADVERSARIAL LIBRARIES200

There are various libraries to implement the adversarial201

attacks [29], [30]. Foolbox [31] is used in this work due202

to its good documentation, functionality, and support for203

TensorFlow [32] and Pytorch [33] packages.204

III. OVERVIEW OF FAST TRAINING POLICIES FOR DNNs205

We need fast training to meet an ever-increasing demand206

for large databases to be managed in real-time. For exam-207

ple, popular websites like Google, YouTube, and Facebook208

need to manage constant incoming data streams, training the209

models as quickly as possible. On the other hand, treating a210

large amount of data consumes a large amount of power, and211

is often out of the hand of small-scale organizations where212

training resources are limited. Therefore, accelerating this213

process allows obtaining advantages in terms of resources,214

time and energy. With current processors, such as CPUs215

and GPUs, the computation times for the complete training216

can last from days to several weeks for large-sized datasets,217

and a few hours to days for medium-sized datasets. Hence,218

a signi�cant reduction in the training time is highly desirable.219

There are various ways to speed up:220

• Specialized techniques for certain types of DNN221

models, like Adam [34], Ada-Boundary [35], or222

Super-Convergence [36].223

• Generic optimizations, like hyperparameters tuning [9],224

which apply to nearly every DNN model.225

A. FAST TRAINING TECHNIQUES226

Generic techniques mainly include the changes to hyper-227

parameters [9] and, more speci�cally, to the LR [37],228

since variable LR values can give better results than con-229

stant values. Among the various state-of-the-art fast training230

methodologies proposed in the literature, the most advanced231

in this regard are the following:232

• One cycle policy [9];233

• Cyclical policy [37];234

• Warm restarts [10], [11].235

Before applying each of these techniques, it is necessary to236

�nd the best LR to use during the training, through the LR237

�nder technique.238

B. LEARNING RATE FINDER239

The simplest method to �nd the correct LR value is to change240

it exponentially, from small to large values, during reasonably241

long training. An ef�cient choice is to vary the LR by at least242

ten orders of magnitude throughout the training. Theoreti-243

cally, if all the various parameters have been normalized, the244

LR will often lay between 0:001 and 10. For this reason, it is245

preferable to fully cover this range during the training. Once246

the test training is �nished, it will be enough to look at the247

FIGURE 5. LR finder executed on the ResNet-50 model for the CIFAR10
and CIFAR100 datasets.

