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1)Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, the Netherlands
2)Optus–Curtin Centre of Excellence in Artificial Intelligence, Curtin University, Perth 6102, WA,
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Motivated by the literature on opinion dynamics and evolutionary game theory, we propose a novel mathematical
framework to model the intertwined coevolution of opinions and decision-making in a complex social system. In the
proposed framework, the members of a social community update their opinions and revise their actions as they learn of
others’ opinions shared on a communication channel, and observe of others’ actions through an influence channel; these
interactions determine a two-layer network structure. We offer an application of the proposed framework by tailoring it
to study the adoption of a novel social norm, demonstrating that the model is able to capture the emergence of several
real-world collective phenomena such as paradigm shifts and unpopular norms. Through the establishment of analytical
conditions and Monte Carlo numerical simulations, we shed light on the role of the coupling between opinion dynamics
and decision-making, and of the network structure, in shaping the emergence of complex collective behavior in social
systems.

Mathematical models have emerged as powerful tools to
describe and study the behavior of complex social systems.
Here, we focus on the emergent behavior of a social com-
munity whose members dynamically revise their opinion
and take collective decisions. Motivated by the empirical
evidence of an interdepencency between these two social
dynamical processes, and the lack of mathematical tools to
effectively describe it, we establish a modeling framework
for the interdependent coevolution of opinions and deci-
sions, extending and unifying the separate literature bod-
ies on dynamic opinion formation and collective decision-
making. We specialize the model to offer a realistic ap-
plication of the proposed framework in which we study
the introduction of an advantageous innovation in a social
community, and focus on the factors of coupling strength
between the opinion dynamics and decision-making, and
the network structure. Depending on how such factors
combine, a range of different complex real-world phenom-
ena can be captured in our framework, enabling us to
elucidate whether the society will see a paradigm shift in
which individuals overwhelmingly adopt the innovation,
the emergence of an unpopular norm where individuals
fail to adopt the innovation despite opinions being over-
whelmingly in favor of it, or a community that persistently
supports the status quo over the innovation.

I. INTRODUCTION

The use of mathematically- and physically-principled mod-
els to represent and study social systems has become increas-
ingly popular in the last decades1–4. Researchers from a wide
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c)Electronic mail: m.cao@rug.nl

range of communities, including physics, applied mathemat-
ics, systems and control engineering, computational sociol-
ogy, and computer science have devoted their efforts to cap-
ture the complexity of collective behavior within mathemati-
cal models that allows one to accurately predict the evolution
of a social system, shedding light on the role of the individual-
level dynamics on the emergence of complex collective be-
havior at the population level.

Since the 1950s, mathematical models have been widely
adopted in social sciences to capture the complex phenom-
ena that may emerge when members of a community inter-
act and share their opinions. Among the literature, we men-
tion the seminal works by French, DeGroot, Friedkin and
Johnsen, which paved the way for the development of the
mathematical theory of opinion dynamics and social influence
5–7. Recently, these classical works have been extended to in-
corporate features of complex networks, such as antagonistic
interactions and the emergence of disagreement8,9, bounded
confidence10,11, the external influence of media12, the hetero-
geneous and time-varying nature of human interaction pat-
terns13,14, and the coevolution of opinions and network struc-
ture15.

Collective decision-making is another real-world phe-
nomenon that has been extensively studied by means of math-
ematical models. Typically such models describe how an in-
dividual’s decision between a set of possible actions evolves
as he or she takes into account the decisions of other in-
dividuals that he or she interacts with on a social network.
Since its formalization in the 1970s, evolutionary game the-
ory has emerged as a powerful paradigm and sound modeling
framework for collective decision-making in social communi-
ties16–19.

The social-psychological literature provides clear evidence
that the two processes of opinion dynamics and collective
decision-making are deeply intertwined and readers may in-
tuitively appreciate such a coupling. On the one hand, it is in-
disputable that an individual’s opinion has a key role in his or
her decision-making process. On the other hand, many social-
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psychological theories support that the converse is also often
observed; the actions that one individual observes from the
others can shape his or her opinion formation process. Ex-
isting literature reporting this include the social intuitionist
model20, norm interiorization processes21, as well as exper-
imental evidence22. Surprisingly, few efforts have been made
toward generating a rigorous modeling framework for com-
plex social systems with such a coupled coevolution of opin-
ion and decision-making dynamics. We mention some works
in which actions are modeled as quantized outputs of the in-
dividuals’ own opinion, evolving independently of others’ ac-
tions23,24. Other efforts assume that each individual has a pri-
vate opinion that is fixed and influences his or her decision-
making process25, that may vary according to external factors
with a decision-making process that coevolves with the net-
work structure26, or that coevolves along with an expressed
opinion, but in the absence of a decision-making process27,28.

Motivated by these preliminary works, the first key contri-
bution of this paper is the development of a general modeling
framework for the coevolution of opinion dynamics and col-
lective decision-making in complex social systems. In the pro-
posed model, the opinion dynamics of an individual evolves
not only as a consequence of opinion sharing with other indi-
viduals, but also due to the influence from observing the ac-
tions of other individuals. The individual’s decision-making
process is governed by a coordination game to select between
two alternative actions17, which is a classical framework to
model the social tendency to conform with the actions of oth-
ers, but is now additionally shaped by the individual’s own
opinion. In general, the opinion sharing process and the social
influence from observed actions can occur between different
pairs of individuals, and follow diverse interaction patterns.
For this reason, we define our coevolutionary model on a two-
layer social network, where a communication layer is used to
represent how individuals share their opinion, and an influence
layer captures the social influence due to observing the actions
of others. Similar two-layer techniques have been used to rep-
resent epidemic processes and the simultaneous diffusion of
awareness on the disease29,30, or to model complex synchro-
nization dynamics31,32.

