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ABSTRACT Adversarial training is exploited to develop a robust Deep Neural Network (DNN) model
against the malicious altered data. These attacks may have catastrophic effects on DNN models but are
indistinguishable for a human being. For example, an external attack can modify an image adding noises
invisible for a human eye, but a DNN model misclassi es the image. A key objective for developing robust
DNN models is to use a learning algorithm that is fast but can also give model that is robust against different
types of adversarial attacks. Especially for adversarial training, enormously long training times are needed for
obtaining high accuracy under many different types of adversarial samples generated using different adver-
sarial attack techniques. This paper aims at accelerating the adversarial training to enable fast development of
robust DNN models against adversarial attacks. The general method for improving the training performance
is the hyperparameters ne-tuning, where the learning rate is one of the most crucial hyperparameters.
By modifying its shape (the value over time) and value during the training, we can obtain a model robust
to adversarial attacks faster than standard training. First, we conduct experiments on two different datasets
(CIFAR10, CIFAR100), exploring various techniques. Then, this analysis is leveraged to develop a novel
fast training methodology, AccelAT, which automatically adjusts the learning rate for different epochs based
on the accuracy gradient. The experiments show comparable results with the related works, and in several
experiments, the adversarial training of DNNs using our AccelAT framework is conducted up to 2x faster
than the existing techniques. Thus, our ndings boost the speed of adversarial training in an era in which
security and performance are fundamental optimization objectives in DNN-based applications. To facilitate
reproducible research this is the Accel AT open-source framework: https://github.com/Nikfam/Accel AT.

INDEX TERMS Deep neural network (DNN), adversarial training, fast training, hyperparameters, learning
rate (LR), Foolbox, python, TensorFlow, adversarial attack.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Machine Learning (ML) [1], [2], [3] is an ever-expanding
approving it for publication was Mansoor Ahmed . eld and has achieved wide proliferation in recent years
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FIGURE 1. FAT Training of ResNet-20 on the CIFAR10 natural images
dataset with different LR techniques.

due to the development of highly-ef cient hardware, such as
GPUs. Nevertheless, the advanced and complex ML models
require gigantic training time. Therefore, its acceleration not
only has a direct impact on the usage of large GPU-based
datacenters in which typically the training is conducted but
will also enable training on low-cost multi-GPU worksta-
tions, as well as will ease the development of new research
directions, such as continuous learning. On the other hand,
in the last decade, it has been discovered that models are
highly vulnerable to external attacks, and nowadays, the ML
models need to be robust against such attacks to be deployed
in safety-critical applications.

A. TARGET RESEARCH PROBLEM AND CHALLENGES
Adversarial training [4] has become a popular method for
training Deep Neural Networks (DNNs) [5] with robustness
against the adversarial attacks. Unfortunately, robust DNNs
are not always easy to be trained, as it takes 3x to 30x longer
time [6] to obtain high accuracy when adversarial (noisy)
samples are added to the training dataset, compared to the
standard (i.e., non adversarial) training. Hence, it is essential
to create DNN models that are not only robust but also quite
fast to be trained. To obtain the above-discussed properties,
we propose to employ fast training techniques for advanced
adversarial training of DNNs, and show the feasibility of this
design strategy by designing a novel fast training method,
called AccelAT.

B. MOTIVATIONAL CASE STUDY

Nowadays, advanced methods for adversarial training - such
as, Free Adversarial Training (FAT) [6], YOPO [7], and
Trades [8] - are currently used to obtain DNN models
which are robust against adversarial attacks. In our anal-
yses, we focus on the FAT method, which is already
highly optimized compared to the original adversarial train-
ing method [4]. To further accelerate the training process,
we employ various fast training techniques, focusing mainly
on the study of hyperparameters. Since the learning rate (LR)
hasastrongin uence onthe convergence of the DNN training
process, we analyze and how its variation affects the train-
ing speed for accurate and robust DNN models. The fast
training techniques analyzed are linear decay, exponential
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decay, one cycle [9], and warm restarts [10], [11]. The results
applied to the ResNet-20 DNN for the CIFAR10 dataset (see
Fig. 1) con rm that fast training techniques can be used
with success also for adversarial training. Compared to the
original FAT method, performing the training with a LR that
follows the behavior of one of these above-discussed fast
training policy can reduce the training time by around 2x
(see pointer - Fig. 1), while obtaining a similar accuracy
level (see pointer ™).