accuracy and error graph to �nd the maximum recommended 248

LR [37]. As shown in Fig. 5, for small LR values, the accuracy 249

and the error practically do not vary. However, in a certain 250

range of LR values, the error decreases up to a minimum, after 251

which it diverges for large LR values. Hence, the desirable LR 252

values are those in which the error decreases from the initial 253

plateau to the minimum point, beyond which the divergence 254

begins. Therefore, using a maximum LR value of about one 255

order of magnitude lower than the minimum error point is 256

advisable to be distant enough to avoid the divergence region 257

(see pointer À - Fig. 5). In summary, the LR should range 258

from the value in which the error slope starts decreasing, until 259

one order of magnitude less than the point in which the error 260

curve exhibits the minimum (see pointer `). 261

C. ONE CYCLE POLICY 262

The one cycle policy [9] is based on varying the LR and 263

other hyperparameters during the training process to obtain 264

fast training. As the name implies, the basic idea is to apply a 265

single cycle to these hyperparameters throughout the training. 266

Since the one cycle policy is a regularization technique, other 267

types of normalization affecting hyperparameters must be 268

reduced to avoid interference. 269

After �nding the maximum LR through the LR �nder 270

(Fig. 5), an initial value equal to 1=10 of the maximum is 271

set (see pointer À - Fig. 6). Then, the LR assumes the shape 272

of a triangular cycle for about 90% of the total training, i.e., 273

90% of the total epochs (see Fig. 6), �rst increasing from 274

the initial value up to maximum (see pointer `), and then 275

decreasing again to 1=10 of the maximum (see pointer ´). 276

In the last few epochs, equal to about 10% of the total epochs, 277

the LR rapidly decreases to 1=1000 of the maximum LR (see 278

pointer ˆ). Properly setting the duration of the last part of the 279

training is extremely important, since a longer duration would 280

lead to over�tting, while a shorter duration would lead to low 281

accuracy. 282

The one cycle policy is also applied to the momentum with 283

an opposite shape (Fig. 6). In this way, the regularization 284

carried out on the LR is not dampened by the momentum, 285

but on the contrary, it is strengthened. There is a maximum 286

recommended momentum value of 0:95 (see pointer ˜), 287

while the minimum should be 0:85 (see pointer ¯). In the 288

109000 VOLUME 10, 2022
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FIGURE 6. One cycle policy.

�nal part of the training, while the LR decreases rapidly, the289

momentum remains �xed at the maximum value of 0:95 (see290

pointers ˘ and ˙).291

D. CYCLICAL POLICY292

The cyclical policy [37], shown in Figs. 7 and 8, is similar293

to the one cycle policy, with the difference that the cycle294

is repeated several times, constantly oscillating between the295

same maximum (see pointer À - Fig. 7) and minimum (see296

pointer `) values. This policy can be helpful if the training297

process of the DNN model exhibit many local minimum298

points, since using a cyclical LR allows the training to seek299

deeper minimums and achieve higher accuracy.300

The length of every single cycle is calculated as a multiple301

of an epoch. It is recommended to use cycle length values302

between 4 and 20 times an epoch to obtain optimal results.303

However, it is advisable to perform training with at least304

3 - 5 cycles to obtain an evident improvement over a con-305

stant LR. Increasing the number of cycles too much would306

eliminate the cycle’s usefulness, because the training would307

not have time to adapt to the variation of the LR.308

The maximum and minimum values of the LR to adopt in309

the cycle must be chosen carefully (Fig. 9), since the success310

of the training depends on them. In both cases, it is necessary311

to use the graph produced by the LR �nder (Fig. 5), which312

must be run before the �nal training. The maximum LR is313

found precisely as for the one cycle policy, i.e., 1=10 of the314

minimum point of the loss that corresponds to the limit (see315

pointer À - Fig. 9). On the other hand, the minimum LR is316

set to a value in the loss descent zone from the initial plateau317

onwards (see pointer ` - Fig. 9).318

In some other cases, the cycles are repeated with the319

same length, but the maximum LR value decreases (see320

pointer À - Fig. 8) to search deeper in the local minima, such321

as the decreasing triangular cycles of Fig. 8.322

E. WARM RESTARTS323

The warm restart methods [10], [11] are also based on324

a cyclical policy, but as the term says, there are sud-325

den restarts from the minimum (see pointer À - Fig. 10,326

pointer À - Fig. 11) to the maximum LR value (see327

pointer ` - Fig. 10, pointer ` - Fig. 11). This phenomenon328

leads to instantaneously restart a new long descent, aiming329

FIGURE 7. A triangular cyclical policy [37].

FIGURE 8. Cyclical policy with fixed lower boundary.

FIGURE 9. LR boundary on the loss plot for the cyclical policy [37].

at �nding deeper minima. The warm restarts are always 330

performed on the LR and can assume various shapes, such 331

as: 332

• Sinusoidal (Fig. 10); 333

• Linear (Fig. 11); 334

• Trapezoidal. 335

The warm restarts can have multipliers that make 336

the progress accordion-like during the training (Fig. 10), 337

or the restarts can be at different gradually decreasing 338

values (Fig. 11). 339

F. OTHER FAST TRAINING METHODS 340

Changing the shapes of the hyperparameters or mixing the 341

above-discussed techniques, it possible to obtain new training 342

policies for the LR, which might be more effective than the 343

originals methods. 344

IV. ANALYSIS: FAST TRAINING TECHNIQUES APPLIED TO 345

ADVERSARIAL TRAINING METHODS 346

Various methodologies have recently been proposed to accel- 347

erate the adversatial training [7], [8]. The Free Adversarial 348
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FIGURE 10. Accordion-like sinusoidal warm restarts [10].

FIGURE 11. Linear decreasing warm restarts [11].