In the last few years, several works have examined the key
role played by the topology of a complex network in shap-
ing the evolution of dynamical processes occurring on its fab-
ric. Paradigmatic examples can be found in different fields,
ranging from agreement dynamics and emergence of social
power33–35 to epidemic outbreaks in human populations29,36

and synchronization of power grids37. Besides deepening our
understanding of the mechanisms that governs complex phe-
nomena on networks, these results been used to inform the de-
velopment of methodologies to control their evolution, such as
in optimal vaccine allocation problems38, or the implementa-
tion of pinning control to synchronize coupled oscillators39,40.

In our second key contribution, we use the proposed model-
ing framework to study the effect of network topology on the
formation of social norms, in particular focusing on the emer-
gence of a paradigm shift (in which an innovation replaces
the status quo norm), and on the phenomenon of unpopular
norms25,41,42, in which a social community exhibits a collec-

tive behavior that is disapproved by most of the members of
the community. A classical example is on alcohol abuse by
college undergraduates in Princeton university campus at the
beginning of the 1990s; it was found that even though most
of the students were privately uncomfortable with the alco-
hol practices on campus but publicly continued to partake in
heavy drinking43. We model the formation of social norms by
studying the introduction of a social innovation in a commu-
nity, represented as one of the two actions, and supported by
a stubborn innovator individual18.

A theoretical result is derived for a necessary condition to
observe the diffusion of the innovation when the decision-
making process of all individuals is fully rational, dependent
on the structure of the influence layer and on the role of an
individual’s opinion in his or her decision-making process.
Then, we put forward an extensive simulation to study the case
of bounded rational individuals. We find that the diffusion
of the innovation is strongly influenced by the network struc-
ture and the coupling strength between the two coevolution-
ary dynamics. Phase transitions are identified between three
different regions of the parameter space in which we observe
i) a paradigm shift, ii) the emergence of an unpopular norm,
and iii) the persistence of a popular but disadvantageous status
quo, respectively. We demonstrate that the network structure
plays a key role in determining in a nontrivial way the shape
of these three regions and the sharpness of the phase transition
between them. For instance, network topologies that seem to
favor the occurrence of a paradigm shift when an individual’s
opinion is only slightly influenced by the actions of others, are
instead strongly resistant to the introduction of the innovation
when this influence increases in strength.

The rest of the paper is organized as follows. In Section II,
we propose and discuss the coevolutionary modeling frame-
work. In Section III, we introduce our model for the adoption
of innovation. Section IV is devoted to presenting our main
findings. Section V presents discussion of our findings and
outlines avenues for future research.

II. MODEL

In this section, we propose a novel modeling framework
to capture the coevolution of the opinions and decisions of
individuals interacting on a complex social network. After
the model is formally introduced, we explain the intuition and
motivation of the model by providing details on its compo-
nents.

We consider a population of n ≥ 2 individuals, indexed by
the set V = {1, . . . ,n}. Each individual i ∈ V is character-
ized by a two dimensional state variable (xi,yi). The first
component of the state variable represents a binary action
xi ∈ {−1,+1} made by the individual, while the second com-
ponent yi ∈ [−1,1], models his or her continuously distributed
opinion. The opinion measures the individual’s preference for
an action, so that yi = −1, yi = 0, and yi = 1 represents that
individual i has maximal preference for action −1, is neutral,
and has maximal preference for action +1, respectively.

The individuals update their actions and opinions after in-
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FIG. 1: The coevolutionary dynamics occurs over a two-layer
network. In the communication layer (in green), with edge

set EW , individuals exchange opinions with each other. In the
influence layer (in violet), with edge set EA, individuals are

able to observe the actions of other individuals. The edge sets
of the two layers are not necessarily the same. For example,
an individual may choose to only share his or her opinion

with a few close friends and family, but is able to observe and
be influenced by the actions of many others in his or her

community. Similarly, he or she may not be able to observe
the action of individuals with whom he or she shares his or

her opinion (e.g., due to long-distance interactions).

teracting with their peers on a two-layer network44: the first
layer models how individuals observe and are influenced by
others’ actions, while the second layer models how individu-
als communicate and exchange opinions with one another. We
term these as the influence layer and communication layer,
respectively. In general, the two layers are characterized by
two different topologies, as illustrated in Fig. 1. The influ-
ence layer is characterized by the undirected edge set EA, with
an associated (unweighted) adjacency matrix A ∈ {0,1}n×n,
having entries ai j defined as:

ai j =

{
1 if (i, j) ∈ EA,
0 if (i, j) /∈ EA.

(1)

We assume that no self-loops are present, that is, all diagonal
entries of A are equal to 0, and denote by

di = |{(i, j) ∈ EA}| (2)

the degree of individual i in the influence layer. The com-
munication layer is characterized by the undirected edge set
EW and a weighted adjacency matrix W ∈ Rn×n, with entries
wi j 6= 0 ⇐⇒ (i, j) ∈ EW . Self-loops are allowed in EW , and
occurrence of a negative wi j would result in a signed net-
work8. Even though EW is undirected, W is not necessarily
symmetrical, since wi j and w ji may be different. Although this
work assumes that both layers are undirected, the proposed
model easily admits a generalization to directed topologies on
either layer, which may be investigated in future works.

The states of the individuals (i.e., opinions and decisions)
evolve over discrete time-steps t = 0,1, . . .. At each time t,
a single individual i ∈ V , selected uniformly at random and
independently of the past history of the process45, is activated
and updates his or her opinion and action simultaneously, ac-
cording to the following mechanisms.

Opinion dynamics: the opinion of individual i ∈ V evolves
as

yi(t +1) = (1−µi)
n

∑
j=1

wi jy j(t)+µi
1
di

n

∑
k=1

aikxk(t), (3)

where the parameter µi ∈ [0,1], called susceptibility,
measures the influence of his or her neighbors’ actions
xk(t) of the individual’s opinion.

