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Optimal policy design to mitigate epidemics
on networks using an SIS model

Carlo Cenedese, Lorenzo Zino, Michele Cucuzzella, Ming Cao

Abstract— Understanding how to effectively control an epi-
demic spreading on a network is a problem of paramount im-
portance for the scientific community. The ongoing COVID-19
pandemic has highlighted the need for policies that mitigate the
spread, without relying on pharmaceutical interventions. These
policies typically entail lockdowns and mobility restrictions,
having thus nonnegligible socio-economic consequences for the
population. We focus on the problem of finding the optimum
policies that “flatten the epidemic curve” while limiting the
negative consequences for the society, and formulate it as a
nonlinear control problem over a finite prediction horizon. We
utilize the model predictive control theory to design a strategy to
effectively control the disease, balancing safety and normalcy.
An explicit formalization of the control scheme is provided
for the susceptible–infected–susceptible epidemic model over a
network. Its performance and flexibility are demonstrated by
means of numerical simulations.

I. INTRODUCTION

The ongoing COVID-19 pandemic has highlighted the key
role played by public health authorities in enacting non-
pharmaceutical interventions (NPIs) to “flatten the epidemic
curve” when no effective pharmaceutical treatments such as
vaccines are available [1], [2]. However, NPIs typically entail
the implementation of harsh measures, including lockdowns
and restrictions of personal freedom of movement, which
may yield severe socio-psychological and economic conse-
quences [3]. Thus, they should be implemented keeping a
reasonable balance between safety and normalcy. To this aim,
the development of tools to predict the course of an epidemic
and evaluate the impact of different NPIs has become a
task of paramount importance for the scientific community,
aiming at assisting public health authorities in their decisions.

The mathematical modeling of epidemics has emerged as a
valuable framework to perform such a task [4]–[8]. Relevant
examples can be found in the useful insights provided
into the ongoing COVID-19 pandemic [9]–[18]. Within this
framework, network models have become popular as they
allow us to capture the relation between human mobility
and the spatial spread of a disease. Of particular interest
is the problem of understanding how to effectively control
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the spread of an epidemic disease on a network by acting on
the nodal dynamics and on the network structure.

Such problems have often been addressed assuming lim-
ited changes in the network structures, that is, by studying
how to re-arrange the network structure or distribute antidote
in order to increase the population’s resistance against a
possible epidemic. Important results have been found by
using geometric programming [19]; distributed algorithms
have been recently proposed to address these problems [20],
[21]. However, the ongoing health crisis has highlighted
the importance of having control schemes that take into
account the dynamic evolution of the epidemic process,
and can thus be updated online, as the outbreak evolves.
While a considerable body of literature has been proposed to
study dynamical control strategies for vaccination campaigns
and antidote distribution using optimal control theory [22],
[23] and Model Predictive Control (MPC) [18], [24]–[26],
limited results are available in the absence of effective
treatments, that is, when the control action has to focus
on the contagion mechanisms rather than on the recovery
mechanism. Recently, motivated by the ongoing COVID-
19 pandemic, some efforts have been devoted to bridging
this gap by proposing feedback control interventions and
leveraging MPC [13], [14], [16].

Inspired by these works, we propose an optimal control
approach to mitigate an epidemic process spreading by
means of regional policies that entail activity reductions and
targeted mobility restrictions. This holistic approach to NPIs
constitutes a key contribution of this paper and differs from
other works in the literature that typically focus on opti-
mizing a specific intervention policy (e.g., social distancing
only [27]). We consider a discrete-time deterministic network
Susceptible–Infected–Susceptible (SIS) model in which two
types of control actions are included: actions to reduce social
activity in some regions of the network (modeling, e.g.,
lockdown measures, closures of activities, and curfews), and
policies to limit or ban travels between specific locations.
Then, an optimal control problem is formulated to find a
strategy that mitigates the spread of the disease in the net-
work, limiting the negative consequences of NPIs. The pro-
posed optimal control problem takes into account important
features, such as the balance between safety and normalcy,
the need of keeping the epidemics under control, and the
increase of socio-economic costs associated to the imple-
mentation of NPIs. Different from many control schemes
proposed in the literature (see, e.g., [4], [7] for an overview),
our formalization does not necessarily have the objective to
eradicate the disease (which may be extremely costly and



practically unfeasible using only NPIs). In contrast, it allows
the controller to set an acceptable prevalence of the disease
(which may depend on the hospital capacity and may vary
across the nodes), providing thus a framework that might
realistically be adopted to assist public health authorities in
their decision toward mitigating epidemic outbreaks. Numer-
ical simulations are used to discuss the performance of the
control strategy, the benefits and disadvantages of farsighted
policies versus myopic ones, and illustrate how the objectives
of the policy maker affect the final solution.

