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Abstract

In this paper we explore the dynamics of a one-dimensional Keller-Segel
type model for chemotaxis incorporating a logistic cell growth term. We
demonstrate the capacity of the model to self-organise into multiple cellular
aggregations which, according to position in parameter space, either form a
stationary pattern or undergo a sustained spatio-temporal sequence of merg-
ing (two aggregations coalesce) and emerging (a new aggregation appears).
This spatio-temporal patterning can be further subdivided into either a time-
periodic or time-irregular fashion. Numerical explorations into the latter
indicate a positive Lyapunov exponent (sensitive dependence to initial con-
ditions) together with a rich bifurcation structure. In particular, we find sta-
tionary patterns that bifurcate onto a path of periodic patterns which, prior
to the onset of spatio-temporal irregularity, undergo a “periodic-doubling”
sequence. Based on these results and comparisons with other systems, we
argue that the spatio-temporal irregularity observed here describes a form of
spatio-temporal chaos. We discuss briefly our results in the context of previ-
ous applications of chemotaxis models, including tumour invasion, embryonic
development and ecology.
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1. Introduction

Movement plays a pivotal role in the arrangements of cells and organisms:
within a developing embryo, coordinated migration allow nascent cells and
tissues to rearrange and differentiate into adult structures; between organ-
isms, ordered flocks and shoals emerge via an individual altering movement
with respect to a neighbour. Chemotaxis, the process in which cells (or or-
ganisms) migrate in response to external chemical gradients, has attracted
significant interest. For certain bacterial populations, such as E. coli and S.

typhimurium, it results in their arrangement into a variety spatial patterns
[1, 2, 3]. Via relay of the chemotactic agent cAMP, Dictyostelium discoideum

aggregates from a population of individual cells into a multicellular and dif-
ferentiated fruiting body (e.g. [4, 5]). Within the embryo, chemotaxis plays
a guiding role during avian gastrulation [6, 7], pigmentation patterning [8]
and neuronal development [9]. These same mechanisms are exploited during
tumour growth, facilitating the invasion of cancerous cells into healthy tissue
and driving angiogenesis.

While many models of chemotaxis have been formulated, the system of
coupled partial differential equations introduced by Keller and Segel in [10]
remains amongst the most widely utilised, its continuous nature enabling
analytical tractability and straightforward integration with other models.
We refer to [11] for a recent exploration of related classes of these equations.
In this paper we explore the dynamical properties of the following specific
form:

ut = ∇(Du∇u − χu∇v) + f(u) , (1)

vt = Dv∇2v + αu − βv , (2)

where u(x, t) and v(x, t) denote the cell density and chemoattractant con-
centration at time t and location x. The above equations implicitly assume
linear signalling kinetics, constant cell and chemical diffusion coefficients
(Du and Dv respectively) and a constant chemotactic sensitivity coefficient
χ. For the cellular growth term f(u) we concentrate on the logistic form
f(u) = ru(1−u/K), where r defines the growth rate and K is the “carrying
capacity”.
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Rescaling the equations such that

u∗ = u/K , v∗ =
β

αK
v , t∗ = βt , x∗ =

√

β

Dv

x ,

D =
Du

Dv

, χ∗ =
χαK

βDv

, r∗ =
r

β
,

yields (on dropping the *’s)

ut = ∇(D∇u − χu∇v) + ru(1 − u) , (3)

vt = ∆v + u − v , (4)

with the unique nontrivial uniform steady state at (1, 1). Hereafter we refer
to D as the cell diffusion coefficient, χ as the chemotactic coefficient and
r as the growth rate, although it is noted that these are, in fact, nondi-
mensional parameters that incorporate additional detail. In this paper we
consider (3)–(4) on the one-dimensional interval [0, L] and generally assume
zero-flux (Neumann) boundary conditions. Boundary conditions can vary
considerably according to the biological system, however zero-flux conditions
are a pragmatic and natural choice in many applications, for example a pop-
ulation of bacteria cultivated in a petri-dish. Initial conditions, except where
specifically stated, will take the form

(u(x, 0), v(x, 0)) = (1, 1 + ǫ(x)) , (5)

where ǫ(x) is a small (|ǫ(x)| ≤ 0.01) spatially-varying random perturbation.

1.1. Paper Outline

In this paper, we explore equations (3)–(4) under cell growth (r > 0). We
will use the remainder of this Introduction to review the relevant literature,
describe the numerical scheme and briefly study the linear stability of the
homogeneous steady state (1, 1). In Section 2 we review numerical and ana-
lytical results pertinent to the zero growth scenario, highlighting that while
spatial pattern formation can occur, multiple-peak patterns are unstable and
a coarsening process forms that leads (over long time scales) to a unique
global aggregation. In Section 3 we show that inclusion of growth can lead
to stable multiple aggregations, yet only for certain parameter regions. Other
dynamics include a range of spatio-temporal patterning in which the pattern
of aggregates evolve through alternating merging and emerging events in ei-
ther time-periodic or arrhythmic fashion. Detailed numerical explorations of
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the latter reveal a positive Lyapunov exponent and sensitive dependence to
initial conditions (Section 4). A numerical bifurcation analysis is developed
(Section 5) to track how the solution class varies in parameter space. A bi-
furcation sequence was found in which increasing the chemotactic sensitivity
first destabilises the uniform steady state and a stationary spatial pattern
emerges. This, in turn, loses stability to spatio-temporal periodicity. As the
chemotactic sensitivity increases further, a sequence of “period-doublings”
occurs before the pattern degenerates into spatio-temporal irregularity. We
conclude with a discussion of the results in the context of spatio-temporal
chaos and specific applications.