Decision making: the action of individual i ∈ V evolves ac-
cording to a stochastic process. Specifically, the prob-
ability for individual i to take action x ∈ {−1,+1} at
time t +1 is

P(xi(t +1) = x) =
eβiπi(x)

eβiπi(x)+ eβiπi(−x)
, (4)

where βi > 0 measures the individual’s rationality in
the decision-making process, and πi(x) = πi(x|yi,x−i)
is the payoff for individual i to take action x, given his
or her current opinion yi(t) and the actions of the oth-
ers, x−i(t) := [x1(t), . . . ,xi−1(t),xi+1(t), . . . ,xn(t)]> ∈
{−1,+1}n−1. We define the following payoff function:

πi(x |yi,x−i) =
1
2

λixyi

+
1−λi

4di

n

∑
j=1

ai j

[
1+ x
1− x

]> [1+α 0
0 1

][
1+ x j
1− x j

]
, (5)

where α ≥ 0 captures the evolutionary advantage of ac-
tion +1 over action −1 and the parameter λi ∈ [0,1],
called commitment, measures the importance that indi-
vidual i gives to his or her own opinion in the decision-
making process.

The remainder of this section is devoted to a detailed dis-
cussion and motivation on the two intertwined components
that compose the novel coevolutionary dynamics of opinions
and decisions in our proposed model, which are illustrated in
the schematic in Fig. 2.

A. Opinion Dynamics Component

According to (3), the opinion of individual i at time t+1 is a
convex combination of two summands: the first one accounts
for the opinions of the individuals with whom individual i in-
teracts on the communication level; the second term captures
the influence of the actions observed by individual i on the
influence level. Such a convex combination is regulated by
the susceptibility µi ∈ [0,1], which measures the influence of
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FIG. 2: Schematic of the coevolutionary dynamics, and the
interdependence between the two mechanisms.

the actions observed on the individual’s opinion so that µi = 0
models the case the opinion evolves independently of the ac-
tions observed.

The products (1− µi)wi j and µiai j are the weights that in-
dividual i assigns to the opinion and action, respectively, of
individual j. Since the two layers of the network may have
different edge sets, it is in general possible that one of the two
weights is nonzero and the other is zero. A standard assump-
tion, which we shall adopt in the rest of this paper and often
made in opinion dynamics models46, is that ∑ j=1 |wi j| = 1
for all i ∈ V . This assumption guarantees that the opinions
in the coevolutionary model are always well defined, as ex-
plicitly stated in the following result, whose proof is given in
Appendix A.

Proposition 1. Let W be such that ∑ j=1 |wi j| = 1, for all i ∈
V , and let the initial opinions satisfy yi(0) ∈ [−1,1], for all
i ∈ V . Then, yi(t) ∈ [−1,1], for all i ∈ V and t ≥ 0.

If the weights of the communication layer are nonnegative,
that is, wi j > 0 for all (i, j) ∈ EW , then the updated opinion
is a weighted average of i) the actions xk(t) of his or her
neighbors on the influence layer, and ii) the opinions y j(t)
of his or her neighbors on the communication layer. Begin-
ning with the classical French–DeGroot model5,6, weighted
averaging is seen as a classical approach to modeling the way
an individual processes, and is influenced by, external opin-
ions; the French–DeGroot model can be recovered by setting
µi = 0 for all individuals. Negative weights wi j < 0 can be
used to capture antagonistic or competitive behaviors. If neg-
ative wi j are allowed, then setting µi = 0 recovers the Altafini
model8. Hence, our model encompasses and generalizes stan-
dard models used in opinion dynamics.

A stubborn node s ∈ V can be introduced by setting µs = 0
and wss = 1 (which implies that wsi = 0, for all i 6= s). Then,
opinion of individual s remains constant for all time, i.e.,
ys(t +1) = ys(0) for all t ≥ 0.

The convergence properties of opinion dynamics models
have been extensively studied and many results can be found
in two review papers by Proskurnikov and Tempo 46,47. A key
result, which will be used in the sequel, is the following.

Proposition 2 (Theorem 2 from Chen et al.48). Let W be such
that wi j ≥ 0 for all (i, j) ∈ EW and ∑ j=1 wi j = 1 for all i ∈ V .
Suppose that there is a single stubborn node s that is reach-
able from all other nodes on the communication layer49, and
let µi = 0, for all i ∈ V r{s}. Then, under (3), yi(t)→ ys(0)
for all i ∈ V almost surely. That is, the opinion of every in-
dividual converges to the opinion of the stubborn node with
probability 1.

B. Decision-Making Component

The decision-making mechanism is developed within the
framework of evolutionary game theory16. Specifically, each
individual’s action is updated according to a noisy best re-
sponse50 which evolves according to the log-linear learning
rule in (4), regulated by the level of rationality βi ≥ 0. In
the limit of no rationality, that is, βi = 0, actions are cho-
sen uniformly at random and independent of the payoff, since
P(xi(t + 1) = +1) = P(xi(t + 1) = −1) = 1/2. The case
βi = ∞, instead, models the fully rational scenario, in which
individuals always choose to maximize their payoff so that (4)
reduces to a deterministic best response dynamics:

P(xi(t+1)=+1) =

 1 if πi(+1|yi,x−i)> πi(−1|yi,x−i),
1
2 if πi(+1|yi,x−i) = πi(−1|yi,x−i),
0 if πi(+1|yi,x−i)< πi(−1|yi,x−i).

(6)
For bounded levels of rationality, β ∈ (0,∞), individuals are
allowed to choose both actions, but select the one that maxi-
mizes their payoff with higher probability.

We now elucidate how different factors impact the payoff
of an individual, including an individual’s opinion, the actions
of his or her neighbors, the individual’s commitment, and the
evolutionary advantage determine his or her payoff. Observe
that the payoff for taking action +1 and −1 are equal to:

πi(+1|yi,x−i) =
1
2

λiyi +(1−λi)
1

2di

n

∑
j=1

ai j(1+α)(1+ x j),

(7a)

and

πi(−1|yi,x−i) =−
1
2

λiyi +(1−λi)
1

2di

n

∑
j=1

ai j(1− x j), (7b)

respectively. The first term accounts for the opinion yi, so that
individual i receives an increased payoff for taking the action
that individual i prefers. For instance, an individual with a
negative yi (that is, a preference for action −1) will receive
a component with a negative payoff λiyi/2 or positive payoff
−λiyi/2 for taking action +1 or −1, respectively. The second
term captures the social pressure to coordinate with neighbors.
For each neighbor j, individual i receives a positive contribu-
tion to the payoff if and only if he or she takes the same action
as individual j. The parameter α models the possible evo-
lutionary advantage for taking one of the two actions with re-
spect to the other. In a general formulation of the model, α can
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assume any real value. Without loss of generality, in this pa-
per we assume that, if there exists an evolutionary advantage,
then action +1 has an evolutionary advantage with respect to
−1, yielding α ≥ 0. The commitment λi measures how much
individual i values and is committed to his or her own opinion
during the decision-making process relative to a desire to co-
ordinate with the neighbors’ actions; setting λi = 0 recovers
the network coordination game, which has been widely used
to study diffusion of innovation and contagion in social net-
works17,18,51. A stubborn node s can be modeled by setting
λs = 1 and βs = ∞, so that he or she will always take the same
action xs(t) = xs(0), for all t ≥ 0.