C. OUR NOVEL CONTRIBUTIONS
The main contributions of this paper are (see Fig. 2):

o We analyze the prominent fast training techniques
applied to adversarially trained DNNs, showing sig-
ni cant training time reduction in terms of training
epochs (Sec. 1V).

o We design a novel framework, AccelAT, which automat-
ically reduces the LR when the accuracy gradient starts
decreasing, i.e., when the accuracy curve starts falling
into a plateau region (Sec. V).

o The experimental results on multiple DNNs (ResNet,
MobileNet) trained on CIFAR10 and CIFAR100
datasets with our AccelAT framework obtain up to 8%
higher adversarial robustness against the most common
attacks such as LinfPGD, Fast Gradient Sign Method
(FGSM), and DeepFool (Sec. VI).

Open Source: To facilitate the research and developments in
this eld, and for reproducible research, this is the Accel AT
open-source framework: https://github.com/Nikfam/Accel AT.

Before proceeding to the main technical sections,
we present an overview of adversarial attacks and defenses,
and fast training policies for DNNs, in Sec. Il and Sec. IlI,
respectively, with a level of detail necessary to understand
the rest of the paper.

I1. OVERVIEW OF ADVERSARIAL ATTACKS AND
DEFENSES FOR DNNs

Adversarial training [12] is a branch of ML that deals with
creating robust models against adversarial attacks [13], for
instance, by augmenting the adversarial samples to the train-
ing dataset. For years, the training has only focused on achiev-
ing high accuracy. However, there exist malicious attacks
that mine the algorithms correct behavior. If a DNN model
is attacked, it will incorrectly execute its process, which
can lead to severe consequences for safety-critical appli-
cations [14]. For example, for cases where facial, voice,
or ngerprint recognition is used to unlock certain services,
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FIGURE 3. An example of adversarial attack, where strawberries are
misclassified as chestnuts [15].

an external attack can cause severe damage. Thus, it is desired
that DNN maodels are robust against such external attacks.
However, it is known that complex DNN models are vulner-
able to malicious attacks, which could make their accuracy
drop from near 100% to nearly 0% [15]. To counter these
attacks, we need to develop and deploy robust models that
can maintain high accuracy in the presence of these malicious
variations.

Adversarial training leverages clean images as well as the
noisy images (following a certain adversarial attack model)
for training the DNN models, thereby enabling the trained
DNN models to classify correctly even in the presence of an
adversarial attack during the inference. However, this robust-
ness is achieved at the expense of signi cantly longer training
time, proportional to the amount of adversarial samples and
attack models.

A. ADVERSARIAL EXAMPLES

The basic foundation of an adversarial attack algorithm is
to create imperceptibly-modi ed examples [15] that mislead
the DNN model. On the other hand, if the examples were
modi ed with a random logic, the problem would not arise
since the model would fail, but a human being would eas-
ily recognize and detect the modi cations. However, some
examples could be modi ed to mislead a DNN model through
a malicious attack without any evident variation perceived
by the human eye. For example, as shown in Fig. 3, the two
images (original and modi ed by attack) are identical to the
human eye. However, every single pixel has been modi ed
according to the noise seen in the middle [16].

The consequence is that DNN models can be attacked
without obvious external signs. In reality, with certain types
of attacks, it is possible to generate modi ed images indis-
tinguishable from a human being, which the DNN model
can still correctly recognize. The latter case is not a critical
problem, as they would be images discarded by a human.
In this work, we will focus on the misclassi cation of DNN
models.

B. ADVERSARIAL ATTACKS

A DNN model can learn to recognize images, but in an
entirely different way from how humans do it. Therefore, var-
ious adversarial attacks algorithms have been proposed [17].
For example, some attacks are based on changing a single
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FIGURE 4. Two ways of fooling a classifier.

pixel [18], others on certain image features, but the most
common approach consists of calculating the division line,
called decision boundary, that distinguishes one class from
another.

In a simple case with two classes, the decision boundary
looks like as in Fig. 4a. A targeted attack would perturb all the
borderline examples. For image classi cation applications,
the attack would vary the last layer features, closest to the
line edge, just enough to make them cross the line (Fig. 4b).
In this way, the classi cation is completely distorted without
actually changing the image much overall. This process deals
with two almost identical images, which are instead classi ed
in different ways. In some cases, the pixels do not change
the position. On the contrary, the attack moves the separation
line that distinguishes the classes (Fig. 4c), thus leading to a
misclassi cation due to the shifted decision boundary.