Notation: Given a vector x, we denote by x> its transpose
and, for a positive definite matrix S � 0, we denote by
‖x‖S :=

√
x>Sx the norm of x weighted by S. With 0

and 1, we denote the all-0 and all-1 vectors, respectively.
Given a matrix S, we denote by σ(S) its maximum singular
value. Sij and Si denote the element in the i-th row and
j-th column and the i-th row of S, respectively. We use the
following notation col ((xi)i∈[1,...,N ]) := [x1, . . . , xN ]>.

II. SIS EPIDEMICS MODEL OVER NETWORKS

We consider a discrete-time deterministic SIS epidemic
model on a network [6]. The network structure arises from
the local interactions among several nodes (communities),
which represent geographical entities, such as countries,
regions, or even cities, thanks to the high flexibility of the
model. We assume there are N communities interconnected
by P links, which can represent roads, air routes, or even
simple geographic adjacencies. In general, a link between
two communities means that there is a flow of people
between them. The network is hereafter formalized via an
undirected and connected graph G, where the communities
correspond to the set V := {1, . . . , N} of the nodes. A
connection between two communities i, j ∈ V is denoted
via an edge e` connecting the two corresponding nodes,
defined as the unordered couple e` := {i, j}. We assume
that all the self-loops {i, i}, i ∈ V are present. The edge
set is the collection of all the edges of the graph, i.e.,
E := {e1, . . . , eP }. Therefore, the graph is defined as G :=
(V, E). The fraction of infected individuals in community
i ∈ V at time t ∈ N is denoted by xi(t) ∈ [0, 1]. This
quantity describes the temporal evolution of the health state
of community i. We assume that the health state evolves
according to the dynamics of a discrete-time SIS model [6],
i.e., for all time-steps t ∈ N, we have

x+i = (1− µ)xi + (1− xi)β̄i
∑
j∈V

Āijxj , (1)

where x+i := xi(t+ 1) and xi := xi(t).
Next, we discuss the role and physical interpretation of

each parameter appearing in (1).
1) Recovery rate µ ∈ [0, 1]: It is the rate at which the

individuals manage to recover from the disease. Here, we
assume that the recovery rate is constant across the entire
population and cannot be increased by the controller, captur-
ing those epidemics for which a cure is not yet developed,
e.g., the early spread of COVID-19.

Assumption 1 (Positive recovery rate): For all i ∈ V , the
recovery rate µ > 0 is constant and strictly positive.

2) Infection rate βi > 0: This represents the rate at which
the individuals in community i ∈ V become infected when
they get in touch with others. The higher this value is, the
easier people become infected. Such a value can differ among
the communities, e.g., due to the implementation of different
NPIs. Infection rates are gathered in the n-dimensional vector
β̄. The trajectory of x(t) := col ((xi(t))i∈V) can naturally
have two possible behaviors, depending on the model pa-
rameters. Either it converges to the disease-free equilibrium,
i.e., x(∞) = 0, or the disease-free equilibrium becomes
unstable, and the trajectory converges to a (unique) endemic
equilibrium with xi(∞) > 0, for all i ∈ V [28], [29]. The
threshold between these two regimes depends on whether
σ(diag (β̄)Ā)/µ is smaller or greater than 1. A simpler—
network-independent— sufficient (but nonnecessary) condi-
tion for the trajectory to converge to an endemic equilibrium
can be established by requiring that βi/µ > 1 for all i ∈ V .
In this work, we focus on the case in which the disease does
not die out naturally, and thus NPIs have to be put in place
toward mitigating the epidemic outbreak. Hence, we make
the following assumption.

Assumption 2 (Disease spreading): For all i ∈ V , the
infection rate satisfies βi > µ.

