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On imitation dynamics in population games with Markov switching

Rafael Cunha, Lorenzo Zino, and Ming Cao

Abstract— Imitation dynamics in population games are a
class of evolutionary game-theoretic models, widely used to
study decision-making processes in social groups. Different from
other models, imitation dynamics allow players to have minimal
information on the structure of the game they are playing, and
are thus suitable for many different applications, including
traffic management, marketing, and disease control. In this
work, we study a general case of imitation dynamics where the
structure of the game and the imitation mechanisms change in
time due to external factors —such as weather conditions or
social trends. These changes are modeled using a continuous-
time Markov jump process. We present tools to identify the
dominant strategy that emerges from the dynamics through
methodological analysis of the function parameters. Numerical
simulations are provided to support our theoretical findings.

I. INTRODUCTION

Evolutionary game theory is a powerful mathematical
paradigm, which was originally proposed to model and
study the evolution of behaviors in economic and biological
settings [1]–[5]. In the last few decades, evolutionary game
theory found many applications in different fields, ranging
from the modeling of business cycles, GDP growth, and
interest rates [6] to predicting the decision on whether
to vaccinate or not in social communities [7]. Imitation
dynamics are a specific class of evolutionary game-theoretic
models [3], [4]. Different from other classes of models, such
as best-response dynamics [8] and logit choices [9], imitation
dynamics require minimal information on the structure of
the game, making them suitable to model many realistic
scenarios in which the players have no complete information
on all the strategies they can choose and the corresponding
rewards. In fact, in imitation dynamics, players compare
their current strategy and reward with those of the others
players, and possibly imitate them, according to an imitation
mechanisms that characterizes the dynamics. Specific choices
for the imitation mechanism give rise to the well-known
replicator equation [10] and pairwise proportional imitation
[11], [12], which have been extensively studied.

The recent interest on imitation dynamics has produced
a substantial body of theoretical findings on this class of
models. Besides the studies of the specific cases of imitation
dynamics mentioned above, theoretical analyses of more
general cases of imitation dynamics have been performed
for specific classes of games, including games with strategic
substitutes and complements [13], public good games [14],
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and potential games [4], [15]. While the majority of such
literature focuses on scenarios in which the players interact
on a fully-mixed structure, promising theoretical extensions
have been reported for networked structures [16], [17] and
multi-population scenarios [4].

Most of the literature on imitation dynamics deals with
scenarios in which the structure of the game is deterministic
and time-invariant, and thus the reward that an individual
receive is uniquely determined by the strategy that the
individual chooses and the strategies selected by the rest of
the population. However, in many real-world scenarios, this
assumption is quite simplistic, since external events that are
independent of the population dynamics and of stochastic
nature —such as weather conditions or social trends— may
influence the reward that individuals receive for their strate-
gies and, consequently, the imitation mechanisms. Switched
systems, in which the payoff structure of the game (termed
mode) may instantly change to another mode, according to
a continuous-time Markov jump process, have emerged as a
valuable modeling framework to capture these phenomena
[18]. However, to the best of our knowledge, theoretical
results on imitation dynamics with Markov switching are
few, and limited to the analysis of specific cases, such as the
replicator equation [19].

In this paper, we aim at extending the understanding of
stochastic imitation dynamics by studying the scenario in
which a population is anonymously engaged in a game,
whose reward structure stochastically switches according to
a continuous-time Markov jump process. The players in
the population revise their strategies according to generic
imitation dynamics. Besides the problem formulation, our
main contribution is the extensive analysis of the scenario
in which players can choose between two actions, and the
payoff matrix switches between two possible modes. In our
analysis, we focus on the characterization of the asymptotic
behavior of the system, establishing conditions for almost
sure global asymptotic stability for the system’s equilibrium
points. This work contributes to extending the understanding
of stochastic imitation dynamics.

The rest of the paper is organized as follows. In Section
II, we introduce continuous-time Markov jump systems, the
concept of stochastic stability, population games, imitation
mechanism, and strategies in game theory. In Section III
we present the problem formulation, where we study a two
population game problem as a particular case of the imitation
population dynamics with continuous-time Markov switch-
ing. The main results are presented in Section IV, where
a theorem is provided giving the conditions to characterize
the long-run strategy behavior of the class of problems



under study. Then, in Section V we show some simulation
examples. The conclusion is presented in Section VI.

