
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Creating Dynamic Prototypes from Web Page Sketches / Calo', Tommaso; De Russis, Luigi. - ELETTRONICO. - (2022),
pp. 20-25. (Intervento presentato al convegno Programming Abstractions and Interactive Notations, Tools, and
Environments Workshop (PAINT 2022) tenutosi a Auckland, New Zealand nel December 5, 2022)
[10.1145/3563836.3568724].

Original

Creating Dynamic Prototypes from Web Page Sketches

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3563836.3568724

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2972355 since: 2022-12-02T17:02:37Z

Association for Computing Machinery

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Creating Dynamic Prototypes from Web Page Sketches
Tommaso Calò

Politecnico di Torino
Torino, Italy

tommaso.calo@polito.it

Luigi De Russis
Politecnico di Torino

Torino, Italy
luigi.derussis@polito.it

Abstract
While web designers draw user interface sketches as a first
step toward creating a Web application, transforming those
sketches into a prototypical coded interface is still a manual
and time-consuming task. Recently, researchers focused on
easing this part of the design process by applying machine
learning techniques to generate code from sketches auto-
matically. These methods effectively convert a sketch into
a skeleton structure of the web page but are not designed
to deal with dynamic behaviors of the page, such as links,
buttons, or dropdown menu. Indeed, to our knowledge, they
only allow the creation of static prototypes. In this paper, we
move the first steps to support the creation of dynamic proto-
types from sketches. We introduce both a set of symbols that
a designer can use on their sketches to model dynamic be-
haviors and the related implementation to generate dynamic
prototypes. Finally, we test our method on a few sketched
components to assess the suitability of the approach.

CCS Concepts: •Human-centered computing→ Graph-
ical user interfaces; Interface design prototyping; • Com-
puting methodologies → Machine learning; Computer
vision.

Keywords: machine learning, web elements, user interface,
convolutional neural network
ACM Reference Format:
Tommaso Calò and Luigi De Russis. 2022. Creating Dynamic Proto-
types from Web Page Sketches. In Proceedings of Programming Ab-
stractions and Interactive Notations, Tools, and Environments Work-
shop (PAINT 2022). ACM, New York, NY, USA, 6 pages. https://doi.
org/XXXXXXX.XXXXXXX

1 Introduction
Designers of web sites typically go through a process of
progressive refinement [1]. They tend to think about the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PAINT 2022, December 5–10, 2022, Auckland, New Zealand
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

larger picture, such as the overall site layout, at first, and
then progressively focus on finer details, such as the specific
look of page elements, typefaces, and colors.

The design process often includes rapid exploration early
on, with designers creating many low-fidelity sketches on
paper. There are several benefits of sketching during this
phase of design. Sketches allow the designer to focus on basic
structural issues instead of unimportant details. Sketching
is quick, so designers can rapidly explore different ideas
and iterate on those. In addition, user studies using rough
prototypes tend to find the same usability problems as do
tests with more finished prototypes [2, 3]. However, tran-
sitioning from those sketches to a coded interface with a
suitable look-and-feel is still a manual and time-consuming
task [4, 5].

Supporting this transition is challenging due to the diver-
sity of sketches and the complexity of coded graphical user
interfaces (GUIs). The research community, therefore, has a
high interest to find methods and tools able to support de-
signers in the process of moving between prototypes of the
user interface. Several research projects, indeed, have tried
to automate this translation. For instance, Beltramelli [6]
proposed Pix2code, an end-to-end approach based on Con-
volutional and Recurrent Neural Networks that allows the
generation of code from a mock-up screenshot taken as an
input. Robinson [7], instead, presented sketch2code, a system
to automatically transform hand-drawn sketches into coded
GUIs. Both these works capture well the overall structure
of the user interface and translate it into code, but they are
not designed to consider the dynamic behavior (e.g., links
between pages, dropdown menus) of the generated interface,
which remains a manual and expensive task to be applied.
Indeed, the chance to embed the dynamic behavior directly
in the sketch might further empower the designers in their
creative work.

In this paper, we put forward a novel approach where we
focus on translating a sketch of aWeb interface to the related
code, allowing the designer to specify the dynamic behavior
of the sketched elements directly in the sketch. To do so, we
introduce a set of symbols that a designer can use on their
sketches to model such dynamic behaviors. The symbols are
in some cases well established in Web visual languages, e.g.,
the down-facing arrow to indicate a drop-down menu, while
in other cases are introduced from scratch. In our proposed
method, we segment the input sketch to derive the single
components of the web-based interface and their positions;

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

PAINT 2022, December 5–10, 2022, Auckland, New Zealand Calò and De Russis

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

then, for each component, we run a Convolutional Neural
Network (CNN) to classify its structural properties and iden-
tify the relative position and type of the symbols used to
model dynamic behaviors. Finally, a parser elaborates the in-
formation derived by the network to generate the backbone
code of the interface. We tested the method on a subset of
the presented symbols to evaluate its effectiveness.

