
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

RoHNAS: A Neural Architecture Search Framework with Conjoint Optimization for Adversarial Robustness and
Hardware Efficiency of Convolutional and Capsule Networks / Marchisio, Alberto; Mrazek, Vojtech; Massa, Andrea;
Bussolino, Beatrice; Martina, Maurizio; Shafique, Muhammad. - In: IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO.
- 10:(2022), pp. 109043-109055. [10.1109/ACCESS.2022.3214312]

Original

RoHNAS: A Neural Architecture Search Framework with Conjoint Optimization for Adversarial
Robustness and Hardware Efficiency of Convolutional and Capsule Networks

Publisher:

Published
DOI:10.1109/ACCESS.2022.3214312

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2972345 since: 2022-10-16T10:13:11Z

IEEE

Received 20 August 2022, accepted 6 October 2022, date of publication 13 October 2022, date of current version 18 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3214312

RoHNAS: A Neural Architecture Search
Framework With Conjoint Optimization
for Adversarial Robustness and Hardware
Efficiency of Convolutional
and Capsule Networks
ALBERTO MARCHISIO 1, (Graduate Student Member, IEEE),
VOJTECH MRAZEK 2, (Member, IEEE), ANDREA MASSA3,
BEATRICE BUSSOLINO 3, (Member, IEEE), MAURIZIO MARTINA 3, (Senior Member, IEEE),
AND MUHAMMAD SHAFIQUE 4, (Senior Member, IEEE)
1Embedded Computing Systems Group, Institute of Computer Engineering, Technische Universität Wien (TU Wien), 1040 Vienna, Austria
2Evolvable Hardware Research Group, Faculty of Information Technology, Brno University of Technology, 60190 Brno, Czech Republic
3VLSI Laboratory, Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
4eBrain Laboratory, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

Corresponding author: Alberto Marchisio (alberto.marchisio@tuwien.ac.at)

This work was supported in part by the Doctoral College Resilient Embedded Systems through the TU Wien’s Faculty of Informatics and
the UAS Technikum Wien; in part by the NYUAD’s Research Enhancement Fund (REF) Award on ‘‘eDLAuto: An Automated Framework
for Energy-Efficient Embedded Deep Learning in Autonomous Systems;’’ in part by the NYUAD Center for Artificial Intelligence and
Robotics (CAIR) funded by Tamkeen under the NYUAD Research Institute under Award CG010; in part by Czech Science Foundation
under Grant GA22-02067S; and in part by the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ
under Grant 90140.

ABSTRACT Neural Architecture Search (NAS) algorithms aim at finding efficient Deep Neural
Network (DNN) architectures for a given application under given system constraints. DNNs are
computationally-complex as well as vulnerable to adversarial attacks. In order to address multiple design
objectives, we propose RoHNAS, a novel NAS framework that jointly optimizes for adversarial-robustness
and hardware-efficiency of DNNs executed on specialized hardware accelerators. Besides the traditional
convolutional DNNs, RoHNAS additionally accounts for complex types of DNNs such as Capsule Networks.
For reducing the exploration time, RoHNAS analyzes and selects appropriate values of adversarial perturba-
tion for each dataset to employ in the NAS flow. Extensive evaluations on multi - Graphics Processing Unit
(GPU) - High Performance Computing (HPC) nodes provide a set of Pareto-optimal solutions, leveraging
the tradeoff between the above-discussed design objectives. For example, a Pareto-optimal DNN for the
CIFAR-10 dataset exhibits 86.07% accuracy, while having an energy of 38.63 mJ, a memory footprint of
11.85 MiB, and a latency of 4.47 ms.

INDEX TERMS Adversarial robustness, energy efficiency, latency, memory, hardware-aware neural archi-
tecture search, evolutionary algorithm, deep neural networks, capsule networks.

I. INTRODUCTION
Among the Machine Learning algorithms, Deep Neural Net-
works (DNNs) have shown state-of-the-art performance in

The associate editor coordinating the review of this manuscript and

approving it for publication was Chun-Hao Chen .

a wide variety of applications [1], [2]. Finding an efficient
DNN architecture for a given application through a Neural
Architecture Search (NAS) is a very complex optimization
problem, which involves a huge number of parameters and
typically extremely long exploration time [3]. The search
space becomes even bigger when employing NAS algorithms

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 109043

https://orcid.org/0000-0002-0689-4776
https://orcid.org/0000-0002-9399-9313
https://orcid.org/0000-0003-2608-820X
https://orcid.org/0000-0002-3069-0319
https://orcid.org/0000-0002-2607-8135
https://orcid.org/0000-0002-1515-4243

A. Marchisio et al.: RoHNAS: A NAS Framework With Conjoint Optimization

for new brain-inspired types of DNNs, such as the Capsule
Networks (CapsNets) [4]. Such CapsNets, and more in gen-
eral advanced DNN models, aim at providing high learning
capabilities. However, these advancements in DNN architec-
tures come with multiple design challenges:

1) High computational complexity: DNNs need special-
ized hardware accelerators to be deployed and executed
at the edge, where the resources are constrained [5].

2) Security: DNN classifiers can be fooled by adversarial
attacks, which are small and imperceptible perturba-
tions added to the inputs [6]. Such a threat is extremely
dangerous for safety-critical applications [7]. Further-
more, integrating means for security during NAS is
a challenging problem, but can enable robust DNN
designs [8], [9], as compared to the regular DNNdesign
flow.

Hence, the problem is: how to design complex DNNs in
an energy-efficient and robust way through an automated
multi-objective NAS framework?

A. LIMITATIONS OF STATE-OF-THE-ART AND SCIENTIFIC
CHALLENGES
Traditionally, the adversarial robustness of a given DNN
is investigated a posteriori, i.e., once the DNN is already
designed. The hardware efficiency of a DNN implemented
on a given hardware accelerator is also a metric that is typ-
ically analyzed a posteriori, thus challenging the feasibility
of its implementation on resource-constrained neuromorphic
and/or IoT devices. We perform a motivational case study to
analyze the adversarial accuracy1 and memory footprint of
different DNNs, illustrating their adversarial robustness and
complexity. We apply the Projected Gradient Descent (PGD)
attack [10] with ε = 0.0001 to the LeNet [11], the
ResNet-20 [12], the CapsNet [4], and the DeepCaps [13],
trained for the CIFAR-102 dataset [14]. The results in Fig. 1
show that the LeNet [11], which is relatively small and shal-
low, is hardware efficient due to its lowmemory footprint, but
relatively more vulnerable to attacks. A more complex DNN
such as the ResNet-20 [12] has a higher memory footprint but
it also exhibits higher adversarial accuracy than the LeNet.
Interestingly, the DeepCaps [13], despite having a smaller
memory footprint than the ResNet-20, is also relatively more
robust against adversarial attacks. The goal of this paper is
to integrate these diverse yet important objectives in a NAS
framework to obtain Pareto-optimal solutions that explore the
potential tradeoffs between different design objectives like
computational complexity, memory, energy, latency, and/or
security.

1We refer to the adversarial accuracy as the DNN test accuracy obtained
when applying the adversarial attacks to every test example, i.e., by giving
adversarial examples as input to the DNN.

2Performing numerous experiments for analyses and evaluation, consti-
tuting many NAS rounds on complex DNNs with CIFAR-10 dataset already
took several weeks to months on our multi-GPU HPC node. Therefore,
testing for bigger dataset is out of our currently available computational
power and memory resource. Nevertheless, we believe that these findings
are highly valuable, and would scale to bigger datasets as well.

FIGURE 1. Adversarial robustness to the PGD attack vs. memory footprint
of LeNet, CapsNet, ResNet-20, and DeepCaps for the CIFAR-10 dataset.

Including the DNN security into the optimization goals of
the NAS is a challenging task, because, besides the challenges
in its representation in the design framework, it might lead to
a massive search space explosion due to several additional
factors and extremely time-consuming training and evalu-
ations of numerous candidate solutions. A wide variety of
adversarial attacks have been proposed in the literature [15],
and it is extremely complex to evaluate the adversarial robust-
ness to different attack algorithms. A recent study in [16]
proposed a method evaluating the DNN robustness to the
PGD attack [10] as the optimization goal of the NAS. On
the contrary, our work performs joint optimizations for the
adversarial robustness and hardware efficiency both, thereby
leading to the increased complexity of the optimization prob-
lem, as well as large training time for evaluating the DNN
robustness. Moreover, it is challenging to model, implement
and evaluate the hardware execution of different DNNs and
CapsNets (including convolutional layers, fully-connected
layers, and dynamic routing) in the NAS design flow.