C. WHITE-BOX ATTACKS

There are mainly two categories of attacks, namely white-box
and black-box [19]. In this work, we focus on white-box
attacks, which are the most accessible and powerful type of
attacks to perform considering that the adversary has more
knowledge about the system [4]. While a black-box attack
has access only to the inputs and outputs, a white-box attack
also leverages the knowledge of the internal structure of the
model to be attacked. Therefore, the attack is more speci ¢
and powerful, and the caused damage increases.

D. ADVERSARIAL TRAINING

There exist various techniques to train robust models, such as
data augmentation, second model control, and hyperparame-
ters ne-tuning [17], [20].

The most common technique to counter attacks is data aug-
mentation, that is, the DNNSs are trained not only on correct
images, but also on already attacked images or adversarial
samples generated based on given attack models [21]. This
procedure signi cantly increases the DNN accuracy against
attacks [22], [23]. However, as a drawback, the accuracy of
clean images decreases, and often falls below the required
accuracy level [24].

The second model control uses two DNN models. This
technique examines the main DNN and its internal character-
istics to predict whether the analyzed example is adversarial
or not [25], [26]. In practice, this technique uses an “external
guard” logic that controls the whole process to verify its
effective operation. However, the study of its effectiveness
and complexity is still immature.
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Moreover, the performance of the adversarial training can
be improved by changing the values of the hyperparameters,
such as weight decay, batch size, or LR [27], [28].

E. ADVERSARIAL LIBRARIES

There are various libraries to implement the adversarial
attacks [29], [30]. Foolbox [31] is used in this work due
to its good documentation, functionality, and support for
TensorFlow [32] and Pytorch [33] packages.

I1l. OVERVIEW OF FAST TRAINING POLICIES FOR DNNs
We need fast training to meet an ever-increasing demand
for large databases to be managed in real-time. For exam-
ple, popular websites like Google, YouTube, and Facebook
need to manage constant incoming data streams, training the
models as quickly as possible. On the other hand, treating a
large amount of data consumes a large amount of power, and
is often out of the hand of small-scale organizations where
training resources are limited. Therefore, accelerating this
process allows obtaining advantages in terms of resources,
time and energy. With current processors, such as CPUs
and GPUs, the computation times for the complete training
can last from days to several weeks for large-sized datasets,
and a few hours to days for medium-sized datasets. Hence,
asigni cant reduction in the training time is highly desirable.
There are various ways to speed up:

« Specialized techniques for certain types of DNN
models, like Adam [34], Ada-Boundary [35], or
Super-Convergence [36].

« Generic optimizations, like hyperparameters tuning [9],
which apply to nearly every DNN model.

A. FAST TRAINING TECHNIQUES
Generic techniques mainly include the changes to hyper-
parameters [9] and, more speci cally, to the LR [37],
since variable LR values can give better results than con-
stant values. Among the various state-of-the-art fast training
methodologies proposed in the literature, the most advanced
in this regard are the following:
« One cycle policy [9];
« Cyclical policy [37];
o Warm restarts [10], [11].
Before applying each of these techniques, it is necessary to
nd the best LR to use during the training, through the LR
nder technique.

B. LEARNING RATE FINDER

The simplest method to  nd the correct LR value is to change
it exponentially, from small to large values, during reasonably
long training. An ef cient choice is to vary the LR by at least
ten orders of magnitude throughout the training. Theoreti-
cally, if all the various parameters have been normalized, the
LR will often lay between 0:001 and 10. For this reason, it is
preferable to fully cover this range during the training. Once
the test training is nished, it will be enough to look at the
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FIGURE 5. LR finder executed on the ResNet-50 model for the CIFAR10
and CIFAR100 datasets.

accuracy and error graphto  nd the maximum recommended
LR [37]. Asshown in Fig. 5, for small LR values, the accuracy
and the error practically do not vary. However, in a certain
range of LR values, the error decreases up to aminimum, after
which it diverges for large LR values. Hence, the desirable LR
values are those in which the error decreases from the initial
plateau to the minimum point, beyond which the divergence
begins. Therefore, using a maximum LR value of about one
order of magnitude lower than the minimum error point is
advisable to be distant enough to avoid the divergence region
(see pointer - Fig. 5). In summary, the LR should range
from the value in which the error slope starts decreasing, until
one order of magnitude less than the point in which the error
curve exhibits the minimum (see pointer ™).

