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ABSTRACT: 

In this paper, we present a publicly available benchmark dataset on multisensorial indoor mapping and positioning (MiMAP), which 

is sponsored by ISPRS scientific initiatives. The benchmark dataset includes point clouds captured by an indoor mobile laser scanning 

system in indoor environments of various complexity. The benchmark aims to stimulate and promote research in the following three 

fields: (1) LiDAR-based Simultaneous Localization and Mapping (SLAM); (2) automated Building Information Model (BIM) feature 

extraction; and (3) multisensory indoor positioning. The MiMAP project provides a common framework for the evaluation and 

comparison of LiDAR-based SLAM, BIM feature extraction, and smartphone-based indoor positioning methods. This paper describes 

the multisensory setup, data acquisition process, data description, challenges, and evaluation metrics included in the MiMAP project. 

 

1. INTRODUCTION 

Indoor environments such as office, classroom, shopping mall, 

and parking lots are essential to our daily life. Three-dimensional 

(3D) mapping and positioning technologies for indoor 

environments have become in high demand in recent years. 

Online visualization, location-based services (LBS), indoor 

navigation, elder assistance, and emergency evacuation are just a 

few examples of the emerging applications that require 3D 

mapping and positioning of indoor environments. SLAM-based 

indoor mobile laser scanning systems (IMLS) (Wen et al., 2016) 

provide a useful tool for indoor applications. During the IMLS 

procedure, 3D point clouds and high accuracy trajectories with 

position and orientation are acquired. Many efforts have been 

made in the last few years to improve the SLAM algorithms 

(Zhang et al., 2014) and the geometric/semantic information 

extraction from point clouds and images (Armeni  et al., 2016) 

(Wang et al.,2018). However, both significant opportunities and 

severe challenges exist in the multisensory data processing of 

IMLS. First, lack of efficient or real-time 3D point cloud 

generation methods of as-built 3D indoor environment; second, 

face difficulties of building information model (BIM) features 

extraction in the clustered and occluded indoor environment. 

Also, given the relatively high accuracy, the IMLS trajectory 

provides a perfect reference for the low-cost indoor positioning 

solutions.  Standard datasets are critical for the research on these 

topics. 

 Under the sponsorship of ISPRS Scientific Initiatives 2019, we 

developed the ISPRS Benchmark on Multisensorial Indoor 

Mapping and Positioning (MiMAP). MiMAP aims to promote 

researches in three aspects: (1) LiDAR-based SLAM; (2) 

automated BIM feature extraction from point clouds, focusing on 

extraction of building elements, such as floors, walls, ceilings, 

doors, windows that are important in building management and 

navigation tasks; and (3) multisensory indoor positioning, 

focusing on the smartphone platform solution. MiMAP also 

provides evaluation methods for these three aspects. MiMAP 

Dataset is open-access via the ISPRS WG I/6 official Website 

(ISPRS WG I/6, 2020) or the mirror website http://mi3dmap.net/. 

The rest of this paper describes the multisensory setup, data 

acquisition, dataset description, challenges and evaluation 

metrics in the MiMAP project. 

 

2. DATASET 

MiMAP project team upgraded the XBeibao system (Wen et al., 

2016), a multi-sensory backpack system developed by Xiamen 

University to build the MiMAP benchmark. The upgraded 

system (Figure 1. (a)) can synchronously collect data with multi-

beam laser scanners, fisheye cameras, and readings from 

smartphones built-in sensors, such as barometer, magnetometer, 

MEMS IMU and WiFi. The baseline SLAM 3D point clouds of 

the indoor test environments were also provided based on the 

XBeibao processing software. We used Riegl VZ 1000 (Figure 1. 

(b)) to collect high accuracy point cloud as the ground-truth of 

indoor mapping.  

 

2.1 Multisensory setup 

The involved sensors are listed as follows:  

XBeibao system 

⚫ 1× Velodyne VLP-Ultra Puck™ rotating 3D laser scanner. 

20Hz, 32 beams, 4cm accuracy, collecting 0.6 million 

points/second, 200m range, with a field of view of 360° 
horizontal × 40° vertical. 

 

⚫ 1×Velodyne VLP-16L rotating 3D laser scanner. 20Hz, 16 

beams, 0.1° ~ 0.4° horizontal angle resolution, 3cm accuracy, 

collecting 0.3 million points/second, 100m range, with a field 

of view of 360° horizontal× ±15° vertical. 