B. OUR NOVEL CONTRIBUTIONS
To address the above-discussed challenges, we propose the
novel RoHNAS framework (see Figure 2) that integrates mul-
tiple optimization objectives (like hardware efficiency and
adversarial robustness) for diverse types of DNNs, like Con-
volutional Neural Networks (CNNs) and CapsNets. RoHNAS
employs the following key mechanisms:

1) For architectural model flexibility and fast hardware
estimation, we deploy analytical models of the layers
and operations of DNNs and CapsNets, as well as
their mapping and execution on specialized accelera-
tors (Section III-A).

2) To speed-up the robustness evaluation, we analyze
and choose the values of the adversarial perturbations,
which provide valuable differences when performing
the NAS with DNNs subjected to such adversarial per-
turbations (Section III-B).

3) We develop a specialized evolutionary algorithm, based
on the principles of the Non dominated Sorting Genetic
Algorithm II (NSGA-II) method [17], to perform a
multi-objective Pareto-frontier selection, with conjoint
optimization for adversarial robustness, energy, mem-
ory, and latency of DNNs. (Section III-C)

109044 VOLUME 10, 2022

A. Marchisio et al.: RoHNAS: A NAS Framework With Conjoint Optimization

4) To reduce the overall training time, we devise a
fast evaluation methodology for DNNs trained for
a limited number of epochs (Section IV-C), while
the Pareto-optimal solutions are evaluated after full-
training, to obtain the exact results (Section IV-D).

Implementation and Validation Contributions: We have
implemented our RoHNAS using the TensorFlow library [18],
and evaluated more than 900 DNNs for the MNIST, Fashion-
MNIST and CIFAR-10 datasets. Extensive validations are
performed on Nvidia’s multi-V100 Graphics Processing
Unit (GPU) High Performance Computing (HPC) Nodes
requiring weeks to months of experimentation time.

Open-Source Contribution: For reproducible research,
we release the code of the RoHNAS framework at
https://github.com/ehw-fit/rohnas.

FIGURE 2. Overview of our RoHNAS framework.

II. BACKGROUND AND RELATED WORKS
A. ADVERSARIAL ATTACKS
DNNs are now deployed for a wide variety of applications,
including safety-critical ones such as Autonomous Driv-
ing [2], Medicine [19], and Finance [20]. Despite their per-
formance, DNNs have severe security flaws, as adversarial
attacks can fool DNNs with small input perturbations [6].
Many studies [15], [21] have shown that DNNs are vulnerable
to carefully crafted inputs designed to fool them. Very small
imperceptible perturbations added to the data can completely
change the output of the DNN model [22].

It is essential for the attacker to minimize the added adver-
sarial perturbation to avoid its detection. Formally, given an
original input x with a target classification label c with a
DNN model m(), the problem of generating an adversarial
example x∗ can be formulated as a constrained optimization
problem [15]:

x∗ = argmin
x∗

D(x, x∗),

s.t. m(x) = c, m(x∗) = c∗, c 6= c∗ (1)

where D is the distance between two images and the opti-
mization objective is to minimize this adversarial perturba-
tion to make it stealthy. x∗ is considered as an adversarial
example if and only if m(x) 6= m(x∗) and the perturbation
is bounded (D(x, x∗) < ε, where ε > 0).
Goodfellow et al. [23] proposed the fast gradient sign

method (FGSM) to generate adversarial examples by exploit-
ing the gradient of the model w.r.t. the input images, towards
the direction of the highest loss. Afterward, Madry et al. [10]
and Kurakin et al. [24] proposed two different versions of the

projected gradient descent (PGD) attack, an iterative version
of the FGSM that introduces a perturbation α to multiple
smaller steps. After each iteration, the PGD projects the
generated image into a ball with a radius ε, keeping the
perturbation size small. It is a white-box attack and has both
the targeted and untargeted versions. The algorithm consists
of the following iteration:

x∗i = x∗i−1 − projε(α · sign(∇x loss(θ, x, t))) (2)

Further details about different types of adversarial attacks
and defenses can be found in comprehensive surveys such as
[6] and [15]. Moreover, recent works attempted to improve
theDNN robustness against adversarial attacks by hash-based
deep compression [25] or approximate computing [26], thus
requiring significant hardware design overhead.

B. CONVOLUTIONAL AND CAPSULE NETWORK
HARDWARE
A wide variety of hardware architectures has been pro-
posed for accelerating the execution of DNN infer-
ence [27], [28], focusing on improving the performance and
energy-efficiency through compression, dedicated operation
mapping, and specialized hardware design. Recently, hard-
ware architectures for CapsNets have been proposed [29].
CapsNets layers require the execution of operations, such as
dynamic routing, that are not supported by traditional DNN
accelerators but crucial to detect changes in the compositional
structure of the inputs [30].

CapsNets, firstly proposed by the Google Brain’s
team [31], are elaborated DNN models in which the neurons
are grouped together in vector form to compose the capsules.
Each neuron of a capsule encodes spatial information, while
the vector’s length encodes the probability of the entity
being present. While the first architecture proposed in [4]
is composed of only three layers, recently deeper CapsNet
models were proposed [13], [32]. The main components of a
CapsNet are the following:
• Convolutional (Conv) Layer: The CapsNets need one
or more traditional Conv layers to be applied at the
beginning of the network.

• Convolutional or Fully-Connected (FC) Capsule
Layers:A generic CapsNet can contain some Conv cap-
sule layers, whose principle of operation is identical to
that of traditional Conv layers. However, the convolution
is performed between the capsules rather than neurons,
and the activation function needs to be the squash oper-
ation (Eq. 3), which constraints the length of the capsule
vectors in the range [0,1].

y =
|x|2

(1+ |x|)2
x
|x|

(3)

A CapsNet needs necessarily to be ended by a FC
capsule layer, which mimics a traditional FC layer, but
operating with capsules.

• Dynamic Routing: It is possible, but not necessary,
to perform a dynamic routing between two adjacent

VOLUME 10, 2022 109045

A. Marchisio et al.: RoHNAS: A NAS Framework With Conjoint Optimization

capsule layers. The dynamic routing [4] is an iterative
algorithm which associates coupling coefficients to the
capsules predictions. The coupling coefficients of the
capsules predicting the same result with greater confi-
dence are maximized.

Figure 3 shows a simple three-layers CapsNet, as presented
in [4]. CapsNets need to be completed by a reconstruction
network, consisting of FC layers or Transposed Conv layers,
to reconstruct the input image.

FIGURE 3. Architectural diagram of the CapsNet model of [4].

The aforementioned CapsAcc [33] accelerator (see
Figure 4) has been proposed to efficiently deploy the Cap-
sNets in hardware, adapting to the specific needs of the
dynamic routing and the squash operation. CapsAcc dif-
fers from other DNN accelerators for its Activations unit,
which can apply the squash function in addition to the tradi-
tional Rectified Linear Unit (ReLU) and Softmax functions.
Moreover, a Routing Buffer is inserted to store the partial
results generated during the execution of the dynamic routing
algorithm. Dedicated scratchpad memories are employed to
minimize the energy consumption at runtime [34].

FIGURE 4. Architectural diagram of the CapsAcc accelerator of [33].