Training (FAT) [6] is chosen as the baseline method for the349

experiments in this section.350

The m parameter, also called Free-m, is a key parameter of351

the FAT algorithm, since it allows to repeat the perturbation352

several times for every single minibatch [38]. With this353

terminology, a traditional training is obtained by keeping354

m = 1. The parameter � indicates the adversarial perturba-355

tion. A too large � would make the perturbations so high that356

the images would be recognized as crafted even by the human357

eye.358

Building on top of this, there have been concurrent works359

such as Fast is Better than Free [39] and subsequently, also360

GradAlign [40], which have demonstrated the reliability in361

using the FGSM for speeding up with the proper precautions.362

In this work, we mainly focus, instead of on the type of363

training, on the hyperparameters. Therefore, we tested the364

feasibility of AccelAT also with the FGSM method.365

A. ORIGINAL FAT RESULTS366

A �rst analysis has been conducted by reproducing the orig-367

inal FAT method, applied to the ResNet-50 model [41] on368

CIFAR10 [42], [43] and CIFAR100 [43], [44] datasets, under369

the projected gradient descent (PGD) attack [45] with con-370

stant � equal to 8:0. Fig. 12 shows the training results in371

terms of accuracy and loss, obtained for both the CIFAR10372

and the CIFAR100 datasets on natural images. As expected,373

the CIFAR100 accuracy is lower than the CIFAR10374

accuracy due to the higher complexity. Final accuracy375

results:376

• CIFAR10→ accuracy: 84:34% - loss: 0:00562;377

• CIFAR100→ accuracy: 59:89% - loss: 0:01459.378

FIGURE 12. Original FAT [6] accuracy and loss on natural images.

FIGURE 13. FAT’s 3-steps LR [6].

B. HYPERPARAMETERS SETUP 379

The original FAT method applies a LR that has a 3-step 380

function (Fig. 13) with the following behavior: 381

• Epochs = [0 : 40000] → LR = 0:1 (see 382

pointer À - Fig. 13); 383

• Epochs = [40000 : 60000] → LR = 0:01 (see 384

pointer `); 385

• Epochs = [60000 : 80000] → LR = 0:001 (see 386

pointer ´). 387

After using the LR �nder (Fig. 5), the maximum LR value 388

results to be: 389

• CIFAR10→ maximum LR = 0:15; 390

• CIFAR100→ maximum LR = 0:12. 391

Therefore, for the experiments applying the fast training tech- 392

niques on the FAT method, a maximum LR higher than that 393

of the original FAT is used. 394

The momentum values are set to: 395

• One cycle→ momentum = 0:85 � 0:95 (Fig. 6); 396

• Constant→ momentum = 0:90. 397

The one cycle momentum is used only for the one cycle 398

policy [9]. Instead, for the other techniques, the momentum 399

is �xed to the original FAT constant value. 400

Based on the regularization criteria, the value of the weight 401

decay has been set to 0:0002. A batch size of 128 has been 402

set due to the computational limits of the calculator. The 403

remaining FAT parameters relative to adversarial training 404

have not been changed, since the aim is not to obtain a more 405

robust model, but to accelerate the training, while achieving 406

the same robustness. 407
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FIGURE 14. FAT Training of ResNet-20 on the CIFAR100 natural images
dataset with different LR techniques.

C. SUPER FAT RESULTS408

The results of different training policies applied to the409

FAT, compared to the original FAT, for the CIFAR10 and410

CIFAR100 natural images datasets, are shown in Fig. 1 and411

Fig. 14, respectively. The experiments are performed with412

various values of training epochs to show the differences413

between the algorithms. With our settings (i.e., execution on414

the Tesla K40c GPU), 10000 epochs are executed in about415

5 hours. Therefore, the original FAT training lasts for about416

40 hours. For this reason, halving the number of epochs417

allows to execute the experiments faster.418

From these results, it can be noticed that the FAT algorithm419

with a 3-steps LR is already optimized w.r.t. the original420

adversarial training [4], but with more advanced techniques,421

the same results can be achieved even in about half the time422

(see pointer À - Fig. 14). Thus, the �ne-tuning of the hyper-423

parameters is essential and can lead to super-convergence in424

standard training and adversarial training without affecting425

the result and robustness of the DNN model itself.426

V. OUR AccelAT FRAMEWORK427

The idea behind AccelAT is to avoid or reduce the model428

setup time. With the existing fast training techniques, we can429

obtain good results, but often it takes too much time to set430

up all parameters and several attempts before �nding the431

best compromise. These dead times are not considered in432

the training time, but they are still a considerable part of a433

programmer’s work. With AccelAT, it is possible to have more434

freedom of choice since it will be the model itself during the435

training that will understand when to intervene on the LR for436

more ef�cient learning. As we will see, this leads to similar437

or better results to existing fast training techniques based on438

the LR.439

The functionality of our AccelAT methodology is described440

in Algorithm 1. The LR value, initially equal to the maxi-441

mum possible value obtained with the LR �nder, decreases442

as plateau zones are found in the learning curve. The LR443

decreases if the accuracy does not exceed a speci�c1acc in a444

certain number of epochs.445

Inspired by existing fast training techniques that eliminate446

plateau areas while learning, in our AccelAT framework the447

LR is varied based on the performance of the validation448

Algorithm 1 AccelAT
Require: Maximum learning rate lrMAX, minimum learning
rate lrmin, accuracy delta 1acc, percentage reduction p, num-
ber of cycles of interest n, accuracy acc, previous average
accuracy accpre