 

⚫ 4×Fisheye Camera. 1280*720 @ 30fps video resolution, 

with a field of view of 4×175°. 
 

Smartphones  

⚫ Sensors: gyroscope, accelerometer, barometer, electronic 

compass, Wi-Fi, magnetometer, GNSS(GPS). 

 

Riegl VZ 1000 laser scanner  

⚫ Range from 1.5m up to 1200m, 5mm precision, 8mm 

accuracy, collecting 0.3 million points/second, with a field of 

view of 100° vertical ×360° horizontal. 
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(a) 

 

 
 (b) 

Figure 1. Data acquisition devices.  

(a) XBeibao. (b) Riegl VZ-1000. 

 

When collecting the data, we placed one smartphone facing up 

on the top of the upper LiDAR sensor, the others are held in hand. 

A laptop is used to control the data collection of cameras and 

LiDAR sensors. Also, it is used as a hotspot to connect with the 

smartphone to synchronize the sensors and used to store the 

incoming LiDAR data streams. A system operator needs to carry 

the laptop during the collection process. All the collected data 

will be transferred to the laptop through wire. 

 

2.2   Dataset  

2.2.1 Dataset overview:  

The MiMAP benchmark includes three datasets: 

Indoor LiDAR-based SLAM dataset 

We collected indoor point clouds dataset in three multi-floor 

buildings with the upgraded XBeibao. This dataset represents the 

typical indoor building complexity. We provide raw data of one 

indoor scene with ground truth for users’ own evaluation. We 

also provide raw data of two scenes for evaluation by submitting 

their results to us. The evaluation criteria encompass the error to 

the ground truth point cloud acquired with a millimeter-level 

accuracy terrestrial laser scanner (TLS) (Figure 2(b)). 

BIM feature extraction dataset 

We provide three data with ground truth for evaluating the BIM 

feature extraction on indoor 3D point clouds. Ground truth data 

was manually built, and the examples are presented in Figure 3. 

Indoor positioning dataset 

We provide two data sequences with ground truth and provide 

three data sequences without ground truth for evaluation by 

submitting results. The evaluation criteria encompass the error to 

the centimeter-level accuracy platform trajectory from the SLAM 

processing (Figure 4). 

 

 
(a)                              (b) 

Figure 2. Illustration of indoor LiDAR-based indoor point 

cloud. (a) multi-beam laser scanning sensor model. (b) the high-

accuracy reference TLS point cloud. 

 

 

 
(a)                                       (b) 

  
(c)                                           (d) 

  
(e)                                 (f) 

Figure 3. Illustration of BIM feature extraction dataset. 

(a,c,e) Point clouds.  (b,d,f) Corresponding BIM frame features. 

 

  

 
 

Figure 4. Illustration of the indoor positioning dataset.  

(a)Setup of the smartphone with XBeibao. (b)SLAM trajectory 

as synchronized reference for indoor positioning. 
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2.2.2 Dataset description:  

A sequence of data is compressed into a file with the name format 

mimap_type_number.zip, where type represents one of the three 

datasets, and the number indicates the serial number of this type’s 

recording round. The “type” has three values——in_slam, bim 

and in_pose, representing the indoor LiDAR-based SLAM 

dataset, the BIM feature extraction dataset, and the indoor 

positioning dataset, respectively. The dataset’s directory 

structure and detailed description are shown below.  

 

The indoor LiDAR-based SLAM dataset consists of three 

scenes captured by multi-beam laser scanners in indoor 

environments with various complexity. The original scan frame 

data from scanners are provided and saved in pcap file. The 

timestamp of every point from the LiDAR sensor is given in the 

pcap file.  

The mimap_in_slam_00.zip and the mimap_in_slam_01.zip are 

acquired by a Velodyne Ultra-packTM, while 

mimap_in_slam_02.zip is acquired by a Velodyne HDL-32e. 

Only the mimap_in_slam_00.zip dataset provides the ground 

truth point cloud data, which acquired by a Riegl VZ 1000. 

We provide the raw videos captured by the four cameras in 

mimap_in_slam_02.zip. The videos are names as position.avi, 

where the position is the placeholder of the front, the rear, the left,  

or the right camera. The time of every frame is saved in 

video_frame_timet.txt. Each line of the file is a relative 

timestamp(us) to the system boot time, and the line number 

represents the frame number of the video. The four videos have 

the same timestamp. 