II. PRELIMINARIES

A. Notation

We gather here the notational conventions used throughout
the paper. Let R = (−∞,+∞), R+ = [0,+∞), N+ =
{1, 2, . . . }, N = {0} ∪ N+, and Γ = {1, 2, . . . , r}, where
r ∈ N+ is a fixed positive integer. Given a set A, we denote
by RA (RA×A) the space of real vectors (matrices), whose
components are indexed by the elements in A. For a vector
x ∈ Rd, |x| denotes its Euclidean norm. The sign function
is denoted by sgn.

B. Markov Jump Systems

Consider the following generic nonlinear switched system

ẋ(t) = gσ(t)
(
x(t)

)
, t ≥ 0 , (1)

where x(t) ∈ Rd. The functions gn : Rd → Rd are locally
Lipschitz for n ∈ Γ. The switching signal σ : R+ → Γ is
a piecewise constant function, which is continuous from the
right, specifying the index of the active subsystem (that is,
the mode), i.e., σ(t) = n ∈ Γ means that the system is in
its nth mode at time t ∈ R+. In this paper, we consider
switching signals that are governed by stochastic processes,
and the corresponding switched systems are termed randomly
switched systems. Specifically, we consider a class of Markov
signals, under which the future switches depend on the past
history of the process only through the current state. This is
formally defined in the following.

Definition 1 (See [20]): The switching signal σ(t) is said
to be Markov, if for ∀n ∈ Γ and ∆ > 0,

P
(
σ(t+∆) = n|{σ(s)}s≤t

)
= P

(
σ(t+∆) = n|σ(t)

)
. (2)

A Markov switching signal σ(t) ∈ Γ, t ≥ 0 is unequivo-
cally defined by its initial condition σ(0) = σ0 ∈ Γ, and its
generator Q ∈ RΓ×Γ

+ , such that

P
(
σ(t+ ∆)=m|σ(t)=n

)
=

{
qnm∆ + o(∆), n 6= m,
1 + qnm∆ + o(∆), n = m,

(3)

for any ∆ > 0, where qnn = −
∑
m 6=n qnm. If the matrix Q

is irreducible, then the Markov switching signal has a unique
stationary distribution, denoted by π = (π1, π2, . . . , πr) [20].
Set qn = |qnm|, n ∈ Γ.

Definition 2 (See [18]): Let V n(x) : Rd × Γ → R+ be a
function that is differentiable with respect to the variable x,
where x evolves according to Equation (1), and σ(t) = n ∈ Γ
is a Markov switching signal with generator Q. We define
the infinitesimal operator L as

LV n(x) =
∂V n(x)

∂x
ẋ+

∑
m∈Γ

qnmV
m(x). (4)

Finally, we provide now some notions of stability for the
switched system in (1), which will be used throughout this
paper.

Definition 3 (See [21], [22]): The randomly switched
system in (1) is said to be asymptotically stable almost
surely, if the following two properties hold simultaneously:

i) for any ε ∈ (0, 1), there is a δ = δ(ε) > 0 such that
when |x0| < δ

P

(
sup
t≥0
|x(t)| < ε

)
> 1− ε ; (5)

ii) for any h > 0 and ε′ > 0, there is a positive ran-
dom variable T (h, ε′) such that P (supt≥T (h,ε′) |x(t)| <
ε′) = 1, provided |x0| < h.

C. Population games

Consider a continuum of players engaged in an anonymous
game whereby players choose actions from a finite set A.
Without any loss of generality we shall assume that the total
mass of the players’ population is unitary. Let

X :=
{
x ∈ RA+ :

∑
i∈A

xi = 1
}

(6)

denote the unitary simplex over A, whose elements x ∈ X
represent the state of the system. Specifically, the entry xi
represents the fraction of players playing action i ∈ A.