C. HARDWARE-AWARE NAS AND ROBUST NAS
Traditional NAS algorithms [3], [35], [36] have aimed at
finding a high accurate DNN model for a given task, i.e., the
DNN model which provides the highest accuracy on a
given dataset. For example, the Efficient Neural Architecture
Search (ENAS) algorithm [3] has generated a new architec-
ture with 55.6 perplexity on the Penn Treebank [37] dataset.
Recently, the interest in hardware efficiency has been grow-
ing, leading to designing Hardware-Aware NAS (HA-NAS)
methodologies [38]. The main difference between traditional
NAS and HA-NAS algorithms is that the latter also consider
the hardware-deployment efficiency of candidate models,
e.g., in terms of energy consumption, latency, or memory
footprint. Among the related works, there exist mainly three
types of heuristic search algorithms for the HA-NAS, which
are (1) evolutionary algorithms, (2) reinforcement learning,
and (3) differentiable NAS. The Accuracy-and-Performance-
aware Neural Architecture Search (APNAS) [39], which is
based on reinforcement learning, extends the ENAS algo-
rithm by including the performance of DNNs executed in

hardware in the optimization objectives of the NAS. Atten-
tiveNAS [40] jointly optimizes the DNNs’ accuracy and the
computational complexity in terms of Mega FLoating Point
Operations (MFLOPs). MnasNet [41] takes as an objec-
tive the inference latency and measures it by executing the
candidate models on mobile phones. In [42], an extended
search space is used, which includes architecture parame-
ters, quantization, and hardware parameters, precisely the
tiling factors. Targeting the Field Programmable Gate Arrays
(FPGAs), the FPGA-implementation aware Neural Archi-
tecture Search (FNAS) algorithm [43] uses an analytical
model to consider the latency only. HotNAS [44] targets
energy efficiency by including model compression in the
search space and supporting hardware for compressed mod-
els. During the candidate selection, the Single Path One-
Shot (SPOS) NAS [45] applies latency and FLoating Point
Operations (FLOPs) constraints. HURRICANE [46] gener-
ates a search space tailored to a specific hardware platform,
considering the FLOPs and number of parameters, and their
effect on the latency. The Differentiable NAS (DNAS) frame-
work [47], in which the search space is represented by a
stochastic super net, explores a layer-wise space where each
layer of the CNN corresponds to a different block, and the
learning is conducted by training the super net. These works
are primarily for the CNNmodels, and cannot handle Capsule
Networks.

On the other hand, recent works have also proposed NAS
methodologies to achieve high robustness against adversarial
attacks. In [16], a supernet containing all the possible archi-
tectures in the search space is trained. Then, subnetworks are
sampled from the supernet and evaluated in terms of accuracy
and robustness to adversarial attacks. In [48], the search space
is expanded to include some combinations of layers that
have been proven to be particularly effective against adver-
sarial attacks. However, all the works that focus on NAS for
adversarial attacks have not yet considered the hardware effi-
ciency aspects as conjoint optimization objectives. Moreover,
these works are primarily for the CNN models, and cannot
handle CapsNets. Recently, NASCaps [49] has proposed a
NAS methodology for CapsNets based on an evolutionary
algorithm, but it cannot handle robustness challenges, and
does not explore the tradeoffs between hardware efficiency
and adversarial robustness.
Our RoHNAS framework distinguishes from the previous

works because it combines for the first time hardware effi-
ciency and robustness to adversarial perturbations as joint
optimization goals for the NAS, and targets both CNN and
CapsNets models.

III. RoHNAS FRAMEWORK
Our evolutionary algorithm-based NAS methodology per-
forms a multi-objective search. It automatically searches for
inherently robust yet hardware-efficient DNN models by
selecting Pareto-optimal candidates in terms of robustness,
energy, latency, and memory footprint. The search space
comprises both CNNs and CapsNets. The workflow of our

109046 VOLUME 10, 2022

A. Marchisio et al.: RoHNAS: A NAS Framework With Conjoint Optimization

RoHNAS framework is shown in Figure 5, and is explained in
detail in the following subsections.

FIGURE 5. Overview of our RoHNAS framework and its key functionalities.

The framework’s inputs are the hardware accelerator,
the algorithm for generating the adversarial attack, and the
dataset. After modeling analytically the hardware acceler-
ator, the appropriate values of the adversarial perturbation
to employ in the search are selected. This process, as will
be described more in detail in Section III-B, consists of
analyzing the accuracy vs. adversarial perturbation curve,
and focusing on the high variation region which corresponds
to the highest slope of the curve. After selecting the values
of the adversarial perturbation to employ in the search, the
evolutionary search algorithm (based on the principles of the
NGSA-II genetic algorithm [17]) performs an iterative explo-
ration through crossover, mutation, and best DNN candidate
selection based on the objectives. To speed up the process,
during the evolutionary algorithm, the adversarial robustness
is evaluated after a fast training, i.e., for DNNs trained with
a limited number of epochs, where its number is determined
based on the Pearson Correlation Coefficient [50]. Towards
generating exact robustness results, the set of Pareto-optimal
DNN models are fully-trained, and the robustness against the
adversarial attack on fully-trained DNNs is evaluated.

A. LAYER AND OPERATION MODELING
The RoHNAS framework models each layer through a layer
descriptor, which contains all the relevant architectural
parameters necessary to describe a generic DNN layer using
a position-based representation. As shown in Figure 6, a layer
descriptor contains all the information to construct its related
layer, such as layer type, input feature map (IFM) size, input
channels, input capsules, kernel size, stride size, output fea-
ture map (OFM) size, output channels, and output capsules.
Using these parameters, it is possible to build many different
types of CNN or CapsNet layers. Moreover, such a modular
representation can easily be extended to support different
layer types. Multiple layer descriptors, together with infor-
mation on extra skip connections and resizing of the inputs,
form a genotype, which allows describing various CNN and
CapsNet architectural models.

FIGURE 6. Genotype structure. IFM stands for input feature map, while
OFM means ouput feature map.

To estimate the execution requirements of a DNNmodel on
a specialized DNN hardware accelerator (e.g., CapsAcc [33]
or Tensor ProcessingUnit (TPU) [51]), it is necessary to know
its underlying hardware characteristics, for instance:
• T , the clock period;
• Load_Weights, the number of clock cycles necessary to
load the weights into the Processing Element (PE) array;

• PPEarray, the power consumed by the PE array, here
estimated with the Synopsys Design Compiler tool;

• Ememory, the energy required for one memory access,
here estimated with the CACTI-P tool [52];

Knowing these parameters makes it possible to estimate
the latency, energy consumption, and memory footprint of a
DNN model analytically. From the dimensions of the layers
of a given DNN, we assess:
• wl , the number of weights in a layer;
• sl , the number of values to be summed to obtain an
output value, for each layer;

• fl , the number of feature maps to be multiplied by the
same weight, for each layer;

• cl , the number of clock cycles needed to process a layer.
Given the model and the hardware features, the number of
groups of weights loaded into the array (wPEarray) and the
number of memory accesses (m_acc) can be determined
through Equations 4 and 5, respectively. By computing the
clock cycles (see Eq. 6), it is possible to estimate the latency
and energy consumption, which, in conjunction with the
memory footprint, form the set of hardware parameters com-
puted through Eq. 7.

wPEarray =
⌈

wl
16 ·min (16, sl)

⌉
(4)

m_acc =

{
256, if fl = 1
16 ·max(sl − 15, 1), otherwise

(5)

cl = wl · wPEarray + fl (6)

latency =
∑
l∈L

cl · T

energy =
⌈m_acc

128

⌉
· Ememory

+

∑
l∈L

cl · T · PPEarray

memory footprint =
∑
l∈L

wl (7)

VOLUME 10, 2022 109047

A. Marchisio et al.: RoHNAS: A NAS Framework With Conjoint Optimization

The model has been validated by comparing the
results with the hardware implementation of the Cap-
sAcc [33]. Recent studies in [49] have also shown that the
above-discussed parameters and such analytical models are
sufficient to accurately estimate the latency, energy, and
memory footprint of a given DNN model. In the following,
we discuss the efficacy of our analytical models by comparing
the estimated values with the real values of latency, energy,
and memory requirements. By comparing our analytical
model with the real implementation of the CapsNet [4] on
CapsAcc [33], our model provides accurate estimations of
latency and memory footprint, and underesimates the energy
consumption by around 25%. Such a difference might be due
to other elements of the hardware implementation (e.g., inter-
connection overhead) that are not considered by the analytical
model. Despite this underestimation, the fidelity of our mod-
els is high, i.e., all candidates have similar underestimation
trend, so the selection of the candidates would not be affected
by this underestimation of analytical models. Please note that
our main focus was to have fast estimation with high fidelity.

B. DESIGN SPACE REDUCTION BY SELECTING AN
APPROPRIATE ADVERSARIAL PERTURBATION VALUE
Since the design space can potentially explode by considering
several types and strengths of adversarial perturbations, the
RoHNAS framework restricts the design space by automati-
cally selecting the values of adversarial perturbations to be
used in the NAS for a given dataset. Algorithm 1 summa-
rizes the proposed procedure. For each element of the testing
dataset, the adversarial example is generated through the
PGD algorithm [10] (line 4). Note, here we use PGD for illus-
trative reasons, and other adversarial attack algorithms can
be integrated into our RoHNAS framework. The parameter
ε determines the amount of adversarial perturbation. When
considering the variation of the accuracy w.r.t. ε, as we will
show in Section IV-B, the region in which the slope is highest
is in the middle of the graph, which corresponds to half of
the clean accuracy, i.e., Acc02 when considering that Acc0 is
the clean accuracy. By exploiting this intuition, our algorithm
selects εNAS , which is the value of adversarial perturbation
that provides the closest accuracy to the desired value of
Acc0
2 . The selected value of εNAS is employed in the One

EPS search, which optimizes for the robustness against one
value of perturbation. Moreover, aiming at covering a wider
spectrum of adversarial perturbation range, the Two EPS
search is devised. εlow and εhigh are selected (lines 10-11),
and the NAS is conducted by optimizing for the adversarial
accuracy with both values.

C. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM
The selection of the Pareto-optimal solutions in the RoHNAS
framework is based on the principles of the NSGA-II algo-
rithm [17]. The main core of the search algorithm is iterated
for g times, where each iteration gi represents a generation.
Each generation gi consists of a set of parent candidates Pi,
from which the offspring candidates Qi are generated.

Algorithm 1 Adversarial Perturbation Selection
Input: Deep Neural Network: N ;
Test Dataset: D =

⋃
j
Xj;

Adversarial Perturbation Budget:
εi ∈ E = [εMIN , εMAX];
Output: Perturbation to apply for the NAS: εNAS ;

1 Acc0 = Accuracy(N (D));
2 for i ∈< E > do
3 for j ∈< D > do
4 X ′ij = PGD(N , εi,Xj);
5 end
6 D′i =

⋃
j
X ′ij;

7 Acci = Accuracy(N (D′i));
8 end
9 εNAS = εi : Acci ≈

Acc0
2 ;

10 εlow ≈
εNAS
10 ;

11 εhigh ≈ 3 · εNAS ;

At each generation gi, the offsprings are generated from the
parents via crossover and mutation. To perform the crossover
operation, two parents Pa and Pb are randomly selected from
the whole set of parent candidates. The genotypes of Pa and
Pb are then pseudo-randomly splitted in two parts, obtaining
four genotypes: Pa,1, Pa,2, Pb,1 and Pb,2. Two offsprings are
then obtained concatenating the four genotypes as follows:

Qa = Pa,1&Pb,2 Qb = Pb,1&Pa,2 (8)

To perform a mutation, a random parameter of a random
layer descriptor is selected and modified. In particular, the
kernel size, the stride, the skip connections, and the number
of output capsules can be affected.When the generation of the
offsprings is complete, it is necessary to check the validity of
the solutions and in case remove the invalid candidates.
After the crossover and mutation processes, the set of

candidates is the union of the parents and the offsprings sets.
To select the best candidates, that will then be the parents
in the next generation, the solutions are divided into a series
F1,F2, . . . ,FN of Pareto-fronts, where F1 is the best Pareto-
front. The next-generation parents’ set Pi+1 is filled with the
solutions from the best Pareto-front. To obtain the chosen
number of candidates, it may be necessary to select only a
certain number of solutions from a Pareto-front (e.g., F3 in
Figure 7). In this case, the Pareto-front’s solutions are sorted
by crowding distance, and the best ones are picked.

IV. EVALUATION OF THE RoHNAS FRAMEWORK
A. EXPERIMENTAL SETUP
The flow of our experiments and the tools used to implement
the RoHNAS framework are summarized in Fig. 8. The PGD
adversarial attack algorithm [10] has been implemented with
the CleverHans library [53]. The hardware model has been
implemented using the open-source NASCaps library [49],

109048 VOLUME 10, 2022

A. Marchisio et al.: RoHNAS: A NAS Framework With Conjoint Optimization

FIGURE 7. One iteration of the NSGA-II algorithm.

which is based on the CapsAcc architecture [33] synthesized
using the Synopsys Design Compiler tool, with a 45nm tech-
nology node and a clock period of 3ns. The training and
testing of the DNNs, implemented in TensorFlow [18] have
been running on the GPU-HPC computing nodes equipped
with four NVIDIA Tesla V100-SXM2 GPUs. Note that, our
experiments were running for 2,000 GPU hours with our fast
evaluation method and 8,000 GPU hours for the final training
and PGD attack evaluation. Without such exploration time
reductions, or by considering more complex optimization
problems (e.g., larger datasets or deeper DNN models), the
exploration time would have lasted several GPU months.

FIGURE 8. Tool-flow and setup for conducting the experiments.

The search algorithm is initialized with a random popula-
tion of 10 elements, running for a maximum of 20 iterations
of the genetic loop. The offspring population size is 10, and
the mutation probability is 10%. Each convolutional layer can
be composed of a 3×3, 5×5, or 9×9 kernel, with a stride of
either 1 or 2. The channels and capsule dimensions can both
span between 1 and 64.

B. SELECTION OF ADVERSARIAL PERTURBATION FOR THE
NAS
The amount of adversarial perturbation is a key parameter
to be selected for performing the NAS. Following the pro-
cedure described in Section III-B, the Pareto-optimal DNNs
of the NASCaps library [49] have been tested under the PGD
attack [10], with different values of the adversarial perturba-
tion ε. The results reported in Fig. 9 show that, as expected,
the higher ε is, the lower the DNNs’ accuracy drops. The
selected values for the NAS are reported in Table 1. The
selection process follows the procedure described in Algo-
rithm 1. The One EPS column refers to the search using a

single value of ε, while the Two EPS column refer to a search
conducted with two different values of ε, which are called
εlow and εhigh. Note, a simple dataset like theMNIST requires
a relatively high adversarial perturbation to impact the DNN
robustness. On the other hand, on a more complex dataset like
the CIFAR-10, a smaller perturbation is already sufficient to
misclassify a certain set of inputs.

FIGURE 9. Analysis of the DNN robustness under the PGD attack, with
different adversarial perturbation values, for MNIST, Fashion-MNIST, and
CIFAR-10.

TABLE 1. Selected values of the adversarial perturbation ε for the NAS,
for MNIST, Fashion-MNIST and CIFAR-10 datasets. There are also reported
the values of εlow and εhigh for the Two EPS search, which will be used
for comparison in Section IV-D.

C. RoHNAS RESULTS WITH FAST DNN ROBUSTNESS
EVALUATION
As discussed in Section III, to reduce the exploration time,
our algorithm trains the DNNs only for a limited number
of epochs, which results in a fast robustness evaluation. The
similarity w.r.t. the full-training robustness has been mea-
sured through the Pearson Correlation Coefficient [50], using
the procedure described in [49]. The choice of 10 train-
ing epochs for the CIFAR-10 dataset and 5 epochs for the
Fashion-MNIST and MNIST datasets leverages the tradeoff
between a high correlation and low training time.

The results of the RoHNAS - One EPS with fast robustness
evaluation are reported in Fig. 10. The earliest generation of
the algorithm produces sub-optimal DNN solutions, while
most Pareto-optimal solutions are found in the latest gener-
ation. Note that, for the RoHNAS evaluated on the CIFAR-10
dataset, the latest generations find DNNs that are less robust
to the PGD attack, but still belong to the Pareto-frontier due
to the low energy consumption (see pointer À). Note that,
as highlighted by pointer Á, several candidate DNNs found
in the earliest generations are highly vulnerable to the PGD
attack and are automatically discarded by the Pareto-frontier
selection.

VOLUME 10, 2022 109049

A. Marchisio et al.: RoHNAS: A NAS Framework With Conjoint Optimization

FIGURE 10. RoHNAS’ fast evaluation of DNN robustness under PGD
attack, showing tradeoffs w.r.t. energy, latency and memory footprint.
(a) Results for CIFAR-10. (b) Results for Fashion-MNIST. (c) Results for
MNIST.

D. RoHNAS EXACT RESULTS FOR PARETO-OPTIMAL DNNs
The Pareto-optimal DNNs that are selected at the previous
stage have been fully-trained to obtain an exact robustness
evaluation. The DNNs for the MNIST and Fashion-MNIST
datasets have been trained for 100 epochs, while 300 epochs
of training has been used for the DNNs targeting the
CIFAR-10 dataset. The results reported in Fig. 11 show
tradeoffs between the design objectives. As highlighted
by pointer À in Fig. 11, a Pareto-optimal solution found
by the RoHNAS framework for the CIFAR-10 dataset
achieves 86.07% accuracy while having an energy con-
sumption of 38.63 mJ, a memory footprint of 11.85 MiB,
and a latency of 4.47 ms. Similarly, the solution for the
Fashion-MNIST dataset pointed in Á reaches an accuracy
of 93.40% while having 6.40 ms latency, 61.19 mJ energy,
and 16.82 MiB memory. Note that, while the Two EPS search
finds Pareto-optimal solutions in the middle range of energy
(see pointer Â), other interesting low-energy solutions are
found by the One EPS search, as indicated in pointer Ã.
The Pareto-optimal DNNs’s search for MNIST covers a more
heterogeneous range of values, leveraging tradeoffs between
different objectives (see pointer Ä).