If video data are provided, each camera’s intrinsic matrix, 

extrinsic matrix and distortion coefficients will be saved in 

parameter.xml. There are four cameras, front, rear, left and right, 

which respectively refer to the direction of the camera and their 

positions on the XBeibao system. The extrinsic matrix is used to 

convert the camera’s coordinate system to LiDAR A’s coordinate 

system. 

If original pcap files of two Velodyne sensors are provided, the 

4×4 calibration matrix converting the LiDAR B’s coordinate 

system to LiDAR A’s coordinate system will be saved in 

parameter.xml. 

 

Figure 5. Structure of the indoor LiDAR-based SLAM dataset.  

 

Table 1. Data description of the indoor LiDAR-based SLAM 

dataset. 

Data File name Description 

00 

mimap_in_slam_00.pcap 

Raw data of a two-floor 

building scene. Scanned 

by a Velodyne Ultra 

pack.  

GroundTruth.las 
Scanned by the Riegl VZ 

1000. 

01 mimap_in_slam_01.pcap 

Raw data of a five-floor 

building scene. Scanned 

by a Velodyne Ultra 

pack.  

02 

mimap_in_slam_02.pcap 

A five-floor building 

scene. Scanned by a 

Velodyne HDL-32E.  

front / rear / left / 

right.avi 
Four video files (25fps). 

parameter.xml 

Cameras’ intrinsic, 

extrinsic and distortion 

coefficients parameters 

Video_frame_time.txt 

Timestamp(us) of every 

video frame. The line 

number is equal to the 

frame number. 

 

The BIM feature extraction dataset contains data from three 

indoor scenes with various complexity. For each scene, raw data 

(point cloud in LAS format) and corresponding BIM line 

framework (in OBJ format) are provided. Users can evaluate their 

methods using the downloaded reference line frameworks. 

 

 

Figure 6. Structure of the BIM feature extraction dataset.  

 

Table 2. Data description of the BIM feature extraction dataset. 

Data File name Description 

00 

Scene_00.las A closed-loop corridor scene. 

Scene_00.obj 
The line framework of the point 

cloud scene. 

01 

Scene_01.las A corridor and multiple rooms scene. 

Scene_01.obj 
The line framework of the point 

cloud scene. 

02 

Scene_02.las 
A closed-loop corridor and multiple 

rooms scene. 

Scene_02.obj 
The line framework of the point 

cloud scene. 

 

The indoor positioning dataset consists of five data sequences 

acquired in indoor environments with various complexity. Data 

sequences of sensor records from smartphones are provided. 

Users can test their positioning algorithm on these data. The first 

two sequences (mimap_in_pose_00 and mimap_in_pose 01) 

were acquired in one building, and the other three sequences 

(mimap_in_pose 02, mimap_in_pose 03, mimap_in_pose 04) 

were acquired in another building. Only mimap_in_pose_00 and 

mimap_in_pose_02 contains ground truth trajectory file(in TXT 

format). The trajectory is the SLAM result of the LiDAR, 

containing the position, rotation and timestamp(us) of every 

frame. The detailed format is listed in the file. 

Each data sequence contains a phones directory folder and 

phones_data_description.txt file.  The phones folder is the 

placeholders of the smartphone’s name, and usually, there are 

mutiple phones directory folders. In every smartphone’s folder, 

there are timeOffset.txt and many sensor_name.txt files. 

sensor_name represents the smartphone’s sensor abbreviation 

name, including gyroscope, accelerometer, barometer, electronic 

compass, Wi-Fi sensor, magnetometer, GPS, etc. The 

timeOffset.txt records the time offsets between the phone and the 
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NTP server. The phones_data_description.txt details the format 

of each file in phones directory. 

The accuracy of the distance between the smartphones and the 

LiDAR is sufficient for indoor positioning tasks, so we did not 

provide the calibration files between smartphones and the 

LiDARs. 

 

 

Figure 7. Structure of the indoor positioning dataset.  

 

Table 3. Data description of the indoor positioning dataset. 

