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We provide the first holographic evidence for the existence of a nonsupersymmetric conformal manifold
arising from exactly marginal but supersymmetry-breaking deformations of a superconformal three-
dimensional field theory. In particular, we construct a 2-parameter nonsupersymmetric deformation of a
supersymmetric AdS nongeometric background in type IIB string theory. We prove that the non-
supersymmetric backgrounds are perturbatively stable and also do not suffer from various nonperturbative
instabilities. Finally, we argue that diffeomorphism symmetry protects our solutions against higher-
derivative string corrections.

DOI: 10.1103/PhysRevD.105.066018

Among quantum field theories, conformal field theories
(CFTs) play a distinguished role. For example, CFTs are
important in statistical mechanics, where they provide a
description of many phase transitions. Moreover, CFTs are
fixed points of the renormalization-group flow thus intro-
ducing a notion of universality. Finally, because of the
constraints imposed by conformal invariance, strongly
coupled CFTs can provide an insight into nonperturbative
QFTs more generally.
An important question to ask when studying CFTs is

whether they are isolated fixed points of the renormaliza-
tion-group flow, or belong to a family of CFTs, known as a

conformal manifold. The conformal manifold is spanned by
exactly marginal deformations of the CFT, i.e., marginal
operators whose β-functions vanish exactly to all orders.
Over the last decade, much insight has been gained
into local properties of conformal manifolds of super-
symmetric conformal field theories [1–5]. In particular, it is
not uncommon for four-dimensional N ¼ 1 and three-
dimensionalN ¼ 2 CFTs to possess conformal manifolds,
whose dimensions can be deduced from the symmetry of
the CFTs, without need to compute β-functions or even
having a Lagrangian description.
On the other hand, no example is known of a non-

supersymmetric conformal field theory in more than two
dimensions featuring a conformal manifold. Indeed, they
are widely believed not to exist, since it is unclear how the
precise cancellations in the β-functions will be achieved
without supersymmetry. However, there are no “no-go
theorems” that forbid nonsupersymmetric conformal
manifolds. As a result, the existence of nonsupersym-
metric conformal manifolds has been largely the subject
of speculation, with only few systematic analyses per-
formed recently [6–9].
The AdS=CFT correspondence [10–12] between anti–de

Sitter (AdS) solutions of string theory and CFTs provides a
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powerful tool to address this question, at least in the “large-
N limit” where the rank of the gauge group of the CFT is
taken to be large. The correspondence maps the conformal
manifold of a CFT to a continuous family, known as the
“moduli space,” of AdS solutions of string theory. As
yet, no continuous family of nonsupersymmetric AdS
solutions of string theory has been constructed, with the
possible exception of [13] (see discussion below). Indeed,
nonsupersymmetric AdS solutions of string theory are
conjectured to be unstable [14], with only a handful of
isolated potentially stable nonsupersymmetric AdS vacua
known [15].
In this paper, we will provide the first holographic

evidence for a three-dimensional nonsupersymmetric con-
formal manifold. We do this by constructing a 2-parameter
nonsupersymmetric deformation of an N ¼ 4 supersym-
metric AdS4 vacuum describing a nongeometric solution
of type IIB superstring theory. We will prove that the entire
2-parameter family is perturbatively stable in IIB super-
gravity, and show that it does not suffer from various
nonperturbative instabilities. We note that just as for the
supersymmetric deformations considered in [16,17], the
nonsupersymmetric deformations we study here can also
locally be absorbed by coordinate redefinitions, which are,
however, not globally well defined. This implies that any
local diffeomorphism-invariant quantities, such as those
controlling higher-derivative corrections of string theory,
are independent of the deformations. This provides hope
that our conformal manifold may also exist beyond the
large-N limit of the CFT.
We construct our nonsupersymmetric 2-parameter