The RoHNAS framework has been compared with other
state-of-the-art DNN and CapsNet architectures, and NAS
methodologies that include capsule layers in the search space.
Fig. 12 shows the comparison between our RoHNAS frame-
work (One EPS setting), NASCaps [49], CapsNet [4] and
DeepCaps [13]. For the MNIST dataset, the Pareto-optimal
solutions generated with the RoHNAS framework are par-
ticularly robust for a high range of perturbation ε (see
pointerÀ). Indeed, the accuracy starts dropping at around one
order of magnitude higher ε than NASCaps (see pointer Á).
For the Fashion-MNIST, the robustness behavior of the
Pareto-optimal DNNs selected with the RoHNAS frameweork
is closely related to the CapsNet. Instead, for the CIFAR-10
dataset, the RoHNAS DNNs’ behavior is similar to the
DeepCaps for low values of ε (see pointer Â), while a

FIGURE 11. RoHNAS’ exact robustness evaluation of Pareto-optimal DNN
solutions under the PGD attack, showing tradeoffs w.r.t.
hardware-efficiency. (a) Results for CIFAR-10. (b) Results for
Fashion-MNIST. (c) Results for MNIST.

Pareto-optimal RoHNAS solution offer a respectable robust-
ness also with higher adversarial perturbation (see pointerÃ).

FIGURE 12. Evaluation of the RoHNAS framework with the One EPS
setting, compared to other state-of-the-art architectures and NAS
algorithms.

109050 VOLUME 10, 2022

A. Marchisio et al.: RoHNAS: A NAS Framework With Conjoint Optimization

The evaluation of the RoHNAS framework with the Two
EPS setting is shown in Fig. 13. Compared to the One EPS
setting, the NAS produces different levels of robustness w.t.r.
ε for the MNIST and Fashion-MNIST datasets (see pointer À
in Fig. 13). However, for the CIFAR-10 dataset, the Two EPS
search leads to worse results than the One EPS counterpart
(see pointer Á).

FIGURE 13. Evaluation of the RoHNAS framework with the Two EPS
setting, compared to other state-of-the-art architectures and NAS
algorithms.

E. RoHNAS RESULTS VS. RANDOM SEARCH
The RoHNAS framework based on the evolutionary search
algorithm has been compared to a modified version using
random search. The results of the fast DNN robustness
evaluation for the Two EPS configuration are shown in
Figures 14 and 15, where Fig. 14 shows the accuracy mea-
sured when the adversarial perturbation value for the PGD
attack is εhigh, while Fig. 15 uses εlow. Pointer À in
Fig. 14 indicates the Pareto frontier for the CIFAR-10 dataset
obtained by random search, which is outperformed by several
candidate DNN models found using the NSGA-II algorithm
of our RoHNAS framework (see pointer Á in Fig. 14). For the
Fashion-MNIST dataset, some candidate DNNs found using
the random search show high hardware efficiency, but the
solution generated through the NSGA-II algorithm indicated
by pointer Â shows higher robustness. Also for the MNIST
dataset, the NSGA-II generates solutions that have better

tradeoffs between the objectives, compared to using random
search (see pointer Ã).

FIGURE 14. RoHNAS’ fast evaluation of DNN robustness under PGD
attack in the Two EPS setting using the εhigh value, compared to the
solutions found with random search, showing tradeoffs w.r.t. energy,
latency, and memory footprint.

FIGURE 15. RoHNAS’ fast evaluation of DNN robustness under PGD
attack in the Two EPS setting using the εlow value, compared to the
solutions found with random search, showing tradeoffs w.r.t. energy,
latency, and memory footprint.

Similar observations can be made when the adversarial
perturbation value for the PGD attack is εlow. As indicated by
pointer À in Fig. 15, several candidate DNN models for the
CIFAR-10 dataset found using the NSGA-II algorithm have
better tradeoffs than the Pareto-frontier obtained with random
search. However, for the Fashion-MNIST dataset, the solu-
tions with high hardware efficiency (especially low energy
and low latency) are found by random search (see pointer Á).
On the other hand, the NSGA-II algorithm generates

VOLUME 10, 2022 109051

A. Marchisio et al.: RoHNAS: A NAS Framework With Conjoint Optimization

solutions with higher hardware efficiency for the MNIST
dataset (see pointer Â).
The Pareto-optimal DNNs selected using random search

for the Two EPS setting are fully-trained and compared to the
results of the RoHNAS framework in Fig. 16. As highlighted
by pointer À, the Pareto-optimal solutions generated by both
algorithms are robust for a high range of perturbation val-
ues ε. However, the key differences can be observed in some
curves belonging to theRoHNAS search, which exhibit higher
robustness than the curves obtained with the random search
(see pointer Á in Fig. 16).

FIGURE 16. Evaluation of the RoHNAS framework with the Two EPS
setting, compared to the random search.

Our framework supports the integration of different search
techniques. Therefore, depending upon the requirements of a
system, different search techniques can be run and the best
possible solutions can be picked. However, this will lead to
a higher experimentation time. Therefore, we recommend
using the NSGA-II search algorithm that outperforms the
random search in most of the cases.

V. CONCLUSION
In this paper, we proposed RoHNAS, a novel framework
for the Neural Architecture Search, jointly optimizing for
the hardware efficiency (latency, energy, and memory foot-
print) and robustness against adversarial attacks. Our opti-
mizations for reducing the search space and the exploration
time allow finding a set of CNNs and CapsNets, which are
Pareto-optimal w.r.t. the above-discussed objectives, in a fast

fashion. In our experiments, 900 different DNN models have
been evaluated, using 2,000 GPU hours with our fast training
settings. Thanks to our RoHNAS framework, the deployment
of robust DNNs in resource-constrained IoT/neuromorphic
edge devices is made possible. We open-source our frame-
work at https://github.com/ehw-fit/rohnas.

REFERENCES
[1] M. Capra, B. Bussolino, A. Marchisio, G. Masera, M. Martina, and

M. Shafique, ‘‘Hardware and software optimizations for accelerating
deep neural networks: Survey of current trends, challenges, and the
road ahead,’’ IEEE Access, vol. 8, pp. 225134–225180, 2020, doi:
10.1109/ACCESS.2020.3039858.

[2] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, ‘‘A survey of deep
learning techniques for autonomous driving,’’ J. Field Robot., vol. 37, no. 3,
pp. 362–386, Apr. 2020, doi: 10.1002/rob.21918.

[3] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, ‘‘Effi-
cient neural architecture search via parameters sharing,’’ in Proc. 35th
Int. Conf. Mach. Learn. (ICML), vol. 80, J. G. Dy and A. Krause,
Eds., Stockholm, Sweden, Jul. 2018, pp. 4092–4101. [Online]. Available:
http://proceedings.mlr.press/v80/pham18a.html

[4] S. Sabour, N. Frosst, and G. E. Hinton, ‘‘Dynamic routing between
capsules,’’ in Proc. Adv. Neural Inf. Process. Syst. 30, Annu. Conf.
Neural Inf. Process. Syst., I. Guyon, U. von Luxburg, S. Bengio,
H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds.,
Long Beach, CA, USA, Dec. 2017, pp. 3856–3866. [Online]. Available:
https://proceedings.neurips.cc/paper/2017/hash/2cad8fa47bbef282bad
bb8de5374b894-Abstract.html

[5] A. Marchisio, M. A. Hanif, F. Khalid, G. Plastiras, C. Kyrkou,
T. Theocharides, and M. Shafique, ‘‘Deep learning for edge computing:
Current trends, cross-layer optimizations, and open research challenges,’’
in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Miami, FL, USA,
Jul. 2019, pp. 553–559, doi: 10.1109/ISVLSI.2019.00105.

[6] M. Shafique, M. Naseer, T. Theocharides, C. Kyrkou, O. Mutlu, L. Orosa,
and J. Choi, ‘‘Robust machine learning systems: Challenges, Current
trends, perspectives, and the road ahead,’’ IEEE Des. Test, vol. 37, no. 2,
pp. 30–57, Apr. 2020, doi: 10.1109/MDAT.2020.2971217.

