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Abstract
We consider the discretization of elliptic boundary-value problems by variational
physics-informed neural networks (VPINNs), in which test functions are continuous,
piecewise linear functions on a triangulation of the domain. We define an a posteriori
error estimator, made of a residual-type term, a loss-function term, and data oscilla-
tion terms. We prove that the estimator is both reliable and efficient in controlling the
energy norm of the error between the exact and VPINN solutions. Numerical results
are in excellent agreement with the theoretical predictions.

Keywords Deep neural networks · A posteriori error estimators · Petrov–Galerkin
discretizations · Elliptic boundary-value problems

Mathematics Subject Classification 35A01 · 65L10 · 65L12 · 65L20 · 65L70

1 Introduction

The possibility of using deep-learning tools for solving complex physical models has
attracted the attention of many scientists over the last few years. We have in mind in
this paper models that are mathematically described by partial differential equations,
supplemented by suitable boundary and initial conditions. In the most general setting,
if no information on the model is available except the knowledge of some of its
solutions, the model may be completely surrogated by one or more neural network,
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trained by data (i.e., by the known solutions). However, in most situations of interest,
the mathematical model is known (e.g., the Navier-Stokes equations describing an
incompressible flow), and such information may be suitably exploited in training the
network(s): one gets the so-called Physics Informed Neural Networks (PINNs). This
approach was first proposed in [1], and it inspired further works such as e.g. [2] or [3],
until the recent paper [4] which presents a very general framework for the solution of
operator equations by deep neural networks. PINNs are trained by using the strong
form of the differential equations, which are enforced at a set of points in the domain
by suitably defining the loss function. In this sense, PINNs can be viewed as particular
instances of least-square/collocations methods.

Based on the weak formulation of the differential model, the so-called Varia-
tional Physics-Informed Neural Networks (VPINNs), proposed in [5], enforce the
equations by means of suitably chosen test functions, not necessarily represented
by neural networks [6]; they are instances of least-square/Petrov–Galerkin methods.
While the construction of the loss function is generally less expensive for PINNs than
for VPINNs, the latter allow for the treatment of models with less regular solutions, as
well as an easier enforcement of boundary conditions. In addition, the error analysis
for VPINNs takes advantage of the available results for the discretization of vari-
ational problems, in fulfilling the assumptions of Lax-Richmyer’s theorem ‘stability
plus consistency imply convergence’. Actually, consistency results follow rather easily
from the recently established approximation properties of neural networks in Sobolev
spaces (see, e.g., [7–12]), whereas the derivation of stability estimates for the neural
network solution appears to be a less trivial task: indeed, a neural network is identi-
fied by its weights, which are usually much more than the conditions enforced in its
training. In other words, the training of a neural network is functionally an ill-posed
problem.

To this respect, we considered in [13] a Petrov–Galerkin framework in which trial
functions are defined by means of neural networks, whereas test functions are made
of continuous, piecewise linear functions on a triangulation of the domain. Relying on
an inf-sup condition between spaces of piecewise polynomial functions, we derived
an a priori error estimate in the energy norm between the exact solution of an elliptic
boundary-value problem and a high-order interpolant of a deep neural network, which
minimizes the loss function. Numerical results indicate that the error follows a similar
behavior when the interpolation operator is turned off.

The purpose of the present paper is to perform an a posteriori error analysis for
VPINNs, i.e., to get estimates on the error which only depend on the computed VPINN
solution, rather than the unknown exact solution. This is important to get a practical
and quantitative information on the quality of the approximation. After setting the
model elliptic boundary-value problem in Sect. 2, and the corresponding VPINN dis-
cretization in Sect. 2.1, we define in Sect. 3 a computable residual-type error estimator,
and prove that it is both reliable and efficient in controlling the energy error between
the exact solution and the VPINN solution (the so-called generalization error in the
terminology of Learning Theory, see [14]). Reliability means that the global error
is upper bounded by a constant times the estimator, efficiency means that the esti-
mator cannot over-estimate the energy error, since the latter is lower bounded by
a constant times the former up to data oscillation terms. The proposed estimator is
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obtained by summing up several terms: one is the classical residual-type estimator in
finite elements, measuring the bulk error inside each element of the triangulation as
well as the inter-element gradient jumps; another term accounts for the magnitude of
the loss function after minimization is performed (the so-called optimization error);
the remaining terms measure data oscillations, i.e., the errors committed by locally
projecting the equation’s coefficients and right-hand side upon suitable polynomial
spaces. The estimator can be written as a sum of elemental contributions, thereby
allowing its use within an adaptive discretization strategy which refines the elements
carrying the largest contributions to the estimator.