2 Related Work
2.1 Automatic Generation of Code from Sketches
Although the generation of computer programs is an ac-
tive research field, program generation from visual inputs
(like sketches) is a relatively under-explored area. The prob-
lem of generating code from visual inputs is strictly related
to the problem of automatically reverse-engineering GUIs:
reverse-engineering approaches are mainly applied to gen-
erate code from GUI mock-ups or screenshots. Nguyen and
Csallner [11], for instance, proposed a method to reverse-
engineering Android user interfaces from their screenshots.
However, their method heavily relies on heuristics and expert
knowledge to be implemented successfully, so its applica-
bility is restricted to a limited domain of interfaces. Similar
approaches have been used to create tools able to generate
code from hand-drawn wireframes. These tools [12, 13] are
useful for designers who wish to quickly sketch and proto-
type possible interface layouts.
A more complex version of this task is generating code

from complete screenshots, as it requires that the system
handle the stylistic and structural variation present in real-
world app screens. Pix2code [6] was one of the first works
attempting to address the problem of GUI code generation
from visual inputs by leveraging machine learning to learn
latent variables instead of engineering complex heuristics.
To exploit the graphical nature of the input, Pix2code ap-
proaches the problem of converting screenshots to code as
an image captioning problem. Another work very close to
ours is Sketch2Code [17]. Sketch2Code approaches the prob-
lem similarly to Pix2code, with the difference that the au-
thor trains the model on a specially-prepared dataset of GUI
sketch images.
As depicted, none of these previous works focus their

attention on the behavior modeling of prototypes. Our ap-
proach aims at filling this gap by introducing a method sim-
ilar to Sketch2Code since we start from sketches and we
implement a CNN to infer the structural properties of the
sketched Web component, but we consider and detect the
symbols which models dynamic behaviors. We then use a
parsing procedure to generate the backbone code of the pro-
totype, dynamic behaviours included.

2.2 Behavior Specification
In the comparative study by Silva et al. [22] behavior spec-
ification is defined as the ability to add dynamic behaviors

to prototypes. “Behavior” is described as a set of states that
prototypes can reach by the means of transitions between
states. Very few prototyping tools model the dynamic be-
havior of the prototype, the majority allow to create static
mock-ups, only. As described in [22], the main methods to
specify the behavior of the prototype are setting hotspots on
images, and events handling on widgets. Hotspots are areas
highlighted on top of the sketch of the prototype to capture
events triggered by the user [8]. Designers need to create
one hotspot for each part of the interface they want to make
interactive. The problem with this method is that hotspots
are associated with graphical areas that are not semantically
linked with the graphical element represented in the image,
but only on the coordinates of the hotspot.

Wireframe tools use widgets to build the interface [9] and
they model the dynamic behavior of the prototype directly
on the widgets with event handlers. The event handlers usu-
ally specify an action required to trigger the event and the
behavior the event triggers. Balsamiq [15], ActiveStory En-
hanced [14], SILK [13] and DENIM [16], are examples of
tools supporting wireframe interactions. Tools like AppS-
ketcher [18] or JustInMind [19] allow to specify conditions,
edit properties, or use variables; Appery.io [20] and ScreenAr-
chitect [10] allow also to program code.

Our approach models the dynamic behavior of the GUI di-
rectly from the sketch itself with the usage of a set of specific
symbols. It supports wireframe interactions without the need
of adding widgets or hotspots, in a later stage. Moreover, to
our knowledge, the proposed method is the first attempt to
model behavior specification directly from a sketch by using
convolutional neural networks.

3 Method
In this section, we present the method to automatically gen-
erate code from sketches, along with the novel introduction
of a first set of symbols and the related procedure to model
dynamic behavior.

3.1 Modeling Dynamic Behavior
To model the dynamic behavior of the prototype, we in-
troduce a set of symbols that represent different dynamics
behaviors. Such symbols are supposed to be drawn directly
on the sketch and are chosen based on the fundamental dy-
namic properties emerged in literature, i.e., from [13, 22].
The following set is chosen to demonstrate the applicability
of the model, and will be expanded in future works to model
a wider range of dynamic behaviors:

Default Selected Element indicates the item that is se-
lected by default in the sketched interface. An example
of such a item is the “Home” button in an horizontal
navigation bar of a web application.