[7] C.-H. Cheng, F. Diehl, G. Hinz, Y. Hamza, G. Nüehrenberg, M. Rickert,
H. Ruess, and M. Truong-Le, ‘‘Neural networks for safety-critical
applications—Challenges, experiments and perspectives,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), J. Madsen and
A. K. Coskun, Eds., Dresden, Germany, Mar. 2018, pp. 1005–1006,
doi: 10.23919/DATE.2018.8342158.

[8] S. Dave, A. Marchisio, M. A. Hanif, A. Guesmi, A. Shrivastava,
I. Alouani, and M. Shafique, ‘‘Special session: Towards an agile design
methodology for efficient, reliable, and secure ML systems,’’ CoRR,
vol. abs/2204.09514, pp. 1–14, Apr. 2022.

[9] M. Shafique, A. Marchisio, R. V. W. Putra, and M. A. Hanif,
‘‘Towards energy-efficient and secure edge AI: A cross-layer framework
ICCAD special session paper,’’ in Proc. IEEE/ACM Int. Conf. Comput.
Aided Design (ICCAD), Munich, Germany, Nov. 2021, pp. 1–9, doi:
10.1109/ICCAD51958.2021.9643539.

[10] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
‘‘Towards deep learning models resistant to adversarial attacks,’’
in Proc. 6th Int. Conf. Learn. Represent. (ICLR), Vancouver, BC,
Canada, Apr./May 2018, pp. 1–28. [Online]. Available: https://openreview.
net/forum?id=rJzIBfZAb

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998, doi: 10.1109/5.726791.

[12] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Las Vegas, NV, USA: IEEE Computer Society, Jun. 2016, pp. 770–778,
doi: 10.1109/CVPR.2016.90.

[13] J. Rajasegaran, V. Jayasundara, S. Jayasekara, H. Jayasekara,
S. Seneviratne, and R. Rodrigo, ‘‘DeepCaps: Going deeper with capsule
networks,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR). Long Beach, CA, USA: Computer Vision Foundation, Jun. 2019,
pp. 10725–10733. [Online]. Available: http://openaccess.thecvf.com/
content_CVPR_2019/html/Rajasegaran_DeepCaps_Going_Deeper_
With_Capsule_Networks_CVPR_2019_paper.html

109052 VOLUME 10, 2022

http://dx.doi.org/10.1109/ACCESS.2020.3039858
http://dx.doi.org/10.1002/rob.21918
http://dx.doi.org/10.1109/ISVLSI.2019.00105
http://dx.doi.org/10.1109/MDAT.2020.2971217
http://dx.doi.org/10.23919/DATE.2018.8342158
http://dx.doi.org/10.1109/ICCAD51958.2021.9643539
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/CVPR.2016.90

A. Marchisio et al.: RoHNAS: A NAS Framework With Conjoint Optimization

[14] A. Krizhevsky, ‘‘Learning multiple layers of features from tiny images,’’
Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, Tech. Rep.,
2009.

[15] X. Yuan, P. He, Q. Zhu, and X. Li, ‘‘Adversarial examples:
Attacks and defenses for deep learning,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 9, pp. 2805–2824, Sep. 2019, doi:
10.1109/TNNLS.2018.2886017.

[16] M. Guo, Y. Yang, R. Xu, Z. Liu, and D. Lin, ‘‘When NAS meets
robustness: In search of robust architectures against adversarial
attacks,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR). Seattle, WA, USA: Computer Vision Foundation, Jun. 2020,
pp. 628–637. [Online]. Available: https://openaccess.thecvf.com/content_
CVPR_2020/html/Guo_When_NAS_Meets_Robustness_In_Search_of_
Robust_Architectures_Against_CVPR_2020_paper.html

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Aug. 2002, doi: 10.1109/4235.996017.

[18] M. Abadi et al., ‘‘TensorFlow: A system for large-scale machine learn-
ing,’’ in Proc. 12th USENIX Symp. Operating Syst. Design Implement.
(OSDI), K. Keeton and T. Roscoe, Eds. Savannah, GA, USA: USENIX
Association, Nov. 2016, pp. 265–283. [Online]. Available: https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/abadi

[19] C. Barata and J. S. Marques, ‘‘Deep learning for skin cancer diag-
nosis with hierarchical architectures,’’ in Proc. IEEE 16th Int. Symp.
Biomed. Imag. (ISBI), Venice, Italy, Apr. 2019, pp. 841–845, doi:
10.1109/ISBI.2019.8759561.

[20] R. Zanc, T. Cioara, and I. Anghel, ‘‘Forecasting financial mar-
kets using deep learning,’’ in Proc. IEEE 15th Int. Conf. Intell.
Comput. Commun. Process. (ICCP), S. Nedevschi, R. Potolea, and
R. R. Slavescu, Eds., Cluj-Napoca, Romania, Sep. 2019, pp. 459–466, doi:
10.1109/ICCP48234.2019.8959715.

[21] C. Szegedy,W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow,
and R. Fergus, ‘‘Intriguing properties of neural networks,’’ in Proc. 2nd Int.
Conf. Learn. Represent. (ICLR), Y. Bengio and Y. LeCun, Eds., Banff, AB,
Canada, Apr. 2014, pp. 1–10.

[22] J. J. Zhang, K. Liu, F. Khalid, M. A. Hanif, S. Rehman, T. Theocharides,
A. Artussi, M. Shafique, and S. Garg, ‘‘Building robust machine learning
systems: Current progress, research challenges, and opportunities,’’ in
Proc. 56th Annu. Design Autom. Conf., Las Vegas, NV, USA, Jun. 2019,
p. 175, doi: 10.1145/3316781.3323472.

[23] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harnessing
adversarial examples,’’ in Proc. 3rd Int. Conf. Learn. Represent. (ICLR),
Y. Bengio and Y. LeCun, Eds., San Diego, CA, USA, May 2015, pp. 1–11.

[24] A. Kurakin, I. J. Goodfellow, and S. Bengio, ‘‘Adversarial exam-
ples in the physical world,’’ in Proc. 5th Int. Conf. Learn. Repre-
sent. (ICLR), Toulon, France, Apr. 2017, pp. 1–14. [Online]. Available:
https://openreview.net/forum?id=HJGU3Rodl

[25] Q. Liu, T. Liu, Z. Liu, Y. Wang, Y. Jin, and W. Wen, ‘‘Security analy-
sis and enhancement of model compressed deep learning systems under
adversarial attacks,’’ in Proc. 23rd Asia South Pacific Design Autom. Conf.
(ASP-DAC), Y. Shin, Ed., Jeju, South Korea, Jan. 2018, pp. 721–726, doi:
10.1109/ASPDAC.2018.8297407.

[26] A. Guesmi, I. Alouani, K. N. Khasawneh, M. Baklouti, T. Frikha, M. Abid,
and N. Abu-Ghazaleh, ‘‘Defensive approximation: Securing CNNs using
approximate computing,’’ in Proc. 26th ACM Int. Conf. Architectural
Support Program. Lang. Operating Syst., T. Sherwood, E. D. Berger, and
C. Kozyrakis, Eds. Virtual Event, USA, Apr. 2021, pp. 990–1003, doi:
10.1145/3445814.3446747.

[27] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, ‘‘Efficient processing of
deep neural networks: A tutorial and survey,’’ Proc. IEEE, vol. 105, no. 12,
pp. 2295–2329, Dec. 2017, doi: 10.1109/JPROC.2017.2761740.

[28] M. Capra, B. Bussolino, A. Marchisio, M. Shafique, G. Masera, and
M. Martina, ‘‘An updated survey of efficient hardware architectures for
accelerating deep convolutional neural networks,’’ Future Internet, vol. 12,
no. 7, p. 113, Jul. 2020. [Online]. Available: https://www.mdpi.com/1999-
5903/12/7/113

[29] A. Marchisio, V. Mrazek, M. A. Hanif, andM. Shafique, ‘‘FEECA: Design
space exploration for low-latency and energy-efficient capsule network
accelerators,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 29,
no. 4, pp. 716–729, Apr. 2021, doi: 10.1109/TVLSI.2021.3059518.

[30] S. R. Venkatraman, A. Anand, S. Balasubramanian, and R. R. Sarma,
‘‘Learning compositional structures for deep learning: Why routing-by-
agreement is necessary,’’ CoRR, vol. abs/2010.01488, pp. 1–11, Oct. 2020.