C. ONE CYCLE POLICY

The one cycle policy [9] is based on varying the LR and
other hyperparameters during the training process to obtain
fast training. As the name implies, the basic idea is to apply a
single cycle to these hyperparameters throughout the training.
Since the one cycle policy is a regularization technique, other
types of normalization affecting hyperparameters must be
reduced to avoid interference.

After nding the maximum LR through the LR nder
(Fig. 5), an initial value equal to 1=10 of the maximum is
set (see pointer - Fig. 6). Then, the LR assumes the shape
of a triangular cycle for about 90% of the total training, i.e.,
90% of the total epochs (see Fig. 6), rst increasing from
the initial value up to maximum (see pointer ~), and then
decreasing again to 1=10 of the maximum (see pointer 7).
In the last few epochs, equal to about 10% of the total epochs,
the LR rapidly decreases to 1=1000 of the maximum LR (see
pointer 7). Properly setting the duration of the last part of the
training is extremely important, since a longer duration would
lead to over tting, while a shorter duration would lead to low
accuracy.

The one cycle policy is also applied to the momentum with
an opposite shape (Fig. 6). In this way, the regularization
carried out on the LR is not dampened by the momentum,
but on the contrary, it is strengthened. There is a maximum
recommended momentum value of 0:95 (see pointer ™),
while the minimum should be 0:85 (see pointer ~ ). In the
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nal part of the training, while the LR decreases rapidly, the
momentum remains xed at the maximum value of 0:95 (see
pointers — and " ).

D. CYCLICAL POLICY

The cyclical policy [37], shown in Figs. 7 and 8, is similar
to the one cycle policy, with the difference that the cycle
is repeated several times, constantly oscillating between the
same maximum (see pointer - Fig. 7) and minimum (see
pointer ~) values. This policy can be helpful if the training
process of the DNN model exhibit many local minimum
points, since using a cyclical LR allows the training to seek
deeper minimums and achieve higher accuracy.

The length of every single cycle is calculated as a multiple
of an epoch. It is recommended to use cycle length values
between 4 and 20 times an epoch to obtain optimal results.
However, it is advisable to perform training with at least
3 - 5 cycles to obtain an evident improvement over a con-
stant LR. Increasing the number of cycles too much would
eliminate the cycle’s usefulness, because the training would
not have time to adapt to the variation of the LR.

The maximum and minimum values of the LR to adopt in
the cycle must be chosen carefully (Fig. 9), since the success
of the training depends on them. In both cases, it is necessary
to use the graph produced by the LR nder (Fig. 5), which
must be run before the nal training. The maximum LR is
found precisely as for the one cycle policy, i.e., 1=10 of the
minimum point of the loss that corresponds to the limit (see
pointer - Fig. 9). On the other hand, the minimum LR is
set to a value in the loss descent zone from the initial plateau
onwards (see pointer ~ - Fig. 9).

In some other cases, the cycles are repeated with the
same length, but the maximum LR value decreases (see
pointer - Fig. 8) to search deeper in the local minima, such
as the decreasing triangular cycles of Fig. 8.

E. WARM RESTARTS

The warm restart methods [10], [11] are also based on
a cyclical policy, but as the term says, there are sud-
den restarts from the minimum (see pointer - Fig. 10,
pointer -Fig.11) to the maximum LR value (see
pointer ~ - Fig. 10, pointer ~ - Fig. 11). This phenomenon
leads to instantaneously restart a new long descent, aiming
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at nding deeper minima. The warm restarts are always
performed on the LR and can assume various shapes, such
as:

« Sinusoidal (Fig. 10);

« Linear (Fig. 11);

» Trapezoidal.

The warm restarts can have multipliers that make
the progress accordion-like during the training (Fig. 10),
or the restarts can be at different gradually decreasing
values (Fig. 11).

F. OTHER FAST TRAINING METHODS

Changing the shapes of the hyperparameters or mixing the
above-discussed techniques, it possible to obtain new training
policies for the LR, which might be more effective than the
originals methods.

IV. ANALYSIS: FAST TRAINING TECHNIQUES APPLIED TO
ADVERSARIAL TRAINING METHODS

Various methodologies have recently been proposed to accel-
erate the adversatial training [7], [8]. The Free Adversarial
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Training (FAT) [6] is chosen as the baseline method for the
experiments in this section.