In population games, we assume that individuals interact
anonymously and that the reward for a player that plays
action i depends only on the state of the system [4]. Hence,
we define the (Lipschitz-continuous) reward function

r : X → RA , (7)

with the interpretation that its ith entry ri(x) is the reward
of any player playing action i when the system is in state
x ∈ X . We will refer to the pair (A; r) as a (continuous)
population game.

While our theoretical findings hold for the general case of
any Lipschitz-continuous reward function, a classical choice,
which will be used in the examples presented in this paper,
are matrix games [23], where the reward function is

r(x) = Ax, (8)

for some payoff matrix A ∈ RA×A.

D. Imitation mechanism

In a fully-mixed scenario, if the system is in state x ∈ X ,
for any two actions i, j ∈ A, the product

xixj (9)

describes the rate at which players playing action i meet
players playing action j. When such an interaction takes
place, the player that is currently choosing action i gets
informed of the existence of action j and its reward rj(x).
The player compares it with their own reward ri(x), and
decides whether to imitate, modifying their action from i
to j, with a rate fij(x). The functions fij(x) are assumed
to be nonnegative-valued and Lipschitz-continuous in x.
They are assembled in a matrix function f(x) called the
imitation mechanism. The imitation rates fij(x) are often
but not necessarily assumed to be dependent on the reward



difference ri(x)−rj(x). We now are able to properly define
the imitation dynamics.

Definition 4 (Imitation dynamics): A continuous-time im-
itation dynamics, for a population game (A; r), and imitation
mechanism f is the dynamical system

ẋi = xi
∑
j∈A

xj
(
fji(x)− fij(x)

)
, (10)

for i ∈ A.

A natural assumption that is often made for imitation dy-
namics is the following [17], which captures the tendency to
revise strategies toward maximizing the reward by enforcing
that imitation rates are greater in the direction of increasing
rewards.

Assumption 1: Let us assume that the imitation rates
fij(x) satisfy the following property

sgn
(
fij(x)− fji(x)

)
= sgn

(
rj(x)− ri(x)

)
. (11)

We conclude this section by presenting a well-known
example of imitation dynamics that satisfy Assumption 1.

Example 1 (Replicator dynamics): Define the imitation
rates as the affine functions of the reward, that is,

fij(x) = c+ rj(x), (12)

for some constant c > −min{ri(x) : x ∈ X , i ∈ A}, the
imitation dynamics (10) read

ẋi = xi
∑
j∈A

xj
(
fji(x)− fij(x)

)
= xi

∑
j∈A

xj
(
ri(x)− rj(x)

)
. (13)

For A = {1, 2}, the dynamics become

ẋi = xi(1− xi)
(
ri(x)− rj(x)

)
. (14)

Equation (14) represents the replicator dynamics. Consider-
ing the payoff matrix

A =

(
a b
c d

)
, (15)

and recalling that x1 + x2 = 1, the dynamics above reduce
to the first-order ordinary differential equation

ẋ1 = x1x2

(
(a− c)x1 + (b− d)x2

)
. (16)

As showed in [19], four different outcomes are possible:
1) Strategy 1 dominates: a > c and b > d; then the

system has two equilibria: x1 = 1 is asymptotically
stable and x1 = 0 is unstable.

2) Strategy 2 dominates: a < c and b < d; then the
system has two equilibria: x1 = 1 is unstable and x1 =
0 is asymptotically stable.

3) Coordination game: a > c and d > b; then the system
has two equilibria x1 = 0 and x1 = 1, both are stable.
Convergence to either x1 = 0 or x1 = 1 depends on
the initial conditions;

4) Mixed strategy dominates: a < c and b > d; then the
system has three equilibria: x1 = 0 and x1 = 1, which
are both unstable, and x1 = ( a−c

a−c+d−b ,
d−b

a−c+d−b ),
which is asymptotically stable.

Studying the conditions necessary to each outcome is a key
step towards better understanding the dynamics related to
different imitation mechanisms. We will see that it is also
possible to identify one of the four outcomes described above
for a more general case where the imitation rates change
according to Markov jumps.

III. PROBLEM STATEMENT

We now generalize the imitation dynamics in Equation
(10), by considering applications where the reward function
r(x) and, consequently, the imitation rates function f(x)
switch according to a Markov switching signal.