Data File name Description 

00 

GroundTruth_traj.txt 

LiDAR’s trajectory 

data containing the 

positon, rotation and 

timestamp. 

phones_data_description.txt 

A five-floor building 

scene including data 

of individual rooms, 

closed-loop corridors 

and stairs. 

XIAOMI5S / XIAOMI6 

Two directorys of the 

smartphones data 

files. 

01 

phones_data_description.txt 

A three-floor building 

scene including data 

of individual rooms, 

closed-loop corridors 

and stairs. 

XIAOMI5S / XIAOMI6 
Two directorys of the 

smartphones data file. 

02 

GroundTruth_traj.txt 

LiDAR’s trajectory 

data containing the 

positon, rotation and 

timestamp. 

phones_data_description.txt 

A six-floor building 

scene including data 

of corridors and stairs 

HuaweiP8lite / MI6 
Two directorys of the 

smartphones data 

files. 

03 

phones_data_description.txt 

A single-floor 

building scene 

including data of 

multiple rooms 

MI6 / ALE-L21 
Two directorys of the 

smartphones data file. 

04 

phones_data_description.txt 

A single-floor 

building scene 

including data of 

multiple rooms. 

MI5S 
The directory of the 

smartphone data file. 

 

3. CHALLENGES 

3.1 Time synchronization 

In order to synchronize the smartphone and LiDARs, a laptop is 

set as a local NTP (Network Time Protocol) server, then the 

phones are connected to it to synchronize their time. The LiDAR 

is connected to the laptop through a network cable. The 

timestamp of every point cloud frame is a relative time to the start 

recording time. We can view the start Unix-timestamp on the 

laptop and then add it to all frames’ timestamps, the point clouds’ 

timestamp is therefore connected to the NTP server. Thus, the 

smartphone and LiDAR can synchronize their time now through 

the laptop as a bridge. 

Smartphone’s time can synchronize to the local NTP server 

during the recording, so the Unix-timestamp in every piece of 

data is relatively accurate. Due to the instability of the Wi-Fi 

connection, there are time offsets between the smartphones and 

the NTP server, which range from 20ms to 500ms. We record 

them before recording the data.  

Since all data’s timestamps are acquired, we can obtain the 

position at any time by interpolation and can use the LiDAR’s 

positioning result as the smartphone’ positioning ground-truth. 

 

3.2 Multi-Sensors Calibration 

In this system, LiDAR sensor A ( 𝑋𝑙1, 𝑌𝑙1, 𝑍𝑙1 ) is mounted 

horizontally; LiDAR sensor B ( 𝑋𝑙2, 𝑌𝑙2, 𝑍𝑙2 ) is mounted  

45°below the LiDAR sensor A (Figure 1 (b)).  Based on our 

previous work (Gong et al., 2018), point cloud data of LiDAR 

sensor A, (𝑃𝐴), and point cloud data of LiDAR sensor B, (𝑃𝐵), are 

fused into 𝑃𝑓  by the 4 × 4  transform matrix between the two 

LiDAR sensors (𝑇𝑐𝑎𝑙). (Eq. (1)). Additionally, Terrestrial Laser 

Scanning (TLS) data is introduced to bridge the calibration 

between LiDAR sensors and cameras. The calibration process is 

shown in Figure 8. 

 

𝑃𝑓 = 𝑃𝐴 + 𝑇𝑐𝑎𝑙 ∗ 𝑃𝐵                           (1) 

 

 
Figure 8. Flowchart of the calibration process (Wen et al., 

2019). 

 

3.2.1 LiDAR-to-LiDAR calibration: The calibration of the 

multi-LIDAR sensor is calculated recursively in the construction 

of the sub-map and its isomorphism constraint (Gong et al., 2018). 

Assuming 𝑇𝐴
𝑛 is the trajectory of LIDAR sensor A at a time (0~n) 

in the mapping algorithm, 𝑃𝐵
𝑛 is the point cloud of LIDAR sensor 

B at time n. 𝑇𝑖  is the initial coordinate system transformation 

between the LIDAR sensors. Calibration is the calculation of the 

exact calibration matrix 𝑇𝑐𝑎𝑙 by: 
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𝑃𝑛𝑒𝑎𝑟
𝑛 = 𝑁𝑁(𝑀, 𝑇𝐴

𝑛 , 𝑃𝐵
𝑛, 𝑇𝑖)  (2) 

𝑇𝑐𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑇𝑐𝑎𝑙

∑ ‖𝑃𝐵
𝑛 ∗ 𝑇𝑐𝑎𝑙 − 𝑃𝑛𝑒𝑎𝑟

𝑛 ‖
2

𝑛    (3) 

 

where 𝑁𝑁(·) is the nearest neighbour point search algorithm. 

