
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An ISB-consistent Denavit-Hartenberg model of the human upper limb for joint kinematics optimization: validation on
synthetic and robot data during a typical rehabilitation gesture / Caruso, Marco; Gastaldi, Laura; Pastorelli, STEFANO
PAOLO; Cereatti, Andrea; Digo, Elisa. - ELETTRONICO. - 2022:(2022), pp. 1805-1808. (Intervento presentato al
convegno Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) tenutosi a
Glasgow, Scotland, United Kingdom nel 11-15 July 2022) [10.1109/EMBC48229.2022.9871201].

Original

An ISB-consistent Denavit-Hartenberg model of the human upper limb for joint kinematics optimization:
validation on synthetic and robot data during a typical rehabilitation gesture

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/EMBC48229.2022.9871201

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2972223 since: 2022-10-11T14:32:19Z

IEEE



  

  

Abstract— Several biomedical contexts such as diagnosis, 

rehabilitation, and ergonomics require an accurate estimate of 

human upper limbs kinematics. Wearable inertial measurement 

units (IMUs) represent a suitable solution because of their 

unobtrusiveness, portability, and low-cost. However, the time-

integration of the gyroscope angular velocity leads to an 

unbounded orientation drift affecting both angular and linear 

displacements over long observation interval. In this work, a 

Denavit-Hartenberg model of the upper limb was defined in 

accordance with the guidelines of the International Society of 

Biomechanics and exploited to design an optimization 

kinematics process. This procedure estimated the joint angles by 

minimizing the difference between the modelled and IMU-

driven orientation of upper arm and forearm. In addition, 

reasonable constraints were added to limit the drift influence on 

the final joint kinematics accuracy. The validity of the procedure 

was tested on synthetic and experimental data acquired with a 

robotic arm over 20 minutes. Average rms errors amounted to 

2.8 deg and 1.1 for synthetic and robot data, respectively.  

 
Clinical Relevance— The proposed method has the 

potential to improve robustness and accuracy of multi-joint 

kinematics estimation in the general contexts of home-

based tele-rehabilitation interventions. In this respect, adoption 

of multi-segmental kinematic model along with physiological 

joint constraints could contribute to address current limitations 

associated to unsupervised analysis in terms of monitoring and 

outcome assessment. 

I. INTRODUCTION 

The accurate estimate of the upper limb kinematics is 
crucial for several biomedical applications such as tele-
rehabilitation, clinical evaluation, and ergonomics [1]. 
Nowadays, wearable inertial measurement units (IMUs) 
represent a convenient solution to unobtrusively monitor the 
performance of subjects in ecological environments [2]–[4]. 
Upper limb angular and linear kinematics can be estimated 
from multiple IMUs mounted on the upper limb by means of 
sensor fusion algorithms [5]. However, when computing the 
orientation of each IMU, the main drawback is the drift caused 
by the time integration of the angular velocity, which is 
typically corrupted by a non-stationary bias [6]. The 
orientation drift of each IMU is then reflected on the joint 
kinematics estimates, thus resulting in high angular and 
position errors. To reduce this detrimental effect, it is common 
to subtract from the gyroscope signal recorded during a 
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dynamic acquisition its mean value computed during a static 
acquisition. Despite helpful, this procedure is not completely 
effective. In fact, the bias exhibits non-negligible run-to-run 
changes due to, for example, temperature changes [6], [7], 
resulting in a time-variant residuals which cannot be 
compensated for.  

