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ABSTRACT Neural Architecture Search (NAS) algorithms aim at finding efficient Deep Neural
Network (DNN) architectures for a given application under given system constraints. DNNs are
computationally-complex as well as vulnerable to adversarial attacks. In order to address multiple design
objectives, we propose RoHNAS, a novel NAS framework that jointly optimizes for adversarial-robustness
and hardware-efficiency of DNNs executed on specialized hardware accelerators. Besides the traditional
convolutional DNNs, RoHNAS additionally accounts for complex types of DNNs such as Capsule Networks.
For reducing the exploration time, RoHNAS analyzes and selects appropriate values of adversarial perturba-
tion for each dataset to employ in the NAS flow. Extensive evaluations on multi - Graphics Processing Unit
(GPU) - High Performance Computing (HPC) nodes provide a set of Pareto-optimal solutions, leveraging
the tradeoff between the above-discussed design objectives. For example, a Pareto-optimal DNN for the
CIFAR-10 dataset exhibits 86.07% accuracy, while having an energy of 38.63 mJ, a memory footprint of
11.85 MiB, and a latency of 4.47 ms.

INDEX TERMS Adversarial robustness, energy efficiency, latency, memory, hardware-aware neural archi-
tecture search, evolutionary algorithm, deep neural networks, capsule networks.

I. INTRODUCTION
Among the Machine Learning algorithms, Deep Neural Net-
works (DNNs) have shown state-of-the-art performance in
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a wide variety of applications [1], [2]. Finding an efficient
DNN architecture for a given application through a Neural
Architecture Search (NAS) is a very complex optimization
problem, which involves a huge number of parameters and
typically extremely long exploration time [3]. The search
space becomes even bigger when employing NAS algorithms
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for new brain-inspired types of DNNs, such as the Capsule
Networks (CapsNets) [4]. Such CapsNets, and more in gen-
eral advanced DNN models, aim at providing high learning
capabilities. However, these advancements in DNN architec-
tures come with multiple design challenges:

1) High computational complexity: DNNs need special-
ized hardware accelerators to be deployed and executed
at the edge, where the resources are constrained [5].

2) Security: DNN classifiers can be fooled by adversarial
attacks, which are small and imperceptible perturba-
tions added to the inputs [6]. Such a threat is extremely
dangerous for safety-critical applications [7]. Further-
more, integrating means for security during NAS is
a challenging problem, but can enable robust DNN
designs [8], [9], as compared to the regular DNNdesign
flow.

Hence, the problem is: how to design complex DNNs in
an energy-efficient and robust way through an automated
multi-objective NAS framework?

A. LIMITATIONS OF STATE-OF-THE-ART AND SCIENTIFIC
CHALLENGES
Traditionally, the adversarial robustness of a given DNN
is investigated a posteriori, i.e., once the DNN is already
designed. The hardware efficiency of a DNN implemented
on a given hardware accelerator is also a metric that is typ-
ically analyzed a posteriori, thus challenging the feasibility
of its implementation on resource-constrained neuromorphic
and/or IoT devices. We perform a motivational case study to
analyze the adversarial accuracy1 and memory footprint of
different DNNs, illustrating their adversarial robustness and
complexity. We apply the Projected Gradient Descent (PGD)
attack [10] with ε = 0.0001 to the LeNet [11], the
ResNet-20 [12], the CapsNet [4], and the DeepCaps [13],
trained for the CIFAR-102 dataset [14]. The results in Fig. 1
show that the LeNet [11], which is relatively small and shal-
low, is hardware efficient due to its lowmemory footprint, but
relatively more vulnerable to attacks. A more complex DNN
such as the ResNet-20 [12] has a higher memory footprint but
it also exhibits higher adversarial accuracy than the LeNet.
Interestingly, the DeepCaps [13], despite having a smaller
memory footprint than the ResNet-20, is also relatively more
robust against adversarial attacks. The goal of this paper is
to integrate these diverse yet important objectives in a NAS
framework to obtain Pareto-optimal solutions that explore the
potential tradeoffs between different design objectives like
computational complexity, memory, energy, latency, and/or
security.

1We refer to the adversarial accuracy as the DNN test accuracy obtained
when applying the adversarial attacks to every test example, i.e., by giving
adversarial examples as input to the DNN.

2Performing numerous experiments for analyses and evaluation, consti-
tuting many NAS rounds on complex DNNs with CIFAR-10 dataset already
took several weeks to months on our multi-GPU HPC node. Therefore,
testing for bigger dataset is out of our currently available computational
power and memory resource. Nevertheless, we believe that these findings
are highly valuable, and would scale to bigger datasets as well.