2 Themodel boundary-value problem

Let � ⊂ R
n be a bounded polygonal/polyhedral domain with Lipschitz boundary

� = ∂�.
Let us consider the model elliptic boundary-value problem

{
Lu := −∇ · (μ∇u) + β · ∇u + σu = f in �,

u = 0 on � ,
(1)

where μ, σ ∈ L∞(�), β ∈ (W1,∞(�))n satisfy μ ≥ μ0, σ − 1
2∇ · β ≥ 0 in � for

some constant μ0 > 0, whereas f ∈ L2(�).
Setting V = H1

0(�), define the bilinear and linear forms

a : V × V → R , a(w, v) =
∫

�

μ∇w · ∇v + β · ∇w v + σw v , (2)

F : V → R , F(v) =
∫

�

f v ; (3)

denote byα ≥ μ0 the coercivity constant of the form a, and by ‖a‖, ‖F‖ the continuity
constants of the forms a and F . Problem (1) is formulated variationally as follows:
Find u ∈ V such that

a(u, v) = F(v) ∀v ∈ V . (4)

Remark 1 (Other boundary conditions) We just consider homogeneous Dirichlet con-
ditions to keep technicalities at a minimum. However, the forthcoming formulation
of the discretized problem and the a posteriori error analysis can be extended to cover
the case of mixed Dirichlet-Neumann boundary conditions, namely u = g on �D ,
μ∂nu = ψ on �N , with �D ∪ �N = �. We refer to [13, 15] for the general case.

2.1 TheVPINN discretization

Weaim at approximating the solution of Problem (1) by a generalized Petrov–Galerkin
strategy.
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To define the subset of V of trial functions, let us choose a fully-connected feed-
forward neural network structure NN , with n input variables and 1 output variable,
identified by the number of layers L , the layer widths N�, � = 1, . . . , L , and the
activation function ρ. Thus, each choice of the weights w ∈ R

N defines a mapping
wNN : x �→ w(x,w), which we think as restricted to the closed domain �̄; let
us denote by WNN the manifold containing all functions that can be generated by
this neural network structure. Therefore, each function w ∈ WNN can be explicitely
computed as:

x0 = x,

x� = ρ(A�x�−1 + b�), � = 1, . . . , L − 1,

w(x) = ALxL−1 + bL ,

(5)

where the matrices and vectors A� ∈ R
N�×N�−1 and b� ∈ R

N� , � = 1, ..., L are a
suitable rearrangement of the weights in w, with N0 = n and NL = 1. We enforce the
homogeneous Dirichlet boundary conditions by multiplying eachw by a fixed smooth
function 
 ∈ V (we refer to [15] for a general strategy to construct this function); we
assume that vNN = 
wNN belongs to V for any wNN ∈ WNN . In conclusion, our
manifold of trial functions will be

VNN = {vNN ∈ V : vNN = 
wNN for some wNN ∈ WNN } .

To define the subspace of V of test functions, let us introduce a conforming, shape-
regular triangulation Th = {En : 1 ≤ n ≤ Nh} of �̄with meshsize h > 0; the generic
element of the triangulation will be denoted by E . Let Vh ⊂ V be the linear subspace
formed by the functions which are piecewise linear polynomials over the triangulation
Th . Furthermore, let us introduce computable approximations of the forms a and F
by numerical quadratures. Precisely, for any E ∈ Th , let {(ξ E

ι , ωE
ι ) : ι ∈ I E } be the

nodes and weights of a quadrature formula of precision q ≥ 2 on E . Then, assuming
that all data μ, β, σ , f are continuous in each element of the triangulation, we define
the approximate forms

ah(w, v) =
∑
E∈Th

∑
ι∈I E

[μ∇w · ∇v + β · ∇w v + σwv](ξ E
ι ) ωE

ι , (6)

Fh(v) =
∑
E∈Th

∑
ι∈I E

[ f v](ξ E
ι ) ωE

ι . (7)

With these ingredients at hand, we would like to approximate the solution of Prob-
lem (4) by some uNN ∈ VNN satisfying

ah(u
NN , vh) = Fh(vh) ∀vh ∈ Vh . (8)
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In order to handle this problem by the neural network, let us introduce a basis in
Vh , say Vh = span{ϕi : i ∈ Ih}, and for any w ∈ V let us define the residuals

rh,i (w) = Fh(ϕi ) − ah(w, ϕi ) , i ∈ Ih , (9)

as well as the loss function

R2
h(w) =

∑
i∈Ih

r2h,i (w) . (10)

Then, we search for a global minimum of the loss function in VNN , i.e., we consider
the following minimization problem: Find uNN ∈ VNN such that

uNN ∈ argmin
w∈VNN

R2
h(w) . (11)

Existence of a minimum follows immediately from the fact that R2
h is a continuous,

quadratic function of its argument. Uniqueness may not occur. Indeed, any solution
uNN of (8) annihilates the loss function, hence it is a solution of (11); such a solution
maynot be unique, since the set of equations (8)may be underdetermined (in particular,
for f = 0 one may obtain a non-zero uNN , see [13, Sect. 6.3]). On the other hand,
system (8)may be overdetermined, and admit no solution; in this case, the loss function
will have strictly positive minima.