1.2. Linear Stability

Models of the form (3)–(4) are well known for their self-organising prop-
erties. Linearisation around the uniform steady state gives

Ut = DUxx − χVxx − rU ,

Vt = Vxx + U − V ,

for small perturbations U(x, t), V (x, t). The stability of the homogeneous
steady state is determined by the (temporal) eigenvalues of the stability
matrix (e.g. see [12])

Ak =

(

−Dk2 − r χk2

1 −k2 − 1

)

, (6)

where k ≥ 0 denotes the wavenumber: on the interval [0, L] with zero-flux
boundary conditions we have k = nπ/L, n = 0, 1, 2, . . . , where n denotes the
mode. If the stability matrix has at least one eigenvalue with a positive real
part, the homogeneous steady state is unstable. A simple analysis reveals
the following necessary condition for this to occur:

χ > D + r + 2
√

rD . (7)

The above relationship hints at the underlying mechanism that supports
self-organisation: the positive feedback loop of chemotaxis-to and secretion-
of the chemoattractant can overcome the stabilising properties of the growth
and diffusive terms to round up an initially dispersed population into self-
supported aggregations.
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1.3. Previous literature and spatio-temporal properties

A substantial body of research exists on systems related to (1)–(2): we
refer to [11] for a recent review. Here we comment on some specific results
pertinent to the scenario in which both cell growth and chemotaxis are con-
sidered.

A series of articles by Murray and coauthors [13, 14, 15, 16] have consid-
ered applications of equations (1)–(2) (with the linear production of chemoat-
tractant in equation (2) replaced with a saturating term, αu

µ+u
) to processes

of embryonic pattern formation, including pigmentation markings on snakes
and alligator stripe patterns. A combination of stability, bifurcation and nu-
merical analyses were employed to determine whether a chemotactic mech-
anism is capable of producing steady state patterns akin to those observed
during development.

A number of studies have been undertaken on modelling spatial pattern
formation in bacterial colonies (e.g. [3, 17, 18]). Typically, these models
extend the simple cell–chemoattractant framework (1)–(2) to include an ad-
ditional variable for a nutrient. Significantly, these models successfully gener-
ate much of the diversity of patterning observed in cultured bacterial colonies
[1, 2].

Applications of chemotaxis-based models have also been considered to
model certain processes during tumour growth. Orme and Chaplain [19] em-
ployed a similar model to that of Murray and others above to understand the
basis for capillary sprouting during tumour-induced angiogenesis. Chaplain
and coauthors [20, 21, 22] developed a series of models to investigate tumour
invasion processes. A detailed reaction-diffusion-taxis system was developed
to describe the interactions between a proliferative and migratory tumour
population, the surrounding extracellular matrix and various biochemical
components involved in tumour-controlled matrix degradation. As the tu-
mour cells invaded the surrounding tissue, a complicated and heterogeneous
pattern of tumour cells was found to emerge in the wake of the invasive front.

Equations (1)–(2) and generalisations have also been studied mathemati-
cally [23, 24, 25, 26]. Mimura [23] consider (1)–(2) on an unbounded domain
IRn, focussing on an Alee-like nonlinearity f(u) = u(1− u)(u− a). Here the
kinetic term is bi-stable, leading to the splitting of the domain into distinct
regions in which the solution is close to 0 and 1. A detailed asymptotic the-
ory was developed for the evolution of the resulting boundary layers. The
case studied in this paper is different, since the logistic form of f(u) does
not support such a phase separation. Osaki et al. [24] studied (3)–(4) on
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a bounded domain under homogeneous Neumann boundary conditions and
the logistic form for f(u). The existence of a compact global exponential
attractor was proven, the subject for a more detailed study in [25]. There,
lower estimates for the dimension of the corresponding finite dimensional ex-
ponential attractor were determined, showing that the dimension is at least
the number of unstable eigenmodes of the linearisation at (1, 1). Later, we
employ this estimate to compare the attractor dimension with the complexity
of the patterns observed. Equations (3)–(4) have also been studied by Tello
and Winkler [26], and Winkler [27], where the existence of unique global
weak solutions is shown for sufficiently large r. In [27] it is suggested that
equations (3)–(4), in three dimensions and for sufficiently small r, may actu-
ally generate unbounded solutions, an interesting question for future study.
Non-trivial steady states were also determined and it is shown that for χ < r

2

all non-trivial solutions converge to the steady state (1, 1). Note that this
condition is not satisfied under the assumption (7) for linear instability of the
homogeneous solution. The conditions under which travelling wave solutions
exist for equations (1)–(2) has been the focus of a study in [28].

A range of studies have reported on the capacity of equations similar
to (3)–(4) to exhibit a variety of spatio-temporal patterning processes, see
Figure 1 for a typical example. Painter and Hillen [29] (see also [11]) ex-
plored a related version of (3)–(4), in which the chemotactic sensitivity is
replaced with a “volume-filling” form. Inclusion of logistic cell growth was
found to lead to a complex and (apparently) arrhythmic sequence of “merg-
ing and emerging” processes, in which the merging of two existing aggre-
gates is interspersed with the emergence of a new peak. Aida et al. [25]
study a typical bifurcation route for increasing chemotactic sensitivity in
2D. While small chemotactic sensitivities lead to asymptotically stable ho-
mogeneous steady states, moderate values generate stable non-homogeneous
steady states. These become unstable to oscillations which, in turn, dissolve
into an irregular pattern of merging and emerging local maxima at larger
sensitivities. Wang and Hillen [30] have observed similar irregular merging-
emerging dynamics in a model incorporating a nonlinear cell-diffusion term
derived by allowing cells to squeeze into local openings.

This irregular spatio-temporal behaviour has also been observed for spe-
cific applications of chemotactic models. In the above described models for
tumour invasion, Chaplain and Lolas [20, 21] observed “anarchic” tumour cell
populations that undergo irregular spatio-temporal behaviour in the wake of
the invading front. Chemotaxis induced spatio-temporal patterning has also
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Figure 1: An example of spatio-temporal patterning observed in equations (3)–(4). Left:
cell-density (u) plotted as a function of space (horizontal axis) and time (vertical axis).
The colorscale bar indicates increasing cell density from u = 0 (black) to u ≥ 2 (white).
The uniform solution destabilises into a number of cellular aggregations which subsequently
evolve through an apparently arrhythmic sequence of emerging and merging events. Right:
4 frames showing snapsots of the cell (solid line) and chemical (dashed line) distributions
at the times indicated. Examples of merging and emerging events are indicated. For this
set of simulations, equations (3)–(4) are solved with D = 0.1, r = 1.0, χ = 5.0 and L = 25
with initial conditions (5) and zero-flux boundary conditions. The numerical method is as
described in Section 1.4, here we set ∆x = L/500.
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been observed in a model for host parasitoid interactions, see [31].