FIGURE 1. Adversarial robustness to the PGD attack vs. memory footprint
of LeNet, CapsNet, ResNet-20, and DeepCaps for the CIFAR-10 dataset.

Including the DNN security into the optimization goals of
the NAS is a challenging task, because, besides the challenges
in its representation in the design framework, it might lead to
a massive search space explosion due to several additional
factors and extremely time-consuming training and evalu-
ations of numerous candidate solutions. A wide variety of
adversarial attacks have been proposed in the literature [15],
and it is extremely complex to evaluate the adversarial robust-
ness to different attack algorithms. A recent study in [16]
proposed a method evaluating the DNN robustness to the
PGD attack [10] as the optimization goal of the NAS. On
the contrary, our work performs joint optimizations for the
adversarial robustness and hardware efficiency both, thereby
leading to the increased complexity of the optimization prob-
lem, as well as large training time for evaluating the DNN
robustness. Moreover, it is challenging to model, implement
and evaluate the hardware execution of different DNNs and
CapsNets (including convolutional layers, fully-connected
layers, and dynamic routing) in the NAS design flow.

B. OUR NOVEL CONTRIBUTIONS
To address the above-discussed challenges, we propose the
novel RoHNAS framework (see Figure 2) that integrates mul-
tiple optimization objectives (like hardware efficiency and
adversarial robustness) for diverse types of DNNs, like Con-
volutional Neural Networks (CNNs) and CapsNets. RoHNAS
employs the following key mechanisms:

1) For architectural model flexibility and fast hardware
estimation, we deploy analytical models of the layers
and operations of DNNs and CapsNets, as well as
their mapping and execution on specialized accelera-
tors (Section III-A).

2) To speed-up the robustness evaluation, we analyze
and choose the values of the adversarial perturbations,
which provide valuable differences when performing
the NAS with DNNs subjected to such adversarial per-
turbations (Section III-B).

3) We develop a specialized evolutionary algorithm, based
on the principles of the Non dominated Sorting Genetic
Algorithm II (NSGA-II) method [17], to perform a
multi-objective Pareto-frontier selection, with conjoint
optimization for adversarial robustness, energy, mem-
ory, and latency of DNNs. (Section III-C)
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4) To reduce the overall training time, we devise a
fast evaluation methodology for DNNs trained for
a limited number of epochs (Section IV-C), while
the Pareto-optimal solutions are evaluated after full-
training, to obtain the exact results (Section IV-D).

Implementation and Validation Contributions: We have
implemented our RoHNAS using the TensorFlow library [18],
and evaluated more than 900 DNNs for the MNIST, Fashion-
MNIST and CIFAR-10 datasets. Extensive validations are
performed on Nvidia’s multi-V100 Graphics Processing
Unit (GPU) High Performance Computing (HPC) Nodes
requiring weeks to months of experimentation time.

Open-Source Contribution: For reproducible research,
we release the code of the RoHNAS framework at
https://github.com/ehw-fit/rohnas.

FIGURE 2. Overview of our RoHNAS framework.

II. BACKGROUND AND RELATED WORKS
A. ADVERSARIAL ATTACKS
DNNs are now deployed for a wide variety of applications,
including safety-critical ones such as Autonomous Driv-
ing [2], Medicine [19], and Finance [20]. Despite their per-
formance, DNNs have severe security flaws, as adversarial
attacks can fool DNNs with small input perturbations [6].
Many studies [15], [21] have shown that DNNs are vulnerable
to carefully crafted inputs designed to fool them. Very small
imperceptible perturbations added to the data can completely
change the output of the DNN model [22].

It is essential for the attacker to minimize the added adver-
sarial perturbation to avoid its detection. Formally, given an
original input x with a target classification label c with a
DNN model m(), the problem of generating an adversarial
example x∗ can be formulated as a constrained optimization
problem [15]:

x∗ = argmin
x∗

D(x, x∗),

s.t. m(x) = c, m(x∗) = c∗, c 6= c∗ (1)

where D is the distance between two images and the opti-
mization objective is to minimize this adversarial perturba-
tion to make it stealthy. x∗ is considered as an adversarial
example if and only if m(x) 6= m(x∗) and the perturbation
is bounded (D(x, x∗) < ε, where ε > 0 ).
Goodfellow et al. [23] proposed the fast gradient sign

method (FGSM) to generate adversarial examples by exploit-
ing the gradient of the model w.r.t. the input images, towards
the direction of the highest loss. Afterward, Madry et al. [10]
and Kurakin et al. [24] proposed two different versions of the

projected gradient descent (PGD) attack, an iterative version
of the FGSM that introduces a perturbation α to multiple
smaller steps. After each iteration, the PGD projects the
generated image into a ball with a radius ε, keeping the
perturbation size small. It is a white-box attack and has both
the targeted and untargeted versions. The algorithm consists
of the following iteration:

x∗i = x∗i−1 − projε(α · sign(∇x loss(θ, x, t))) (2)