Definition 5 (Imitation dynamics with Markov switching):
A (stochastic, continuous-time) imitation dynamics, for
a population game (A; r), imitation mechanism f , and
Markov switching signal σ(t) is the dynamical system

ẋi = xi
∑
j∈A

xj
(
f
σ(t)
ji (x)− fσ(t)

ij (x)
)
, (17)

for i ∈ A and σ(t) defined as in (3).

In this paper, we perform a preliminary analysis of imita-
tion dynamics with Markov switching. Specifically, we will
study the asymptotic behavior of the system for the specific
case of a 2-mode Markov process, that is, Γ = {1, 2}, and a
2-action population game, that is, A = {1, 2}. Equation (17)
becomes

ẋi = xixj
(
f
σ(t)
ji (x)− fσ(t)

ij (x)
)
. (18)

Observe that x1 +x2 = 1 and without loss of generality, we
will focus our analysis on the dynamics of the fraction of 1-
players, since the dynamics for the fraction of 2-players can
be easily derived using the relation above. The main equation
of study becomes

ẋ1 = x1(1− x1)
(
f
σ(t)
21 (x)− fσ(t)

12 (x)
)
. (19)

From (19), we intuitively observe that x1 = 0 and x1 = 1
are always equilibria of the system, while the last term of
the equation may yield mixed-strategy equilibria. However,
under Assumption 1, it is clear that the last term can be
equal to 0 only if r1(x) = r2(x). Hence, the four asymptotic
outcomes described for the deterministic replicator equation
can still be observed. However, the stochastic nature of the
dynamical process and the presence of generic imitation
rates complicate the analysis of the dynamics, since other
outcomes including oscillations due to the fact that switching
behavior may emerge. In this paper, we provide sufficient
conditions for the model parameters to ensure the emergence
of the four different convergence outcomes described in the
previous section for the deterministic replicator dynamics.
To the authors’ knowledge, a similar analysis has been
performed only for the particular case of the replicator
equation in [19]. Thus, this work generalizes the existing



results in the literature, providing theoretical tools to properly
analyze Equation (19), shedding light on the role of the
imitation rate function f and of the Markov transition rate
matrix Q in determining the behavior of the system.

IV. RESULTS

This section presents the main results of this work. Our
first contribution lies in a stability analysis theorem. Then,
this general result will be used to derive a corollary that
gives conditions on how to forecast the steady-state behavior
of the imitation dynamics in population games with Markov
switching.

The first result is summarized in the following theorem,
which generalizes the results in [19] by discussing stability
or instability of the two equilibria x1 = 0 and x1 = 1.

Theorem 1: Consider the imitation dynamics with Markov
switching in Equation (19), where A = {1, 2} and Γ =
{1, 2}. Let qnm be the elements of the transition rate matrix.
Then, for each mode n ∈ Γ, we denote by m = 3 − n the
other mode and we define the following four conditions:

i) 1−αcn > 0 and fn21(0, 1)− fn12(0, 1) + qnm
cn−cm
1−αcn < 0

ii) 1 +αcn > 0 and fn21(0, 1)− fn12(0, 1) + qnm
cn−cm
1+αcn

> 0

iii) 1 +αcn > 0 and fn21(1, 0)− fn12(1, 0) + qnm
cn−cm
1+αcn

> 0

iv) 1−αcn > 0 and fn21(1, 0)−fn12(1, 0)+qnm
cn−cm
1−αcn < 0,

with 0 < α < 1, and c1 and c2 are two constants.
Then, the following holds true:

1) if condition i) holds for all n ∈ Γ, then x1 = 0 is
asymptotically stable almost surely;

2) if condition ii) holds for all n ∈ Γ, then x1 = 0 is
unstable almost surely;

3) if condition iii) holds for all n ∈ Γ, then x1 = 1 is
asymptotically stable almost surely;

4) if condition iv) holds for all n ∈ Γ, then x1 = 1 is
unstable almost surely.
Proof: The analysis will be carried using the Lyapunov

method for Markov jump functions. This is similar to the
work of [19], but here we are applying the idea to a more
general case. Thus, from Definition 2, and observing that
m = 3− n, for n = 1, 2, we have