1.4. Numerical Method

The numerical scheme adopts a Method of Lines approach in which the
equations are first discretised in space on a uniform mesh (of spacing ∆x), and
the subsequent system of ODEs are then integrated in time. Discretisation
of the diffusion terms is performed with a central differencing scheme, while
the advective term is discretised using a high-order upwinding scheme with
flux-limiting imposed to maintain positivity (e.g. see [32]). We use the
rowmap stiff-systems integrator [33] to integrate the ODEs. Except where
specified, we set error tolerances of 10−8 in rowmap. Verification of the
scheme has been performed through varying ∆x, error tolerances and using
an independent (fully explicit) time-stepping scheme for a representative set
of numerics. The qualitative behaviour of equations (3)–(4) has also been
independently confirmed using the matlab internal PDE solver (pdepe).

2. Merging dynamics for chemotaxis models without cell-growth

We begin by briefly revisiting the zero growth scenario (r = 0), noting
that this has been covered in much greater depth elsewhere (e.g. [11]). Typi-
cal numerical simulations for parameters that satisfy condition (7) are plotted
in Figure 2. Initially, Figure 2 (a), chemotaxis coupled with secretion of the
attractant resolves the dispersed cell population into multiple aggregations.
However, this same process generates additional dynamics on a logarithmic
time scale, Figure 2 (b). Attraction between aggregates results in the grad-
ual loss of mass from a smaller aggregate into a more dominant neighbour(s),
and its eventual merging and/or collapse. As such, this coarsening results in
the aggregates becoming more widely dispersed.

The merging process for r = 0 has been studied in detail for a related
model in which χ is replaced by the density dependent form χ(1−u/Umax) (see
[29, 34]). Potapov and Hillen [35] employed a numerical bifurcation analysis,
indicating that merging corresponds to transient dynamics along metastable
(multiple peak) steady states. Dolak and Schmeiser [36] utilised singular
perturbation methods under a small diffusion approximation. In essence,
two local maxima must be sufficiently close in order to “feel” each other and,
hence, merge. This is reflected in a super-exponential time increase between
merging events as the average distance between them increases (see Figure 2
(b)).
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Figure 2: Simulations of (3)–(4) with r = 0. Each plot tracks the space (horizontal axis)
– time (vertical) cell density (u), with the grayscale reflecting an increasing cell density
between u = 0 (black) and u ≥ 2 (white). (a) Initial self-organisation of a homogeneously
distributed cell population into distinct and (approximately) uniformly spaced aggregates.
(b) Merging dynamics over a longer timescale. Competition between the aggregates leads
to their gradual collapse, eventually resulting in a few widely dispersed aggregates. Equa-
tions (3)–(4) were solved with D = 1, χ = 2, r = 0 and L = 50. Numerical method as in
text with ∆x = L/500.

Biologically, this coalescence of chemotactic aggregations is observed in
a number of real-life examples of chemotactic self-organisation, such as bac-
teria populations cultured in a liquid medium [1, 2]. From a pattern forma-
tion standpoint, however, we are often interested in the robust generation of
repeated structures: this is particularly pertinent to the emergence of cer-
tain embryonic forms, such as hair follicles, pigment patterns and somites,
in which the pattern consists of multiple structures with a fixed (approxi-
mately) spatial wavelength. While the zero-growth model clearly generates
these patterns transiently, it is unclear whether this would be sufficiently
robust for such a context. Intuitively, cell growth could compensate any loss
of cells from one aggregate to a neighbour.

3. Aggregation dynamics under cell growth

We consider r > 0 in equation (3). Following the nondimensionalisation,
Equations (3)–(4) contain three unspecified parameters, χ, r and D, and
the domain length L. Inevitably, determining estimates for such parameters
would vary according to the biological system. For example, determining D
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requires cell and chemical diffusion coefficients, yet estimates for the former
can range between 2 − 4 × 10−6 cm2 s−1 for E. coli cells in a liquid medium
[37] and O(10−10) cm2 s−1 for fibroblasts in an extracellular matrix [38].
Cell division rates are similarly variable, from as rapidly as once every 15
minutes or so (under appropriate nutrient conditions) for certain bacterial
populations, to the orders of days and weeks in adult mammalian tissues. In
the absence of a specific application and the aim of a broader insight into
the dynamical properties of the model we forego parameter determination.
In the discussion we briefly consider the results in the context of specific
applications.

Instead, we begin by performing repeated simulations of (3)–(4) under
the initial conditions (5) on a fixed domain L = 10.0 with parameters χ, r
and D selected at random from uniform distributions in the following ranges:

0.01 ≤ D ≤ 2.0 , 0.0 ≤ χ ≤ 20.0 , 0.0 ≤ r ≤ 2.0 .

Equations (3)–(4) are computed until t = Tend(= 104) and the solution is
classified at this time. Note that it is impossible to preclude slowly evolving
transients, yet a representative subset of solutions computed to an extended
time (Tend = 105) exhibited no significant change in the results. This initial
analysis revealed that the long-time dynamics of solutions fall into multiple
classes according to their spatio-temporal properties.

H-solutions: Homogeneous steady state solutions. Trivially, for parame-
ter sets (D, χ, r) that fail to satisfy (7), solutions quickly decay to the uniform
state.

S-solutions: Stationary spatial patterns. Multiple-peak patterns develop
(see Figure 3 (a) I–V for typical examples) that do not undergo the merging
dynamics associated with the zero-growth scenario.

P-solutions: Spatio-temporal periodic solutions. Spatial aggregations de-
velop that undergo sustained temporal interactions with a clear periodicity
(see Figure 3 (b) I–V for various examples).