Remark 2 (Discretization with interpolation) In order to reduce and control the ran-
domic effects related to the use of a network depending upon a large number ofweights,
in [13] we proposed to locally project the neural network upon a space of polynomials,
before computing the loss function.

To be precise, we have considered a conforming, shape-regular partition TH =
{Gm : 1 ≤ m ≤ Mh} of �̄, which is equal to or coarser than Th (i.e., each element
E ∈ Th is contained in an element G ∈ TH ) but compatible with Th (i.e., its meshsize
H > 0 satisfies H � h). Let VH ⊂ V be the linear subspace formed by the functions
which are piecewise polynomials of degree kint = q + 1 over the triangulation TH ,
and let IH : C0(�̄) → VH be the associated element-wise Lagrange interpolation
operator.

Given a neural network w ∈ VNN , let us denote by wH = IHwNN ∈ VH its
piecewise polynomial interpolant. Then, the definition (9) of local residuals ismodified
as

r̃h,i (w) = Fh(ϕi ) − ah(wH , ϕi ) , i ∈ Ih ; (12)

consequently, the loss function takes the form

R̃2
h(w) =

∑
i∈Ih

r̃2h,i (w) , (13)
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and we define a new approximation of the solution of Problem (4) by setting

ũNN
H = IH ũ

NN ∈ VH , where ũNN ∈ argmin
w∈UNN

R̃2
h(w) . (14)

In [13] we derived an a priori error estimate for the error ‖u − ũNN
H ‖V , and we

documented the error decay as h → 0, which turns out to have amore regular behavior
that the error ‖u − uNN‖V , although the latter is usually smaller.

The subsequent a posteriori error analysis could be extended to give a control on
the error produced by ũNN

H as well. For the sake of simplicity, we do not pursue such
a task here.

3 The a posteriori error estimator

In order to build an error estimator, let us first choose, for any E ∈ Th and any k ≥ 0,
a projection operator �E,k : L2(E) → Pk(E) satisfying

∫
E

�E,kϕ =
∫
E

ϕ ∀ϕ ∈ L2(E) . (15)

This allows us to introduce approximate bilinear and linear forms

aπ (w, v) =
∑
E∈Th

∫
E

�E,q (μ∇w) · ∇v + �E,q−1 (β · ∇w + σw) v , (16)

Fπ (v) =
∑
E∈Th

∫
E

(
�E,q−1 f

)
v , (17)

which are useful in the forthcoming derivation. Indeed, the coercivity of the form a
allows us to bound the V -norm of the error as follows:

|u − uNN |1,� ≤ 1

α
sup
v∈V

a(u − uNN , v)

|v|1,� . (18)

We split the numerator as

a(u − uNN , v) = F(v) − a(uNN , v) = F(v) − Fπ (v)︸ ︷︷ ︸
(I)

+ Fπ (v) − aπ (uNN , v)︸ ︷︷ ︸
(III)

+ aπ (uNN , v) − a(uNN , v)︸ ︷︷ ︸
(II)

(19)

and we proceed to bound each term on the right-hand side.
The terms (I) and (II) account for the element-wise projection error upon polyno-

mial spaces; they are estimated in the next two Lemmas.
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Lemma 1 The quantity (I) defined in (19) satisfies

|(I)| �
( ∑

E∈Th
η2rhs,1(E)

)1/2|v|1,� , (20)

with

ηrhs,1(E) = hE‖ f − �E,q−1 f ‖0,E . (21)

Proof Setting mE (v) = 1
|E |

∫
E v and using (15), we get

(I) =
∑
E∈Th

∫
E

(
f − �E,q−1 f

)
(v − mE (v)) ,

and we conclude using the bound ‖v − mE (v)‖0,E � hE |v|1,E . �
Lemma 2 The quantity (II) defined in (19) satisfies

|(II)| �
( ∑

E∈Th

(
η2coef,1(E) + η2coef,2(E) + η2coef,3(E)

))1/2|v|1,� , (22)

with

ηcoef,1(E) = ‖μ∇uNN − �E,q(μ∇uNN )‖0,E ,

ηcoef,2(E) = hE‖β · ∇uNN − �E,q−1(β · ∇uNN )‖0,E ,

ηcoef,3(E) = hE‖σuNN − �E,q−1(σu
NN )‖0,E .

(23)

Proof It holds

(II) =
∑
E∈Th

∫
E

(
μ∇uNN − �E,q(μ∇uNN )

)
· ∇v

+
∑
E∈Th

∫
E

(
β · ∇uNN − �E,q−1(β · ∇uNN )

)
(v − mE (v))

+
∑
E∈Th

∫
E

(
σuNN − �E,q−1(σu

NN )
)
(v − mE (v)) ,

where we have used again (15). We conclude as in the proof of Lemma 1. �
Let us now focus on the quantity (III), which can be written as

(III) = Fπ (v − vh) − aπ (uNN , v − vh)︸ ︷︷ ︸
(IV)

+ Fπ (vh) − aπ (uNN , vh)︸ ︷︷ ︸
(V)

, ∀vh ∈ Vh ; (24)
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in turn, the quantity (V) can be written as

(V) = Fπ (vh) − Fh(vh)︸ ︷︷ ︸
(VII)

+ Fh(vh) − ah(uNN , vh)︸ ︷︷ ︸
(VI)

+ ah(uNN , vh) − aπ (uNN , vh)︸ ︷︷ ︸
(VIII)

.