LV n(x) = V nx (x)ẋ+ qnm
(
V n(x)− V m(x)

)
. (20)

Substituting (19) in (20), we have

LV n(x1) =V nx (x1)x1(1− x1)
(
fn21(x)− fn12(x)

)
+ qnm

(
V n(x1)− V m(x1)

)
. (21)

Borrowing and adjusting the Lyapunov function defined in
[24], [25], we give conditions for 0 and 1 to be stochastically
stable or unstable. Take 0 < α < 1, and constants c1
and c2. These constants are not unique and will be taken
accordingly in order to establish stability or instability of a
particular vertex. Define the four positive Lyapunov functions
as V n±0 (x) = (1∓αcn)x±α, and V n±1 (x) = (1±αcn)(1−
x)±α.

Applying the infinitesimal generator for each function as
defined in (21) results in

LV n+
0 (x1) =α(1− αcn)xα1

{
(1− x− 1)

(
fn21(x)− fn12(x)

)
+ qnm

cn − cm
1− αcn

}
(22)

LV n−0 (x1) =− α(1 + αcn)x−α1

{
(1− x1)

(
fn21(x)− fn12(x)

)
+ qnm

cn − cm
1 + αcn

}
(23)

LV n+
1 (x1) =− α(1 + αcn)(1− x1)α

{
x1

(
fn21(x)− fn12(x)

)
+ qnm

cn − cm
1 + αcn

}
(24)

LV n−1 (x1) =α(1− αcn)(1− x1)−α
{
x1

(
fn21(x)− fn12(x)

)
+ qnm

cn − cm
1− αcn

}
. (25)

If there exist a neighborhood (within the simplex) around
x1 = 0 or x1 = 1 such that LV n±0 (x1) ≤ 0 or LV n±1 (x1) ≤
0, then V

(
X(t)

)
is a supermartingale in these neighborhoods

[19]. Thus, the objective is to find conditions in Equations
(22)-(25) around x1 = 0 and x1 = 1 that makes possible
that the function is a supermatingale.

Thus, if we analyze at the vertices 0, 1, we have that one
of the four conditions stated in Theorem 1 should hold for
each Markov mode.

Let us examine if there is any set of variables where
condition (i) holds. First, since 0 < α < 1, there exist cn
such that 1 − αcn > 0. Now, since qnm > 0, we need to
show that (fn

12(0,1)−fn
21(0,1))

cn−cm > 0 is possible to occur in every
Markov mode. Hence(

fn12(0, 1)− fn21(0, 1)
)

cn − cm
> 0 (26)(

fm12(0, 1)− fm21(0, 1)
)

cm − cn
> 0. (27)

Thus, we need

sgn(cn − cm) = sgn
(
fn12(0, 1)− fn21(0, 1)

)
= −sgn

(
fm12(0, 1)− fm21(0, 1)

)
. (28)

This show that there exist α, cn, fn12(0, 1), fn21(0, 1), for
n = {1, 2} such that condition (i) is feasible.

The feasibility analysis of conditions (ii) and (iii) are
trivial, since qnm > 0 is the only mandatory condition, and
thus it is always possible to find a set of values in which

qnm >
(
fn21(x)− fn12(x)

)1 + αcn
cn − cm

, (29)

with x = {(0, 1), (1, 0)}. Similarly to the analysis of item
(i), the feasibility conditions for item (iv) are

sgn(cn − cm) = sgn
(
fn12(1, 0)− fn21(1, 0)

)
= −sgn

(
fm12(1, 0)− fm21(1, 0)

)
. (30)

Thus, conditions (i)-(iv) are applicable to any function of
type (19) and attend the Lyapunov stability criterion. This
completes the proof.



Taking the conditions established in Theorem 1 we derive
some conclusions on the long-run behavior of the Markov
jump imitation dynamics. We can now state a corollary that
give information, similar to what happens in the replicator
dynamics, about the four different behaviors that can emerge
in this more general scenario.

Corollary 1: The following strategy arises depending on
which conditions of Theorem 1 are satisfied

1) Strategy 2 dominates: if conditions (i) and (iv) hold,
then the system has two equilibria: x1 = 1 is unstable
and x1 = 0 is asymptotically stable a.s.