According to the International Society of Biomechanics 
(ISB), upper limb joint kinematics can be described through 
five angular degrees of freedom (DoFs) (three at the shoulder 
and two at the elbow) and one subject-specific parameter, the 
carrying angle [8]. When the movement does not involve the 
trunk, a first simple solution to estimate the shoulder angles 
consists in aligning the upper arm (UA) IMU with the humerus 
anatomical axes and computing the relative orientation with 
respect to an initial anatomical posture. The elbow angles can 
be estimated as the relative orientation between the UA IMU 
and the IMU attached to the forearm (FA) and aligned with its 
anatomical axes. A clinically relevant joint kinematics 
description in terms of Euler angles can be then obtained by 
decomposing relative orientations according to ISB standard 
sequences. However, following this approach, errors in the 
IMUs orientation directly affect the quality of joint kinematics 
estimates, possibly reflecting in non-physiological joint 
angular accelerations and ranges of motion. Finally, another 
limitation of this approach, based on Euler angles 
decomposition, is the possibility of mathematical singularities. 
To overcome the above-mentioned issues, we proposed a 
Denavit-Hartenberg (DH) model to track the upper limb 
motion consistently with the corresponding ISB convention. 
The DH notation provides an efficient way for defining a 
generic robotic chain [9]. The five degrees of freedom of the 
model (i.e., the joint angles) were obtained at each time step 
by optimizing the difference between the modelled UA and FA 
orientation and the one computed with the sensor fusion 
algorithm combining the accelerometer and gyroscope signals. 
In addition, this optimization framework allows to set the limit 
for each joint and to restrict the maximum angular change 
between two consecutive time steps. The validity of this model 
was assessed on synthetic and experimental data acquired on a 
robotic arm reflecting typical rehabilitation exercises [10]. In 
both cases, to verify the influence of a considerable drift on the 
final joint angle accuracy, the length of the recordings 
amounted to about 20 minutes, a typical amount of time for 
upper limb rehabilitation [10]. Finally, a comparison was made 
between the joint kinematics estimated within the model-
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optimization framework and the one computed with the 
traditional Euler inversion of the relative orientation. 

II. MATERIAL AND METHODS 

A. DH model of the upper limb 

The upper limb was modelled adopting the DH convention 
in agreement with the guidelines of ISB (Fig. 1). Accordingly, 
two rigid segments, UA and FA, were identified and a 6-DoFs 
model was defined. In detail, the shoulder was modelled as a 
spherical joint with 3 DoFs: the elevation plane (q1), the 
elevation (q2), and the intra-extra rotation (q3). The elbow was 
modelled as a universal joint with 2 DoFs: the flexion-
extension (q4) and the pronation-supination (q6). Moreover, a 
fixed subject-specific carrying angle (q5) was introduced to 
model the physiological abduction of the FA with respect to 
the UA. Four DH parameters, two distances (di and ai) and two 
angles (θi and αi), were chosen to identify the pose of the link 
i with respect to the link i-1. According to the DH convention, 
three of these parameters (di, ai and αi) were always constant 
and depended only on the geometry of connections between 
consecutive joints. Since all the joints were modelled as 
revolute ones, the fourth parameter θi were the only variable 
values depending on qi.  

 

Figure 1.  DH model and parameters of the human upper limb. 
 

In the following, the bold notation q refers to the vector [q1, q2, 
q3, q4, q5, q6]. According to the DH convention [11], it is 
straightforward to obtain the elbow and wrist orientation 
matrices, 𝐴𝑈𝐴

0  and 𝐴𝐹𝐴
0 , respectively, where axes (x0, y0, z0) of 

the fixed frame can be assumed coincident with thorax ones. 

B. Optimization framework 

To estimate the elbow and wrist joint kinematics it is 
necessary to know the values of q. This is accomplished by 
minimizing, at each time-step, the difference between the 
orientation estimated using the DH model ( 𝑅𝑈𝐴

0  and 𝑅𝐹𝐴
0 ) and 

the corresponding orientation computed using a sensor fusion 

algorithm [12] fed with IMU measurements ( �̂�𝑈𝐴
0  and �̂�𝐹𝐴

0 ). 
This process is described in Fig. 2 for each k-th time-step.  

 
Figure 2.  Orientation-based optimization process. 