(25)

The bound of (IV) is standard in finite-element a posteriori error analysis: it involves
the local bulk residuals

bulkE (uNN ) = �E,q−1 f + ∇ · �E,q (μ∇uNN ) − �E,q−1(β · ∇uNN + σuNN ) (26)

and the interelement jumps at each edge e shared by two elements, say E1 and E2
with opposite normal unit vectors n1 and n2, namely

jumpe(u
NN ) = �E1,q(μ∇uNN ) · n1 + �E2,q(μ∇uNN ) · n2 ; (27)

in addition, one defines jump(uNN , e) = 0 if e ⊂ ∂�.
To derive the bound, the test function vh in (24) is chosen as vh = I Ch v, the Clément

interpolant of v on Th [16], which satisfies

‖v − I Ch v‖k,E � h1−k
E |v|1,DE , k = 0, 1 , (28)

where DE = ∪{E ′ ∈ Th : E ∩ E ′ �= ∅}.
Lemma 3 The quantity (IV) defined in (24) satisfies

|(IV)| �
( ∑

E∈Th
η2res(E)

)1/2|v|1,� , (29)

where

ηres(E) = hE‖ bulkE (uNN ) ‖0,E + h1/2E

∑
e⊂∂E

‖ jumpe(u
NN ) ‖0,e , (30)

with bulkE (uNN ) defined in (26) and jumpe(u
NN ) defined in (27).

Proof We refer e.g. to [17] for more details. �
Before considering the quantity (VI), let us state a useful result of equivalence of

norms.

Lemma 4 For any vh = ∑
i∈Ih viϕi ∈ Vh, let v = (vi )i∈Ih be the vector of its

coefficients. There exist constants 0 < ch ≤ Ch, possibly depending on h such that

ch |vh |1,� ≤ ‖v‖2 ≤ Ch |vh |1,� ∀vh ∈ Vh , (31)

where ‖v‖2 =
(∑

i∈Ih v2i

)1/2
.
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Proof The result expresses the equivalence of norms in finite dimensional spaces. If the
triangulation Th is quasi uniform, then one can prove by a standard reference-element
argument that ch � h1−n/2 whereas Ch � h−n/2. �

We are now able to bound the quantity (VI) in terms of the loss function introduced
in (10), as follows.

Lemma 5 The quantity (VI) defined in (25) satisfies

|(VI)| � ηloss|v|1,� , (32)

where

ηloss = Ch Rh(u
NN ) (33)

and the constant Ch is defined in (31).

Proof Writing vh = ∑
i∈Ih viϕi , it holds

(VI) =
∑
i∈Ih

rh,i (u
NN )vi ,

whence

|(VI)| � Rh(u
NN )‖v‖2 ,

We conclude by using (31) and observing that

|vh |1,� � |v|1,� , (34)

since we have chosen vh = I Ch v and (28) holds. �
Weare leftwith the problemof bounding the terms (VII) and (VIII) in (25). They are

similar to the terms (I) and (II), respectively, but reflect the presence of the quadrature
formula introduced in (6) and (7). In the forthcoming analysis, it will be useful to
introduce the following notation for the quadrature-based discrete (semi-)norm on
C0(E):

‖ϕ‖0,E,ω =
( ∑

ι∈I E
ϕ2(ξ E

ι ) ωE
ι

)1/2
. (35)

Lemma 6 The quantity (VII) defined in (25) satisfies

|(VII)| �
( ∑

E∈Th
η2rhs,2(E)

)1/2|v|1,� , (36)
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with

ηrhs,2(E) = hE‖ f − �E,q−1 f ‖0,E,ω + ‖ f − �E,q f ‖0,E,ω . (37)

Proof Recalling that the adopted quadrature rule has precision q and test functions vh
are piecewise linear polynomials, it holds

(VII) =
∑
E∈Th

( ∫
E
(�E,q−1 f )vh −

∑
ι∈I E

f (ξ E
ι )vh(ξ

E
ι ) ωE

ι

)

=
∑
E∈Th

( ∑
ι∈I E

(�E,q−1 f − f )(ξ E
ι )vh(ξ

E
ι ) ωE

ι

)

=
∑
E∈Th

( ∑
ι∈I E

(�E,q−1 f − f )(ξ E
ι )(vh − mE (vh))(ξ

E
ι ) ωE

ι

)
︸ ︷︷ ︸

(VIIa)

+
∑
E∈Th

( ∑
ι∈I E

(�E,q−1 f − f )(ξ E
ι ) ωE

ι mE (vh)
)

︸ ︷︷ ︸
(VIIb)

.