The m parameter, also called Free-m, is a key parameter of
the FAT algorithm, since it allows to repeat the perturbation
several times for every single minibatch [38]. With this
terminology, a traditional training is obtained by keeping
m = 1. The parameter indicates the adversarial perturba-
tion. A too large  would make the perturbations so high that
the images would be recognized as crafted even by the human
eye.

Building on top of this, there have been concurrent works
such as Fast is Better than Free [39] and subsequently, also
GradAlign [40], which have demonstrated the reliability in
using the FGSM for speeding up with the proper precautions.
In this work, we mainly focus, instead of on the type of
training, on the hyperparameters. Therefore, we tested the
feasibility of AccelAT also with the FGSM method.

A. ORIGINAL FAT RESULTS
A rst analysis has been conducted by reproducing the orig-
inal FAT method, applied to the ResNet-50 model [41] on
CIFAR10[42], [43] and CIFAR100 [43], [44] datasets, under
the projected gradient descent (PGD) attack [45] with con-
stant equal to 8:0. Fig. 12 shows the training results in
terms of accuracy and loss, obtained for both the CIFAR10
and the CIFAR100 datasets on natural images. As expected,
the CIFAR100 accuracy is lower than the CIFAR10
accuracy due to the higher complexity. Final accuracy
results:

o CIFAR10 — accuracy: 84:34% - loss: 0:00562;

o CIFAR100 — accuracy: 59:89% - loss: 0:01459.
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B. HYPERPARAMETERS SETUP
The original FAT method applies a LR that has a 3-step
function (Fig. 13) with the following behavior:

o Epochs = [0 40000] — LR = 0:1 (see
pointer - Fig. 13);

« Epochs = [40000 60000] — LR = 0:01 (see
pointer 7);

o Epochs = [60000 80000] —» LR = 0:001 (see
pointer 7).

After using the LR nder (Fig. 5), the maximum LR value
results to be:

o CIFAR10 — maximum LR = 0:15;

« CIFAR100 — maximum LR =0:12.

Therefore, for the experiments applying the fast training tech-
niques on the FAT method, a maximum LR higher than that
of the original FAT is used.

The momentum values are set to:

o Onecycle — momentum = 0:85 0:95 (Fig. 6);

« Constant — momentum = 0:90.

The one cycle momentum is used only for the one cycle
policy [9]. Instead, for the other techniques, the momentum
is xed to the original FAT constant value.

Based on the regularization criteria, the value of the weight
decay has been set to 0:0002. A batch size of 128 has been
set due to the computational limits of the calculator. The
remaining FAT parameters relative to adversarial training
have not been changed, since the aim is not to obtain a more
robust model, but to accelerate the training, while achieving
the same robustness.
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C. SUPER FAT RESULTS

The results of different training policies applied to the
FAT, compared to the original FAT, for the CIFAR10 and
CIFAR100 natural images datasets, are shown in Fig. 1 and
Fig. 14, respectively. The experiments are performed with
various values of training epochs to show the differences
between the algorithms. With our settings (i.e., execution on
the Tesla K40c GPU), 10000 epochs are executed in about
5 hours. Therefore, the original FAT training lasts for about
40 hours. For this reason, halving the number of epochs
allows to execute the experiments faster.

From these results, it can be noticed that the FAT algorithm
with a 3-steps LR is already optimized w.r.t. the original
adversarial training [4], but with more advanced techniques,
the same results can be achieved even in about half the time
(see pointer - Fig. 14). Thus, the ne-tuning of the hyper-
parameters is essential and can lead to super-convergence in
standard training and adversarial training without affecting
the result and robustness of the DNN model itself.

V. OUR AccelAT FRAMEWORK

The idea behind AccelAT is to avoid or reduce the model
setup time. With the existing fast training techniques, we can
obtain good results, but often it takes too much time to set
up all parameters and several attempts before nding the
best compromise. These dead times are not considered in
the training time, but they are still a considerable part of a
programmer’s work. With AccelAT, it is possible to have more
freedom of choice since it will be the model itself during the
training that will understand when to intervene on the LR for
more ef cient learning. As we will see, this leads to similar
or better results to existing fast training techniques based on
the LR.