[31] G. E. Hinton, A. Krizhevsky, and S. D. Wang, ‘‘Transforming auto-
encoders,’’ in Artificial Neural Networks and Machine Learning—ICANN
2011 (Lecture Notes in Computer Science), vol. 6791, T. Honkela,
W. Duch, M. A. Girolami, and S. Kaski, Eds. Espoo, Finland: Springer,
Jun. 2011, pp. 44–51, doi: 10.1007/978-3-642-21735-7_6.

[32] K. Sun, L. Yuan, H. Xu, and X. Wen, ‘‘Deep tensor capsule
network,’’ IEEE Access, vol. 8, pp. 96920–96933, 2020, doi:
10.1109/ACCESS.2020.2996282.

[33] A.Marchisio, M. A. Hanif, andM. Shafique, ‘‘CapsAcc: An efficient hard-
ware accelerator for CapsuleNets with data reuse,’’ inProc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), J. Teich and F. Fummi, Eds., Florence, Italy,
Mar. 2019, pp. 964–967, doi: 10.23919/DATE.2019.8714922.

[34] A. Marchisio, V. Mrazek, M. A. Hanif, and M. Shafique, ‘‘DESCNet:
Developing efficient scratchpad memories for capsule network hardware,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 9,
pp. 1768–1781, Sep. 2021, doi: 10.1109/TCAD.2020.3030610.

[35] B. Zoph and Q. V. Le, ‘‘Neural architecture search with
reinforcement learning,’’ in Proc. 5th Int. Conf. Learn. Represent.
(ICLR), Toulon, France, Apr. 2017, pp. 1–16. [Online]. Available:
https://openreview.net/forum?id=r1Ue8Hcxg

[36] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J. Liu,
and D. Marculescu, ‘‘Single-path NAS: Designing hardware-efficient con-
vnets in less than 4 hours,’’ in Machine Learning and Knowledge Dis-
covery in Databases (Lecture Notes in Computer Science), vol. 11907.
Würzburg, Germany: Springer, Sep. 2019, pp. 481–497, doi: 10.1007/978-
3-030-46147-8_29.

[37] M. P. Marcus and M. A. Marcinkiewicz, and B. Santorini, ‘‘Build-
ing a large annotated corpus of English: The Penn treebank,’’ Com-
put. Linguistics, vol. 19, no. 2, pp. 313–330, 1993. [Online]. Available:
https://www.aclweb.org/anthology/J93-2004

[38] L. Sekanina, ‘‘Neural architecture search and hardware accelerator co-
search: A survey,’’ IEEE Access, vol. 9, pp. 151337–151362, 2021, doi:
10.1109/ACCESS.2021.3126685.

[39] P. Achararit, M. A. Hanif, R. V. W. Putra, M. Shafique, and
Y. Hara-Azumi, ‘‘APNAS: Accuracy-and-performance-aware neural
architecture search for neural hardware accelerators,’’ IEEE Access,
vol. 8, pp. 165319–165334, 2020, doi: 10.1109/ACCESS.2020.
3022327.

[40] D. Wang, M. Li, C. Gong, and V. Chandra, ‘‘AttentiveNAS: Improving
neural architecture search via attentive sampling,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR). New York, NY, USA:
Computer Vision Foundation, Jun. 2021, pp. 6418–6427. [Online].
Available: https://openaccess.thecvf.com/content/CVPR2021/html/Wang
_AttentiveNAS_Improving_Neural_Architecture_Search_via_Attentive
_Sampling_CVPR_2021_paper.html

[41] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and
Q. V. Le, ‘‘MnasNet: Platform-aware neural architecture search for
mobile,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR).
Long Beach, CA, USA: Computer Vision Foundation, Jun. 2019,
pp. 2820–2828. [Online]. Available: http://openaccess.thecvf.com/
content_CVPR_2019/html/Tan_MnasNet_Platform-Aware_Neural_
Architecture_Search_for_Mobile_CVPR_2019_paper.html

[42] Q. Lu,W. Jiang, X. Xu, Y. Shi, and J. Hu, ‘‘On neural architecture search for
resource-constrained hardware platforms,’’ CoRR, vol. abs/1911.00105,
pp. 1–8, Oct. 2019.

[43] W. Jiang, X. Zhang, E. H.-M. Sha, L. Yang, Q. Zhuge, Y. Shi,
and J. Hu, ‘‘Accuracy vs. efficiency: Achieving both through FPGA-
implementation aware neural architecture search,’’ in Proc. 56th Annu.
Design Autom. Conf., Las Vegas, NV, USA, Jun. 2019, p. 5, doi:
10.1145/3316781.3317757.

[44] W. Jiang, L. Yang, S. Dasgupta, J. Hu, and Y. Shi, ‘‘Standing on the
shoulders of giants: Hardware and neural architecture co-search with
hot start,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 39, no. 11, pp. 4154–4165, Nov. 2020, doi: 10.1109/TCAD.2020.
3012863.

[45] Z. Guo, X. Zhang, H.Mu,W.Heng, Z. Liu, Y.Wei, and J. Sun, ‘‘Single path
one-shot neural architecture search with uniform sampling,’’ in Computer
Vision—ECCV 2020 (Lecture Notes in Computer Science), vol. 12361.
Glasgow, U.K.: Springer, Aug. 2020, pp. 544–560, doi: 10.1007/978-3-
030-58517-4_32.

[46] L. L. Zhang, Y. Yang, Y. Jiang, W. Zhu, and Y. Liu, ‘‘Hardware-aware one-
shot neural architecture search in coordinate ascent framework,’’ CoRR,
vol. abs/1910.11609, pp. 1–10, Apr. 2019.

VOLUME 10, 2022 109053

http://dx.doi.org/10.1109/TNNLS.2018.2886017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/ISBI.2019.8759561
http://dx.doi.org/10.1109/ICCP48234.2019.8959715
http://dx.doi.org/10.1145/3316781.3323472
http://dx.doi.org/10.1109/ASPDAC.2018.8297407
http://dx.doi.org/10.1145/3445814.3446747
http://dx.doi.org/10.1109/JPROC.2017.2761740
http://dx.doi.org/10.1109/TVLSI.2021.3059518
http://dx.doi.org/10.1007/978-3-642-21735-7_6
http://dx.doi.org/10.1109/ACCESS.2020.2996282
http://dx.doi.org/10.23919/DATE.2019.8714922
http://dx.doi.org/10.1109/TCAD.2020.3030610
http://dx.doi.org/10.1007/978-3-030-46147-8_29
http://dx.doi.org/10.1007/978-3-030-46147-8_29
http://dx.doi.org/10.1109/ACCESS.2021.3126685
http://dx.doi.org/10.1109/ACCESS.2020.3022327
http://dx.doi.org/10.1109/ACCESS.2020.3022327
http://dx.doi.org/10.1145/3316781.3317757
http://dx.doi.org/10.1109/TCAD.2020.3012863
http://dx.doi.org/10.1109/TCAD.2020.3012863
http://dx.doi.org/10.1007/978-3-030-58517-4_32
http://dx.doi.org/10.1007/978-3-030-58517-4_32

A. Marchisio et al.: RoHNAS: A NAS Framework With Conjoint Optimization

[47] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia,
and K. Keutzer, ‘‘FBNet: Hardware-aware efficient convnet design via
differentiable neural architecture search,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR). Long Beach, CA, USA: Computer Vision
Foundation, Jun. 2019, pp. 10734–10742. [Online]. Available: http://
openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-
Aware_Efficient_ConvNet_Design_via_Differentiable_Neural
_Architecture_Search_CVPR_2019_paper.html

[48] S. Kotyan and D. V. Vargas, ‘‘Evolving robust neural architectures to
defend from adversarial attacks,’’ in Proc. Workshop Artif. Intell. Saf.,
29th Int. Joint Conf. Artif. Intell., 17th Pacific Rim Int. Conf. Artif.
Intell. (IJCAI-PRICAI), vol. 2640, H. Espinoza, J. McDermid, X. Huang,
M. Castillo-Effen, X. C. Chen, J. Hernández-Orallo, S. Ó. Héigeartaigh,
and R. Mallah, Eds., Yokohama, Japan, Jan. 2021, pp. 1–8. [Online]. Avail-
able: http://ceur-ws.org/Vol-2640/paper_1.pdf

[49] A. Marchisio, A. Massa, V. Mrazek, B. Bussolino, M. Martina, and
M. Shafique, ‘‘NASCaps: A framework for neural architecture search
to optimize the accuracy and hardware efficiency of convolutional cap-
sule networks,’’ in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), San Diego, CA, USA, Nov. 2020, pp. 114:1–114:9, doi:
10.1145/3400302.3415731.