(38)

On the one hand, recalling the assumption q ≥ 2 and inequality (34) one has

|(VIIa)| ≤
∑
E∈Th

‖ f − �E,q−1 f ‖0,E,ω‖vh − mE (vh)‖0,E,ω

=
∑
E∈Th

‖ f − �E,q−1 f ‖0,E,ω‖vh − mE (vh)‖0,E

�
∑
E∈Th

hE‖ f − �E,q−1 f ‖0,E,ω|vh |1,E

�
( ∑

E∈Th
h2E‖ f − �E,q−1 f ‖20,E,ω

)1/2|v|1,� .

(39)

On the other hand, we first observe that, by the exactness of the quadrature rule and
(15), we get

∑
ι∈I E

(�E,q−1 f )(ξ
E
ι ) ωE

ι =
∫
E

�E,q−1 f =
∫
E

f =
∫
E

�E,q f =
∑
ι∈I E

(�E,q f )(ξ Eι ) ωE
ι .
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Hence,

|(VIIb)| ≤
∑
E∈Th

‖ f − �E,q f ‖0,E,ω‖mE (vh)‖0,E

≤
∑
E∈Th

‖ f − �E,q f ‖0,E,ω‖vh‖0,E

�
( ∑

E∈Th
‖ f − �E,q f ‖20,E,ω

)1/2|v|1,� .

(40)

This concludes the proof of Lemma 6. �
Lemma 7 The quantity (VIII) defined in (25) satisfies

|(VIII)| �
( ∑

E∈Th

(
η2coef,4(E) + η2coef,5(E) + η2coef,6(E)

))1/2|v|1,� , (41)

with

ηcoef,4(E) = ‖μ∇uNN − �E,q(μ∇uNN )‖0,E,ω ,

ηcoef,5(E) = hE‖β · ∇uNN − �E,q−1(β · ∇uNN )‖0,E,ω ,

+ ‖β · ∇uNN − �E,q(β · ∇uNN )‖0,E,ω

ηcoef,6(E) = hE‖σuNN − �E,q−1(σu
NN )‖0,E,ω

+ ‖σuNN − �E,q(σu
NN )‖0,E,ω .

(42)

Proof The term (VIII) can be written as

(VIII) =
∑
E∈Th

( ∑
ι∈I E

(μ∇uNN )(ξ E
ι ) · ∇vh ωE

ι −
∫
E

�E,q(μ∇uNN ) · ∇vh

)
︸ ︷︷ ︸

(VIIIa)

+
∑
E∈Th

( ∑
ι∈I E

(β · ∇uNN )(ξ E
ι ) vh(ξ

E
ι ) ωE

ι −
∫
E

�E,q−1(β · ∇uNN ) vh

)
︸ ︷︷ ︸

(VIIIb)

+
∑
E∈Th

( ∑
ι∈I E

(σuNN )(ξ E
ι ) vh(ξ

E
ι ) ωE

ι −
∫
E

�E,q−1(σu
NN ) vh

)
︸ ︷︷ ︸

(VIIIc)

. (43)

Concerning (VIIIa), by the exactness of the quadrature rule and the fact that ∇vh is
piecewise constant, one has

(VIIIa) =
∑
E∈Th

∑
ι∈I E

(
μ∇uNN − �E,q(μ∇uNN )

)
(ξ E

ι ) · ∇vh ωE
ι ,
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which easily gives

|(VIIIa)| �
( ∑

E∈Th
‖μ∇uNN − �E,q(μ∇uNN )‖20,E,ω

)1/2|v|1,� .

The terms (VIIIb) and (VIIIc) are similar to the term (VII) above, in which f is
replaced by β · ∇uNN and σuNN , respectively. Hence, they can be bounded as done
for (VII). This concludes the proof of Lemma 7. �

At this point, we are ready to derive the announced a posteriori error estimates. In
order to get an upper bound of the error, we concatenate (18), (19), (24), (25), and use
the bounds given in Lemmas 1 to 7, arriving at the following result.

Theorem 1 (a posteriori upper bound of the error) Let uNN ∈ VNN satisfy (11).
Then, the error u − uNN can be estimated from above as follows:

|u − uNN |1,� �
(
ηres + ηloss + ηcoef + ηrhs

)
, (44)

where

η2res =
∑
E∈Th

η2res(E) , η2coef =
∑
E∈Th

6∑
k=1

η2coef,k(E) , η2rhs =
∑
E∈Th

2∑
k=1

η2rhs,k(E) .

(45)

We realize that the global estimator η = ηres+ηloss+ηcoeff +ηrhs is the sum of four
contributions: ηres is the classical residual-based estimator, ηloss measures how small
the minimized loss function is, i.e., how well the discrete variational equations (8)
are fulfilled, whereas ηcoef and ηrhs reflect the error in approximating elementwise the
coefficients of the operator and the right-hand side by polynomials of degrees related
to the precision of the quadrature formula.