2) Strategy 1 dominates: if conditions (ii) and (iii) hold,
then the system has two equilibria: x1 = 1 is asymp-
totically stable a.s. and x1 = 0 is unstable.

3) Coordination game: if conditions (i) and (iii) hold, then
the system has two equilibria x1 = 0 and x1 = 1, both
are a.s. asymptotically stable.

4) Mixed strategy dominates: if conditions (ii) and (iv)
hold, then both x1 = 0 and x1 = 1 are unstable.
Proof: The proof is a direct consequence of Theorem 1

and the proving argument is very similar to the one adopted
for the replicator dynamics in [19] and is omitted here.

Corollary 1 give the conditions for analyzing a Markov
jump imitation dynamics equation and predicting the asymp-
totic behavior of the system. In fact, if Assumption 1 is
verified, then we can use Corollary 1 to conclude that, in
scenario 1), the system converges to x1 = 0 a.s.; in 2), it
converges to x1 = 1 a.s.; in scenario 3), both these events
are possible, depending on the initial condition; while in
scenario 4), the imitation system does not converge to a
pure strategy a.s., and both strategies will be played in the
steady-state. This is a new result that generalizes the analyses
of the resulting steady-state of the system for a broader
class of problems, where the activity function can be chosen
according to the particular applications of each problem.

V. EXAMPLES

This section will give some examples on how to analyze
some imitation dynamics according to its activity function.
We will present the already mentioned replicator dynamics,
the pairwise proportional imitation, and the sigmoid imitation
mechanism. In all the cases, the mode determines a change
in the reward function, while the imitation mechanism is the
same in the two modes.

A. Replicator equation
Define the imitation rates as affine functions of the reward,

that is,

f
σ(t)
ij (x) = cσ(t) + r

σ(t)
j (x) (31)

for some constant cσ(t) > −min{rσ(t)
i (x) : x ∈ X , i ∈ A}.

The imitation dynamics (17) read

ẋi = xi
∑
j∈A

xj
(
f
σ(t)
ji (x)− fσ(t)

ij (x)
)

= xi
∑
j∈A

xj
(
r
σ(t)
i (x)− rσ(t)

j (x)
)
. (32)

For A = {1, 2}, the dynamics become

ẋi = xi(1− xi)
(
r
σ(t)
i (x)− rσ(t)

j (x)
)
. (33)

The work of [19] showed under which conditions the system
(33) is asymptotically stable in probability, as a particular
case of Theorem 1.

B. Pairwise proportional imitation

Consider the imitation mechanism

f
σ(t)
ij (x) = max{rσ(t)

j (x)− rσ(t)
i (x), 0}, (34)

proposed in [4]. For a single fully mixed population, (34)
simplifies to the replicator equation (14) and can also be
studied using Theorem (1).

C. Sigmoid imitation

Let

f
σ(t)
ij (x) =

1

1 + exp{−Kσ(t)
ij

(
r
σ(t)
j (x)− rσ(t)

i (x)
)
}
, (35)

where Kσ(t)
ij > 0 are constants possibly different for each

pair of actions (i, j) in A×A. This is an extension including
Markov jumps in the logistic function often used in the lit-
erature to model learning curves and adoption of innovation
[26]. This framework can also be used with other sigmoid
functions, such as the hyperbolic tangent or the arctangent.

Define ασ(t)
ij (x) := exp{−Kσ(t)

ij (r
σ(t)
j (x)−rσ(t)

i (x))} and
observe that

f
σ(t)
ji (x)− fσ(t)

ij (x) =
1

1 + α
σ(t)
ji (x)

− 1

1 + α
σ(t)
ij (x)

=
α
σ(t)
ij (x)− ασ(t)

ji (x)(
1 + α

σ(t)
ji (x)

)(
1 + α

σ(t)
ij (x)

) .
(36)

Since the denominator is always positive, we have that
sgn(f

σ(t)
ji (x)− fσ(t)

ij (x)) = sgn(α
σ(t)
ij (x)− ασ(t)

ji (x)).
Because ασ(t)

ij (x) − ασ(t)
ji (x) can be positive or negative,

depending on K
σ(t)
ij , r

σ(t)
j , and r

σ(t)
i , we know that the

set of solutions that holds for the conditions (i)-(iv) may
not be empty. Thus, for example, in condition (i), we
should have sgn(cn − cm) = sgn

(
αn12(0, 1)− αn21(0, 1)

)
=

−sgn
(
αm12(0, 1)−αm21(0, 1)

)
. It becomes clear that Theorem

1 can be used to study the stability of the sigmoid imitation
equation.