 The orientation residuals 𝑅𝛥𝑈𝐴 and 𝑅𝛥𝐹𝐴 were then 

converted in the corresponding angular notation (ZYX 

sequence) to create the objective function 𝑓𝑅(𝒒) which 

represents the angular difference between the modelled and 

sensor-fusion based orientations for UA and FA. When the 

guess 𝒒 is close to the sensor-fusion based orientation, the 

𝑓𝑅(𝒒) is small thus not resulting in singularities of the Euler 

angles. The output of this process is the vector of the optimal 

DoFs 𝒒𝑜𝑝𝑡 at the current time-step. Each DoF of the optimal 

solution is bounded between two limits which can be set, by 

means of Lagrange multipliers, based on both the 

physiological range of motion of each joint and, if known a-

priori, the range of the movement under analysis [13]. 

Furthermore, it is possible to constrain the maximum angular 

change of each DoF between two consecutive time-steps 

based on the expected angular velocity. The minimization was 

performed using a non-linear least squares solver. Initial 

conditions were set equal to 𝒒𝑜𝑝𝑡 values found at the previous 

time-step to ease the converge of the solution.  

C. Data acquisition 

 The proposed optimization method was tested using 

synthetic and robot IMU data. In both cases, data were relative 

to a single motion involving variation in three DoFs which 

mimicked a shoulder flexion-extension, an elbow flexion-

extension, and a forearm prono-supination, simultaneously. 

 

1) Synthetic data 

In this section the process to obtain realistic noisy 

accelerometer and gyroscope data is described.  To simulate 

the desired motion q1 and q3 were set to 90 and -90 deg, while 

q2, q4 and q6 were varied from 0 to 150 deg and back in 3 s. 

The trajectory was designed using a 5-th order polynomial 

and imposing to zero the joint angular velocity and 

acceleration at 0 and 150 deg [9]. This trajectory was repeated 

for 400 cycles (~20 minutes, sampling frequency = 100 Hz) 

to obtain the reference qref. The corresponding ideal IMU 

signals were generated using the direct kinematics recursive 

process which evaluates accelerations and angular velocities 

from DoFs. For each IMU the gravity vector projected on the 



  

local coordinate system was subtracted from the acceleration 

to obtain the accelerometer output. Then noise was added to 

the signals of each IMU. Noise characteristics in terms of 

density, bias instability, and random walk were derived from 

those computed in static for 18 Xsens – MTw (Xsens, The 

Netherlands) using the Allan Variance [14]. TABLE I reports 

the selected values for accelerometers and gyroscopes. 

TABLE I.  SELECTED NOISE CHARACTERISTICS 

Xsens – MTw 
(18 IMUs) 

Accelerometer  
(mean + 3 STD) 

Gyroscope 
(mean + 3 STD) 

Noise Density 0.0012  (m/s2)/√Hz 0.0079 dps/√Hz 

Bias Instability 0.0013  m/s2 0.0054 dps 

Random Walk 6.9181×10-5  (m/s2)/√Hz 0.0004 dps/√Hz 

 

The static noise was generated using the IMU simulation 

model (Sensor Fusion and Tracking Toolbox, MATLAB 

R2021b, The MathWorks Inc, MA, USA). To simulate the 

bias residual of the gyroscope, two static recordings were 

generated starting from the same seed. Then, the mean value 

of the first recording was subtracted from the second 

gyroscope data. Residuals amounted to [0.0233, 0.0270, 

0.0184] and [-0.0215 -0.0076 -0.0119] dps for UA and FA 

data, respectively. 

 

2) Robot data 

The collaborative robot chosen for the test was the Kinova 

Jaco2 (Quebec, Canada) whose maximum angular velocity 

was 36 dps for all shoulder and elbow actuators, but for prono-

supination (48 dps). The robot was firmly fixed on a table. An 

Ethernet connection was established between the robot and a 

PC to record data. Acquisitions were made through the 

software MATLAB at a sampling frequency of about 100 Hz. 

The inertial motion capture system was composed of two 

wireless Xsens-MTw IMUs, both containing a tri-axial 

accelerometer (range ± 160 m/s2) and a tri-axial gyroscope 

(range ± 2000 dps). Before the acquisition, a warm-up period 

of 10 minutes was executed to limit the influence of the 

temperature on the gyroscope readings. Then, a static 

acquisition was performed to compute the gyroscope biases. 