It is possible to derive from (44) an element-based a posteriori error estimator,which
can be used to design an adaptive strategy of mesh refinement (see, e.g. [18]). To this
end, from now on we assume that the basis {ϕi : i ∈ Ih} of Vh , introduced to define
(9), is the canonical Lagrange basis associated with the nodes of the triangulation Th .
Given any E ∈ Th , we introduce the elemental index set I Eh = {i ∈ Ih : E ⊂ suppϕi },
where suppϕi is the support of ϕi , and we define a local contribution to the term ηloss
as follows:

η2loss(E) = C2
h

∑
i∈I Eh

r2h,i (u
NN ) , (46)

which satisfies

η2loss ≤
∑
E∈Th

η2loss(E) .
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With this definition at hand, we can introduce the following elemental error estimator.

Definition 1 (elemental error estimator) For any E ∈ Th , let us set

η2(E) = η2res(E) + η2loss(E) +
6∑

k=1

η2coef,k(E) +
2∑

k=1

η2rhs,k(E) , (47)

where the addends in this sum are defined, respectively, in (30), (46), (23) and (42),
(21) and (37).

Then, Theorem 1 can be re-formulated in terms of these quantities.

Corollary 2 (localized a posteriori error estimator) The error u − uNN can be esti-
mated as follows:

|u − uNN |1,� �
( ∑

E∈Th
η2(E)

)1/2
. (48)

Inequality (48) guarantees the reliability of the proposed error estimator, namely
the estimator does provide a computable upper bound of the discretization error. Next
result assures that the estimator is also efficient, namely it does not overestimate the
error.

Theorem 3 (a posteriori lower bound of the error) Let uNN ∈ VNN satisfy (11).
Then, the error u − uNN can be locally estimated from below as follows: for any
E ∈ Th it holds

ηres(E) � |u − uNN |1,DE +
∑

E ′⊂DE

(
3∑

k=1

η2coef,k(E
′) + η2rhs,1(E

′)
)1/2

, (49)

ch
Ch

ηloss(E) � |u − uNN |1,DE +
∑

E ′⊂DE

(
6∑

k=1

η2coef,k(E
′) +

2∑
k=1

η2rhs,k(E
′)
)1/2

. (50)

Proof To derive (49), let us first consider the bulk contribution to the estimator. We
apply a classical argument in a posteriori analysis, namelywe introduce a non-negative
bubble function bE ∈ V with support in E and such that ‖φ‖0,E � ‖b1/2E φ‖0,E and
‖φ‖0,E � (‖bEφ‖0,E + hE |bEφ|1,E ) for all φ ∈ Pq(E).

Let us set wE = bulkE (uNN )bE ∈ V . Then,

‖bulkE (uNN )‖20,E �
∫
E
bulkE (uNN )2bE =

∫
E
bulkE (uNN ) wE .
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Writing

bulkE (uNN ) = ( f − LuNN ) + ∇·(�E,q(μ∇uNN ) − μ∇uNN )

+ �E,q−1(β · ∇uNN ) − β · ∇uNN + �E,q−1(σu
NN ) − σuNN

+ �q−1,E f − f ,

we obtain∫
E
bulkE (uNN ) wE = a(u − uNN , wE ) −

∫
E
(�E,q(μ∇uNN ) − μ∇uNN ) · ∇wE

+
∫
E
(�E,q−1(β · ∇uNN ) − β · ∇uNN )(wE − m(wE ))

+
∫
E
(�E,q−1(σu

NN ) − σuNN )(wE − m(wE ))

+
∫
E
(�q−1,E f − f )(wE − m(wE )) ,

whence

‖bulkE (uNN )‖20,E �
(
|u − uNN |1,E +

3∑
k=1

ηcoef,k(E) + ηrhs,1(E)
)
|wE |1,E .

Using |wE |1,E � h−1
E ‖bulkE (uNN )‖0,E , we arrive at

hE‖bulkE (uNN )‖0,E � |u − uNN |1,E +
3∑

k=1

ηcoef,k(E) + ηrhs,1(E) . (51)

Let us now turn to the jump contribution to the estimator. Given an edge e ⊂ ∂E
shared with the element E ′, we introduce a non-negative bubble function be ∈ V ,
with support in E ∪ E ′ and such that ‖φ‖0,e � ‖b1/2e φ‖0,e and (h−1/2

E ‖beφ‖0,E +
h1/2E |beφ|1,E ) � ‖φ‖0,e for all φ ∈ Pq(E).

Let us extend the function jumpe(uNN) onto E ∪ E ′ to be constant in the normal
direction to e, obtaining a polynomial of degree q in each element. Let us set we =
jumpe(uNN)be ∈ V . Then, writing E1 = E and E2 = E ′, one has

‖jumpe(u
NN )‖20,e �

∫
e
jumpe(u

NN )2be =
∫
e
jumpe(u

NN ) we

=
∫
e
jumpe(u

NN − u) we

=
2∑

i=1

∫
Ei

∇ · [(�Ei ,q(μ∇uNN ) − μ∇u) we]
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=
2∑

i=1

∫
Ei

[∇ · �Ei ,q(μ∇uNN ) − ∇ · (μ∇u)]we

+
2∑

i=1

∫
Ei

[�Ei ,q(μ∇uNN ) − μ∇u] · ∇we .