I-solutions: Spatio-temporal irregular solutions. Spatial aggregations de-
velop that undergo sustained temporal interactions with no discernible tem-
poral periodicity (see Figure 3 (c) I–V for various examples).

The spatio-temporal behaviour can, on an intuitive level, be explained through
the addition of growth to the merging behaviour discussed earlier: solutions
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evolve through a sequence of “merging” (as before) and “emerging” (in which
new aggregations form). Briefly, the merging of existing aggregations via
chemotactic attraction creates a “hole” in the patterning field. This space is
then reoccupied via the emergence of a new aggregation peak driven by cell
growth. Clarification into which pattern class a particular solution belongs
can be obtained by tracking the u − v phase-plane trajectories at discrete
spatial locations. Typical trajectories for each of the above classes are plot-
ted in the right hand column of Figure 3: while H- and S-solutions simply
correspond to fixed points, P-solutions correspond to closed orbits and I-
solutions generate “strange attractor” type trajectories, as often associated
with chaotic systems.

3.1. Variation within (χ, r)-space

Our initial analysis revealed that the simple addition of cellular growth
provides a mechanism for generating stationary multiple-peak patterns, yet
the additional appearance of complex spatio-temporal behaviour raises fur-
ther questions regarding their robustness. To explore this in greater detail,
D and L are fixed and we explore dynamics at regularly spaced locations
inside a portion of (χ, r)-space. This creates small windows through which
the variation in solution class across parameter space can be viewed. Figure
4 summarises the results at two fixed pairs: (a) D = 0.1, L = 10, and (d)
D = 1.0, L = 20. In these plots, H-solutions are denoted by a dot while
P-solutions and I-solutions are represented by P and I respectively. For sta-
tionary patterns (S-solutions), we use a number to denote the total number
of aggregates formed, where each internal aggregate is classified as 1 and each
boundary aggregate is classified as 0.5. Note, therefore, that both the pattern
of n-internal/2-boundary aggregates and that of (n + 1)-internal aggregates
will be denoted by an “n + 1” in these plots.

Closer to the instability border (as determined by condition (7)), we pre-
dominantly observe stationary patterns, with the number of peaks varying
with r. Deeper within the unstable region, however, spatio-temporal pattern-
ing becomes increasingly prevalent. This correlates with the 2D behaviour
reported in [25], where increasing the chemotactic sensitivity resulted in a
loss of stationary solutions and onset of spatio-temporal behaviour. We note
that stationary solutions can be found throughout the parameter space, yet
these become restricted to relatively narrow strips deeper inside the unstable
region: in Figure 4 (d), regions of 3 and 4 stationary aggregates are sepa-
rated by regions of P- and I-solutions. Analysis into spatio-temporal pattern
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Figure 3: Solution classes observed in equations (3)–(4). In each row, columns I–V provide
examples of each solution class: cell density (u) is plotted as a function of space (horizon-
tal axis) and time (vertical) with the black to white grayscale reflecting an increasing cell
density. Column VI plots a typical time trajectory in the u − v phase plane at a specific
spatial location (here, x = L/4). (a) Stationary patterns (S-solutions). Solutions evolve
to a fixed spatial pattern with a characteristic spatial wavelength. The corresponding
phase plane trajectory at x = L/4 yields a fixed point. (b) Spatio-temporal patterns (P-
solutions). Solutions evolve to a spatial pattern evolving with clear temporal periodicity.
The corresponding phase plane trajectory gives a closed orbit. (c) Spatio-temporal irreg-
ularity (I-solutions). Solutions evolve to a spatial pattern evolving arrythmically. The
corresponding phase plane trajectory at x = L/4 has a strange attractor appearance. For
the simulations, the domain length was fixed at L = 10 while parameters χ, r and D were
randomly selected as described in the text. A total of 500 simulations were performed
using the numerical scheme outlined in the text with ∆x = L/400.
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evolution reveals the importance of parameters. Thus, the P-solution plot-
ted in Figure 4 (b) (corresponding to the boxed location in Figure 4 (a))
switches between 1 and 2 aggregates, Figure 4 (c), while the I-solution in
Figure 4 (e) (corresponding to the boxed point in Figure 4 (d)) varies be-
tween 3 and 4 aggregates. In both instances, this correlates with the position
of the spatio-temporal pattern with respect to the surrounding S-solutions.
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Figure 4: (a) Variation in pattern class across (r, χ) parameter space when D = 0.1 and
L = 10. Plot shows the pattern classified following a simulation of equations (3)–(4) at
various (r, χ) pairs: (·) H-solution; (Number) S-solution, with number indicating number
of aggregates; (P) P-solution; (I) I-solution. (b) Space-time plot showing the cell density
evolution for the P-solution found at the squared location in (a). (c) A plot of the number
of aggregates as a function of time for the spatio-temporal pattern solution plotted in (b).
(d)-(f) Equivalent set of results for D = 1 and L = 20. Numerics as described in the text,
with ∆x = L/400.
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3.2. Variation with domain length

Above we showed that stationary patterns of distinct wavelength are typi-
cally separated by broad regions of spatio-temporal patterning. Within these
regions, while the space between two existing aggregates permits new aggre-
gate growth, proximity to a neighbour results in merging. This implies a role
for domain size which we investigate by varying L for two fixed parameter
sets: (PS1) (r, D, χ) = (1, 1, 5) and (PS2) (r, D, χ) = (1, 1, 10). The former
describes a point just inside the unstable region (as determined by condition
(7)), and a plot of the dispersion relation for this set (Figure 5 (a), dashed
line) reveals a correspondingly narrow range of unstable wavenumbers (i.e.
for which at least one eigenvalue of the stability matrix (6) has positive real
part). (PS2) defines a point within the unstable region, and the range of
unstable wavenumbers is broader (solid line in Figure 5 (a)). Under the im-
posed (zero-flux) boundary conditions, unstable wavenumbers are limited to
the discrete values k = nπ