Then, IMUs were positioned on the arm and forearm of the 

robot (Fig. 3). Each unit was fixed manually aligning its y-

axis with the longitudinal axis of the correspondent robot link. 

Data were acquired through the Xsens proprietary software 

MT Manager (v. 4.6) at a sampling frequency of 100 Hz. The 

robot was positioned in a starting configuration, q = [90 50 -

90 0 0 0] and it was programmed to reach the final q = [90 

120 -90 150 0 100] at its maximum speed. The robot executed 

the movement for 20 consecutive minutes (~ 150 cycles). 

 

 
Figure 3.  The considered experimental setup. 

D. Signal pre-processing and kinematics estimation 

1) Synthetic data 

The orientation of both UA and FA IMUs was obtained using 

the sensor fusion filter by Madgwick et al., 2011 [15], 

separately. Since the parameter value of the filter plays a 

central role in determining the accuracy of the estimates [12], 

[16], [17], in this work the orientation was computed using 

the optimal value for each IMU (i.e., the value which 

minimized the average orientation error with respect to the 

reference). The orientation of the two IMUs was obtained in 

the quaternion form and then converted into rotation matrices. 

 

2) Robot data 

The robot data were resampled at 100 Hz using the recorded 

timestamp to obtain qref and then synchronized to IMU signals 

through the cross-correlation [12]. IMU signals were low-

pass filtered (8th order Butterworth, cut-off frequency set to 4 

Hz) to remove the high-frequency oscillation due to the robot. 

Then the bias computed in static was removed from the 

gyroscope readings. To improve the alignment accuracy 

between IMUs and the robot surface a rotation matrix was 

computed exploiting the gravity vector. This small rotation 

was then used to virtually rotate all the measurements. As 

done for the synthetic signals, the orientation of each unit was 

obtained using [15] with the corresponding optimal parameter 

values and then converted into rotation matrix.  

 

In both cases, the orientation matrices obtained with the 

sensor fusion were used in the optimization process to obtain 

the 𝒒𝑜𝑝𝑡 vector. Since the motion was planar, q1 and q3 were 

bounded between 90 ± 1 deg, while the others were allowed 

to span between – 5 and 160 deg (but for the carrying angle 

q5 which was set to zero since the robot UA and FA axes are 

not skewed). Moreover, the maximum angular change 

between two consecutive time-steps was limited to 2 deg for 

q2, q4, and q6, and forced to be null for q5. Finally, to compare 

the optimization with the traditional methods, the same 

matrices were used to compute the Euler angles (stored in 

𝒒𝐸𝑢𝑙) using the standard sequence proposed by the ISB 

convention for the shoulder and the elbow. 

E. Error evaluation 

 For each case, to evaluate the accuracy of the estimates, the 

following quantities were computed over time 𝒆𝑜𝑝𝑡 = 

rms(𝒒𝑜𝑝𝑡 − 𝒒𝑟𝑒𝑓) and 𝒆𝐸𝑢𝑙 = rms(𝒒𝐸𝑢𝑙 − 𝒒𝑟𝑒𝑓). 

III. RESULTS 

The 𝒆𝑜𝑝𝑡 and 𝒆𝐸𝑢𝑙 obtained from synthetic and robot data 

were reported in TABLE II. In addition, the optimal values for 
the parameter of the sensor fusion filter amounted to 0.0224 
and 0.0005 rad/s for the UA and FA IMUs during simulation 
and to 0.001 and 0.9 rad/s, respectively when using robot data. 