3) Communities interaction Ai,j ∈ [0, 1]: People in j ∈ V
can move to the neighboring communities, denoted by Nj :=
{` ∈ V : {j, `} ∈ E}, and interact with people there. The
population that flows from j to i ∈ Nj influences the health
state of community i, i.e., xi. This is modeled in (1) via
the weighted adjacency matrix A := [Aij ]i,j∈V ∈ RN×N

+ ,
where Aij is the weight associated to the edge (i, j) of G.
The diagonal elements of A represent the part of population
that remains in the same community. We now introduce the
following assumption on this matrix.

Assumption 3 (Stochastic and positive diagonals): The
weighted adjacency matrix A associated with the undirected
graph G is stochastic, i.e., A1 = 1, and with strictly positive
diagonal entries, i.e., Aii > 0, for all i ∈ V .

III. CONTROL POLICIES

To mitigate the spread of a disease, a policy maker
can apply endogenous or exogenous NPIs to each local
community. The former category includes all those measures
put in place inside the local community i, e.g., lock-downs,
usage of face masks or encouraging social distancing. The
latter instead concerns those measures that limit the inflow of
people from neighboring communities, i.e., implementation
of travel bans or requesting quarantine upon entrance. It is
clear that these policies directly affect the dynamics in (1).
Specifically, for each community i, the endogenous measures
reduce the infection rate βi, while the exogenous ones act
on A. The static values of βi and A refer to the uncontrolled
evolution of the epidemic, while the intervention of the
policy makers transforms these parameters into time-varying
functions βi(t) and A(t), which can be seen as inputs to be
designed in a (possibly) optimal way to control the epidemic
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Fig. 1: Schematic of the controlled network SIS model.

spreading. Thus, the dynamics of the controlled evolution of
the system, as illustrated in Fig. 1, become

x+i = (1− µ)xi + (1− xi)βi(t)
∑
j∈V

Aij(t)xj . (2)

If the policies put in place are effective, the value of the
infection rate should decrease, i.e., βi(t) ∈ [0, βi] for all
t ∈ N. We consider policies that affect the uncontrolled
coefficients in (1) linearly. So, we define the time-varying
functions βi(t) and A(t) in (2) as

βi(t) := βi − vi(t) , ∀i ∈ V , (3a)
Aij(t) := Aij −Wij(t) , ∀i, j ∈ V , (3b)

where vi(t) ∈ [0, βi]. Furthermore, it is reasonable to
assume that the policy cannot implement new connections
among the community, this translates into the following set
of constraints on W (t) := [Wij(t)] ∈ RN×N

W (t)1 = 0 , (4a)
Aij −Wij(t) ≥ 0 , (4b)

Aij = 0 =⇒ Wij(t) = 0 . (4c)

From (3b) and (4), it follows that the time-varying
weighted adjacency matrix A(t) defines a directed subgraph
G(t) ⊆ G, which is composed of the same nodes and a subset
of the edges of G, i.e., G(t) := (V, E(t)) with E(t) ⊆ E , so
it may not be connected at every t ∈ N.

IV. OPTIMAL CONTROL POLICY

A. Problem formulation

The adoption of stringent policies carries costs including
both monetary (e.g. recession) and social (e.g. personal
restrictions) aspects [3]. In this section, we formalize the
problem of choosing the optimal NPIs that minimize the
cost while keeping under control the epidemic. Therefore,
at each time instant t ∈ N, we have to design the values of
the control actions W (t) and vi(t) for all time instants k in
the prediction horizon T := {t, t+ 1, . . . , t+Th}, the length
of which (Th ∈ N) may vary due to the specific epidemic.
In the remainder, we use the index k when we refer to an
instant belonging to T and t otherwise.

Each population i ∈ V is assumed to establish a desired
trajectory x̂i(k), for all k ∈ T \ {t}, that is the fraction of
infected population xi(k) considered to be acceptable at time
k. An interesting case is the one in which the value of x̂i(k)
is greater than 0 at the beginning of T , and it decreases over
time, i.e., x̂(k) ≥ x̂(k+1) for all k, k+1 ∈ T \{t}. Its slope
suggests how aggressive the desired community’s policies
should be. Notice that the terminal value x̂i(t + Th + 1) is
not necessarily constrained to be 0. In fact, it is reasonable

that some communities accept a small fraction of infected in
exchange for relaxed NPIs.