L
for n = 0, 1, 2 . . ., where the mode n indicates the

number of aggregates (n = 1 corresponds to a single boundary aggregate,
n = 2 corresponds to a full aggregate and so on). Thus, as L is increased
from zero, we expect the first pattern to become unstable to be a single
boundary aggregate at some critical value Lcrit. In Figure 5 (b) we plot the
unstable modes as a function of domain length under the two parameter sets;
note the much wider range of unstable modes for (PS2).
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Figure 5: (Left) Plot of the dispersion relation showing the range of unstable wavenumbers
(k) for the two parameter sets (PS1) (r, D, χ) = (1, 1, 5) (dashed line) and (PS2) (r, D, χ) =
(1, 1, 10) (solid line) for the numerical investigations. (Right) Plot showing the unstable
modes as a function of domain length for each parameter set, using the same key as shown
in the left hand plot.
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We plot a representative subset for (PS1) in Figure 6. Here, Lcrit = 1.94
and there is a corresponding transition from H-solution to a 1-boundary
aggregate S-solution as L increases from 1 to 2. Further increases are accom-
panied by transitions in the number of aggregates in the spatial pattern that
forms. For all explored domain lengths the patterns are of stationary type
(S-solution).

(a) L = 1 (b) L = 2 (d) L = 8 (f) L = 16

tim
e

15
00

20
00

(c) L = 4 (e) L = 12 (g) L = 20 (h) L = 24

Figure 6: Stationary patterns evolve close to the stability/instability interface over a range
of domain lengths. Space (horizontal) – time (vertical) cell density maps for solutions to
(3)–(4) with initial conditions (5) under varying L and fixed (r, D, χ) = (1, 1, 5). Solutions
are plotted for t ∈ [1500, 2000] (note that a limited set of runs to larger times indicated
no change in solution behaviour). The numerical method is as described in the text and
we set ∆x = L/400 (we note that the same qualitative behaviour was observed using the
same fixed ∆x for each domain length).

With (PS2), Lcrit = 1.12 and a similar bifurcation between H- and S-
solutions occurs, see Figure 7. At lower domain lengths, solutions are consis-
tent with (PS1), with S-solutions evolving. However, as the domain length
is steadily increased we observe a greater prevalence for spatio-temporal pat-
terning, with a further tendency for I-solutions over P-solutions at larger
domain lengths. A limited set of numerics performed at much larger domain
lengths exclusively generated I-solutions (example shown for L = 200). As
the domain length is increased, more and more modes become unstable, Fig-
ure 5 (b). This corresponds, according to Aida et al. [25], to an increase in
the dimension of the attractor, and supports highers level of complexity.

3.2.1. Emerging Length

The observation that new aggregates emerge as the domain length in-
creases led us to investigate a possible “emerging length” Le, i.e. a measure
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(a) L = 1 (b) L = 2 (c) L = 3 (d) L = 6 (e) L = 7 (f) L = 10 (g) L = 11 (h) L = 13

(i) L = 15 (j) L = 16 (k) L = 18 (l) L = 19 (m) L = 20 (n) L = 22 (o) L = 24 (p) L = 25

(q) L = 200

tim
e

tim
e

tim
e

20
00

15
00

15
00

20
00

20
00

15
00

0 Lspace

Figure 7: A variety of H-, S-, P- and I-solutions are observed for (PS2) as the domain length
is increased. Each frame shows the cell density (u) plotted in space (horizontal axis) and
time (vertical axis) with the colorscale reflecting an increasing cell density between u = 0
(black) and u ≥ 2.0 (white). Equations (3)–(4) were solved with (r, D, χ) = (1, 1, 10).
Simulation details as in Figure 6 for the top two rows. The same qualitative behaviour
was also observed when using the same fixed ∆x at each domain length. For the bottom
row (on a larger domain) we use ∆x = L/2000.
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for the pattern transition between L = 6 and L = 7 in Figure 7. For our
argument we consider the space between two aggregates: here, the cell den-
sity is relatively low, increases in the population are predominantly driven
by the proliferation term ru(1−u) and newly created cells will be subject to
both diffusion and chemotaxis. If a neighbouring aggregate is too close, the
attraction may be sufficiently strong that new cells become absorbed into it
before establishing their own. To form a separate and new aggregate, the
local growth must overcome this attraction. At the onset of a new aggre-
gate, at two locations between it and its neighbours the local flux will be
zero and we therefore approximate an emerging length via a classical critical
domain size problem in which the open space between aggregates must be
large enough to support a non-constant population with zero flux boundary
conditions, i.e.

ut = (Dux − χuvx)x + ru(1 − u) ,
vt = vxx + u − v ,

(8)

on [0, Le] with boundary condition

ux(0, t) = ux(Le, t) = 0, vx(0, t) = vx(Le, t) = 0. (9)

For the insertion of an additional aggregate in the interval [0, Le] the zero
solution (u∗, v∗) = (0, 0) must be unstable. We use linearisation and find
a corresponding eigenvalue λ > 0. To initiate an internal aggregate, the
corresponding eigenfunction should have one isolated maximum in the middle
of the domain. The linearisation of the above model (8) at (0, 0) reads

Ut = DUxx + rU
Vt = Vxx + U − V.

The first equation decouples and can be studied separately: it is the same
equation as for the standard critical domain size problem for the Fisher
equation ut = Duxx + ru(1 − u) and the spectrum is well known (e.g. [39]).
The eigenvalues are given by

λn = −D

(

nπ

Le

)2

+ r, n = 0, 1, 2, . . . .

The first nontrivial eigenfunction with a maximum in the middle arises for
n = 2. Hence the critical length for initiation of an internal maximum is
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given by

−D

(

2π

Le

)2

+ r = 0,

which can be solved by

Le = 2π

√

D

r
. (10)

Remarks:

1. For figure 6, we note that D = r = 1 and χ = 10, thus the emerging
length is Le = 2π ≈ 6.28. Clearly, this corresponds with the switch
between the S-solution at L = 6 and the emerging events at L = 7.

2. Note further that there is no dependence on χ in (10). Simulations
similar to those in Figure 6 with D = r = 1 (as above) and χ = 25
demonstrate a similar transition from L = 6 to L = 7.