By comparing (7a) and (7b), we observe that the payoff for
choosing action +1 is greater than the payoff for taking action
−1 whenever

1
di

n

∑
j=1

ai jx j >−
1

2+α

(
α +2

λi

1−λi
yi

)
, (8)

as explicitly computed in Appendix B. In other words, a
fully rational individual i’s best response is action +1 if the
above holds. The term 1

di
∑

n
j=1 ai jx j ∈ [−1,1] measures the

(normalized) influence on individual i of the actions of his
or her neighbors. Setting the commitment λi = 0, individual
i receives a higher payoff for taking action +1 if the influ-
ence of his or her neighbors taking +1 exceeds the threshold
−α/(2+α) ∈ (−1,0], consistent with the results in the lit-
erature on network coordination games17. With λi > 0, this
threshold is shifted whenever individual i prefers one action
over the alternative. As yi increases or decreases, the frac-
tion of neighbors taking action +1 required for individual
i’s best response to be action +1 decreases or increases, re-
spectively. Thus, the proposed payoff function yields an in-
tuitive and reasonable best-response decision-making process
in which individual i’s threshold for selecting an action can be
shaped by his or her preference for that action. Interestingly,
if λi > 1/(1+yi) or λi > (α +2)/(α +2−yi), then action +1
or action −1, respectively, always yields a better payoff than
the opposite action, irrespective of his or her neighbors’ cur-
rent actions. In other words, if individual i is simultaneously
strongly committed to his or her opinion and has a strong pref-
erence for one of the two actions, then he or she will always
favor that action irrespective of the social pressure.

III. ADOPTION OF ADVANTAGEOUS INNOVATION

For the rest of this paper, we specialize the proposed frame-
work to model and predict whether or not a social network
widely adopts an advantageous innovation, and if such an
adoption occurs, whether or not the innovation is actually pop-
ular among the individuals. In this section, we describe how
our model is tailored to represent such a real-world process
and we illustrate the different phenomena that can be typi-
cally observed as an outcome of the proposed model. In the
next section, we investigate more closely the various factors
that determine which phenomena is observed.

We consider a population where all the individuals start by
taking the status quo (action −1), while one innovator s ∈ V

is introduced in the network. The innovator is modeled as a
stubborn node with fixed action and opinion equal to xi(t) =
yi(t) = +1, for all t ≥ 0, where the innovative action +1 has
an evolutionary advantage α > 0 (see Sections II A and II B
for details on the parameters of a stubborn node).

For the sake of simplicity, we will make the following ho-
mogeneity assumptions. We assume that all the nonstubborn
individuals have the same level of rationality, commitment,
and susceptibility, that is, βi = β , λi = λ , and µi = µ , for all
i ∈ V r{s}. We further assume that the communication layer
is connected52 and that W is a simple random walk on the
communication layer, that is, the nonzero entries of any row of
W are all positive and of equal value, and sum to 1. I.e., we are
considering a specific implementation of a French–DeGroot
model. This implies that in updating opinion yi, individual i
gives the same weight to the opinion of each one of his or her
neighbors on the communication layer.

The goal of our study is to explore the role of the cou-
pling between the opinion dynamics and the decision-making
mechanisms — determined by the commitment λ and the sus-
ceptibility µ — and of the network structure on the emerging
behavior of the system. To help elucidate this goal, we define
the following two quantities:

〈x〉 :=
1
n

n

∑
i=1

xi, and 〈y〉 :=
1
n

n

∑
i=1

yi, (9)

which are the average action and opinion in the population,
respectively. In Fig. 3, we offer three paradigmatic sample
paths of the coevolutionary dynamics at the population level,
exhibiting the different phenomena that can occur, which we
now describe in further detail.

Unpopular norm (Fig. 3a): after a short transient, the aver-
age of the individuals’ opinions shows a preference for
the innovation, that is, 〈y〉 > 0. However, an over-
whelming majority of the individuals still takes the sta-
tus quo action, that is, 〈x〉 ≈ −1. While the ergodic
nature of (4) ensures that the innovation will eventually
diffuse across the entire network, we will see that the
unpopular norm may be meta-stable for a long period
of time. In the real world, this would imply that the
widespread adoption of the innovation fails to occur.

Popular disadvantageous norm (Fig. 3b): the status quo
(which is disadvantageous with respect to the innova-
tion) remains the predominant action in the network
(〈y〉 ≈ −1) and it is on average the preferred action
among the individuals’ opinions (〈y〉 < 0), for any rea-
sonably long period of time. It is worth noticing that the
comment on the ergodicity of (4) for unpopular norms
also applies to this case.

Paradigm shift (Fig. 3c): after a short transient, a tipping-
point is reached and the advantageous innovation is
adopted and supported by almost the entire popula-
tion (〈y〉 ≈ +1 and 〈y〉 > 0). It is worth noting that
the spreading of the innovation is often so fast that the
changes in actions occur faster than change in opinions,
i.e., shortly after the tipping point, we observe 〈x〉≥ 〈y〉.