Next, let us define the vector of all policies put in place
at time instant t by agent i as the (N + 1)-dimensional
vector ui(t) := col (vi(t),Wi1(t), . . . ,WiN (t)). The cost for
each community i consists of two antagonizing components.
The first is the health-care cost cHC

i (xi(t); x̂i(t)) due to the
presence of more infected than the desired quantity x̂i(t),
which is decided by each community and communicated to
the health authority. If the optimal policies leads to xi(t) ≤
x̂i(t), then the cost is 0; otherwise it is assumed quadratic
in the difference with respect to the desired value, i.e.,

cHC
i (xi(t); x̂i(t)) := qi(t) (max {0, xi(t)− x̂i(t)})2 ,

with qi(t) > 0 being a (time-varying) weight. On the other
hand, we consider a (quadratic) control cost associated with
the implementation of control policies. So, the global cost
that the N communities face over the prediction horizon is

J(x,u) :=
∑
k∈T

∑
i∈V

cHC
i (xi(k+1); x̂i(k+1))+‖ui(k)‖2Si(t)

,

where Si(k) � 0 is the diagonal matrix of the N+1 weights
associated to the NPIs ui(k). The fraction of infected and
the adopted policies of all the populations at t are x(t)
and u(t) := col ((ui(t))i∈V), respectively. The pair x =
col ((x(t + 1))t∈T ) and u = col ((u(t))t∈T ) denotes in
compact form all the variables involved. In our general
formulation, the weights associated to the health-care cost
(i.e., qi(t)) and to the control cost (i.e., Si(t)) are time-
varying, since the same fraction of infected individuals or
the same level of NPIs may yield different costs depending
on the timing. This might be due to the increasing hospital
preparedness or the accumulation of socio-economic costs. It
is worth noticing that only 2P − 2N values of W (k) can be
freely designed at each time instant k ∈ T . In fact, for each
one of the P − N off-diagonal edges, we can set Wij(k)
and Wji(k); then the weight associated with the self-loop is
constrained by (4a). Thus, the number of elements of u(t)
to be optimized is 2P −N .

Finally, we cast the problem of designing the optimal
policies u∗ for the control dynamics (2)

(x∗,u∗) = argmin J(x,u) ,
s.t. (x,u) ∈ Ω ,

(P)

where

Ω :=
{

(x,u)| vi(t) ∈ [0, βi], (2), (3), (4) hold ∀k ∈ T
}
.

This problem belongs to the class of Nonlinear Model
Predictive Control (NL-MPC), due to the highly nonlinear
and nonconvex controlled SIS dynamics in (2). It is well
known that these problems are hard to solve in their original
form. Nevertheless, we establish that a feasible solution to
(P) always exists, and thus that the problem is worth to
be studied. The proof, omitted due to space constraints, is
reported in an extended version of the paper, available at [30].

Proposition 1 (Solution existence): For every initial con-
dition x(t) ∈ [0, 1]N , there exists at least one pair (x∗,u∗)
that is a solution to (P).
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Fig. 2: Control scheme for the design and implementation via
receding horizon of optimal NPIs to flatten the pandemic curve.

B. NL-MPC solution algorithm

In the literature, there are several approaches to solve
NL-MPC. The most popular approaches to solve nonlinear
constrained optimization problems, with differentiable cost
functions, are based on the Sequential Quadratic Program-
ming (SQP). As shown in [31, Ch. 18] and reference there
in, these methods provide excellent convergence properties
and ensure fast convergence to a (local) optimum of the
original nonlinear problem. The SQP is an iterative algorithm
in which, during each iteration p, a candidate optimal trajec-
tory (xp,up) is computed as the solution of a Quadratic
Programming (QP), obtained by linearizing the constraints
and approximating the cost via a quadratic funciton, see [31,
Alg. 18.3]. The linearization is performed with respect to the
trajectory

(x̃p−1, ũp−1) = (x̃p−2, ũp−2) + αp−1(xp−1,up−1),

where (xp−1,up−1) is the solution of the QP solved at the
previous iteration, and αp−1 can be computed for example
via line search as in [31, Eq. 18.28]. If the candidate solu-
tion satisfies some convergence conditions then (x∗,u∗) =
(xp,up); otherwise a new iteration is performed.

The sole nonlinearity in the constraints of (P) is associated
with the dynamics in (2). The effectiveness of the NPIs de-
pends on the predictive accuracy of the linearized dynamics.
This difference is studied via numerical simulations in Sec-
tion V, where it is shown that the linearized dynamics allow
to obtain a very high prediction accuracy for a sufficiently
long prediction horizon. Thus, the used NL-MPC algorithm
generates an effective solution for the control problem.