3. The emerging length also corresponds to the emerging distances ob-
served for larger domain simulations.

4. Our emerging length estimate assumes that the flux vanishes at loca-
tions close to the existing peaks, reflected in boundary conditions (9).
Under certain conditions this may not be satisfied, for example if the
aggregates are diffuse, and the estimate may differ markedly from the
actual emerging length.

4. Stability/Robustness of Solution Classes

In this section we explore numerical stability for the various solution
classes. To address this, we consider the impact of a small perturbation
applied at t = Tpert and track the subsequent difference between perturbed
and unperturbed solutions. For the figures presented we consider a small
step change to cell density applied to a central portion of the domain:

upert(x, Tpert) = u(x, Tpert) +

{

ε if |x − L/2| ≤ δL
0 otherwise.

,

where upert(x, t) and u(x, t) are the perturbed and unperturbed solutions
respectively, ε is the size of the step and δ ∈ [0, 0.5] determines its width.
Obviously, upert(x, t) = u(x, t) for t < Tpert.

Figure 8 plots typical results for (a) S-solutions, (b) P-solutions and (c)
I-solutions. Columns I-IV plot in the top subframes the solutions u(x) and
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Figure 8: Investigation into sensitive dependence to initial conditions for each pattern
class. For each row, columns I-IV plot in the top subframe the solutions u (solid line)
and upert (dashed line), and in the bottom subframe the difference u − upert at distinct
times: (I) immediately following the perturbation (+0), (II) 100 time units following the
perturbation (+100), (III) +200 and (IV) + 300. Column V plots the space-time density
map for log10

∣

∣upert(x, t) − u(x, t)
∣

∣. The colorscale indicates levels between ≤ −6 (black)
and ≥ 0 (white), and the arrowhead along the vertical axis indicates the time at which
the perturbation is applied. Column VI gives the log10 plot of the absolute difference
integrated over the domain length. In this plot we also draw the best-fit straight line (de-
termined via least-squares method) following the initial perturbation. The slope of this
line gives the numerical Lyaponov exponent (LE) as indicated. (a) S-solutions. Following
the initial perturbation, the difference in solutions quickly decays to imperceptible levels.
The numerical Lyaponov exponent is clearly negative. (b) P-solutions. Following the per-
turbation a slight phase shift occurs, indicated by the persistent (and periodic) difference
in the solutions. The numerical Lyaponov exponent is approximately zero. (c) I-solutions.
Following the perturbation, the difference between solutions grows over time. The numer-
ical Lyaponov exponent is clearly positive. Numerical details and model parameter values
as given in Figure 7, with Tpert = 2000, δ = ε = 0.01.
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upert(x) at specific times following the perturbation, and in the bottom sub-
frames the difference u(x)− upert(x). In Column V we plot the base-10 loga-
rithm of the absolute difference (log10 |upert(x, t) − u(x, t)|) while in Column
VI we plot the base-10 logarithm of the space-averaged absolute difference:

L(t) = log10

(

1

L

∫ L

0

|upert(x, t) − u(x, t)| dx

)

.

The slope of the best-fitting straight line (calculated via a least squares ap-
proximation) through L(t) following the perturbation generates a numeri-
cal estimate for the Lyapunov exponent. Negative slopes indicate stability,
zero-slopes imply neutral stability (for example, periodic orbits) and positive
slopes indicate instability and a sensitive dependence to initial conditions
(see [40]).

The results indicate that S-solutions are robust to perturbations: the per-
turbed solution quickly converges with the unperturbed solution, confirmed
through a negative Lyapunov exponent. Periodic patterns remain periodic,
yet a slight phase shift can be observed in the perturbed solution. Hence the
error never decays to zero and the Lyapunov exponent is zero. I-solutions re-
main irregular and unperturbed/perturbed solutions diverge with time and
L(t) increases towards a maximum, corresponding to the typical distance
between arbitrary solutions. The straight line fitting to L(t) in the region
where it is increasing yields a positive Lyapunov exponent, indicating sensi-
tive dependence to the initial conditions. We note that the same tests have
been applied for various examples in each class, for distinct forms and sizes of
perturbations, and applied at different times (Tpert). In each case, equivalent
behaviour was observed: I-solutions always generated a positive Lyaponov
exponent, while P- and S-solutions generated zero and negative exponents
respectively.

5. Bifurcation path to spatio-temporal irregularity

In section 3 we demonstrated that the parameter set significantly impacts
on the class of patterning. Specifically, close to the stability/instability in-
terface stationary solutions are predominantly observed, while further away
spatio-temporal patterns can be found. In this section a more systematic
analysis is conducted on the pattern class transition as we move through
parameter space. Here we set r = D = 1 and L = 20 and vary the size of
the chemotactic sensitivity χ in the following manner:
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(i) Set χ = 0 and apply the initial conditions in (5);

(ii) Equations (3)-(4) are solved numerically until T = Tend and the form
of solutions is classified;

(iii) A small (≤ 1%) spatially randomised perturbation is applied to the
solution at T = Tend. This allows distinct branches originating at a
particular bifurcation point to be tracked following multiple runs. The
value for χ is incremented and we return to step (ii).

Thus, at each increment of χ, a new simulation is initiated from the (per-
turbed) solution at the final time of the previous simulation (rather than ran-
dom initial conditions). This approximates a continuous bifurcation analysis
by tracking the changing (numerical) stability of specific solution branches
as χ is increased. Switches between solution classes are interpreted as the
loss of (local) stability for one branch and bifurcation onto a new one. We
should stress that long-time transients cannot be excluded, yet identical re-
sults have been obtained in a more limited run with larger Tend. The above
sequence was applied multiple times for the same parameter set with distinct
randomised perturbations at Tend.