Using 𝑇𝐴
𝑛 and 𝑇𝑖, 𝑃𝐵

𝑛 is first transformed to its location at time n 

in the sub-map M. Then the 𝑁𝑁(·) algorithm is used to search the 

sub-map for the nearest neighbour point set, 𝑃𝑛𝑒𝑎𝑟
𝑛 . Lastly, an 

environmental consistency constraint is introduced to obtain 𝑇𝑐𝑎𝑙. 

 

3.2.2 Camera -to-LiDAR calibration: The camera intrinsic 

calibration matrix is given by [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

]  and (𝑘1, 𝑘2, 𝑘3) , 

where (𝑓𝑥 , 𝑓𝑦) is the focal length of the camera, (𝑐𝑥 , 𝑐𝑦) is the 

position of the camera and (𝑘1 , 𝑘2, 𝑘3) is the factors of radial 

distortion. Scaramuzza’s camera calibration method 

(Scaramuzza et al., 2006) is used to determine the internal 

parameters and distortion factors of the camera. 

 

We utilized a TLS (e.g., Riegl VZ 1000) to bridge the calibration 

between LiDAR sensors and cameras. By manually selected 

matching points between them, we can acquire the camera’s 

extrinsic transformation [𝑅, 𝑇] , where 𝑅  is the 3×3 rotation 

matrix, and 𝑇 is the 1×3 translation vector. 

 

Phone-to-LiDAR calibration: We placed the smartphone face 

up on the LiDAR A (Figure 9), and making the Y-axis parallel to 

the laser beam scanning direction. Thus, the phone’s coordinate 

system and the LiDAR’s coordinate system have the same XYZ-

axis direction. We carried more than one smartphone in some 

scenes, except the one on LiDAR A, other smartphones are held 

in hand. We did not provide the calibration files, because the 

accuracy of the distance is sufficient for indoor positioning tasks.  

 

 
Figure 9. The smart phone’s position and coordinate. 

 

3.3 Reference data generation 

For benchmark evaluation, we generated reference data from a 

subset of the raw data and introduced other high accuracy data.  

 

3.3.1 SLAM-based indoor point cloud  

The reference data of SLAM-based indoor point cloud is 

collected by a millimeter-level accuracy terrestrial laser scanner 

(TLS) (Figure.10). Before scanning, many high-reflection 

rectangle markers were placed on the wall and ground. Then 

several sub-maps were generated by scanning the scene in 

different positions, and overlap was guaranteed between adjacent 

sub-maps. Finally, these sub-maps were manually registered by 

picking the same marker and other feature points via RiSCAN 

PRO. 

 
Figure 10. The reference data of SLAM-based indoor point cloud. 

 

3.3.2 BIM feature  

We used the building line framework developed by Wang (Wang 

et al., 2018) and the semantic objects labeled via manually editing. 

We selected the building lines with their length greater than 0.1 

m in structured indoor building and saved their own two 

endpoints’ coordinates. Fig.11 gives an example of BIM features. 

According to Wang’s method, semantically labels the raw point 

clouds into the walls, ceiling, floor, and other objects firstly. And 

then, line structures are extracted from the labeled points to 

achieve an initial description of the building line framework. To 

optimize the detected line structures caused by occlusion, a 

conditional Generative Adversarial Nets (cGAN) deep learning 

model is constructed. The line framework optimization model 

includes structure completion, extrusion removal, and 

regularization. Finally, CloudCompare (Girardeau-Montaut, 

2011) is used to fine-tune the line framework according to the 

raw point clouds with human intervention. 

 
Figure 11. BIM feature examples. (a) Point cloud data. (b) BIM 

structure model. The green lines are doors and pillars. The red 

lines are ceilings. The blue lines represent the ground. 

 

3.3.3 Indoor positioning 

Firstly, we started to collect the smartphone sensors’ data and the 

LiDAR’s data at the same time. Then we applied the SLAM 

method (Wen et al., 2019) on the LiDAR’s pcap data to generate 

a trajectory file with timestamps. The process of time 

synchronization was done according to subsection 3.1. The 

LiDAR’s trajectory file is treated as the reference data of indoor 

positioning. An indoor positioning reference example is shown 

in Figure 12. The red line is the reference trajectory from SLAM 

process.  