The functionality of our Accel AT methodology is described
in Algorithm 1. The LR value, initially equal to the maxi-
mum possible value obtained with the LR nder, decreases
as plateau zones are found in the learning curve. The LR
decreases if the accuracy does not exceed a speci € 1acc ina
certain number of epochs.

Inspired by existing fast training techniques that eliminate
plateau areas while learning, in our AccelAT framework the
LR is varied based on the performance of the validation
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Algorithm 1 AccelAT
Require: Maximum learning rate Iryax, minimum learning
rate Irmin, accuracy delta 1 4¢c, percentage reduction p, num-
ber of cycles of interest n, accuracy acc, previous average
accuracy acCpre
1: Ir < Irpmax
2: for e in epochs do
if (acc(e; e — n) — accpre) < Lacc then
Ir < Ir-p
end if
if Ir < Irmin then
Ir < Irmin
end if
9:  aCCpre < acc(e;e — n)
10: end for

Start training

Is learning
rate minimum?
NO YES
y

[Reduce learning rate]

{IN:>lr=lr-p; <
L 4
Stop training (—[ OUT = Accuracy

FIGURE 15. AccelAT workflow.

Qo NS TaAw

IN = Ir = Iryax

Y

YES <Is there a plateau
—
area in accuracy?

4
[ Continue training >
N

Is the accuracy
acceptable?

accuracy. First, we search for the maximum LR using the
LR nder technique, after which we set it as the initial LR
(line 1 - Algorithm 1), to be decreased if the accuracy starts
to show a plateau. Then, a simpli ed gradient can be used to
change the LR based on accuracy progression. As indicated
in lines 3-4, the LR is decreased by a percentage value p if
the accuracy in the last n cycles has not increased by a certain
value 1 5¢c, up to the minimum desired LR (see Fig. 15).
Step by step, the framework works as follows:

« With previous training, we nd the maximum LR that
can be used through the LR  nder;

o The LR is set to the previously found maximum LR
value;

« The training starts with the predetermined LR;

« Theaccuracy is calculated for the dataset under analysis;
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« If the accuracy does not grow at a suf cient rate that
is decided a priori, then the LR decreases by a xed
percentage;

« If, on the other hand, there are no plateau areas, then the
training continues with the current LR;

« Once the LR reaches a predetermined minimum value,
then the training continues with this xed LR value;

« When the accuracy reaches an optimal value, or it is
impossible to rise further, then the training stops.

For example, let us set a value (n) of ten epochs to evaluate
the accuracy, a delta (1 acc) equal to 1% and let us assume to
have found a value of 0.01 as the maximum LR, which we
want to reduce by about 10% (p) each time there is a plateau
area. After that, the training is launched for 100 epochs.
The accuracy increase rate is monitored for each epoch. For
instance, in the rst 40 epochs, the increase in accuracy
is greater than or equal to 1%, compared to the last ten
epochs. Hence, the LR remains xed at 0.01. At the 41st
epoch, the accuracy has not increased by at least 1% in the
last ten epochs, and consequently, the LR is multiplied by
0.9, i.e., it is reduced by 10%, and we obtain an LR value
equal to 0.009. Afterward, the training is resumed and the
accuracy starts to rise again. Towards the 70th epoch, it again
has a new plateau zone; consequently, the LR is reduced
by another 10%. Then, the training continues until the end
of the 100 epochs. Once nished, the LR is lower than the
maximum, allowing us to increase the accuracy by going
deeper into the found local minimum. If we had kepta xed
LR after the rst 40 epochs, the accuracy would not have
increased, and the last 60 epochs would have been useless.
With our AccelAT framework, we have obtained an adaptive
LR based on the speci c training we are performing.

This type of LR policy does not have a xed shape for
every training and, therefore, cannot be plotted. Instead, its
shape varies at run-time according to the model, dataset,
and training parameters. In any case, it will assume a lad-
der shape. Compared to other fast training techniques, the
AccelAT method, not having a xed shape and calculating
the gradient at run-time, is likely to slightly slow down the
training. However, on long training with complex datasets,
the Accel AT allows obtaining an LR suited to the situation.

As will be demonstrated in the next section, our AccelAT is
more ef cient than existing fast training techniques in certain
types of training. Therefore, the best approach is to conduct
preliminary analyses to determine which are good values of
the parameters p, n, and 1 4 to set for the training.