TABLE II.  JOINT ANGLE ERRORS 

 (deg) q1 q2 q3 q4 q5 q6 

synthetic 
𝒆𝑜𝑝𝑡 0.9 3.7 0.9 3.2 0 7.9 

𝒆𝐸𝑢𝑙 13.2 3.8 0.1 3.9 16.1 16.2 

robot 
𝒆𝑜𝑝𝑡 1.0 0.4 0.9 3.0 0 1.0 

𝒆𝐸𝑢𝑙 10.2 0.2 1.4 3.1 8.2 6.0 



  

IV. DISCUSSION 

One of the main critical limitations when estimating the 

joint kinematics using the low-cost inertial technology over 

long period consists in the angular drift accumulated as time 

increases due to the integration of the gyroscope bias 

residuals. Despite the low values of this residual, the 

integration over 20 minutes can led to a huge drift, as reported 

in TABLE II, even if the sensor fusion filter was driven with 

an optimal parameter value for each IMU in both cases. It is 

also interesting to observe that different types of motion 

require to set different optimal parameter values, in line with 

[12], [16], [17]. When the joint angles were computed with 

the traditional Euler inversion (𝒆𝐸𝑢𝑙), the errors amounted to 

very large values, especially for the DoFs estimated when 

IMU axes were aligned along the vertical direction during the 

motion. During this situation the drift cannot be compensated 

for by exploiting the gravity direction. 

In this work, a DH model of the upper limb was defined to 

express the joint angle accordingly to the ISB guidelines and 

to allow the definition of the proper biomechanical 

constraints. Since the characteristics of motion in terms of 

speed and range were known a-priori, it was possible to 

introduce these limits in the optimization framework thus 

leading to lower rms joint angle errors: 2.8 vs 8.9 deg for 

synthetic data and 1.1 vs 8.9 deg for robot data, respectively, 

on average. In addition, q2, q4, and q6, errors related to robot 

data were in general slightly lower when compared to 

synthetic ones, since the simulation was thought to be more 

challenging in terms of speed and intensity than the motion 

characteristics achievable with the robot, due to the technical 

limitations of the latter. A higher motion intensity resulted in 

higher acceleration values corrupting the gravity direction 

estimation. Finally, it must be acknowledged that the 

proposed optimization framework could not be completely 

effective in reducing the drift for q2, q4, and q6 as they spanned 

a large range of motion. However, contrary to the traditional 

Euler inversion, the proposed method offers the possibility to 

limit variations between two consecutive time steps within 

reasonable values, thus mitigating the sensor fusion errors. 

Current efforts are devoted to exploit the complementary 

information carried by the linear accelerations and the angular 

velocities. Indeed, the minimization of multiple objective 

functions derived from measurements with different source of 

errors [6] may improve the compensation of the drift. 

V. CONCLUSION 

In this work, an optimization framework involving a DH 

model of the upper limb was proposed to describe its motion 

consistently with the ISB guidelines using the IMU signals. 

The obtained joint angular errors suggest exploiting this 

solution in tele-rehabilitation applications to properly plan the 

treatment and to accurately evaluate the outcomes. 

REFERENCES 

[1] P. Picerno et al., “Upper limb joint kinematics using wearable 

magnetic and inertial measurement units: an anatomical 

calibration procedure based on bony landmark identification,” 
Scientific Reports, vol. 9, no. 1, pp. 1–10, 2019, doi: 

10.1038/s41598-019-50759-z. 

[2] C. Mazzà et al., “Technical validation of real-world monitoring of 
gait: a multicentric observational study,” BMJ Open, vol. 11, no. 

12, p. e050785, Dec. 2021, doi: 10.1136/bmjopen-2021-050785. 

[3] E. Digo, G. Pierro, S. Pastorelli, and L. Gastaldi, “Evaluation of 
spinal posture during gait with inertial measurement units,” 

Proceedings of the Institution of Mechanical Engineers, Part H: 

Journal of Engineering in Medicine, vol. 234, no. 10, pp. 1094–
1105, Oct. 2020, doi: 10.1177/0954411920940830. 

[4] E. Digo, L. Gastaldi, M. Antonelli, S. Pastorelli, A. Cereatti, and 

M. Caruso, “Real-time estimation of upper limbs kinematics with 
IMUs during typical industrial gestures,” Procedia Computer 

Science, vol. 200, pp. 1041–1047, Jan. 2022, doi: 

10.1016/J.PROCS.2022.01.303. 
[5] A. Cereatti, D. Trojaniello, and U. della Croce, “Accurately 

measuring human movement using magneto-inertial sensors: 

Techniques and challenges,” 2nd IEEE International Symposium 
on Inertial Sensors and Systems, IEEE ISISS 2015 - Proceedings, 

pp. 1–4, 2015, doi: 10.1109/ISISS.2015.7102390. 