 

4. EVALUATION METRICS 

4.1 SLAM-based indoor point cloud  

Kümmerle (K ümmerle et al., 2009) proposed a metric for 

measuring the performance of a SLAM algorithm by considering 

the poses of a robot during data acquisition. However, for indoor 

environments, it is hard to get the reference of the trajectory poses. 

We follow the metric for point cloud comparison proposed by 

A 

B 
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Lehtola (Lehtola, V. V. et al. 2017).  To be specific, our 

evaluation firstly reconstructs the point cloud based on the 

submitted trajectory. Then, voxel filtering of 3cm is performed to 

ensure the same resolution of the point cloud. The error of a 

single point is given by the weighted point-to-point (p2p) 

absolute distance: 

 

휀(𝑝𝑖) = 𝑤𝑖 ∙ (𝑝𝑖 ⊖ 𝑞𝑖) (4) 

 

where 𝑝𝑖  is a point in the evaluated point cloud, 𝑞𝑖  is the 

corresponding nearest neighbor point in the reference point cloud,  

⊖  means the Euclidean distance between two points. 𝑤𝑖  is 

calculated as: 

 

𝑤𝑖 = {
1,    𝑝𝑖 ⊖ 𝑞𝑖 < 𝐷
0,          𝑜𝑡ℎ𝑒𝑟𝑠    

(5) 

 

and the error of the whole point cloud is calculated by the mean 

and stand deviation of each point: 

 

                                          

휀̅ =
1

𝑁
∑ ε(p𝑖)𝑖 (6) 

 

𝑠 =
1

𝑁
∑||휀(𝑝𝑖) ⊖ 휀|̅|2
𝑖

(7) 

 

where N is the number of points in the evaluated point cloud 

which satisfy 𝑤𝑖 = 1.  

The motivation for using absolute distance is that it can be 

calculated by searching the nearest neighbor instead of manually 

selecting the corresponding feature points between the two point 

cloud maps, which will introduces manual errors and unfairness.  

Since the nearest neighbor search is used for points association, 

the coordinate system of the point cloud to be evaluated should 

be the same with the reference one. The point cloud generated by 

the SLAM algorithm uses the local coordinate system of the first 

frame as the global coordinate system. To make a fair comparison, 

we manually registered the first frame of the SLAM point cloud 

to the reference point cloud to obtain a transformation matrix T. 

By subsequently applied T to each evaluated point cloud, this 

point is aligned to the reference point cloud. The evaluation table 

will rank methods according to the average of absolute errors. 

 

 
Figure 12. Indoor positioning reference example. The red line is 

the reference trajectory from SLAM process. The point cloud 

map generated based on the red trajectory is a five-floors building. 

(Only part of the building is shown). 

 

4.2 BIM feature  

The BIM feature extraction dataset contains data from three 

indoor scenes with various complexity. For each of the scenes, 

raw data (point cloud in LAS format) and corresponding BIM 

line framework (in OBJ format) are provided. 

Imitating COCO evaluation criterion (Lin et al., 2014), we adopt 

the average precision (AP) of the predicted line framework as the 

primary metric. We use threshold 𝜃 to decide whether two lines 

are coincident, instead of Intersection over Union (IoU) used in 

COCO. 

Given a line 𝑙𝑡 = 𝑎𝑏⃗⃗⃗⃗  in ground truth annotations and a line 𝑙𝑝 =

𝑎′𝑏′⃗⃗⃗⃗ ⃗⃗  ⃗ in prediction, if the mean value 𝐷 of the distance between 

two pairs of endpoints is less than the threshold 𝜃, the two lines 

are considered to be coincident. 

 

𝐷 = (‖𝑎 − 𝑎′‖
2
+ ‖𝑏 − 𝑏′‖

2
) /2 (8) 

 

Figure 13 shows one example: because the distance between 𝑎𝑏⃗⃗⃗⃗  

and 𝑎′𝑏′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is 𝐷 = 0.3 < 0.5  and the distance between 𝑎𝑏⃗⃗⃗⃗  and 

𝑎′′𝑏′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is 𝐷 = 0.55 > 0.5 , 𝑎′𝑏′⃗⃗⃗⃗ ⃗⃗  ⃗  is considered as true positive 

while  𝑎′′𝑏′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is considered as false positive. 