family of AdS4 vacua of IIB string theory by uplifting
the corresponding family of AdS4 vacua of four-
dimensional ½SOð6Þ × SOð1; 1Þ� ⋉ R12 supergravity [18]
using the truncation Ansatz of [19]. Our family of AdS4
vacua depends on two “axionic” parameters χ1, χ2 [18]. For
generic values of χ1;2, the AdS4 vacua are nonsupersym-
metric and preserve a Uð1Þ2 symmetry. Three patterns of
(super) symmetry enhancement occur at special loci of the
ðχ1; χ2Þ parameter space. For χ1 ¼ �χ2, there is an N ¼ 2

supersymmetry enhancement whereas a Uð1Þ2 symmetry is
still preserved. These AdS4 vacua belong to the family
considered in [16,20,21]. For χ1 ¼ 0 or χ2 ¼ 0, the vacua
are nonsupersymmetric but the residual symmetry gets
enhanced to SUð2Þ × Uð1Þ. Lastly, an N ¼ 4 and SO(4)
symmetric AdS4 vacuum appears at the special point
χ1 ¼ χ2 ¼ 0. As a result, χ1;2 parameterise nonsupersym-
metric deformations of the N ¼ 4 AdS4 S-fold vacuum of
IIB string theory [19].
The ten-dimensional geometry we obtain is a nonsu-

persymmetric “S-fold” of the form AdS4 × S1η × S5, where
S5 ¼ I × S21 × S22 and I is an interval with angular coor-
dinate α ∈ ½0; π

2
�. The term S-fold refers to the fact that the

10-dimensional solution has an SLð2;ZÞ S-duality mono-
dromy of IIB string theory as we move around the S1η circle.

The corresponding dual CFT is known as a J-fold CFT
obtained by compactifyingN ¼ 4 super Yang-Mills theory
on a circle with an SLð2;ZÞ twist [22]. Holography has
recently proven powerful in studying supersymmetric AdS4
vacua of these types and their supersymmetric deforma-
tions [16–19,21,23–27].
More concretely, the S-fold solution can be constructed

out of the following 10-dimensional solution of classical
type IIB supergravity:

ds210 ¼ Δ−1
�
1

2
ds2AdS4 þ dη2 þ dα2

þ cos2α
2þ cosð2αÞ dΩ1 þ

sin2α
2 − cosð2αÞ dΩ2

�
; ð1Þ

where χi-twisted two-spheres Ωi have metrics

dΩi ¼ dθ2i þ sin2 θidφ0
i
2 with dφ0

i ¼ dφi þ χidη; ð2Þ
and the nonsingular warping factor is

Δ−4 ¼ 4 − cos2ð2αÞ: ð3Þ

The two-form potential B2 and C2 take the form

B2 ¼ −2
ffiffiffi
2

p
e−η

cos3α
2þ cosð2αÞ volΩ1

;

C2 ¼ −2
ffiffiffi
2

p
eη

sin3α
2 − cosð2αÞ volΩ2

; ð4Þ

whereas the dilaton gs ¼ eΦ and the axion C0 read

eΦ ¼
ffiffiffi
2

p
e−2η

2 − cosð2αÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 − cosð4αÞp ; and C0 ¼ 0: ð5Þ

The four-form potential C4, yielding a self-dual field
strength F̃5 ¼ dC4 þ 1

2
ðB2 ∧ dC2 − C2 ∧ dB2Þ, reads

C4 ¼
3

2
ω3 ∧

�
dηþ 2

3
sin ð2αÞdα

�

−
1

2
fðαÞdα ∧ ðA1 ∧ volΩ2

þ volΩ1
∧ A2Þ; ð6Þ

where dω3 ¼ volAdS4 with AdS radius LAdS4 ¼ 1. The
function fðαÞ in (6) is given by

fðαÞ ¼ sin2ð2αÞ cosð4αÞ − 55

ð7 − cosð4αÞÞ2 ; ð7Þ

where we have introduced one-forms Ai ¼ − cos θidφ0
i so

that dAi ¼ volΩi
. Note that the function fðαÞ in (7) vanishes

at α ¼ 0; π
2
, where each of the S2 shrinks to zero size in a

smooth way so that the compact space is topologically
S1η × S5. We have explicitly verified that the above class of
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backgrounds satisfies the ten-dimensional type IIB equa-
tions of motions and sourceless Bianchi identities.
The S-fold solution, characterized by an SLð2;ZÞ

monodromy along S1η, can then be obtained from the above
solution through a suitable SLð2;RÞ-transformation
together with an appropriate choice of the period T,
according to the prescription given in [19,22]. In this
way the monodromy can be chosen, for instance, to be a
hyperbolic element of the form