A two-layer model for coevolving opinion dynamics and collective decision-making in complex social systems 6

(a) λ = 0.1, µ = 0.001 (b) λ = 0.1, µ = 0.01 (c) λ = 0.5, µ = 0.001

FIG. 3: Possible outcomes of the proposed coevolutionary dynamics when modeling the diffusion of an advantageous norm.
The blue solid curve is the average action of the population, 〈x〉, and the red dotted curve is the average opinion, 〈y〉.

Depending on the model parameters, (a) unpopular norms, (b) popular disadvantageous norms, or (c) a paradigm shift can be
observed. All sample paths are generated on networks with n = 200 individuals, evolutionary advantage α = 0.5 and rationality

β = 20. Both layers are regular random graphs, with degree equal to 4 for the communication layer and 8 for the influence
layer. Parameters λ and µ differ from one simulation to the other and are reported in the corresponding captions.

A fourth phenomenon should be in principle possible, being
the establishment of a meta-stable state in which the advanta-
geous innovation is widely adopted as the norm, but is un-
popular. However, this was never observed in our numerical
simulations. An intuitive reason can be found in the following
consideration. If a large majority of the individuals adopt the
innovation, then their opinion will drift toward +1 due to both
the influence of the neighbors’ actions and the stubborn node,
thereby eventually leading to a paradigm shift.

IV. EFFECT OF THE NETWORK STRUCTURE ON THE
ADOPTION OF INNOVATION

In this section, we aim to understand how the model param-
eters and the network structure may determine the emergence
of one of the three different collective phenomena described
in Section III, during the adoption of an advantageous innova-
tion.

We begin our analysis by considering the limit case of fully
rational individuals, that is, β = ∞. We again consider the
case in which a single stubborn node (termed the innovator)
s ∈ V is introduced in the network, taking a fixed action and
having opinion equal to xi(t) = yi(t) = +1, for all t ≥ 0. We
further assume that the network is connected. In this scenario,
the following result can be established, with the proof found
in Appendix C.

Theorem 3. Let us consider a coevolutionary dynamics of
opinions and decisions. Let us define

d∗ := min{di : i ∈ V ,(i,s) ∈ EA}. (10)

In the limit β = ∞, if α < d∗−2 and

λ < λ
∗ :=

1
2
− 2+α

4d∗−4−2α
, (11)

then 〈x(t)〉=−1+2/n, for all t ≥ 0. That is, a paradigm shift
cannot occur.

Theorem 3 yields a necessary condition for a paradigm
shift; if either the evolutionary advantage or the commit-
ment in the decision-making process is sufficiently large (α ≥
d∗−2 or λ > λ ∗), then a paradigm shift is possible. Note that
both conditions depend on the network structure through the
minimum degree of the neighbors of the innovator d∗.

Such conditions are not sufficient, however. In fact, one
can easily produce simple examples in which even though the
conditions in Theorem 3 are satisfied, a paradigm shift does
not occur since the diffusion of action +1 might stop after a
few adoptions (for instance, if there is a bottleneck in both
layers of the network). Further analysis, envisaged as future
research, is required to establish sufficient conditions for dif-
fusion, which are likely to depend on the overall structure of
both layers of the network, and not only on the nodes directly
connected to the innovator on the influence layer.

In the rest of this section, we will instead focus on the sce-
nario in which individuals have a bounded level of rational-
ity, that is, β < ∞, which has been demonstrated to be more
consistent with real-world decision-making processes53. In
this case, we will see that paradigm shifts may occur even
for levels of commitment λ < λ ∗. In order to focus on the
effect of the coupling between the two mechanisms and of
the network on the system’s evolution, the following numeri-
cal studies will fix a moderate level of evolutionary advantage
α = 0.5 and a sufficiently large level of rationality β = 20,
while studying the behavior of the system for different values
of λ and µ , and for different network topologies. These pa-
rameters aim to capture a realistic scenario in which the evo-
lutionary advantage of the innovation action +1 is present,
but does not have such a dominant role as to make the con-
tributions of the other dynamics negligible, and individuals
with bounded rationality still maximize their payoff with suf-
ficiently high probability (for instance, the probability of devi-
ating from a fully established and supported norm is less than
10−11%). The quantitative results of the following numerical
simulations may depend on the precise choice of the param-
eters α and β . However, we have observed that the salient
features of the observed phenomena of the system are robust
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(a) RR, average decision (b) ER, average decision (c) WS, average decision (d) BA, average decision

(e) RR, variance (f) ER, variance (g) WS, variance (h) BA, variance

FIG. 4: Estimation of the threshold value for λ for transitioning from meta-stable unpopular norm to paradigm shift. Average
action of the population (in (a)–(d)) and variance in the fraction of +1 actions (in (e)–(h))

at time T = 4n2 over 100 independent runs of the coevolutionary dynamics with α = 0.5, n = 200, β = 20, and both layers with average
degree 8 (influence layer) and 4 (communication layer), generated according to (a) a random regular graph, (b) an Erdős-Rényi random graph,

(c) a Watts-Strogatz small-world network with rewiring probability p = 0.2, and (d) a Barabási-Albert scale-free network.

to different choices of the parameters α and β that represent
the described scenario.

A. Opinions not directly in�uenced by actions

In the first part of our analysis, we will assume that the evo-
lution of the opinion is not influenced by the actions, i.e., with
susceptibility µ = 0. Since we assume that the communication
layer is connected, Proposition 2 establishes that the opinions
of all individuals converge almost surely to +1. Hence, only
two phenomena can occur: unpopular norm or paradigm shift.
Before starting our analysis for bounded rational individuals,
we briefly report a straightforward consequence of Theorem 3
and Proposition 2 for the behavior of the coevolutionary dy-
namics with fully rational individuals when µ = 0.

Corollary 4. Let us consider a coevolutionary dynamics of
opinions and decisions with µ = 0. Let W be such that wi j ≥ 0
for all (i, j) in EW , ∑ j=1 wi j = 1 for all i ∈ V . In the limit β =
∞, if d∗ > 2+α and λ < λ ∗, then 〈x(t)〉 = −1+2/n, for all
t ≥ 0, and 〈y(t)〉 → 1. That is, a paradigm shift cannot occur,
and rather, an unpopular norm is almost surely observed.