Dropdown Menu indicates that the element opens a
dropdown menu.

2

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

Creating Dynamic Prototypes from Web Page Sketches PAINT 2022, December 5–10, 2022, Auckland, New Zealand

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

Figure 1. The proposed set of symbols to model dynamic behavior in sketch prototypes: The default selected element symbol is
used to model the item that is selected by default in the given interface; the dropdown menu symbol indicates that the element
opens a dropdown menu; the page indicator symbol is used to link together different page sketched by the designer; the link
symbols, links a sketched element into an indicated page.

Page Indicator uniquely represents the sketched inter-
face, e.g., the page destination of a link.

Link represents the connection between the sketched
element and an indicated page.

Figure 1 reports the four introduced symbols, along with
their functions, the motivations behind the chosen represen-
tations, their usage, and an example for each symbol. The
figure could ease the understanding of how the symbols are
implemented in a real sketch of a GUI.

3.2 Prototype’s Interface Generation
The task of generating the code of an interface from a sketch
can be split into three sub-problems.
First, the problem of segmenting the sketch by semantic

elements, e.g, navbar, list, carousel (Section 3.2.1). Secondly,
for each given semantic component, the problem is to un-
derstand the sketch’s structural properties, and infer which
are the present symbolic elements, and their positions (Sec-
tion 3.2.2). Finally, the last challenge is to generate the code of
the resulting component, taking into account the expressed
dynamic behavior (Section 3.2.3).
The presented approach has been implemented using

Python 3.8. The neural network has been implemented using
PyTorch, the images processing with PIL and OpenCV, while
the data processing has been conducted with Pandas and
Numpy.

3.2.1 Sketch Understanding. Understanding the sketch
is a computer vision task that, given the sketch of a Web-
based interface, consists of the detection and identification
of the included components (e.g., buttons, navbars, etc.) and
their relative position.

For this task, we adopted the samemethod of Sketch2Code
[17], which uses RetinaNet [21], a popular single-stage de-
tector that is accurate and runs fast. RetinaNet can simulta-
neously predict both the class and the box position of the
object under detection. Figure 2 (1) displays the network
architecture.

3.2.2 ComponentsUnderstanding. Given the segmented
sketch of the user interface, we predict the structural proper-
ties of the components, along with the presence of symbols
to model dynamic behavior.

In detail, as depicted in Figure 2 (2), we implement a convo-
lutional neural network, specific for each component, trained
to classify the structural properties of the sketched compo-
nent, e.g., in the case of a navbar, the number of elements
floating left and right. We use the same network to predict
which (symbol type) and where (in which element) symbols
are present. To link multiple pages, we used the page indi-
cator, i.e., a unique number, written on the top right of the
sketched page.

3.2.3 Code Generation. Given the structural properties
of the component, along with the type and the position of

3

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

PAINT 2022, December 5–10, 2022, Auckland, New Zealand Calò and De Russis

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

Figure 2.Method overview. Starting one or multiple sketches of interfaces, in (1) we perform a segmentation of the single
sketch in sub-components. Then, for each component, we use a convolutional neural network to infer its structural and
dynamic properties (2). Eventually, with the help of a parser, we translate the predicted properties into the backbone code of
the sketched component. (3) shows the rendered Web element stemming from the entire process.

symbols present to model the dynamic behavior, we proceed
to generate the code of the backbone using a parsing function.
Figure 2 (3), shows the final rendered component.

4 Experiments
We want to verify that our method correctly generates the
navbar’s code with the inserted dynamic behavior, as well
as the structural properties of the sketch, and can correctly
recognize the symbols that model such a dynamic behavior.
Due to the unavailability of a dataset of sketched Web in-
terfaces, we train our method over a synthetic dataset and
then we fine-tune it over a collection of 50 real sketched
navigation bars (navbars). Since the segmentation and re-
construction methods were adopted and already validated
by Sketch2Code [7] and UICode [23], we do not report the
performance of those methods in the paper.

Dataset. To test the effectiveness of the method we built a
synthetic dataset of 3,000 navbars’ sketches. Each navbar can
have at most five items floating left and three items floating
right. Regarding the symbols to model the dynamic behav-
iors, we had only one default selected element per navbar,
multiple links, multiple dropdown menus, and a unique page
indicator. The aim of the structure prediction model is to
infer the number of rights and left items. In addition, we
fine-tuned the resulting model to 500 real-sketched navbars
to evaluate the performances of the model in a realistic sce-
nario. The real sketches dataset presents more variability of
the synthetic dataset, with hand drawn lines, overlapping
and mispositioned elements.