Jk ¼
�

k 1

−1 0

�
; k > 2: ð8Þ

This choice requires the S1η radius to be

T ¼ log ðkþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 4

p
Þ − log 2: ð9Þ

Moreover, k can be chosen such that the supergravity
approximation remains valid throughout the S-fold solu-
tion, because the dilaton and derivatives of the axio-dilaton
remain small throughout [22]. We shall refrain from
further discussing these aspects of the solution, since they
do not affect our present analysis, which focuses on the
2-parameter deformation of the background and is inde-
pendent of the duality twist.
The χ1;2 deformations only appear in the background via

the combination (2) and thus can locally be absorbed by the
coordinate redefinition

φ0
i ¼ φi þ χiη: ð10Þ

However, due to the periodicity of η → ηþ T, this is only a
well-defined coordinate transformation when χi ¼ 2πki

T for
ki ∈ Z. This suggests that the deformation parameters are
periodic with period 2π

T . However, there is a subtlety
because of how the spinors are defined on the S1η. In fact,
by looking at the spinors, as we will demonstrate later in
(15) through the Kaluza-Klein spectrum, we see that the
correct periodicity is in fact χi ∈ ½0; 4πT Þ. This means that the
nonsupersymmetric conformal manifold is compact and
has topology T2=Z2, where the Z2 corresponds to the
interchange χ1 ↔ χ2.
An alternative description of the parameters χi comes

from their oxidation to the five-dimensional supergravity
obtained by reducing IIB string theory on S5. As noted in
[17,18] (see also [25,27]) the χi define nontrivial one-form
deformations (Wilson loops) for the vector fields along S1η.
For the N ¼ 4 S-fold, this corresponds to turning on
Wilson loops for the SUð2Þ × SUð2Þ-valued gauge fields
breaking the symmetry down to its Cartan subgroup.
It is instructive to compare the deformation of theN ¼ 4

S-fold solution analysed here, with the deformation,
discussed in [13], of the maximally supersymmetric
AdS5 × S5 type IIB background, which generalizes the

Lunin-Maldacena construction [28]. The holographic dual
to this solution is conjectured to be a nonsupersymmetric
marginal deformation of N ¼ 4 four-dimensional SYM
theory. However, [29] suggested that conformal symmetry
of this dual theory is absent, while [30,31] hint at the
existence of a tachyonic instability in the corresponding
superstring background. In [13], the deformation parame-
ters γI , I ¼ 1; 2; 3, were the effect of shift transformations
in the Oð3; 3Þ group acting on the three angular directions
associated with translational isometries [32] along internal
angular coordinates. These shift transformations were,
however, preceded and followed by T-dualities (“factorized
dualities”) of the kind RI → 1=RI along all the three
directions. Just as S5 in the AdS5 × S5 background, the
internal manifold I × S21 × S22 × S1η of the N ¼ 4 S-fold
solution features three angular coordinates ξI ¼ φ1;φ2; η
each associated with a translational symmetry of the
internal metric, although, in the latter case, a constant
translation along η is not a symmetry of the whole solution
due to the SLð2;RÞIIB-twist. As opposed to the construction
of [13], the χi-deformation discussed here only results
from a shift transformation in GLð3;RÞ ⊂ Oð3; 3Þ, with no
T-dualities. This is effected by the GLð3;RÞ matrix