[6] M. Caruso, A. M. Sabatini, M. Knaflitz, M. Gazzoni, U. della 
Croce, and A. Cereatti, “Orientation Estimation through Magneto-

Inertial Sensor Fusion: A Heuristic Approach for Suboptimal 

Parameters Tuning,” IEEE Sensors Journal, vol. 21, no. 3, pp. 
3408–3419, 2021, doi: 10.1109/JSEN.2020.3024806. 

[7] M. Kirkko-Jaakkola, J. Collin, and J. Takala, “Bias prediction for 
MEMS gyroscopes,” IEEE Sensors Journal, vol. 12, no. 6, pp. 

2157–2163, 2012, doi: 10.1109/JSEN.2012.2185692. 

[8] G. Wu et al., “ISB recommendation on definitions of joint 
coordinate systems of various joints for the reporting of human 

joint motion - Part II: Shoulder, elbow, wrist and hand,” Journal 

of Biomechanics, vol. 38, no. 5, pp. 981–992, 2005, doi: 
10.1016/j.jbiomech.2004.05.042. 

[9] B. Siciliano and O. Khatib, Springer handbook of robotics, vol. 

46, no. 06. Springer, 2009. doi: 10.5860/CHOICE.46-3272. 
[10] C. Brogårdh and B. H. Sjölund, “Constraint-induced movement 

therapy in patients with stroke: A pilot study on effects of small 

group training and of extended miit use,” Clinical Rehabilitation, 

vol. 20, no. 3, pp. 218–227, Mar. 2006, doi: 

10.1191/0269215506cr937oa. 

[11] V. Cornagliotto, E. Digo, and S. Pastorelli, “Using a Robot 
Calibration Approach Toward Fitting a Human Arm Model,” 

Mechanisms and Machine Science, vol. 102, pp. 199–207, Jun. 

2021, doi: 10.1007/978-3-030-75259-0_22. 
[12] M. Caruso et al., “Analysis of the Accuracy of Ten Algorithms 

for Orientation Estimation Using Inertial and Magnetic Sensing 

under Optimal Conditions: One Size Does Not Fit All,” Sensors, 
vol. 21, no. 7, p. 2543, Apr. 2021, doi: 10.3390/s21072543. 

[13] M. Begon, M. S. Andersen, and R. Dumas, “Multibody 

Kinematics Optimization for the Estimation of Upper and Lower 
Limb Human Joint Kinematics: A Systematized Methodological 

Review,” Journal of Biomechanical Engineering, vol. 140, no. 3, 

pp. 1–11, 2018, doi: 10.1115/1.4038741. 
[14] N. El-Sheimy, H. Hou, and X. Niu, “Analysis and modeling of 

inertial sensors using allan variance,” IEEE Transactions on 

Instrumentation and Measurement, vol. 57, no. 1, pp. 140–149, 

2008, doi: 10.1109/TIM.2007.908635. 

[15] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, 

“Estimation of IMU and MARG orientation using a gradient 
descent algorithm,” IEEE International Conference on 

Rehabilitation Robotics, p. 2020, 2011, doi: 

10.1109/ICORR.2011.5975346. 
[16] M. Caruso, A. M. Sabatini, M. Knaflitz, U. della Croce, and A. 

Cereatti, “Extension of the Rigid-Constraint Method for the 

Heuristic Suboptimal Parameter Tuning to Ten Sensor Fusion 
Algorithms Using Inertial and Magnetic Sensing,” Sensors, vol. 

21, no. 18, p. 6307, Sep. 2021, doi: 10.3390/s21186307. 

[17] D. Laidig, M. Caruso, A. Cereatti, and T. Seel, “BROAD—A 
Benchmark for Robust Inertial Orientation Estimation,” Data 

(Basel), vol. 6, no. 7, 2021, doi: 10.3390/data6070072. 

  