We now recall that

∇ · �Ei ,q(μ∇uNN ) = bulkEi (u
NN ) − �Ei ,q−1 f + �Ei ,q−1(β · ∇uNN + σuNN ) ,

as well as∇·(μ∇u) = − f +β ·∇u+σu.Wewrite u = uNN +(u−uNN ) andwe pro-
ceed as in the proof of (51), using now the bounds ‖we‖0,Ei � h1/2Ei

‖jumpe(u
NN )‖0,e

and |we|1,Ei � h−1/2
Ei

‖jumpe(u
NN )‖0,e, arriving at the bound

h1/2E

∑
e⊂∂E

‖ jumpe(u
NN ) ‖0,e � |u − uNN |1,DE +

∑
E ′⊂DE

hE ′ ‖bulkE ′(uNN )‖0,E ′

+
∑

E ′⊂DE

(
3∑

k=1

ηcoef,k(E
′) + ηrhs,1(E

′)
)

. (52)

Together with (51), this gives the bound (49). In order to derive (50), we write (46) as

C−1
h ηloss(E) =

( ∑
i∈I Eh

r2h,i (u
NN )

)1/2 = sup
v

1

‖v‖2
∑
i∈I Eh

rh,i (u
NN )vi

where v = (vi ) ∈ R
cardI Eh . Defining the function vE

h = ∑
i∈I Eh viϕi ∈ Vh , which is

supported in DE , and recalling (9), we have

∑
i∈I Eh

rh,i (u
NN )vi = Fh(v

E
h ) − ah(u

NN , vE
h ) .

By the left-hand inequality in (31), we obtain

ch
Ch

ηloss(E) ≤ sup
vE
h

Fh(vE
h ) − ah(uNN , vE

h )

|vE
h |1,DE

.

Now we write

Fh(v
E
h ) − ah(u

NN , vE
h ) = Fh(v

E
h ) − F(vE

h )

+ f (vE
h ) − a(uNN , vE

h )

+ a(uNN , vE
h ) − ah(u

NN , vE
h ) .
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The term Fh(vE
h )−F(vE

h ) = [Fh(vE
h )−Fπ (vE

h )]+[Fπ (vE
h )−F(vE

h )] can be bounded
as done for the terms (I) and (VII) above, yielding

|Fh(vE
h ) − F(vE

h )| �
∑

E ′⊂DE

(
ηrhs,1(E

′) + ηrhs,2(E
′)
) |vE

h |1,E ′ .

Similarly, the term a(uNN , vE
h ) − ah(uNN , vE

h ) can be handled as done for the terms
(III) and (VIII) above, obtaining

|a(uNN , vE
h ) − ah(u

NN , vE
h )| �

∑
E ′⊂DE

(
6∑

k=1

ηcoeff,k(E
′)
)

|vE
h |1,E ′ .

Finally, one has | f (vE
h )−a(uNN , vE

h )| � |u−uNN |1,DE |vE
h |1,DE , thereby concluding

the proof of (50). �
Remark 3 (Comparisonwith different error analyses) In the last fewyears a PINNerror
analysis involving approximation, optimization and generalization errors has emerged
[14]. The approximation error is associated with the expressivity and the best approx-
imation error of a neural network with a fixed architecture, the optimization errorwith
the local minima found during the optimization phase, and the generalization error
with the difference between the function represented by the trained neural network
and the exact solution. In this perspective, the present paper provides a connection
between the optimization and generalization errors. Indeed, Theorems 1 and 3 contain
upper and lower bounds for the generalization error that are based on the value of the
loss function and other suitable terms.We highlight that different results relating these
two errors for PINNs are available in the literature (see [19, 20]). The analysis here
proposed does not require any assumption on the training set, provides a computable
information during training even when the current iterate is far from any good local
minimum, and yields both global and local control on the H1 error (see Corollary 2).

4 Numerical results

Let us consider the two-dimensional domain � = (0, 1)2 and the Poisson problem:

{
−�u = f in �,

u = g on � ,
(53)

with the functions f and g such that the exact solution, represented in Fig. 1, is

u(x, y) = tanh
[
2

(
x3 − y4

)]
. (54)

Problem (53) is numerically solved by the VPINN discretization described in Sect.
2.1, extended to handle non-homogeneousDirichlet condition asmentioned inRemark
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Fig. 1 Graphical representation of the exact solution u(x, y) in (54)

1. The used VPINN is a feed-forward fully connected neural network comprised by
an input layer with input dimension n = 2, three hidden layers with 50 neurons
each and an output layer with a single output variable; it thus contains 7851 trainable
weights; furthermore, in all the layers except the output one the activation function is
the hyperbolic tangent. The VPINN output is modified as described in [13] to exactly
impose the Dirichlet boundary conditions. Gaussian quadrature rules of order q = 3
are used in the definition of the loss function.