One can intuitively conjecture that, if opinions play a suf-
ficiently dominant role in the decision-making process (that
is, λ is sufficiently large), then the whole network will adopt
the innovation, while, in the opposite scenario, the social pres-
sure outweighs the individual’s commitment to his or her own
opinion, thus ensuring the population continues to choose the
status quo action, even though the opinion of the overwhelm-
ing majority shows preference for the innovation. Indeed, ev-

idence of a phase transition depending on the commitment λ

can be observed in Fig. 4a.
We investigate the presence of such a phase transition by

means of Monte Carlo numerical simulations, following a
method similar to the ones proposed to numerically estimate
the epidemic threshold in epidemic models54,55. Specifically,
we run repeated independent simulations of the process for
different values of commitment λ , keeping track of the frac-
tion of adopters of the innovation in each run at the end of
a fixed observation window of duration T , which is equal to
(〈x(T )〉+1)/2. Then, the threshold λ̂ is estimated as the value
of λ that maximizes the variance of such a quantity within the
independent runs. Sharp peaks of the variance are evidence
of an explosive phase transition between a regime where un-
popular norms are meta-stable (if λ < λ̂ ), to a regime where
paradigm shift is observed in almost all the simulations (if
λ > λ̂ ). We fix a sufficiently long time-window T = 4n2 (each
individual thus revises his or her action and opinion on aver-
age 4n times) to allow the innovator to steer the whole popula-
tion to an opinion close to +1. If an unpopular norm persists
even after T = 4n2, then it is meta-stable, and implies that the
innovation will never realistically be adopted in the real world.

To better elucidate the role of the network topology in
determining such a threshold, we apply the Monte Carlo-
based technique on four classical network models with dif-
ferent features56. Specifically, we considered random regular
(RR) graphs, Erdős-Rényi (ER) random graphs (which have
a slight heterogeneous degree distribution), Watts-Strogatz
(WS) small-world networks (which are characterized by a
clustered structure), and Barabási-Albert (BA) scale-free net-
works (which have a strongly heterogeneous degree distribu-
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FIG. 5: Average action and opinion of the population in a
sample path of the coevolutionary dynamics on

Watts-Strogatz small world networks with rewiring
probability p = 0.2. Other parameters are α = 0.5, n = 200,
β = 20, λ = 0.1, average degree 8 in the influence layer and

4 in the communication layer.

tion with a few hubs with high degree). In all our simulations,
both layers of the network are generated according to the same
network model, one independent of the other, and the innova-
tor is placed in the first node, that is, s = 1. In the case of
BA networks, this would imply that the innovator is almost
surely placed in a hub. In order to avoid possible confounding
due to the network density when comparing different network
topologies, we keep the average degree to be the same be-
tween different network structures: in the influence layer all
networks have average degree equal to 8 and 4 in the influence
layer and communication layer, respectively. More details on
the generation of the networks can be found in Appendix D.

The results of our Monte Carlo simulations, presented in
Fig. 4, confirm our conjecture and suggest the presence of a
phase transition, which is estimated to occur at the value λ̂

indicated by the peak (vertical dashed line). When comparing
the numerical estimations in Fig. 4 with the necessary con-
dition to achieve paradigm shift from Corollary 4, it appears
that bounded rationality favors the emergence and establish-
ment of the innovation, thereby leading to a paradigm shift for
values of commitment λ that are smaller than the necessary
value λ ∗ for fully rational individuals. In fact, for RR (where
d∗ = 8), we compute λ ∗ = 0.4074, while the threshold esti-
mated numerically is λ̂ = 0.16. Similarly, for the BA (where,
by construction, d∗ ≥ 4), we obtain λ ∗ ≥ 0.2727, while the
threshold estimated numerically is λ̂ = 0.1. For the the other
two cases (ER and WS), λ ∗ depends on the specific realization
of the network, since the degrees are nonuniform and random
variables. However, using their expected values, we obtain
E[λ ∗] = 0.3234 and E[λ ∗] = 0.3967 for ER and WS, respec-
tively. Our numerical simulations, instead, suggest that the
threshold for the ER graph is equal to λ̂ = 0.18, while the one
for WS is estimated as λ̂ = 0.08 and seems to vanish (since
even for λ = 0 some simulations show a paradigm shift occur-
ring). Among the network structures, WS and AB networks
seem to especially favor paradigm shifts; possible reasons can
be found in the high level of clustering that characterizes WS
networks (see below for further discussions) and because most
of the low-degree nodes in BA networks are connected to the
innovator, who is almost always positioned in a hub.

The results further suggest that, apart from determining the

threshold value λ̄ , the network structure plays an important
role in shaping the phase transition. Notice that in RR and AB
networks (Figs. 4(a) and (d)), the phase transition seems to be
extremely sharp: if λ is below the threshold, then an unpopu-
lar norm is observed in almost all the simulations, while above
the threshold, a paradigm shift is almost always observed. On
the contrary, in ER and WS networks (Figs. 4(b) and (c)), the
threshold seems to be less sharp as λ increases, suggesting
the existence of a region for the commitment λ where both
unpopular norms and paradigm shifts are possible, depend-
ing on the specific realization of the network. We believe that
such a phenomenon might be caused by the variability in the
degree of the innovator, which in ER and WS networks de-
pends on the specific realization. In contrast, all the nodes in
RR networks have the same degree, and the innovator is al-
most always placed in a hub in BA networks, by construction.
For WS networks, we also observe that the region of the pa-
rameter space in which paradigm shifts can never occur seems
to vanish. This may be due to the high levels of clustering in
small-world networks, which helps the spread of innovation18.
In fact, the sample path in Fig. 5 of a WS network shows
an interesting transient phenomenon; an increasing nonzero
fraction of the population adopts the innovation in steps, and
persists in the adoption even though remaining in the minor-
ity. We conjecture that this occurs because the high clustering
structure results in certain clusters where the individuals have
mostly adopted the innovation and remain meta-stable, while
in other clusters, the status quo is still widely adopted.