Finally, in Figure 2 we depict the complete control scheme
to solve the problem of designing optimal NPIs to control
an SIS type dynamics. Specifically, at each time instant t
an instance of (P) is cast. The optimal trajectory (x∗,u∗)
is computed over T via SQP. Finally, a receding horizon
approach is implemented by applying only NPIs associated
to the first instant, i.e., u∗(t), and then the loop starts again.
This implementation allows us to minimise the prediction
error inherently present in the prediction of the model.

V. SIMULATIONS

We present several numerical simulations that validate
the procedure proposed to design optimal NPIs and provide
insightful information on how different parameter choices
(e.g., the weights on the control and the length of the
prediction horizon) influence the final optimal policies.

A. Reference tracking and reproduction number

We randomly generate a connected network with N = 4
and the corresponding weighted adjacency matrix Ā with off-

diagonal nonzero entries sampled from a normal distribution
with mean 0.1 and variance 0.2, and diagonal entries such
that Ā1 = 1, obtaining

A =


0.7 0.17 0 0.13
0.42 0.31 0.16 0.11

0 0.12 0.88 0
0.28 0.1 0 0.62

 .
The uncontrolled infection rate βi of each node is se-
lected uniformly and randomly in the interval [0.3, 0.6],
obtaining β = [0.3, 0.59, 0.3 , 0.45]. The recovery rate is
chosen to be µ = 0.15. So, the uncontrolled dynamics
converge over time to an endemic equilibrium [28]. The
initial fraction of infected for each population is set as
x(0) = [0.65, 0.55, 0.75, 0.40], that is, a scenario of an
endemic disease. We denote the trajectory of the fraction
of infected individuals in the uncontrolled dynamics (1)
by xuc(t). The desired reference trajectory x̂i(t) of each
community is assumed to start close to xi(0) and linearly
decrease until it reaches its terminal value at t = 20 that is
x̂(20) = [0.1168, 0.0548, 0.0856, 0.1175]. The length of the
prediction horizon is set equal to Th = 10; we will discuss its
optimal value in Section V-B. The weights q(t) and S(t) are
chosen constant in time, uniform across the different nodes,
and equal to qi(t) = 1, ∀i ∈ V , while S is so that all
off-diagonal terms are equal to 0, the diagonal terms that
correspond to entries of v are equal to 0.2 and those that
correspond to entries of W are equal to 0.05. This implies
that applying the same amount of exogenous and endogenous
control respectively have similar costs.

In Figure 3a, we present the trajectory of xi(t), obtained
from (2), by following the control scheme in Figure 2 (red
solid curves), compared with the value of the uncontrolled
SIS dynamics (red dashed curves), and the reference (blue
solid curve). As expected from having a higher weight on the
healthcare cost, the value of xi(t) remains relatively close to
the desired one x̂i(t). From Figure 3b, it is clear that, in this
scenario, acting on local restrictions as lock-down and social
distancing is more effective than implementing travel bans.
This is consistent with empirical observations during the
ongoing COVID-19 pandemic, suggesting that travel bans are
more effective in the early stages of an epidemic outbreak,
i.e., when x(0) is close it 0 [15]. Further discussion on the
structure of the optimal solutions and the accuracy of the
linearlized model can be found in [30].

Overall, the policies computed by the proposed control
scheme generate noteworthy effects in controlling the epi-
demics by achieving the two main objectives of the proposed
approach, i.e., an acceptable level of infected and at a low
social and economical price. Nevertheless, it is evident that
the optimal solution to the problem (P) highly depends on
the choice of the weights qi(t) and Si(t) in the cost function
J(x,u). To better understand the effect of the endogenous
and exogenous measures on the (steady-state) health state of
the overall population, we have performed a sensitivity analy-
sis of the weights applied to the control action. For all i and t,
we set qi(t) = 1 and Si(t) equal to the block diagonal matrix



(a) (b)

Fig. 3: In (a), we show the trajectories of the uncontrolled dynamics xuc
i (t) (red dashed curve), of the reference x̂i(t) (blue solid curve),

and of the controlled dynamics xi(t) obtained via the control scheme in Figure 2 (red solid curve) for two representative communities. In
(b), we plot the amount of endogenous (blue) and exogenous (green) control applied to the corresponding community, βi(t) and ‖Wi(t)‖22,
respectively. Trajectories for all the communities can be found in the extended version of the paper, available at [30].