For ease of implementation, the orthogonal projection operators �E,k , defined in
Sect. 3, are mimiked by interpolation operators as follows. Let us initially consider the
elemental Lagrange interpolation operator IE,k : C0(E) → Pk(E); then, to guarantee
orthogonality to constants, the projection operator �̃E,k : C0(E) → Pk(E) is defined
by setting

�̃E,kϕ := IE,kϕ +
∫
E

(
ϕ − IE,kϕ

)
|E | , ∀ϕ ∈ C0(E),

where, in practice, the integral
∫
E

(
ϕ − IE,kϕ

)
can be computed with quadrature rules

that are more accurate than the ones used in the other operations. In this work we use
quadrature rules of order 7 in each element.

The involved neural networks are initially trained using the first-order optimizer
ADAM [21] for 3000 epochs with an exponentially decaying learning rate ranging
between 10−2 and 10−3. The corresponding solutions are then improved using the
second-order BFGS optimizer [22] for 2000 epochs or until two subsequent iterates
coincide (up to machine precision). Since the VPINN output is suitably modified to
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Table 1 Meshsizes h of the meshes used in Fig. 2, corresponding dimension Nqp of the training set and
number dim(Vh) of test functions

h Nqp dim(Vh) h Nqp dim(Vh) h Nqp dim(Vh)

1.0 16 1 0.1939 616 62 0.0931 2808 320

0.5 64 5 0.1740 848 91 0.0885 3256 376

0.3757 112 7 0.1504 1048 116 0.08334 3704 432

0.3268 240 23 0.1384 1280 140 0.0785 4108 481

0.2716 316 29 0.125 1772 195 0.0737 4608 540

0.25 444 41 0.0965 2536 286 0.0696 5128 601

exactly satisfy the Dirichlet boundary conditions, the training set contains only the
quadrature points required to compute the quantity (6).

The VPINN is trained on different meshes and the corresponding error estimators(∑
E∈Th η2(E)

)1/2 are computed. InTable 1we indicate the number Nqp of quadrature
points and the number dim(Vh) of test functions required to construct the loss function
using a mesh with meshsize h. We highlight that Nqp coincides with the dimension of
the training set.

Once more, when exact integrals are involved, they are approximated with higher
order quadrature rules. The obtained results are shown in Fig. 2, where the values of the
H1-error and the a posteriori estimator are displayed for several meshes of stepsize h.
Remarkably, the error estimators (red dots) behave very similarly to the corresponding
energy errors (blue dots). Moreover, coherently with the results discussed in [13], after
an initial preasymptotic phase all dots are aligned on straight lines with slopes very
close to 4 (the slope of the red line is 3.81, the slope of the blue line is 3.92). We
remark that, since the used triangulations are quasi-uniform, both Nqp and dim(Vh)
approximately scale as O(h−2); therefore the qualitative behaviour shown in Fig. 2
does not change if any of these two quantities is represented on the x-axis.

It is also interesting to note that the terms appearing in the a posteriori estimator
(recall (44)) exhibit different behaviors during the training of a single VPINN. This
phenomenon is highlighted in Fig. 3, where one can observe the evolution of the
quantities ηrhs, ηcoef , ηres, ηloss, η and |u − uNN |1,�, where each η∗ stands for η∗ =(∑

E∈Th η2∗(E)
)1/2 with ∗ ∈ {rhs, coef, res, loss}, during the 3000 epochs performed

with the ADAM optimizer. It can be observed that, during this training, while the
value of the loss function decreases, the accuracy remains almost constant because
other sources of error, independent of the neural network, prevail.

5 Conclusions

We considered the discretization of a model elliptic boundary-value problem by
variational physics-informed neural networks (VPINNs), in which test functions are
continuous, piecewise linear functions on a triangulation of the domain. The scheme
can be viewed as an instance of a least-square/Petrov–Galerkin method.
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Fig. 2 H1 errors (blue dots) obtained by training the same VPINN on different meshes, and corresponding
error estimators (red dots) (colour figure online)
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Fig. 3 Evolution of the addends of the error estimator η during training (colour figure online)
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We introduced an a posteriori error estimator, which sums-up four contributions: the
equation residual (measuring the elemental bulk residuals and the edge jump terms,
for approximated coefficients and right-hand side), the coefficients’ oscillation, the
right-hand side’s oscillation, and a scaled value of the loss-function. The latter term
corresponds to an inexact solve of the algebraic system arising from the discretization
of the variational equations.

The main result of the paper is the proof that the estimator provides a global upper
bound and a local lower bound for the energy norm of the error between the exact and
VPINN solutions. In other words, the a posteriori estimator is both reliable and effi-
cient. Numerical results show an excellent agreement with the theoretical predictions.

In a forthcoming paper, we will investigate the use of the proposed estimator to
design an adaptive strategy of discretization.
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