VI. EVALUATING OUR AccelAT FRAMEWORK

A. EXPERIMENTAL SETUP

As shown in Fig. 16, our experiments has been con-
ducted using two popular DNNs (ResNet [41] and
MobileNet [46]), pre-trained with ImageNet, then trained for
the CIFAR10 [42], [43] and CIFAR100 [43], [44] datasets,
analyzed through the LinfPGD, FGSM, and DeepFool attacks
described through the Foolbox library [31]. The code is
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Software
DNN: ResNet - MobileNet
Dataset: CIFAR10 - CIFAR100
Attack: LinfPGD - FGSM - DeepFool
Code: Python - TensorFlow - Foolbox

Code setup
LR type: Constant - One Cycle - AccelAT
Maximum LR: 0.001 - 0.0001
Momentum: 0.9
Batch size: 128
Weight decay: 0.0002
Total epochs: 50

Perturbation budget €: 0.01
Hardware l

NVIDIA Tesla K40c GPU
12 GB of memory

Total execution: 36 training runs, 2h each

FIGURE 16. Experimental setup.

written in Python [3], [47] using the TensorFlow 2.X
library [32], running on an NVIDIA Tesla K40c GPU with
12 GB of memory.

Each network/dataset/attack combination is tested with
three types of learning policies, which are constant (the most
simple one), one cycle (the best during FAT review), and
AccelAT. Therefore, we perform 36 total training runs, taking
around 2 hours per run. We found maximum LR values
between 0:001 and 0:0001 for all simulations using the LR

nder. The other hyperparameters are kept ata xed optimal
value for our setup for all simulations:

o Momentum — 0:9;

« Batch size —» 128;

« Weight decay — 0:0002.

To avoid over tting, we have noticed that the best choice
is to use early stopping for the training. As also highlighted
in these papers [48], [49], early stopping can lead to more
optimal solutions than the introduction of new normaliza-
tions. For this reason, we set our total epochs to 50 to avoid
over tting. This choice does not con ict with our algorithm
as acceptable accuracy values are obtained even with fewer
epochs. For the attack we used a perturbation budget "
equal to 0.01 and the algorithm automatically iterates until
it reaches an acceptable level to fool the DNN [50].

B. EXPERIMENTAL RESULTS

From the 36 training runs, we extract nine results that are
reported in Fig. 17, Fig. 18, and Fig. 19. We have shown only
the graphs obtained on the adversarial training-set for greater
clarity. We then calculated the accuracy with the adversar-
ial test-set, the natural training-set, and the natural test-set.
In all cases, the results are comparable to these graphs, with
linearly higher or lower values for each type of LR. Note,
our AccelAT technique is sometimes more ef cient than the
one cycle policy, especially with MobileNet DNNs. The best
results are obtained on more complex datasets, where many
labels reduce the risk of over tting and where a variable
LR is more valuable than a constant one. For example,
in Fig. 18, and Fig. 19, the training curve using the AccelAT
methodology reaches a high accuracy value in fewer cycles
compared to the other techniques (see pointer - Fig. 18,
pointer - Fig. 19). Also notice that, in Fig. 19, the accuracy
of the curve employing the AccelAT technique continues to
increase in every cycle, also towards the end of the training
(see pointer ~ - Fig. 19), where instead the accuracy obtained
with the one cycle policy stops growing.
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VII. CONCLUSION

In an era in which robustness is fundamental for DNNs,
performing training in a fast yet robust manner is challeng-
ing. This research demonstrates that advanced fast train-
ing techniques can also be applied to adversarial training,
obtaining signi cant improvements with similar robustness.
Moreover, we propose AccelAT, a framework for adjusting
the LR during training based on the accuracy gradient. Our
experimental results show that the AccelAT not only outper-
forms the training with constant LR, which usually reaches
a sub-optimal local minimum, but is comparable or better
than other fast training techniques. Moreover, it is ef cient
for complex training with large datasets, where a LR varied
at run-time is essential to better tthe DNN model and allows
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more effective learning. Therefore, a new generation of DNN
models, which are robust and fast, is starting up, and we
demonstrated their feasibility. We believe that, in the near
future, these models will be widely employed.

In future works, we plan to modify more hyperparame-
ters by combining them to test even faster methods. Since
the batch size is generally xed and depends on the com-
puting power of the GPU, it affects less the performance.
On the other hand, the momentum can act simultaneously
with the LR for better normalization. Hyperparameters are
often neglected, but their correct use can lead to signi cant
advantages.
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