Measures. The Convolutional Neural Network (CNN)
must be able to classify correctly the structural features as
well as the type and position of the symbols in the sketched
component in order to parse them into code. We utilize ac-
curacy as the main measure of performance.

Experiments. To evaluate the performance of the CNN for
the sketch structure prediction, we split the synthetic sketch
dataset into 2,500 train samples and 500 test samples, we
trained the network 20, 30, and 50 epochs with pre-trained
weights on ImageNet [24] and we then fine-tuned the net-
work on 400 real sketches, and tested on 100.

Epochs Synthetic Sketches Real Sketches
20 0.991 0.968
30 0.995 0.973
50 0.998 0.982

Table 1. Accuracy Results over Synthetic and Real Sketches
Datasets

As reported in Table 1, the performances of the convolu-
tional network in distinguishing the structural features of
the sketched component achieve very good results with a top
0.982 accuracy over the real sketches set after 50 epochs of
training, meaning that the network can effectively recognize
the structure of the sketched component, the structure can
be parsed directly to code, making this technique promising
for real world applications.

In addition, to further understand the quantitative results
of our method, in Table 2 we analyzed the performance of
the network in recognizing each of the proposed symbols.

4

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

Creating Dynamic Prototypes from Web Page Sketches PAINT 2022, December 5–10, 2022, Auckland, New Zealand

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

Dataset
Default
Selected
Element

Dropdown
Menu Link Page

Number

Synthetic
Sketches 0.995 0.996 0.989 0.992

Real Sketches 0.987 0.991 0.972 0.989
Table 2. Accuracy Results for each symbol

The analysis would motivate us to change some symbols’
designs in order to achieve higher accuracy.
As reported in Table 2, the “Page Number” is the symbol

most easily recognized by the classifier, while “Dropdown
Menu” and “Default Selected Elements” shows comparable
results. The least recognized symbol is “Links”, probably
because in a few samples it overlaps with text. In further
works, we may improve its design or position specifications
to achieve better results.

5 Conclusion and Future Works
This paper presents a method which can support designers
in generating web pages from a sketch, while describing the
dynamic behaviors of the pages. Our approach consists of
four main parts: a set of symbols to use in sketched web
pages; a deep learning architecture for segmentation of the
sketched pages into components; a classification algorithm
that infers the structural properties of the components and
recognizes the symbols that model dynamic behavior; and a
parsing algorithm that resembles the information obtained
by the network to generate the final code. Among its advan-
tages, it is fully integrated and easily adaptable for different
sketches in various domains. To our knowledge, it is the first
method that may allow designers to model the dynamic be-
havior of the sketched directly in sketch-to-code translation
algorithms, while using deep learning techniques.
The proposed approach has some limitations that could

eventually be addressed in future research. First of all, the
structural content features of the components are hand-
crafted, thus themodel cannot generalize out of the sketching
specification. This is done to obtain good results due to the
complexity of structural specifications in web components.
Future work will include the implementation of techniques
that allow code generation with language models instead
of procedural methods, since language models can general-
ize out of handcrafted features in this specific task, e.g., as
shown by Beltramelli [6]. Secondly, the modeling of dynamic
behavior is limited to a subset of the dynamical behavior
of a real web application. Future research should focus on
enhancing the capabilities of our method to model a wider
range of dynamic behaviors. Finally, the depicted method
needs to be tested with a diverse set of sketches, hand-drawn
symbols, and web elements, as well as to be included in a

tool for designers. Such a tool will, then, be evaluated in user
studies to assess the usefulness of the overall approach.

To conclude, sketch-to-code translation of user interfaces
is closer to being implemented in real-world applications,
and our work moves the first steps towards allowing design-
ers to model the dynamic behavior of web interface elements.
We do so by leveraging machine learning techniques, to de-
liver a more integrated approach able to support designers
in easing this time-consuming part of their work.

References
[1] Newman, M.W. and J.A. Landay. Sitemaps, Storyboards, and Speci-

fications: A Sketch of Web Site Design Practice. In Proceedings of
DIS 2000: Designing Interactive Systems. New York, New York. pp.
263-274, August 2000.

[2] Hong, J.I., F.C. Li, J. Lin, and J.A. Landay. End-User Perceptions of
Formal and Informal Representations of Web Sites. In Proceedings of
Human Factors in Computing Systems: CHI 2001 Extended Abstracts.
Seattle, WA. pp. 385- 386, March 31-April 5, 2001.