Our theoretical findings in Corollary 4 for fully rational in-
dividuals suggest that the density of the influence layer has
a detrimental effect on the diffusion process, hindering the
emergence of a paradigm shift. In fact, the threshold λ ∗ in-
creases as d∗ increases, and approaches 1/2. For bounded
rational individuals, we investigate the effect of the density of
the influence layer by repeating the numerical estimation of
the threshold λ̂ performed in the above, doubling the average
degree of the influence layer to 16.

Consistent with the intuition coming from our analytical re-
sult in the limit of fully-rational individuals, the results of our
numerical study, reported in Fig. 6, indicate that denser net-
works lead to an increased threshold λ̂ . However, the mag-
nitude of such an increase seems to be strongly dependent on
the network topology. For ER and RR networks, the increase
is quite moderate (10% and 18.75%, respectively), whereas
BA and WS networks seem impacted more significantly by
the network density increase, yielding an estimated threshold
increased of 50% and 112.5%, respectively. Interestingly, the
detrimental effect of increasing the network density is stronger
for those networks in which paradigm shifts are favored on
sparser networks, decreasing the differences between the four
network structures. This suggests that the beneficial effect of
clustering and of having the innovator placed in the hub is
reduced as the network becomes denser. The case of WS net-
works is also of particular interest since, differently from the
sparser scenario, a vanishing threshold is not observed here:
if λ is small, then unpopular norms are observed in almost all
the simulations.

Depending on the communication layer topology, conver-
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(a) RR (b) ER (c) WS (p = 0.2) (d) BA

FIG. 6: Estimation of the threshold for different network topologies: (a) regular random, (b) Erdős-Rényi, (c) Watts-Strogatz,
and (d) Barabási-Albert. Each data point is the variance of the fraction of +1 actions at time T = 4n2 over 100 independent

runs of the coevolutionary dynamics with α = 0.5, n = 200, β = 20, and both layers with average degree 16 (for the influence
layer) and 4 (for the communication layer), generated with the four network models denoted in the corresponding caption.

gence of the individuals’ opinions to +1 may be extremely
slow, consequently hindering convergence of actions in a rea-
sonable time-window46,47. To sum up, the topology of both
layers may be key in predicting whether the spread of an inno-
vation will fail, even though it has an evolutionary advantage
with respect to the status quo, and further, even in scenarios
where the majority of the population’s opinions favor it.

B. Feedback between opinion and actions

In the previous section we have extensively analyzed the
limit case of µ = 0, in which the actions of an individual’s
neighbors do not directly influence the opinion dynamics (3).
However, this assumption may be overly simplistic in real-
world scenarios, where evidence of such an influence has been
theorized in the social-psychological literature20,21 and ob-
served in empirical studies22.

In this section, we will study the general case of suscepti-
bility µ > 0. In this case, we immediately notice that the in-
novator is not necessarily always able to steer the opinions of
all individuals to +1. As a consequence, all three phenomena
reported in Section III and illustrated in Fig. 3 can be observed
depending on the value of the commitment λ and susceptibil-
ity µ . In particular, we will now explore in detail the interplay
between susceptibility and commitment, and the role of the
network structure in determining the outcome of the coevolu-
tionary dynamics. Specifically, we choose the two topologies
analyzed in the previous subsection that produced the great-
est differences in observed outcomes, i.e., the RR and WS
networks. For each one of these topologies, we estimate the
average opinion and action of the population at time T = 4n2

by means of 100 independent simulations, while varying the
values of both parameters λ and µ .

The results of our numerical simulations are reported in
Fig. 7. Comparing the average action in (a) and (c) with
the corresponding average opinion in (b) and (d), we identify
three regions corresponding to the three possible phenomena
that can occur, highlighted in (e) and (f), respectively. In the
green region denoted by the roman number I, the commitment
λ is sufficiently large and the susceptibility µ is small, and we

thus observe paradigm shifts (〈x(T )〉 ≈ +1 and 〈y(T )〉 > 0).
In the violet region, denoted as II, we observe the emergence
of unpopular norms, whereby 〈x(T )〉 ≈ −1 and 〈y(T )〉 > 0.
For higher levels of susceptibility, we finally find region III
(in orange), in which 〈x(T )〉 ≈ −1 and 〈y(T )〉< 0, signifying
the presence of meta-stable disadvantageous popular norms.

The shape of these regions and the sharpness of the phase
transition between each region is strongly influenced by the
network structure. In RR networks (Figs. 7 (a), (c), and
(e)), we mostly observe sharp phase transitions between the
regimes. In particular, a popular disadvantageous norm is al-
most always observed if µ > 0.007 (region III), regardless of
the commitment λ . For intermediate values of susceptibil-
ity, that is, 0.0032 < µ < 0.007, there are instead two phase
transitions, at two different values of commitment, denoted
as λ ′ < λ ′′. Specifically, if λ < λ ′, then we observe the
emergence of a disadvantageous popular norm (region III);
for λ ′ < λ < λ ′′, we have an unpopular norm (region II); if
λ > λ ′′, a paradigm shift is observed (region I). Finally, if
the susceptibility is small, that is, µ < 0.0032, we recover the
findings in Section IV A, where depending on λ , we observe
either an unpopular norm (region II) or a paradigm shift (re-
gion I).

In the case of WS networks (Figs. 7 (b), (d), and (f)), we
immediately observe that all the phase transitions appear to
be less sharp, similar to what was already reported in Sec-
tion IV A on the case of µ = 0. The three regions described
above also appear to have a different shape with respect to
those observed in RR networks. In fact, if the commitment
λ > 0.25, then the precise value of λ seems not to play any
role in determining the outcome of the process, and rather,
the outcome is instead uniquely determined by the suscepti-
bility: if µ < 0.003, then paradigm shifts occur (region I); if
0.003 < µ < 0.004, we observe the emergence of unpopular
norms (region II); finally, for µ > 0.004, popular disadvanta-
geous norms persist (region III). For λ < 0.25, the behavior is
similar to the one already described for RR networks.