A ¼

0
B@

1 0 χ1

0 1 χ2

0 0 1

1
CA; ð11Þ

which acts linearly on the I-component of all the fields. The
components g ¼ ðgIJÞ of the internal metric along the
angular directions ξI, for instance, transforms as follows:

g → AtgA: ð12Þ

Our χi deformations thus change the metric on the S5 × S1η
compactification, while leaving the fibration structure
unchanged. This is analogous to complex structure defor-
mations of T2 ∼ S1 × S1, which can also locally be
absorbed by diffeomorphisms which are, however, not
globally well defined. Indeed, our χi appear like the real
part of complex structure deformations of the φi × S1η tori.
A more precise definition is in terms of the mapping
torus of S5 [18]: the χi deformations imply that as we
move around S1η, we end up in a different point on S5. If
χi → χi þ 2πki=T, ki ∈ Z, the deformation is in GLð3;ZÞ
and the internal geometry is not affected. Invariance of the
full spectrum, however, due to the presence of states with
half-integer j1, j2, extends the periodicity of χi to 4π=T, as
will be discussed below.
Via the AdS=CFT correspondence, our family of non-

supersymmetric AdS4 vacua of IIB string theory suggests
that the dual “J-fold” CFT3 should belong to a non-
supersymmetric conformal manifold. However, this is
not the case if the nonsupersymmetric AdS4 vacua are
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unstable, as conjectured in [14]. These instabilities could
arise due to some scalar fluctuation in the Kaluza-Klein
spectrum violating the Breitenlohner-Freedman bound, or
via a nonperturbative phenomenon. Let us now address
these concerns.
First, we will prove that the Kaluza-Klein spectrum has

no tachyons, i.e., the AdS4 vacua are perturbatively stable.
To do this, we use the technology developed in [33,34] to
compute the full Kaluza-Klein spectrum around the family
of nonsupersymmetric AdS4 vacua we consider here.
It is easiest to express the Kaluza-Klein spectrum as a

deformation of the spectrum of the N ¼ 4 vacuum. The
full N ¼ 4 spectrum was computed in [16,35]. Note that
our S1 radius differs from the convention of [16] such that
T there ¼ There

2
. The conformal dimension of the highest

weight state of each supermultiplet is given by

Δ¼ 3

2
þ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ2lðlþ4Þþ4

X
i¼1;2

liðliþ1Þþ2

�
2nπ
T

�
2

s
;

ð13Þ

where l denotes the S5 Kaluza-Klein level, n the S1 level
and l1, l2 the SOð4Þ spin of the highest weight state (in
this case, the graviton). These N ¼ 4 supermultiplets
are counted by the generating function for their highest
weight states:

ν ¼ 1

ð1 − q2Þð1 − quÞð1 − qvÞ
1þ s
1 − s

; ð14Þ

where the exponent of q and s determine the Kaluza-Klein
levels on the S5, l, and S1, n, while the exponents of u and
v count the SUð2Þ × SUð2Þ spins, l1 and l2. The effect of
the χ1;2 deformations is to shift the conformal dimension of
each field by replacing

2nπ
T

→
2nπ
T

þ ðj1 þ j2Þχþ þ ðj1 − j2Þχ−; ð15Þ

in (13), where j1, j2 are the charges of the field
under the Uð1Þ × Uð1Þ Cartan of SOð4Þ and we defined
χ� ¼ 1

2
ðχ1 � χ2Þ. Note from (14) that, while j1, j2 are half-

integers, j1 � j2 are always integers. Thus, we manifestly
see that the full background has periodicity χ� → χ� þ 2π

T ,
upon which the Kaluza-Klein spectrum gets mapped back
to itself with an appropriate reshuffling of the fields among
the S1 level with n → n − ðj1 � j2Þ, just like in [16]. Notice
that χ1, χ2 separately have period 4π=T, which can only be
seen from the spinors on the AdS4 background which have
half-integers charges under the Uð1Þ × Uð1Þ Cartan.
Even more importantly, we can see that the masses for

all the fields are bounded from below by the masses of
the fields of the four-dimensional supergravity at the
N ¼ 4 vacuum, i.e., where l ¼ l1 ¼ l2 ¼ n ¼ χi ¼ 0.