[3] Virzi, R.A., J.L. Sokolov, and D. Karis. Usability Problem Identification
Using Both Low- and High-Fidelity Prototypes. In Proceedings of Hu-
man Factors in Computing Systems: CHI ’96. Vancouver, BC, Canada.
pp. 236-243, April 13–18, 1996.

[4] Sarah Suleri, Vinoth Pandian Sermuga Pandian, Svetlana Shishkovets,
and Matthias Jarke. 2019. Eve: A Sketch-Based Software Prototyping
Workbench. In Extended Abstracts of the 2019 CHI Conference on
Human Factors in Computing Systems (Glasgow, Scotland UK) (CHI
EA ’19). Association for Computing Machinery, New York, NY, USA,
1–6.

[5] Fidelity or Low-Fidelity, Paper or Computer? Choosing Attributes
when Testing Web Prototypes. Proceedings of the Human Factors and
Ergonomics Society Annual Meeting 46, 5 (2002), 661–665.

[6] Tony Beltramelli. 2018. Pix2code: Generating Code from a Graphical
User Interface Screenshot. In Proceedings of the ACM SIGCHI Sympo-
sium on Engineering Interactive Computing Systems (Paris, France)
(EICS ’18). Association for Computing Machinery, New York, NY, USA,
Article 3, 6 pages.

[7] Alex Robinson. 2019. Sketch2code: Generating a website from a paper
mockup. arXiv:1905.13750 [cs.CV]

[8] Marvel. https://marvelapp.com/. [Accessed 20 08 2022]
[9] Pidoco. https://pidoco.com/en. [Accessed 20 08 2022]
[10] Screen Architect. https://www.screenarchitect.com. [Accessed 20 08

2022]
[11] Tuan Anh Nguyen and Christoph Csallner. 2015. Reverse Engineering

Mobile Application User Interfaces with REMAUI. In Proceedings of
the 30th IEEE/ACM International Conference on Automated Software
Engineering (Lincoln, Nebraska) (ASE ’15). IEEE Press, 248–259.

[12] Benjamin Wilkins. 2017. Airbnb Sketching Interfaces.
https://airbnb.design/sketching-interfaces.

[13] James A. Landay. 1996. SILK: Sketching Interfaces like Krazy. In Confer-
ence Companion on Human Factors in Computing Systems (Vancou-
ver, British Columbia, Canada) (CHI ’96). Association for Computing
Machinery, New York, NY, USA, 398–399.

[14] Hosseini-Khayat, Ali Ghanam, Yaser Park, ShellyMaurer, Frank. (2009).
ActiveStory Enhanced: Low-Fidelity Prototyping andWizard of Oz Us-
ability Testing Tool. Lecture Notes in Business Information Processing.
31. 257-258.

[15] Balsamiq. https://balsamiq.com. [Accessed 20 03 2022]
[16] Lin, James Newman, Mark Hong, Jason Landay, James. (2002). DENIM:

An Informal Sketch-based Tool for Early Stage Web Design.
[17] Alex Robinson. 2019. Sketch2code: Generating a website from a paper

mockup.
5

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

PAINT 2022, December 5–10, 2022, Auckland, New Zealand Calò and De Russis

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

[18] AppScketcher. https://www.uxplaza.com/appsketcher. [Accessed 20
08 2022]

[19] JustInMind. https://www.justinmind.com. [Accessed 20 08 2022]
[20] Appery. https://appery.io. [Accessed 20 08 2022]
[21] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr

Dollar. 2020. Focal Loss for Dense Object Detection. IEEE Transactions
on Pattern Analysis & Machine Intelligence 42, 02 (feb 2020), 318–327.

[22] Silva, Thiago Hak, Jean-Luc Winckler, Marco Nicolas, Olivier. (2017).
A Comparative Study of Milestones for Featuring GUI Prototyping
Tools. Journal of Software Engineering and Applications. 10. 564-589.

10.4236/jsea.2017.106031.
[23] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang

Liu. 2018. From UI Design Image to GUI Skeleton: A Neural Machine
Translator to Bootstrap Mobile GUI Implementation. In The 40th Inter-
national Conference on Software Engineering, Gothenburg, Sweden.
ACM.

[24] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
2009. Imagenet: A large-scale hierarchical image database. In 2009
IEEE conference on computer vision and pattern recognition. IEEE,
248–255

6

	Abstract
	1 Introduction
	2 Related Work
	2.1 Automatic Generation of Code from Sketches
	2.2 Behavior Specification

	3 Method
	3.1 Modeling Dynamic Behavior
	3.2 Prototype's Interface Generation

	4 Experiments
	5 Conclusion and Future Works
	References