Fig. 4: Sensitivity analysis with respect to the endogenous (sv) and
exogenous (sw) control costs. The heat-map represents the value of
the index π for the different values of the control cost parameters.

that has on the diagonal sv and sw
N I , which are the weights

on vi(t) and Wi(t), respectively. In order to compare the
performance obtained with different weights, we introduce
the index π := ||x(∞)− x̂(∞)||/||x(∞)− xuc(∞)||.

As shown in Figure 4, we obtain larger values of π
(i.e., the system converges close to the endemic equilibrium
xuc) when the weights of the control actions are large,
while smaller values of π (i.e., the system converges close
to the desired reference x̂) arise if sv and sw are small.
Furthermore, from Figure 4 one can observe that changing
the weight sv makes the index π change more significantly
than changing the weight of the exogenous actions. Then, we
can conclude that the endogenous actions are more effective
than the exogenous ones. However, we can also observe that
when the cost of implementing for instance lock-downs is
very high (i.e., larger values of sv), putting in place travel
bans is very beneficial.

B. Myopic vs predictive policies

We consider the problem of choosing the optimal length
for the prediction horizon. This is a critical choice that a
policy maker has to perform. In fact, if Th is too small the
policies will be myopic failing to prepare in time for the
future evolution of the epidemics. On the other hand, longer

(a) (b)

Fig. 5: As the prediction horizon Th grows, we show (a) the cost
function J and (b) the computational time for each simulation.
The vertical bars are 95% confidence intervals over 50 independent
realizations of the random variables A, β, and x̂.

prediction horizons will require an increased computational
effort. Moreover, due to the difference between the real
dynamics and the ones used in (P), a long prediction
horizon may lead to inaccurate estimation and consequently
to incorrect precautionary policies. Therefore, we believe that
there is an optimal length for the prediction horizon.

To validate this claim via simulations, we generate 50
different scenarios in which A, β and x̂ are randomly chosen
as described in the previous section, while the rest of the
coefficients of the problem do not change. As index of the
performance we consider the sum over the whole simulation
of the cost actually experienced by the communities, we
denote it simply by J . Figure 5a clearly depicts a Pareto front
in which, after an initial reduction of J due to the growing
Th, there is a diminishing return. Moreover, for even greater
values of Th the performance starts to slowly get worse.
The computational time of each one of the simulation grows
linearly with the value of Th, as shown in Figure 5b, this
can be a serious issue in the case of large scale networks.
Therefore, the optimal value of Th for the simulated cases is
in the range 5− 7. In fact, it is large enough to benefit from
the initial steep increment in terms of performance but not
that large to make the estimations less accurate.



VI. CONCLUSION AND OUTLOOK

We cast the problem of designing optimal NPIs to ensure
containing an epidemic on a network while minimizing
the costs due to restrictive policies as a nonlinear con-
strained optimization problem over a prediction horizon.
We proposed a solution via a linearization technique and
a receding horizon strategy, in which the real evolution of
the disease is used as a feedback to cast a new instance
of the optimization problem and compute the upcoming
policies that have to be implemented. The performance of the
proposed control scheme was demonstrated via preliminary
numerical simulations. Specifically, the good accuracy of
the linearized dynamics for sufficiently long time horizons
guarantees accurate farsighted forecasts, avoiding thus the
risks of relying on myopic policies. Our numerical findings
showed nontrivial solutions for the optimal control strategies,
depending on the costs associated with the implementation
of the different types of NPIs and on the requirements on the
desired evolution of the epidemic outbreak. We finally would
like to stress that, while the current formulation has been
developed using an SIS epidemic model, the same control
scheme can be extended to more complex and realistic
epidemic models, such as those used to capture the features
of the ongoing COVID-19 pandemic [9]. The analysis of the
proposed control scheme in these real-world scenarios is an
important direction for the future research. Another future
direction is the integration in the communities of irrational
or stubborn individuals [32]–[34] that may jeopardise the
effectiveness of the NPIs.
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[24] F. Sélley, Á. Besenyei, I. Z. Kiss, and P. L. Simon, “Dynamic Control
of Modern, Network-Based Epidemic Models,” SIAM J. Appl. Dyn.
Syst., vol. 14, no. 1, pp. 168–187, 2015.
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