Under the fixed parameters r = D = 1, L = 20 and zero-flux boundary
conditions, linear stability analysis predicts that the H-solution becomes un-
stable for χ > χ∗ ≃ 4.014. Furthermore, for χ just above this value, we can
expect growth of a 3 aggregate pattern, corresponding either to 2 internal/2
boundary peaks or 3 internal peaks. Under multiple runs of the simulation
procedure, we observed two distinct sequences, summarised in Figures 9 and
10, and corresponding to an initial bifurcation from H-solution to the 2 inter-
nal/2 boundary peak S-solution and 3 internal peak S-solution respectively.

Figure 9 describes the sequence in which the H-solution initially loses sta-
bility to a branch of 2-internal/2-boundary S-solutions as χ increases above
χ∗, see frames (a)-(b). This branch remains locally stable as χ is further
increased, however peaks become notably sharper as the chemotactic attrac-
tion becomes stronger, Figure 9 (c). For χ & 5.195, however, the S-solution
branch becomes unstable and a bifurcation is observed onto a path of P-
solutions. Figure 9 (d) reveals this P-solution branch at χ = 5.21: note that
the oscillations begin small (reflected in a small closed orbit for the phase
plane trajectories at L/2) but grow with further increases in χ (e.g. Figure
9 (e)).

Between χ = 5.275 and χ = 5.8 we observe a “period-doubling bifurca-
tion” in the P-solution patterning class (compare Figure 9 (e) and (f)), clas-
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Figure 9: Key transitions in solution class as the parameter χ is continuously increased, see
text for details. For each subfigure (a) – (o) we plot (left) the u−v phase plane trajectories
for a specific spatial location (x = L/2) and (right) a portion of the space (horizontal axis)
– time (vertical axis) cell density plot at the end of each simulation run. Numerical scheme
as outlined in the text with other model parameters taken to be r = D = 1 and L = 20.
We use ∆x = L/200 for the spatial discretisation.
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sified by an increased spatio-temporal complexity and a doubling in the loop
structure for the trajectories calculated at x = L/2. This period-doubling is
also found to occur at other spatial locations at the same increment in χ, al-
though it is impossible to determine whether this is truly simultaneous across
space: inevitably we are limited by the resolution in the numerical scheme.
This new class of P-solution remains stable up to χ ∼ 5.425 before a second
period doubling takes place (from 2-loop to 4-loop), c.f. Figure 9 (g) and (h).
Small further increases in χ result in a loss of stability for P-solutions and
a transition to I-solutions, determined by the appearance of trajectories at
x = L/2, see Figure 9 (j)-(l). As χ is increased further, I-solutions remain,
although it is noted that brief returns to P-solutions occur, for example, as
shown in Figure 9 (m). The above “period-doubling” to irregularity sequence
is commonly associated with chaotic systems.

An alternative sequence is found to take place when the initial bifurcation
at χ∗ results in the emergence of a 3-internal aggregates pattern, Figure
10 (a). This distinct S-solution branch subsequently loses stability to P-
solutions at a lower value of χ than in the sequence represented in Figure
9, as demonstrated in Figure 10 (a)–(b). We note that the closed orbits
at x = L/2 first observed following the bifurcation from S-solutions to P-
solution have a double-loop structure (i.e. there was no initial bifurcation
into a single-loop orbit). As χ is increased further, P-solutions lose stability
to I-solutions, Figure 10 (d)–(e). In this sequence, we also failed to observe
the “period doubling” of the loop structure as above, although a possible
explanation is an insufficient resolution for the step increase in χ. With
increasingly pronounced spatio-temporal irregularity, the density at one of
the boundaries increases sufficiently to form a stable boundary aggregate and
there is a switch from I-solutions to a 3.5 aggregate S-solutions for χ & 5.13.
These two distinct bifurcation sequences clearly imply that multiple classes
of solutions are locally stable at the same position in parameter space.

6. Discussion

The rich variety of patterning observed within even relatively simple mod-
els for chemotaxis is remarkable. To date, the majority of rigorous analysis
has focussed on finite time blow-up and/or global existence of solutions (e.g.
[11, 41] for reviews). While the existence of spatio-temporal patterning has
been noted by a number of authors (e.g. [29, 25, 20, 21, 31, 30, 11]), a
systematic analysis is currently lacking. In this paper we begin this study
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Figure 10: Alternate bifurcation sequence to that presented in Figure 9. Here, the initial
transition from H- to S- solution results in a 3 internal aggregate pattern and the sub-
sequent bifurcations are distinctly different. Model and numerical details as described in
Figure 9.

via a detailed numerical analysis of a basic chemotaxis model incorporat-
ing a logistic cell growth term, as given by (3)–(4). While we have not yet
rigorously demonstrated chaotic behaviour, we have found both a positive
Lyapunov exponent (sensitivity dependence to initial conditions) and a po-
tential period doubling route to spatio-temporal irregularity. Such features
are often associated with chaotic systems, suggesting that equations (3)–(4)
are indeed capable of spatio-temporal chaos. We have also estimated the
dimension of the compact global attractor using the results of [25], observing
that increasing complexity correlates with growth in the attractor dimension.
A full identification of the attractor would appear to be a highly challenging
problem which we leave for future research.

Spatio-temporal patterning appears to occur via a repeating process of
“emerging and merging” processes, in which a new aggregate emerges (driven
predominantly by cellular growth) in a low density region of space before
“merging” with existing aggregates (driven predominantly by chemotactic
attraction). Interesting questions remain regarding suitable estimates for
typical emerging lengths (the size of open space necessary for a new aggre-
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gate to develop) and merging lengths (i.e. a typical distance which leads
to merging of peaks): relationships between these may determine whether
stationary or spatio-temporal patterning occurs. In this paper we employed
a simple stability analysis to estimate a value for the former, although it is
noted that this estimate is imprecise under certain scenarios. For the latter,
a number of perturbation arguments have been suggested in the literature
(e.g. [35, 36]) but thus far we have been unable to generate a critical merging
size from these methods. The merging process observed here is reminiscent
of coarsening dynamics in the Cahn-Hilliard equation [42]1. In that case the
coarsening process is driven by a double-well potential, which does not exist
for the model studied here.