1: lr ← lrMAX
2: for e in epochs do
3: if (acc(e; e− n)− accpre) < 1acc then
4: lr ← lr · p
5: end if
6: if lr < lrmin then
7: lr ← lrmin
8: end if
9: accpre ← acc(e; e− n)

10: end for

FIGURE 15. AccelAT workflow.

accuracy. First, we search for the maximum LR using the 449

LR �nder technique, after which we set it as the initial LR 450

(line 1 - Algorithm 1), to be decreased if the accuracy starts 451

to show a plateau. Then, a simpli�ed gradient can be used to 452

change the LR based on accuracy progression. As indicated 453

in lines 3-4, the LR is decreased by a percentage value p if 454

the accuracy in the last n cycles has not increased by a certain 455

value 1acc, up to the minimum desired LR (see Fig. 15). 456

Step by step, the framework works as follows: 457

• With previous training, we �nd the maximum LR that 458

can be used through the LR �nder; 459

• The LR is set to the previously found maximum LR 460

value; 461

• The training starts with the predetermined LR; 462

• The accuracy is calculated for the dataset under analysis; 463
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• If the accuracy does not grow at a suf�cient rate that464

is decided a priori, then the LR decreases by a �xed465

percentage;466

• If, on the other hand, there are no plateau areas, then the467

training continues with the current LR;468

• Once the LR reaches a predetermined minimum value,469

then the training continues with this �xed LR value;470

• When the accuracy reaches an optimal value, or it is471

impossible to rise further, then the training stops.472

For example, let us set a value (n) of ten epochs to evaluate473

the accuracy, a delta (1acc) equal to 1% and let us assume to474

have found a value of 0.01 as the maximum LR, which we475

want to reduce by about 10% (p) each time there is a plateau476

area. After that, the training is launched for 100 epochs.477

The accuracy increase rate is monitored for each epoch. For478

instance, in the �rst 40 epochs, the increase in accuracy479

is greater than or equal to 1%, compared to the last ten480

epochs. Hence, the LR remains �xed at 0.01. At the 41st481

epoch, the accuracy has not increased by at least 1% in the482

last ten epochs, and consequently, the LR is multiplied by483

0.9, i.e., it is reduced by 10%, and we obtain an LR value484

equal to 0.009. Afterward, the training is resumed and the485

accuracy starts to rise again. Towards the 70th epoch, it again486

has a new plateau zone; consequently, the LR is reduced487

by another 10%. Then, the training continues until the end488

of the 100 epochs. Once �nished, the LR is lower than the489

maximum, allowing us to increase the accuracy by going490

deeper into the found local minimum. If we had kept a �xed491

LR after the �rst 40 epochs, the accuracy would not have492

increased, and the last 60 epochs would have been useless.493

With our AccelAT framework, we have obtained an adaptive494

LR based on the speci�c training we are performing.495

This type of LR policy does not have a �xed shape for496

every training and, therefore, cannot be plotted. Instead, its497

shape varies at run-time according to the model, dataset,498

and training parameters. In any case, it will assume a lad-499

der shape. Compared to other fast training techniques, the500

AccelAT method, not having a �xed shape and calculating501

the gradient at run-time, is likely to slightly slow down the502

training. However, on long training with complex datasets,503

the AccelAT allows obtaining an LR suited to the situation.504

As will be demonstrated in the next section, our AccelAT is505

more ef�cient than existing fast training techniques in certain506

types of training. Therefore, the best approach is to conduct507

preliminary analyses to determine which are good values of508

the parameters p, n, and 1acc to set for the training.509

VI. EVALUATING OUR AccelAT FRAMEWORK510

A. EXPERIMENTAL SETUP511

As shown in Fig. 16, our experiments has been con-512

ducted using two popular DNNs (ResNet [41] and513

MobileNet [46]), pre-trained with ImageNet, then trained for514

the CIFAR10 [42], [43] and CIFAR100 [43], [44] datasets,515

analyzed through the LinfPGD, FGSM, and DeepFool attacks516

described through the Foolbox library [31]. The code is517

FIGURE 16. Experimental setup.