This in particular implies that all scalars have masses
above the Breitenlohner-Freedman bound for any value
of χi. Thus, the nonsupersymmetric vacua are perturba-
tively stable.
One may also wonder whether the AdS4 vacua are

secretly supersymmetric in 10 dimensions, with some
gravitinos among the higher Kaluza-Klein modes becom-
ing light, akin to the “space invaders” scenario [16,36,37].
However, from (13), (15), we can easily see that such
gravitinos can only restore supersymmetry when the
combination 2nπ

T þ j1χ1 þ j2χ2 ¼ 0. This can only occur
when either n ¼ 0 and χ1 ¼ �χ2, corresponding to super-
symmetry enhancement that already occurs in the four-
dimensional supergravity [18], or χ� ¼ 2πk�

T , for k� ∈ Z
when some gravitinos at S1 level n ¼ −ðj1 þ j2Þkþ −
ðj1 − j2Þk− become massless. This latter condition is
precisely when the background is mapped back to itself,
so that for 0 < χ� < 2π

T , χ1 ≠ �χ2, the AdS4 vacua are not
supersymmetric in the full type IIB string theory.
Next we investigate the nonperturbative stability of the

nonsupersymmetric AdS4 vacua. Since the AdS4 vacua
arise as near-horizon limits of certain brane configurations,
one may worry that for the nonsupersymmetric vacua the
corresponding brane configurations become unstable [38].
We search for signs of such instabilities by considering
single probe Dp − branes (and single probe NS5-branes)
with rigid embeddings in our AdS4 vacua. In particular, we
check whether the branes are unstable due to a greater
repulsive force of the fluxes coming from the WZ term than
the attractive (i.e., toward the interior of the AdS spacetime)
gravitational force due to the DBI term. Indeed, [14]
conjectures that there should always be some branes that
are unstable in this way, see also [39]. However, we find
that single probe Dp − branes and NS5-branes without
world volume flux remain stable when placed in the
nonsupersymmetric backgrounds (1)–(7).
The stability of these probe branes can be understood in

the following way. First, note that we can perform the
diffeomorphism (10) to remove the χi deformation from the
metric. However, now the coordinates respect the deformed
periodicities

φ0
i → φ0

i þ 2π;

η → ηþ T; φ0
i → φi

0 þ χiT: ð16Þ

As a result, the only well-defined embeddings of branes
wrapping ηmust also wrap φ0

i. In particular, let us denote by
ξ ∼ ξþ T the relevant wrapped world volume coordinate
on the brane. Then, the only well-defined embeddings are
given by

ηðξÞ ¼ qξ; φ0
iðξÞ ¼

�
pi

2π

qT
þ χi

�
ξ; ð17Þ
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with pi ∈ Z. We see that as χi is turned on, a brane
wrapping S1η must also wrap increasing amounts of φ0

i, so
that the DBI part of the action increases. At the same time,
for p-branes, with p ≠ 5, the WZ coupling is insensitive to
wrapping along φ0

i, unless the brane is completely internal.
Therefore, these branes either become more stable as χi are
turned on or they are completely internal branes, which
cannot trigger nonperturbative instabilities in the usual way.
Finally, an explicit computation for NS5- and D5-branes
shows that they also remain stable as χi are turned on in the
backgrounds (1)–(7).
Finally, nonsupersymmetric vacua may also decay due to

bubbles of nothing [40], which requires a circle or sphere
[41] to collapse. However, our internal space S5 × S1η is
topologically protected from such a collapse: the S5 cannot
collapse as it is supported by flux, whereas the S1η cannot
collapse since the spinors do not have antiperiodic boun-
dary conditions on it [40], but instead general periodicities
along S1η, provided ðχ1; χ2Þ ≠ ð2πT ; 0Þ; ð0; 2πT Þ. This means
that a straightforward bubble of nothing cannot occur.
Still, our vacua could decay semi-classically via more
complicated bubbles of nothing containing defects, e.g., a
D3-brane in S5 similar to [42,43] or an O7-plane in S1 [44].
However, because the volume form of the compactification
is independent of the χi deformations, our nonsupersym-
metric AdS4 vacua are likely to be stable against the
instanton decay constructed in [43], which is delocalized on
the compactification space. On the other hand, constructing
the localized instanton solutions is extremely technically
challenging. Moreover, the mechanism of [43] treats a
shrinking dilaton as equivalent to a shrinking S1. Aside
from the validity of this equivalence, a similar shrinking
dilaton would be problematic for our S-fold vacua, where
the dilaton is not well defined due to the SLð2;ZÞ
monodromy along S1η.
So far, we have proven that our AdS4 vacua are

perturbatively stable and have provided evidence that they
may also be stable against semiclassical decay. However,
one may worry that while our AdS4 geometries are
solutions of IIB supergravity, the higher-derivative correc-
tions of IIB string theory will spoil our solutions. In the
dual CFT, this would imply that some 1