Closer inspection of the patterns reveals the complicated interactions be-
tween what appear to be travelling pulses and stationary local spikes. An
exhaustive analysis into spike and travelling wave solutions of equations (3)–
(4), together with their stability properties, is an intriguing avenue for future
research. Of ultimate interest is the geometric structure of the global attrac-
tor, the steady states and their unstable manifolds, which remains a distant
goal.

The results presented here have been restricted to the case of zero-flux
conditions applied at the boundary. While these are standard in many typ-
ical biological applications, it is important to remark that they can impose
on the pattern form, particularly for smaller domains. To explore the po-
tential impact of boundary conditions, a more restricted investigation was
undertaken for periodic boundary conditions, and the same qualitative be-
haviour was observed. However, a more detailed exploration into the role of
boundary conditions on the spatio-temporal properties of the model remains
the subject for future research.

We also note the relevance of the results here in the context of certain
applications. As mentioned earlier, Chaplain and coauthors [20, 21, 22] ob-
served complicated spatio-temporal dynamics driven by chemotaxis in a de-
tailed model for tumour invasion. A reduced version of their model, formu-

1The literature on coarsening for Cahn-Hilliard equations and Ostwald ripening is im-
mense. It is impossible to give due regard to all important contributions and we therefore
confine ourselves to citing the original paper by Cahn and Hilliard to represent this large
discipline.
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e

Cells Matrix Cells Matrix Cells

Figure 11: Spatio-temporal patterning observed in specific applications of chemotaxis
models similar to (1)–(2). (a), (b) Tumour invasion model of [20, 21, 22], see equations
(11), showing space-time density maps for cells and the matrix. The initial invasion
of the cells from left to right reduces the matrix to zero. The subsequent chemotactic
interactions between cells and a proteolytic enzyme (not shown) generates both station-
ary and “anarchic” cell populations according to the size of the chemotactic sensitiv-
ity, consistent with the results in this paper. Equations as described in the text with
Dc = 0.001, Dp = 0.01, φ = 0.05, α = 0.1, β = 0.3, δ = 5, µ1 = 0.15, µ2 = 0.75 and (a)
χ = 0.035, (b) χ = 0.05. Initially, we set a population of tumour cells at the x = 0 bound-
ary and impose zero-flux boundary conditions on a domain of length L = 4. (c) Model for
morphogenesis during embryonic development, in which the linear production of chemoat-
tractant by cells in equation (2) is replaced by a saturating term αu

µ+u
, see [14, 15, 16].

For sufficiently strong chemotaxis, the initially quasi-stationary pattern of cells degener-
ates into irregular spatio-temporal patterning. Parameter values are D = 0.25, χ = 10,
r = α = µ = 1 and L = 25. Initially we consider small randomised perturbations of the
steady state and zero flux boundary conditions. Numerical method for all simulations as
described in Section 1.4.
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lated in [21], considers the three equations:

ct = ∇(Dc∇c − χc∇p − φ∇m) + µ1c(1 − c − m) ,

mt = −δmp + µ2m(1 − c − m) , (11)

pt = Dp∇2p + αc − βp .

The above describes an invasive tumour cell population (c) which moves both
haptotactically up gradients of the immobile extracellular matrix density
(m) and chemotactically up gradients of a diffusible proteolytic enzyme (p).
The latter is produced by the cells and degrades the extracellular matrix
on contact. Cell proliferation and matrix regeneration are both modelled
via logistic-type growth terms. The simulations plotted in Figure 11 (a)–
(b) (using parameters and initial conditions from [21]) reveals how the initial
wave of tumour cells invades through the tissue, leaving either stationary cell
aggregates (Figure 11 (a)) or complicated spatio-temporal patterning (termed
“anarchic” in [20, 21, 22], Figure 11 (b)) in its wake according to the size of
the chemotactic sensitivity, χ. Under the parameters indicated in the caption
to Figure 11, we note a scaling in which δ is large compared to other model
parameters. Thus, 1/δ is small and by dividing the second equation of (11)
by δ we obtain m ≈ 0 to leading order. In this case, equations (11) reduces
to our model (1)–(2) and we can expect similar behaviour. Effectively, our
chemotaxis model describes the outer solution on the slow manifold in a
scaling limit of the Chaplain-Lolas model.

Models similar to equations (1)–(2) have also been developed in the con-
text of embryonic patterning [14, 15, 16] and angiogenesis [19]. Here, the
linear production of chemoattractant by cells in equation (2) was replaced
by a saturating term αu

µ+u
, reflecting an additional feedback that curbs ex-

cessive attractant production at high cell densities. We note that irregular
spatio-temporal patterning persists under this variation, see Figure 11 (c),
as well as in other variations of the model (e.g. [29, 30, 11]).

In the context of embryonic development, this raises significant questions
as to how robust basic cell-chemotaxis models would be for certain forms
of morphogenesis: while it undoubtedly can generate stationary multi-peak
patterns, the appearance of irregular spatio-temporal behaviour suggests an
underlying sensitivity. Of course, we should note that developmental pro-
cesses will be subjected to greater levels of signalling, additional patterning
mechanisms, specific geometries, boundary constraints etc., all of which may
conspire to increase robustness.
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A large amount of work has been conducted on irregular spatio-temporal
patterning in ecological systems, see [43] for details. For example, Sher-
ratt et al. [44] demonstrated the onset of chaotic oscillations in the wake of
a predator population invading into a field of prey. Particularly pertinent
to the present study on chemotaxis, Pearce et al. [31] have demonstrated
chemotaxis-induced spatio-temporal irregularities in a host-parasitoid sys-
tem. While the connection to the model developed here is less direct than
the applications above, it is clearly tempting to speculate that a similar phe-
nomenon of growth and chemotaxis may drive the dynamics reported in [31].

Although spatio-temporal chaos within a biological system has yet to
be categorically demonstrated, the results here suggest that chemotactic
processes offer a novel area for exploring the presence of such behaviour.
The combined action of chemotaxis and growth have already been shown to
drive complex spatial patterning in populations of cultivated bacteria (e.g.
[1, 2, 3]), and the malleability of such systems offers a tantalising experimen-
tal case system for such investigations.
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