 

 
Figure 13. An example of evaluating BIM feature lines. The dots 

and the lines in the figure represent the vertexes and the lines of 

the BIM feature. The number is the distance(m) between the 

line’s vertex. 

 

AP is defined as the area under the precision-recall curve, and AP 

is averaged over multiple threshold 𝜃. Specifically, we set ten 

thresholds from 1.4cm to 0.5cm at step 0.1.  

The proposed metric computes the spatial consistency of the 

predicted and ground truth line frameworks. If the algorithm fails 

to the endpoints or capture the correct line direction, the number 

of true positive will be limited under strict threshold 𝜃 and the 

AP will be small. 

 

4.3 Indoor positioning:  

The approach of evaluating indoor positioning is similar to the 

translation evaluation extended by Geiger (Geiger at al., 2012). 

Our evaluation firstly locates the corresponding pose information 

in the submitted trajectory results based on the timestamp of each 

pose in ground truth files. Then, computes the average of 

translation errors for all possible sub-sequences of some lengths 

(5, 10, 25, 50 meters).  

 

ℰ𝑡𝑟𝑎𝑛𝑠(δ) =
1

𝑁
∑𝑡𝑟𝑎𝑛𝑠(δ𝑖,𝑗 ⊖ 𝛿𝑖,𝑗

∗ )
2

𝑖,𝑗

(9) 

 

where N is the number of relative sub-sequences, and ⊖ is the 

inverse of a standard motion composition operator. Let δ𝑖,𝑗 be the 

relative transformation from pose j to pose i and 𝛿𝑖,𝑗
∗  be the 

reference relative sub-sequence 

The indoor positioning dataset provides two data sequences with 

ground truth for evaluation. Each ground truth trajectories file (in 

TXT format) contains an Nx9 table, where N is the number of 

frames of this sequence. The format of each row in the file is:

 p  timestamq_w  q_zq_y  q_x    p_zp_y  p_x    frame_id . Here, 

frame_id is the index of  lidar frame with the current pose, p_x, 

p_y, and p_z are the translation components of the current pose, 
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q_x, q_y, q_z, and q_w are the quaternion representations of the 

rotation component of the current pose. 

The dataset also provides three data sequences for submitting 

results. In the submitted trajectory file, each line in the file 
formats as:   time(s))p(UTC  timestamp_zp_y  p_x    frame_id . 

The evaluation table will rank methods according to the average 

of translation errors, where errors are measured in percent. 

 

4.4 Examples of dataset 

Fig. 14 shows some examples of this dataset. Fig 14 (a) shows a 

frame of the Velodyne VLP-16 LiDAR data. Different color 

represents the intensity of every point; the brighter color means 

the stronger intensity. Fig 14 (b) shows the high accuracy data 

from Riegl VZ 1000, which is used as Indoor LiDAR SLAM 

ground truth. Fig 14 (c) and (d) show two examples of BIM 

benchmark, and Fig 14 (e) and (d) show two examples of indoor 

positioning benchmark. The blue dots in (d) are trajectories 

generated from the LiDAR-based SLAM method, and the yellow 

dots are trajectories generated by the smartphone sensor data.  

 

5. CONCLUSION  

This paper presents the design of the benchmark dataset on 

multisensory indoor mapping and position (MIMAP). Each scene 

in the dataset contains the point clouds from the multi-beam laser 

scanner, the images from fisheye lens cameras, and the records 

from the attached smartphone sensors. The benchmark dataset 

can be used to evaluate algorithms on: (1) SLAM-based indoor 

point cloud generation; (2) automated BIM feature extraction 

from point clouds; and (3) low-cost multisensory indoor 

positioning, focusing on the smartphone platform solution. 

 

 
(a)    (b) 

 
(c)    (d) 

 
(e)    (f) 

Figure 14.  (a)A single frame from the LiDAR stream. (b) An 

indoor view of Riegl VZ 1000 data. (c) BIM structure model of 

a circular corridor. (d) BIM structure model with its point cloud. 

(e) An example of the indoor positioning benchmark. (f) The 

ground truth trajectory with the corresponding point cloud. 
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