Further details about different types of adversarial attacks
and defenses can be found in comprehensive surveys such as
[6] and [15]. Moreover, recent works attempted to improve
theDNN robustness against adversarial attacks by hash-based
deep compression [25] or approximate computing [26], thus
requiring significant hardware design overhead.

B. CONVOLUTIONAL AND CAPSULE NETWORK
HARDWARE
A wide variety of hardware architectures has been pro-
posed for accelerating the execution of DNN infer-
ence [27], [28], focusing on improving the performance and
energy-efficiency through compression, dedicated operation
mapping, and specialized hardware design. Recently, hard-
ware architectures for CapsNets have been proposed [29].
CapsNets layers require the execution of operations, such as
dynamic routing, that are not supported by traditional DNN
accelerators but crucial to detect changes in the compositional
structure of the inputs [30].

CapsNets, firstly proposed by the Google Brain’s
team [31], are elaborated DNN models in which the neurons
are grouped together in vector form to compose the capsules.
Each neuron of a capsule encodes spatial information, while
the vector’s length encodes the probability of the entity
being present. While the first architecture proposed in [4]
is composed of only three layers, recently deeper CapsNet
models were proposed [13], [32]. The main components of a
CapsNet are the following:
• Convolutional (Conv) Layer: The CapsNets need one
or more traditional Conv layers to be applied at the
beginning of the network.

• Convolutional or Fully-Connected (FC) Capsule
Layers:A generic CapsNet can contain some Conv cap-
sule layers, whose principle of operation is identical to
that of traditional Conv layers. However, the convolution
is performed between the capsules rather than neurons,
and the activation function needs to be the squash oper-
ation (Eq. 3), which constraints the length of the capsule
vectors in the range [0,1].

y =
|x|2

(1+ |x|)2
x
|x|

(3)

A CapsNet needs necessarily to be ended by a FC
capsule layer, which mimics a traditional FC layer, but
operating with capsules.

• Dynamic Routing: It is possible, but not necessary,
to perform a dynamic routing between two adjacent
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capsule layers. The dynamic routing [4] is an iterative
algorithm which associates coupling coefficients to the
capsules predictions. The coupling coefficients of the
capsules predicting the same result with greater confi-
dence are maximized.

Figure 3 shows a simple three-layers CapsNet, as presented
in [4]. CapsNets need to be completed by a reconstruction
network, consisting of FC layers or Transposed Conv layers,
to reconstruct the input image.

FIGURE 3. Architectural diagram of the CapsNet model of [4].

The aforementioned CapsAcc [33] accelerator (see
Figure 4) has been proposed to efficiently deploy the Cap-
sNets in hardware, adapting to the specific needs of the
dynamic routing and the squash operation. CapsAcc dif-
fers from other DNN accelerators for its Activations unit,
which can apply the squash function in addition to the tradi-
tional Rectified Linear Unit (ReLU) and Softmax functions.
Moreover, a Routing Buffer is inserted to store the partial
results generated during the execution of the dynamic routing
algorithm. Dedicated scratchpad memories are employed to
minimize the energy consumption at runtime [34].

FIGURE 4. Architectural diagram of the CapsAcc accelerator of [33].

C. HARDWARE-AWARE NAS AND ROBUST NAS
Traditional NAS algorithms [3], [35], [36] have aimed at
finding a high accurate DNN model for a given task, i.e., the
DNN model which provides the highest accuracy on a
given dataset. For example, the Efficient Neural Architecture
Search (ENAS) algorithm [3] has generated a new architec-
ture with 55.6 perplexity on the Penn Treebank [37] dataset.
Recently, the interest in hardware efficiency has been grow-
ing, leading to designing Hardware-Aware NAS (HA-NAS)
methodologies [38]. The main difference between traditional
NAS and HA-NAS algorithms is that the latter also consider
the hardware-deployment efficiency of candidate models,
e.g., in terms of energy consumption, latency, or memory
footprint. Among the related works, there exist mainly three
types of heuristic search algorithms for the HA-NAS, which
are (1) evolutionary algorithms, (2) reinforcement learning,
and (3) differentiable NAS. The Accuracy-and-Performance-
aware Neural Architecture Search (APNAS) [39], which is
based on reinforcement learning, extends the ENAS algo-
rithm by including the performance of DNNs executed in