N corrections lift the
conformal manifold. However, the deformations χi can
always be locally absorbed by the coordinate redefinition
(10), which however is not globally well defined.
Therefore, all local diffeomorphism-invariant quantities
are independent of the χi. In particular, this means that
each term of the higher-derivative corrections of string
theory, involving powers of the curvature tensor or the
fluxes, are also independent of χ1;2. Thus, our nonsuper-
symmetric AdS4 vacua are equally valid solutions of IIB
string theory as the N ¼ 4 vacuum. Moreover, the χi
deformations actually correspond to parity-odd (pseudo)
scalars in the maximal supergravity [18], so the potential

1=N tadpole destabilization of [45] cannot take place for
our backgrounds.
There could still be some string corrections, e.g., from

branes wrapping the compactification, which are sensitive
to χi and which could thus spoil our solutions. For example,
Dp − instantons could wrap some (pþ 1)-cycle of the
compactification, and depend on χi. However, our solutions
are also protected against such instanton corrections, since
the compactification S5 × S1η only has nontrivial 1-, 5- and
6-cycles. Therefore, we can only have D5-instantons
wrapped on the full S5 × S1η. But since the volume form
is independent of χi, these instantons give no corrections to
our solutions. Nonetheless, one could expect some other
extended state to do so, corresponding to some 1

N correction
in the dual CFT.
According to the proposal put forward in [22], the SCFT

dual to the N ¼ 4 background emerges as the effective IR
description of a 3d T½UðNÞ� theory [46] in which the
diagonal subgroup of the UðNÞ × UðNÞ flavor group has
been gauged using an N ¼ 4 vector multiplet. In addition,
a Chern-Simons term at level kmust be introduced which is
defined by the Jk ¼ −ST k ∈ SLð2;ZÞIIB monodromy
along the S1η. The effective N ¼ 4 superpotential [47]
Weff ¼ ð2π=kÞTrðμHμCÞ is marginal in the IR and, in [21],
a shiftWeff → Weff þ λTrðμHμCÞ with λ ∈ C was proposed
as an exactly marginal deformation preservingN ¼ 2. The
scalar superconformal primary operators μH and μC are
respectively described by the moment maps of the Higgs
and Coulomb branch of T½UðNÞ�. Each of the μH and μC
fields is a component of a vector in the adjoint representa-
tion of the corresponding SUð2Þ subgroup of the SOð4Þ
R-symmetry group (to be denoted by SUð2ÞH and SUð2ÞC,
respectively). We can therefore associate with μH the
quantum numbers j1 ¼ 1, j2 ¼ 0 and with μC the values
j1 ¼ 0, j2 ¼ 1, having identified j1, j2 with the eigenvalues
of the Cartan generators of SUð2ÞH and SUð2ÞC, respec-
tively. Note that χ1 (χ2) only breaks SUð2ÞH (SUð2ÞC) to its
Uð1ÞH (Uð1ÞC) subgroup. The combination ðχ1 − χ2Þ=2 of
these two parameters, for χ1 ¼ −χ2, should already be
encoded in the λ parameter of the N ¼ 2 exactly marginal
deformation proposed in [21]. We suggest that the orthogo-
nal combination ðχ1 þ χ2Þ=2, be encoded in the conjec-
tured exactly marginal deformation of the 3d Lagrangian:

∂αO∂αŌ; ð18Þ

where O≡ TrðμHμ̄CÞ is an operator with j1 ¼ 1; j2 ¼ −1
and ∂α denote the partial derivatives with respect to the
(real) scalar fields. As opposed to TrðμHμCÞ, the above term
does not originate from a holomorphic deformation of the
superpotential and thus would break all supersymmetries.
The exact marginality of the operator (18) is here con-
jectured in light of the holographic evidence we put
forward. Note that the resulting N ¼ 0 theory would be
parity symmetric in both the Higgs and the Coulomb sector:
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By performing, for instance, a parity transformation in the
Coulomb sector which changes sign to the complex
structure of the hyper-Kähler manifold (described as a
complex Kähler space), μC → μ̄C, and O would be
exchanged with the exactly marginal operator TrðμHμCÞ
in the superpotential proposed in [21]. The same trans-
formation would correspond in the bulk to a parity φ2 →
−φ2 in S22 and, correspondingly, to χ2 → −χ2. It is therefore
the simultaneous presence of the deformations O, Ō and
TrðμHμCÞ in the Lagrangian which breaks supersymmetry.
Also, the χ1 ↔ χ2 symmetry of the supergravity back-
grounds amounts to an exchange symmetry between the
Higgs and Coulomb branches in the dual nonsupersym-
metric CFT’s.
Finally, our computation of the Kaluza-Klein spectrum

(13), (15) reveals not only the 4π
T periodicity of the exactly

marginal deformations parametrized by χi. It also gives the
anomalous dimensions of all operators of the CFT dual to
supergravity modes along the nonsupersymmetric con-
formal manifold.
In this paper, we provided the first holographic evidence

for the existence of a nonsupersymmetric conformal
manifold. We did this by constructing a 2-parameter family
of nonsupersymmetric S-fold AdS4 vacua of IIB string
theory, and proving that they are perturbatively stable.
Moreover, we excluded several potential nonperturbative
instability mechanisms, and showed that our solutions are
even protected against some higher-derivative corrections.
Our findings here can be generalized and applied to other

settings. For example, an analogous nonsupersymmetric
2-parameter family of S-fold AdS4 vacua can be obtained
by performing similar axionic deformations to the Uð1Þ
R-symmetry and SUð2Þ flavor symmetry of the N ¼ 2
SUð2Þ × Uð1Þ AdS4 S-fold vacuum of IIB string theory
[20]. This moduli space has a one dimensional locus of
N ¼ 0 deformations of the N ¼ 2 SUð2Þ × Uð1Þ vacuum,
also contains the supersymmetric deformation studied in
[16] and should be connected to our conformal manifold
since there is an exactly marginal deformation, connecting
the N ¼ 2 and N ¼ 4 vacua [21]. We explicitly verified
that this second 2-parameter family is also perturbatively
stable and has the same protection against nonperturbative
mechanisms as was shown by our brane-jet computation

and topological arguments. Moreover, the axionic defor-
mations can again be reabsorbed by local coordinate
redefinitions that fail to be globally well-defined [18],
yielding the same space-invaders scenario as here which
leads to a T2 moduli space. This also protects this
2-parameter family of AdS4 vacua against higher-derivative
corrections. Moreover, this same argument can be applied
to the recently constructed moduli space of N ¼ 1 CFT3 ’s
[25], which would suggest that also this N ¼ 1 moduli
space is protected against some higher-derivative correc-
tions of string theory. The methods laid out here should also
apply to a related class of S-folds where S5 is replaced by a
Sasaki-Einstein manifold.
The fate of our family of nonsupersymmetric AdS4

vacua deserves further investigation. The brane-web whose
near-horizon limit corresponds to the AdS4 vacua could
still suffer from some other instability mechanism. For
example, it could feature some tachyon in its fluctuation
spectrum, see, e.g., [48,49] for recent discussions.
However, because we do not know the brane-web that
would give rise to the AdS4 vacua, it is currently unclear
which probe branes to use for this computation. Still, the
existence of a continuous limit to the χi ¼ 0 supersym-
metric case could help in taming such potential instabilities.
Also, some nonperturbative string corrections could lift the
moduli space. Finally, the CFT3 interpretation of the χi
deformations deserves further exploration. We leave these
exciting questions for future work.
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