written in Python [3], [47] using the TensorFlow 2.X 518

library [32], running on an NVIDIA Tesla K40c GPU with 519

12 GB of memory. 520

Each network/dataset/attack combination is tested with 521

three types of learning policies, which are constant (the most 522

simple one), one cycle (the best during FAT review), and 523

AccelAT. Therefore, we perform 36 total training runs, taking 524

around 2 hours per run. We found maximum LR values 525

between 0:001 and 0:0001 for all simulations using the LR 526

�nder. The other hyperparameters are kept at a �xed optimal 527

value for our setup for all simulations: 528

• Momentum→ 0:9; 529

• Batch size→ 128; 530

• Weight decay→ 0:0002. 531

To avoid over�tting, we have noticed that the best choice 532

is to use early stopping for the training. As also highlighted 533

in these papers [48], [49], early stopping can lead to more 534

optimal solutions than the introduction of new normaliza- 535

tions. For this reason, we set our total epochs to 50 to avoid 536

over�tting. This choice does not con�ict with our algorithm 537

as acceptable accuracy values are obtained even with fewer 538

epochs. For the attack we used a perturbation budget " 539

equal to 0.01 and the algorithm automatically iterates until 540

it reaches an acceptable level to fool the DNN [50]. 541

B. EXPERIMENTAL RESULTS 542

From the 36 training runs, we extract nine results that are 543

reported in Fig. 17, Fig. 18, and Fig. 19. We have shown only 544

the graphs obtained on the adversarial training-set for greater 545

clarity. We then calculated the accuracy with the adversar- 546

ial test-set, the natural training-set, and the natural test-set. 547

In all cases, the results are comparable to these graphs, with 548

linearly higher or lower values for each type of LR. Note, 549

our AccelAT technique is sometimes more ef�cient than the 550

one cycle policy, especially with MobileNet DNNs. The best 551

results are obtained on more complex datasets, where many 552

labels reduce the risk of over�tting and where a variable 553

LR is more valuable than a constant one. For example, 554

in Fig. 18, and Fig. 19, the training curve using the AccelAT 555

methodology reaches a high accuracy value in fewer cycles 556

compared to the other techniques (see pointer À - Fig. 18, 557

pointer À - Fig. 19). Also notice that, in Fig. 19, the accuracy 558

of the curve employing the AccelAT technique continues to 559

increase in every cycle, also towards the end of the training 560

(see pointer ` - Fig. 19), where instead the accuracy obtained 561

with the one cycle policy stops growing. 562
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FIGURE 17. ResNET model trained on the CIFAR10 dataset, attacked with
DeepFool - Adversarial training-set.

FIGURE 18. MobileNET model trained on the CIFAR10 dataset, attacked
with LinfPGD - Adversarial training-set.

FIGURE 19. MobileNET model trained on the CIFAR100 dataset, attacked
with FGSM - Adversarial training-set.

VII. CONCLUSION563

In an era in which robustness is fundamental for DNNs,564

performing training in a fast yet robust manner is challeng-565

ing. This research demonstrates that advanced fast train-566

ing techniques can also be applied to adversarial training,567

obtaining signi�cant improvements with similar robustness.568

Moreover, we propose AccelAT, a framework for adjusting569

the LR during training based on the accuracy gradient. Our570

experimental results show that the AccelAT not only outper-571

forms the training with constant LR, which usually reaches572

a sub-optimal local minimum, but is comparable or better573

than other fast training techniques. Moreover, it is ef�cient574

for complex training with large datasets, where a LR varied575

at run-time is essential to better �t the DNN model and allows576

more effective learning. Therefore, a new generation of DNN 577

models, which are robust and fast, is starting up, and we 578

demonstrated their feasibility. We believe that, in the near 579

future, these models will be widely employed. 580

In future works, we plan to modify more hyperparame- 581

ters by combining them to test even faster methods. Since 582

the batch size is generally �xed and depends on the com- 583

puting power of the GPU, it affects less the performance. 584

On the other hand, the momentum can act simultaneously 585

with the LR for better normalization. Hyperparameters are 586

often neglected, but their correct use can lead to signi�cant 587

advantages. 588
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