hardware in the optimization objectives of the NAS. Atten-
tiveNAS [40] jointly optimizes the DNNs’ accuracy and the
computational complexity in terms of Mega FLoating Point
Operations (MFLOPs). MnasNet [41] takes as an objec-
tive the inference latency and measures it by executing the
candidate models on mobile phones. In [42], an extended
search space is used, which includes architecture parame-
ters, quantization, and hardware parameters, precisely the
tiling factors. Targeting the Field Programmable Gate Arrays
(FPGAs), the FPGA-implementation aware Neural Archi-
tecture Search (FNAS) algorithm [43] uses an analytical
model to consider the latency only. HotNAS [44] targets
energy efficiency by including model compression in the
search space and supporting hardware for compressed mod-
els. During the candidate selection, the Single Path One-
Shot (SPOS) NAS [45] applies latency and FLoating Point
Operations (FLOPs) constraints. HURRICANE [46] gener-
ates a search space tailored to a specific hardware platform,
considering the FLOPs and number of parameters, and their
effect on the latency. The Differentiable NAS (DNAS) frame-
work [47], in which the search space is represented by a
stochastic super net, explores a layer-wise space where each
layer of the CNN corresponds to a different block, and the
learning is conducted by training the super net. These works
are primarily for the CNNmodels, and cannot handle Capsule
Networks.

On the other hand, recent works have also proposed NAS
methodologies to achieve high robustness against adversarial
attacks. In [16], a supernet containing all the possible archi-
tectures in the search space is trained. Then, subnetworks are
sampled from the supernet and evaluated in terms of accuracy
and robustness to adversarial attacks. In [48], the search space
is expanded to include some combinations of layers that
have been proven to be particularly effective against adver-
sarial attacks. However, all the works that focus on NAS for
adversarial attacks have not yet considered the hardware effi-
ciency aspects as conjoint optimization objectives. Moreover,
these works are primarily for the CNN models, and cannot
handle CapsNets. Recently, NASCaps [49] has proposed a
NAS methodology for CapsNets based on an evolutionary
algorithm, but it cannot handle robustness challenges, and
does not explore the tradeoffs between hardware efficiency
and adversarial robustness.
Our RoHNAS framework distinguishes from the previous

works because it combines for the first time hardware effi-
ciency and robustness to adversarial perturbations as joint
optimization goals for the NAS, and targets both CNN and
CapsNets models.

III. RoHNAS FRAMEWORK
Our evolutionary algorithm-based NAS methodology per-
forms a multi-objective search. It automatically searches for
inherently robust yet hardware-efficient DNN models by
selecting Pareto-optimal candidates in terms of robustness,
energy, latency, and memory footprint. The search space
comprises both CNNs and CapsNets. The workflow of our
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RoHNAS framework is shown in Figure 5, and is explained in
detail in the following subsections.

FIGURE 5. Overview of our RoHNAS framework and its key functionalities.

The framework’s inputs are the hardware accelerator,
the algorithm for generating the adversarial attack, and the
dataset. After modeling analytically the hardware acceler-
ator, the appropriate values of the adversarial perturbation
to employ in the search are selected. This process, as will
be described more in detail in Section III-B, consists of
analyzing the accuracy vs. adversarial perturbation curve,
and focusing on the high variation region which corresponds
to the highest slope of the curve. After selecting the values
of the adversarial perturbation to employ in the search, the
evolutionary search algorithm (based on the principles of the
NGSA-II genetic algorithm [17]) performs an iterative explo-
ration through crossover, mutation, and best DNN candidate
selection based on the objectives. To speed up the process,
during the evolutionary algorithm, the adversarial robustness
is evaluated after a fast training, i.e., for DNNs trained with
a limited number of epochs, where its number is determined
based on the Pearson Correlation Coefficient [50]. Towards
generating exact robustness results, the set of Pareto-optimal
DNN models are fully-trained, and the robustness against the
adversarial attack on fully-trained DNNs is evaluated.

A. LAYER AND OPERATION MODELING
The RoHNAS framework models each layer through a layer
descriptor, which contains all the relevant architectural
parameters necessary to describe a generic DNN layer using
a position-based representation. As shown in Figure 6, a layer
descriptor contains all the information to construct its related
layer, such as layer type, input feature map (IFM) size, input
channels, input capsules, kernel size, stride size, output fea-
ture map (OFM) size, output channels, and output capsules.
Using these parameters, it is possible to build many different
types of CNN or CapsNet layers. Moreover, such a modular
representation can easily be extended to support different
layer types. Multiple layer descriptors, together with infor-
mation on extra skip connections and resizing of the inputs,
form a genotype, which allows describing various CNN and
CapsNet architectural models.