[50] K. Pearson, ‘‘Note on regression and inheritance in the case of two par-
ents,’’ Proc. Roy. Soc. London, vol. 58, pp. 240–242, Jan. 1895. [Online].
Available: http://www.jstor.org/stable/115794

[51] N. P. Jouppi et al., ‘‘In-datacenter performance analysis of a tensor process-
ing unit,’’ in Proc. 44th Annu. Int. Symp. Comput. Archit. (ISCA), Toronto,
ON, Canada, Jun. 2017, pp. 1–12, doi: 10.1145/3079856.3080246.

[52] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, ‘‘CACTI-
P: Architecture-level modeling for SRAM-based structures with advanced
leakage reduction techniques,’’ in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Design (ICCAD). San Jose, CA, USA: IEEE Computer Society,
Nov. 2011, pp. 694–701, doi: 10.1109/ICCAD.2011.6105405.

[53] I. J. Goodfellow, N. Papernot, and P. D. McDaniel, ‘‘cleverhans V0.1:
An adversarial machine learning library,’’ CoRR, vol. abs/1610.00768,
pp. 1–5, Oct. 2016.

ALBERTO MARCHISIO (Graduate Student
Member, IEEE) received the B.Sc. and M.Sc.
degrees in electronic engineering from the Politec-
nico di Torino, Turin, Italy, in October 2015 and
April 2018, respectively. He is currently pur-
suing the Ph.D. degree with the Computer
Architecture and Robust Energy-Efficient Tech-
nologies (CARE-Tech.) Laboratory, Institute of
Computer Engineering, Technische Universität
Wien (TUWien), Vienna, Austria, under the super-

vision of Dr. Muhammad Shafique. He has coauthored more than 20 papers
in prestigious international conferences and journals. His research interests
include hardware and software optimizations for machine learning, brain-
inspired computing, VLSI architecture design, emerging computing tech-
nologies, robust design, and approximate computing for energy efficiency.
He received the honorable mention at the Italian National Finals of Maths
Olympic Games, in 2012, and the Richard Newton Young Fellow Award,
in 2019.

VOJTECH MRAZEK (Member, IEEE) received
the Ing. and Ph.D. degrees in information technol-
ogy from the Faculty of Information Technology,
Brno University of Technology, Czech Republic,
in 2014 and 2018, respectively. He was a Vis-
iting Postdoctoral Researcher at the Department
of Informatics, Institute of Computer Engineering,
Technische Universität Wien (TU Wien), Vienna,
Austria. He is currently an Assistant Professor at
the Evolvable Hardware Group, Faculty of Infor-

mation Technology. His research interests include approximate computing,
genetic programming, and machine learning. He has authored or coauthored
over 40 conference/journal articles focused on approximate computing and
evolvable hardware. He received several awards for his research in approxi-
mate computing, including the Joseph Fourier Award, in 2018, for research
in computer science and engineering.

ANDREA MASSA received the B.Sc. degree in
electrical and electronic engineering from the Uni-
versity of Cagliari, Italy, in October 2017, and the
M.Sc. degree in electronic engineering from the
Politecnico di Torino, Turin, Italy, in July 2020.
He is currently a Hardware and Software Designer
at Computer Company, Turin. His research inter-
ests include the fields of image processing, com-
puter architecture, machine learning, deep neural
networks, and genetic algorithms. His previous

research work focused on image processing techniques and image reg-
istration algorithms applied to real-time automatic camera calibration in
the W7-X fusion reactor at the Max Planck Institute for Plasma Physics,
Greifswald, Germany, and it was carried out within the activities of the Uni-
versity of Cagliari in different EUROfusion Tasks and Grants. In 2020, his
M.Sc. thesis work focused on the development of a hardware-aware neural
architecture search framework which resulted into a paper that has been
accepted for the IEEE/ACM International Conference on Computer-Aided
Design (ICCAD 2020).

BEATRICE BUSSOLINO (Member, IEEE)
received the B.Sc. and M.Sc. degrees in elec-
tronic engineering from the Politecnico di Torino,
Turin, Italy, in October 2017 and October 2019,
respectively, where she is currently pursuing the
Ph.D. degree in electrical, electronics and com-
munications engineering under the supervision of
Prof. MaurizioMartina. Her current research inter-
ests include the field of machine learning and deep
neural networks (DNNs) in particular. The focus

of her research activity is the development of on-chip architectures for the
edge deployment of DNNs. In 2020, she received the Richard Newton Young
Fellow Award and won the DAC Young Fellow Poster Presentation Award.

MAURIZIO MARTINA (Senior Member, IEEE)
received the M.S. and Ph.D. degrees in electri-
cal engineering from the Politecnico di Torino,
Italy, in 2000 and 2004, respectively. He is cur-
rently a Full Professor with the VLSI-Laboratory
Group, Politecnico di Torino. His research inter-
ests include computer architecture and VLSI
design of architectures for digital signal process-
ing, video coding, communications, networking,
artificial intelligence,machine learning, and event-

based processing. He edited one book and published three book chapters
on VLSI architectures and digital circuits for video coding, wireless com-
munications, and error correcting codes. He has more than 100 scientific
publications and is the coauthor of two patents. He is currently an Asso-
ciate Editor of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR

PAPERS. He had been part of an Organizing and Technical Committee of
several international conferences, including BioCAS 2017, ICECS 2019, and
AICAS 2020. Currently, he is the Counselor of the IEEE Student Branch at
the Politecnico di Torino and a Professional Member of IEEE HKN.

109054 VOLUME 10, 2022

http://dx.doi.org/10.1145/3400302.3415731
http://dx.doi.org/10.1145/3079856.3080246
http://dx.doi.org/10.1109/ICCAD.2011.6105405

A. Marchisio et al.: RoHNAS: A NAS Framework With Conjoint Optimization

MUHAMMAD SHAFIQUE (Senior Member,
IEEE) received the Ph.D. degree in computer sci-
ence from the Karlsruhe Institute of Technology
(KIT), Germany, in 2011. Afterwards, he estab-
lished and led a highly recognized research group
at KIT for several years and conducted impact-
ful collaborative research and development activi-
ties across the globe. In October 2016, he joined
the Faculty of Informatics, Institute of Com-
puter Engineering, Technische Universität Wien

(TU Wien), Vienna, Austria, as a Full Professor in computer architec-
ture and robust, energy-efficient technologies. Since September 2020,
he has been with New York University (NYU) Abu Dhabi, United Arab
Emirates, where he is currently a Full Professor and the Director of
the eBrain Laboratory and a Global Network Professor at the Tandon
School of Engineering, NYU-New York City, USA. He is also a Co-PI/an
Investigator in multiple NYUAD Centers, including the Center of Arti-
ficial Intelligence and Robotics (CAIR), the Center of Cyber Security
(CCS), the Center for InTeractIng urban nEtworkS (CITIES), and the
Center for Quantum and Topological Systems (CQTS). His research
interests include AI & machine learning hardware and system-level design,

brain-inspired computing, quantummachine learning, cognitive autonomous
systems, wearable healthcare, energy-efficient systems, robust computing,
hardware security, emerging technologies, FPGAs, MPSoCs, and embedded
systems. His research has a special focus on cross-layer analysis, mod-
eling, design, and optimization of computing and memory systems. The
researched technologies and tools are deployed in application use cases
from Internet of Things (IoT), smart cyber-physical systems (CPS), and
ICT for development (ICT4D) domains. He has given several keynotes,
invited talks, tutorials, and organized many special sessions at premier
venues. He has served as the PC chair, the general chair, the track chair,
and a PC member for several prestigious IEEE/ACM conferences. He holds
one U.S. patent, has coauthored six books, more than ten book chapters,
more than 350 papers in premier journals and conferences, and more than
50 archive articles. He received the 2015 ACM/SIGDA Outstanding New
Faculty Award, the AI 2000 Chip Technology Most Influential Scholar
Award, in 2020 and 2022, the ASPIRE AARE Research Excellence Award,
in 2021, six gold medals, and several best paper awards and nominations at
prestigious conferences. He is a Senior Member of IEEE Signal Processing
Society (SPS) and amember of the ACM, SIGARCH, SIGDA, SIGBED, and
HIPEAC.

VOLUME 10, 2022 109055