For the special case where Kn
12 = Kn

21 = Kn, define
βnij(x) = exp{Kn

(
rni (x)− rnj (x)

)
}. Thus,

fnij(x) =
1

1 + βnij(x)
(37)

fnji(x) =
1

1 + βnji(x)
=

βnij(x)

1 + βnij(x)
. (38)

This implies that

fnij(x)− fnji(x) =
1− βnij(x)

1 + βnij(x)
:= γnij(x). (39)



For a two Markov mode matrix game, consider

An =

(
an bn

cn dn

)
. (40)

Thus

βn12(x1) = exp{Kn
(
(bn − dn) + (an − cn − bn + dn)x1

)
}

βn12(0) = exp{Kn(bn − dn)}
βn12(1) = exp{Kn(an − cn)}. (41)

The conditions become

(i)

{
1− αcn > 0

0 < qnm < γnij(0) 1−αcn
cn−cm

(42)

(ii)

{
1 + αcn > 0

γnij(0) 1+αcn
cn−cm < qnm

(43)

(iii)

{
1 + αcn > 0

γnij(1) 1+αcn
cn−cn < qnm

(44)

(iv)

{
1− αcn > 0

0 < qnm < γnij(1) 1−αcn
cn−cm

(45)

Consider the following theoretical numerical example

A1 =

(
2 5
8 10

)
, A2 =

(
9 7
1 3

)
,

c1 = 8, c2 = 3, α = 0.1, Kn = 1. (46)

Then, we have[
γ1

12(0) γ2
12(0)

γ1
12(1) γ2

12(1)

]
=

[
0.9866 −0.9640
0.9951 −0.9993

]
. (47)

Applying to the conditions

(i)

{
0 < q12 < 0.0395
0 < q21 < 0.1350

(48)

(ii)

{
0.3552 < q12

0.2506 < q21
(49)

(iii)

{
0.3582 < q12

0.2598 < q21
(50)

(iv)

{
0 < q12 < 0.0398
0 < q21 < 0.1399

, (51)

for a transition rate matrix

Q =

(
−0.03 0.03

0.1 −0.1

)
, (52)

the system satisfies condition (i) and (iv) and strategy 2
dominates. Figure 1 shows a time simulation of t = 50 where
the figure above describes the x1(t) and the figure below
shows in which mode the system is at each time. Observe
that even with many transitions governed by a Markov jump
chain between modes 1 and 2, the state x1(t) converges to
0, as expected since the system is strategy 2 dominant.

On the other hand, if the transition rate matrix is given by

Q =

(
−0.8 0.8
0.5 −0.5

)
, (53)

the system satisfies condition (ii) and (iii) and strategy 1
dominates. Figure 2 shows the numerical simulation for this
case.
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Fig. 1. Simulation of the imitation dynamics with Markov switching with
transition rate matrix Q in (52) supports the analytical predictions from
Corollary 1 that strategy 2 dominates and the system converges to the
equilibrium x∗1 = 0. The upper panel shows the temporal evolution of the
state of the system x1(t); the lower panel depicts the temporal evolution
of the mode σ(t).

VI. CONCLUSION

This paper presents tools to identify the steady-state be-
havior of imitation dynamics with Markov switching applied
to a two population game. This is an extension of previous
works where the rate function represents the replicator dy-
namics. The proof is made considering the Lyapunov method
applied to Markov jump systems. To identify which strategy
will be the outcome of the system, it is important to better
understand how to use this tool in applications such as traffic
and disease control. Future work will focus on extending the
results to multi-population games [4] and also to network
imitation dynamics [17] with Markov jumps in population
games.
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