FIGURE 6. Genotype structure. IFM stands for input feature map, while
OFM means ouput feature map.

To estimate the execution requirements of a DNNmodel on
a specialized DNN hardware accelerator (e.g., CapsAcc [33]
or Tensor ProcessingUnit (TPU) [51]), it is necessary to know
its underlying hardware characteristics, for instance:
• T , the clock period;
• Load_Weights, the number of clock cycles necessary to
load the weights into the Processing Element (PE) array;

• PPEarray, the power consumed by the PE array, here
estimated with the Synopsys Design Compiler tool;

• Ememory, the energy required for one memory access,
here estimated with the CACTI-P tool [52];

Knowing these parameters makes it possible to estimate
the latency, energy consumption, and memory footprint of a
DNN model analytically. From the dimensions of the layers
of a given DNN, we assess:
• wl , the number of weights in a layer;
• sl , the number of values to be summed to obtain an
output value, for each layer;

• fl , the number of feature maps to be multiplied by the
same weight, for each layer;

• cl , the number of clock cycles needed to process a layer.
Given the model and the hardware features, the number of
groups of weights loaded into the array (wPEarray) and the
number of memory accesses (m_acc) can be determined
through Equations 4 and 5, respectively. By computing the
clock cycles (see Eq. 6), it is possible to estimate the latency
and energy consumption, which, in conjunction with the
memory footprint, form the set of hardware parameters com-
puted through Eq. 7.

wPEarray =
⌈

wl
16 ·min (16, sl)

⌉
(4)

m_acc =

{
256, if fl = 1
16 ·max(sl − 15, 1), otherwise

(5)

cl = wl · wPEarray + fl (6)

latency =
∑
l∈L

cl · T

energy =
⌈m_acc

128

⌉
· Ememory

+

∑
l∈L

cl · T · PPEarray

memory footprint =
∑
l∈L

wl (7)
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The model has been validated by comparing the
results with the hardware implementation of the Cap-
sAcc [33]. Recent studies in [49] have also shown that the
above-discussed parameters and such analytical models are
sufficient to accurately estimate the latency, energy, and
memory footprint of a given DNN model. In the following,
we discuss the efficacy of our analytical models by comparing
the estimated values with the real values of latency, energy,
and memory requirements. By comparing our analytical
model with the real implementation of the CapsNet [4] on
CapsAcc [33], our model provides accurate estimations of
latency and memory footprint, and underesimates the energy
consumption by around 25%. Such a difference might be due
to other elements of the hardware implementation (e.g., inter-
connection overhead) that are not considered by the analytical
model. Despite this underestimation, the fidelity of our mod-
els is high, i.e., all candidates have similar underestimation
trend, so the selection of the candidates would not be affected
by this underestimation of analytical models. Please note that
our main focus was to have fast estimation with high fidelity.

B. DESIGN SPACE REDUCTION BY SELECTING AN
APPROPRIATE ADVERSARIAL PERTURBATION VALUE
Since the design space can potentially explode by considering
several types and strengths of adversarial perturbations, the
RoHNAS framework restricts the design space by automati-
cally selecting the values of adversarial perturbations to be
used in the NAS for a given dataset. Algorithm 1 summa-
rizes the proposed procedure. For each element of the testing
dataset, the adversarial example is generated through the
PGD algorithm [10] (line 4). Note, here we use PGD for illus-
trative reasons, and other adversarial attack algorithms can
be integrated into our RoHNAS framework. The parameter
ε determines the amount of adversarial perturbation. When
considering the variation of the accuracy w.r.t. ε, as we will
show in Section IV-B, the region in which the slope is highest
is in the middle of the graph, which corresponds to half of
the clean accuracy, i.e., Acc02 when considering that Acc0 is
the clean accuracy. By exploiting this intuition, our algorithm
selects εNAS , which is the value of adversarial perturbation
that provides the closest accuracy to the desired value of
Acc0
2 . The selected value of εNAS is employed in the One

EPS search, which optimizes for the robustness against one
value of perturbation. Moreover, aiming at covering a wider
spectrum of adversarial perturbation range, the Two EPS
search is devised. εlow and εhigh are selected (lines 10-11),
and the NAS is conducted by optimizing for the adversarial
accuracy with both values.

C. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM
The selection of the Pareto-optimal solutions in the RoHNAS
framework is based on the principles of the NSGA-II algo-
rithm [17]. The main core of the search algorithm is iterated
for g times, where each iteration gi represents a generation.
Each generation gi consists of a set of parent candidates Pi,
from which the offspring candidates Qi are generated.

Algorithm 1 Adversarial Perturbation Selection
Input: Deep Neural Network: N ;
Test Dataset: D =

⋃
j
Xj;

Adversarial Perturbation Budget:
εi ∈ E = [εMIN , εMAX ];
Output: Perturbation to apply for the NAS: εNAS ;

1 Acc0 = Accuracy(N (D));
2 for i ∈< E > do
3 for j ∈< D > do
4 X ′ij = PGD(N , εi,Xj);
5 end
6 D′i =

⋃
j
X ′ij;

7 Acci = Accuracy(N (D′i));
8 end
9 εNAS = εi : Acci ≈

Acc0
2 ;

10 εlow ≈
εNAS
10 ;

11 εhigh ≈ 3 · εNAS ;

At each generation gi, the offsprings are generated from the
parents via crossover and mutation. To perform the crossover
operation, two parents Pa and Pb are randomly selected from
the whole set of parent candidates. The genotypes of Pa and
Pb are then pseudo-randomly splitted in two parts, obtaining
four genotypes: Pa,1, Pa,2, Pb,1 and Pb,2. Two offsprings are
then obtained concatenating the four genotypes as follows:

Qa = Pa,1&Pb,2 Qb = Pb,1&Pa,2 (8)

To perform a mutation, a random parameter of a random
layer descriptor is selected and modified. In particular, the
kernel size, the stride, the skip connections, and the number
of output capsules can be affected.When the generation of the
offsprings is complete, it is necessary to check the validity of
the solutions and in case remove the invalid candidates.
After the crossover and mutation processes, the set of

candidates is the union of the parents and the offsprings sets.
To select the best candidates, that will then be the parents
in the next generation, the solutions are divided into a series
F1,F2, . . . ,FN of Pareto-fronts, where F1 is the best Pareto-
front. The next-generation parents’ set Pi+1 is filled with the
solutions from the best Pareto-front. To obtain the chosen
number of candidates, it may be necessary to select only a
certain number of solutions from a Pareto-front (e.g., F3 in
Figure 7). In this case, the Pareto-front’s solutions are sorted
by crowding distance, and the best ones are picked.

IV. EVALUATION OF THE RoHNAS FRAMEWORK
A. EXPERIMENTAL SETUP
The flow of our experiments and the tools used to implement
the RoHNAS framework are summarized in Fig. 8. The PGD
adversarial attack algorithm [10] has been implemented with
the CleverHans library [53]. The hardware model has been
implemented using the open-source NASCaps library [49],
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FIGURE 7. One iteration of the NSGA-II algorithm.

which is based on the CapsAcc architecture [33] synthesized
using the Synopsys Design Compiler tool, with a 45nm tech-
nology node and a clock period of 3ns. The training and
testing of the DNNs, implemented in TensorFlow [18] have
been running on the GPU-HPC computing nodes equipped
with four NVIDIA Tesla V100-SXM2 GPUs. Note that, our
experiments were running for 2,000 GPU hours with our fast
evaluation method and 8,000 GPU hours for the final training
and PGD attack evaluation. Without such exploration time
reductions, or by considering more complex optimization
problems (e.g., larger datasets or deeper DNN models), the
exploration time would have lasted several GPU months.

FIGURE 8. Tool-flow and setup for conducting the experiments.

The search algorithm is initialized with a random popula-
tion of 10 elements, running for a maximum of 20 iterations
of the genetic loop. The offspring population size is 10, and
the mutation probability is 10%. Each convolutional layer can
be composed of a 3×3, 5×5, or 9×9 kernel, with a stride of
either 1 or 2. The channels and capsule dimensions can both
span between 1 and 64.

B. SELECTION OF ADVERSARIAL PERTURBATION FOR THE
NAS
The amount of adversarial perturbation is a key parameter
to be selected for performing the NAS. Following the pro-
cedure described in Section III-B, the Pareto-optimal DNNs
of the NASCaps library [49] have been tested under the PGD
attack [10], with different values of the adversarial perturba-
tion ε. The results reported in Fig. 9 show that, as expected,
the higher ε is, the lower the DNNs’ accuracy drops. The
selected values for the NAS are reported in Table 1. The
selection process follows the procedure described in Algo-
rithm 1. The One EPS column refers to the search using a

single value of ε, while the Two EPS column refer to a search
conducted with two different values of ε, which are called
εlow and εhigh. Note, a simple dataset like theMNIST requires
a relatively high adversarial perturbation to impact the DNN
robustness. On the other hand, on a more complex dataset like
the CIFAR-10, a smaller perturbation is already sufficient to
misclassify a certain set of inputs.

FIGURE 9. Analysis of the DNN robustness under the PGD attack, with
different adversarial perturbation values, for MNIST, Fashion-MNIST, and
CIFAR-10.

TABLE 1. Selected values of the adversarial perturbation ε for the NAS,
for MNIST, Fashion-MNIST and CIFAR-10 datasets. There are also reported
the values of εlow and εhigh for the Two EPS search, which will be used
for comparison in Section IV-D.

C. RoHNAS RESULTS WITH FAST DNN ROBUSTNESS
EVALUATION
As discussed in Section III, to reduce the exploration time,
our algorithm trains the DNNs only for a limited number
of epochs, which results in a fast robustness evaluation. The
similarity w.r.t. the full-training robustness has been mea-
sured through the Pearson Correlation Coefficient [50], using
the procedure described in [49]. The choice of 10 train-
ing epochs for the CIFAR-10 dataset and 5 epochs for the
Fashion-MNIST and MNIST datasets leverages the tradeoff
between a high correlation and low training time.

The results of the RoHNAS - One EPS with fast robustness
evaluation are reported in Fig. 10. The earliest generation of
the algorithm produces sub-optimal DNN solutions, while
most Pareto-optimal solutions are found in the latest gener-
ation. Note that, for the RoHNAS evaluated on the CIFAR-10
dataset, the latest generations find DNNs that are less robust
to the PGD attack, but still belong to the Pareto-frontier due
to the low energy consumption (see pointer À). Note that,
as highlighted by pointer Á, several candidate DNNs found
in the earliest generations are highly vulnerable to the PGD
attack and are automatically discarded by the Pareto-frontier
selection.
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FIGURE 10. RoHNAS’ fast evaluation of DNN robustness under PGD
attack, showing tradeoffs w.r.t. energy, latency and memory footprint.
(a) Results for CIFAR-10. (b) Results for Fashion-MNIST. (c) Results for
MNIST.

D. RoHNAS EXACT RESULTS FOR PARETO-OPTIMAL DNNs
The Pareto-optimal DNNs that are selected at the previous
stage have been fully-trained to obtain an exact robustness
evaluation. The DNNs for the MNIST and Fashion-MNIST
datasets have been trained for 100 epochs, while 300 epochs
of training has been used for the DNNs targeting the
CIFAR-10 dataset. The results reported in Fig. 11 show
tradeoffs between the design objectives. As highlighted
by pointer À in Fig. 11, a Pareto-optimal solution found
by the RoHNAS framework for the CIFAR-10 dataset
achieves 86.07% accuracy while having an energy con-
sumption of 38.63 mJ, a memory footprint of 11.85 MiB,
and a latency of 4.47 ms. Similarly, the solution for the
Fashion-MNIST dataset pointed in Á reaches an accuracy
of 93.40% while having 6.40 ms latency, 61.19 mJ energy,
and 16.82 MiB memory. Note that, while the Two EPS search
finds Pareto-optimal solutions in the middle range of energy
(see pointer Â), other interesting low-energy solutions are
found by the One EPS search, as indicated in pointer Ã.
The Pareto-optimal DNNs’s search for MNIST covers a more
heterogeneous range of values, leveraging tradeoffs between
different objectives (see pointer Ä).

The RoHNAS framework has been compared with other
state-of-the-art DNN and CapsNet architectures, and NAS
methodologies that include capsule layers in the search space.
Fig. 12 shows the comparison between our RoHNAS frame-
work (One EPS setting), NASCaps [49], CapsNet [4] and
DeepCaps [13]. For the MNIST dataset, the Pareto-optimal
solutions generated with the RoHNAS framework are par-
ticularly robust for a high range of perturbation ε (see
pointerÀ). Indeed, the accuracy starts dropping at around one
order of magnitude higher ε than NASCaps (see pointer Á).
For the Fashion-MNIST, the robustness behavior of the
Pareto-optimal DNNs selected with the RoHNAS frameweork
is closely related to the CapsNet. Instead, for the CIFAR-10
dataset, the RoHNAS DNNs’ behavior is similar to the
DeepCaps for low values of ε (see pointer Â), while a

FIGURE 11. RoHNAS’ exact robustness evaluation of Pareto-optimal DNN
solutions under the PGD attack, showing tradeoffs w.r.t.
hardware-efficiency. (a) Results for CIFAR-10. (b) Results for
Fashion-MNIST. (c) Results for MNIST.

Pareto-optimal RoHNAS solution offer a respectable robust-
ness also with higher adversarial perturbation (see pointerÃ).

FIGURE 12. Evaluation of the RoHNAS framework with the One EPS
setting, compared to other state-of-the-art architectures and NAS
algorithms.
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The evaluation of the RoHNAS framework with the Two
EPS setting is shown in Fig. 13. Compared to the One EPS
setting, the NAS produces different levels of robustness w.t.r.
ε for the MNIST and Fashion-MNIST datasets (see pointer À
in Fig. 13). However, for the CIFAR-10 dataset, the Two EPS
search leads to worse results than the One EPS counterpart
(see pointer Á).

FIGURE 13. Evaluation of the RoHNAS framework with the Two EPS
setting, compared to other state-of-the-art architectures and NAS
algorithms.

E. RoHNAS RESULTS VS. RANDOM SEARCH
The RoHNAS framework based on the evolutionary search
algorithm has been compared to a modified version using
random search. The results of the fast DNN robustness
evaluation for the Two EPS configuration are shown in
Figures 14 and 15, where Fig. 14 shows the accuracy mea-
sured when the adversarial perturbation value for the PGD
attack is εhigh, while Fig. 15 uses εlow. Pointer À in
Fig. 14 indicates the Pareto frontier for the CIFAR-10 dataset
obtained by random search, which is outperformed by several
candidate DNN models found using the NSGA-II algorithm
of our RoHNAS framework (see pointer Á in Fig. 14). For the
Fashion-MNIST dataset, some candidate DNNs found using
the random search show high hardware efficiency, but the
solution generated through the NSGA-II algorithm indicated
by pointer Â shows higher robustness. Also for the MNIST
dataset, the NSGA-II generates solutions that have better

tradeoffs between the objectives, compared to using random
search (see pointer Ã).

FIGURE 14. RoHNAS’ fast evaluation of DNN robustness under PGD
attack in the Two EPS setting using the εhigh value, compared to the
solutions found with random search, showing tradeoffs w.r.t. energy,
latency, and memory footprint.

FIGURE 15. RoHNAS’ fast evaluation of DNN robustness under PGD
attack in the Two EPS setting using the εlow value, compared to the
solutions found with random search, showing tradeoffs w.r.t. energy,
latency, and memory footprint.

Similar observations can be made when the adversarial
perturbation value for the PGD attack is εlow. As indicated by
pointer À in Fig. 15, several candidate DNN models for the
CIFAR-10 dataset found using the NSGA-II algorithm have
better tradeoffs than the Pareto-frontier obtained with random
search. However, for the Fashion-MNIST dataset, the solu-
tions with high hardware efficiency (especially low energy
and low latency) are found by random search (see pointer Á).
On the other hand, the NSGA-II algorithm generates
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solutions with higher hardware efficiency for the MNIST
dataset (see pointer Â).
The Pareto-optimal DNNs selected using random search

for the Two EPS setting are fully-trained and compared to the
results of the RoHNAS framework in Fig. 16. As highlighted
by pointer À, the Pareto-optimal solutions generated by both
algorithms are robust for a high range of perturbation val-
ues ε. However, the key differences can be observed in some
curves belonging to theRoHNAS search, which exhibit higher
robustness than the curves obtained with the random search
(see pointer Á in Fig. 16).

FIGURE 16. Evaluation of the RoHNAS framework with the Two EPS
setting, compared to the random search.

Our framework supports the integration of different search
techniques. Therefore, depending upon the requirements of a
system, different search techniques can be run and the best
possible solutions can be picked. However, this will lead to
a higher experimentation time. Therefore, we recommend
using the NSGA-II search algorithm that outperforms the
random search in most of the cases.

V. CONCLUSION
In this paper, we proposed RoHNAS, a novel framework
for the Neural Architecture Search, jointly optimizing for
the hardware efficiency (latency, energy, and memory foot-
print) and robustness against adversarial attacks. Our opti-
mizations for reducing the search space and the exploration
time allow finding a set of CNNs and CapsNets, which are
Pareto-optimal w.r.t. the above-discussed objectives, in a fast

fashion. In our experiments, 900 different DNN models have
been evaluated, using 2,000 GPU hours with our fast training
settings. Thanks to our RoHNAS framework, the deployment
of robust DNNs in resource-constrained IoT/neuromorphic
edge devices is made possible. We open-source our frame-
work at https://github.com/ehw-fit/rohnas.
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