When comparing the two topologies, we can conclude that
the introduction of a direct feedback of the observed actions
on an individual’s opinion has a different effect, depending
on the network structure. For instance, topologies that seems



A two-layer model for coevolving opinion dynamics and collective decision-making in complex social systems 10

(a) RR network: average action 〈x〉 (b) WS network: average action 〈x〉

(c) RR network: average opinion 〈y〉 (d) WS network: average opinion 〈y〉

(e) RR network: regions (f) WS network: regions

FIG. 7: Outcome of coevolutionary dynamics on (a,c,e) RR and (b,d,f) WS graphs for different values of the parameters λ and
µ . The average action is plotted in (a–b), the average opinion in (c–d), and in (e–f) we highlight the three distinct regions of the

parameter space associated with the emerging phenomenon observed in the simulations. Each data point is the average over
100 independent runs with α = 0.5, n = 200, β = 20, over a time-window of duration T = 4n2. Both types of graphs have

average degree 8 (for the influence layer) and 4 (for the communication layer). The rewiring probability of the WS networks is
p = 0.2. The green region I, violet region II, and orange region III correspond to regions in which a paradigm shift, an

unpopular norm, and a popular disadvantageous norm, is observed, respectively.

to favor the occurrence of paradigm shifts in the absence of
such a feedback (e.g., WS netwoks), are instead less prone
to promote the diffusion of innovation when the feedback is
present, thereby favoring the emergence of popular disadvan-
tageous norms. We believe that the presence of clustering in
WS networks may explain this phenomenon. In fact, as µ

increases, the ability of the innovator to shift others’ opinions
may remain restricted to individuals in his or her own immedi-
ate cluster, while in the other clusters at a longer path distance
from the innovator, the influence of observed actions on an
individual’s opinion may ensure that the majority of the indi-
viduals’ opinions remains firmly in support of the status quo
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action.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we have proposed a novel modeling frame-
work for capturing the intertwined coevolution of individu-
als’ opinions and their actions; individuals share their opin-
ions and are influenced by the actions observed from the other
members of their community on two distinct layers of a com-
plex social network. The first key contribution of this work is
the formal definition of the coevolutionary model itself, which
is grounded in, and intertwines, the theories of opinion dy-
namics and evolutionary games.

Then, we have tailored the proposed framework to study
a real-world application, concerning the introduction of an
innovation (such as a novel advantageous product or behav-
ior) in a social community. In Section III, we have provided
details of such a model, illustrating three very different real-
world phenomena that can be observed within our single uni-
fied modeling framework: the formation of i) an unpopular
norm, ii) a popular disadvantageous norm, or iii) a paradigm
shift. The possible formation of either unpopular norms or
popular disadvantageous norms has been rarely considered in
agent-based models, even though substantial empirical data
and studies from the social-psychology literature indicate nei-
ther phenomenon is especially rare41,42,57–59. If indeed a
paradigm shift does occur, it interesting that the opinions are
first to change, followed by the actions. In a real-world exam-
ple of such a phenomenon, Iowa farmers in the 1930s began
widespread adoption of a new hybrid corn; it was during the
prior years that farmers gradually learned about the new hy-
brid corn and slowly shifted their opinion toward supporting
its adoption60.

A preliminary analysis established a necessary condition
on the model parameters and network structure to observe
a paradigm shift when individuals actions are fully ratio-
nal. However, real-life human cognitive processes have been
demonstrated to be only partially rational53, and the case
of bounded rationality was then studied by means of Monte
Carlo numerical simulations. We started from a simplified
scenario, in which individuals’ opinions are not susceptible
to the observed actions of the neighbors. Evidence of a
phase transition between two regimes of a meta-stable un-
popular norm and a paradigm shift was identified, based on
the strength of individuals’ commitment to their own opin-
ion, and further shaped by the network structure. This accords
with intuition: if an individual’s decision-making is primarily
governed by the desire to coordinate with his or her neigh-
bors, then it becomes unlikely that the social system collec-
tively breaks out of the meta-stable state in which individuals
largely select the status quo action, even though the innova-
tor may shift the opinions of the community to support the
innovation.

Our analysis was then extended to consider the more real-
istic scenario in which an individual’s opinion is susceptible
to the influence of the observed actions of others in their so-
cial community. The results illustrated that the three social

phenomena mentioned above could all be observed, depend-
ing on the model parameters. The range of parameter values
for which each phenomena could occur as well as the sharp-
ness of the phase transition between the different regimes was
found to be strongly dependent on the topology of the social
network. An important general conclusion was also drawn. If
individuals’ opinions are strongly susceptible to being influ-
enced by the actions of others, then independent of the net-
work topology and of the individuals’ commitment to their
own opinion, the status quo will persist as a popular disad-
vantageous norm. The model can thus shed light on why
some norms persist even though they are clearly disadvanta-
geous to both the individual and the wider population. For in-
stance, footbinding was a disadvantageous norm among Chi-
nese women for several centuries prior to a rapid disappear-
ance in the 20th Century, persisting in part because individu-
als’ opinions were heavily influenced by the observed actions
of others59.

In contrast, having a large commitment to one’s own opin-
ion is a necessary, but not sufficient, condition to observe a
paradigm shift (see Fig. 7). This illustrates the importance
of individuality, or the role of an individual’s evolving pref-
erence for/opinion on an action, in promoting the spread of
an innovation. Such a role, despite being intuitive, has been
largely overlooked in most diffusion literature. For all topolo-
gies, the range of parameter values for which an unpopular
norm could occur was nontrivial (region II in Fig. 7). This
helps support the observations from the literature that unpop-
ular norms, while not extremely common, are also not rare.
The high clustering nature of small-world networks has been
linked to paradigm shifts occurring rapidly when consider-
ing just a decision-making process18. In the coevolutionary
model, we found that if an individual’s susceptibility to hav-
ing his or her opinion influenced by the observed actions of
others is small, then small-world networks favor the adop-
tion of novel advantageous norms, consistent with18. How-
ever, as the susceptibility to social influence increases, small-
world networks become more resistant to the diffusion of in-
novation than other network structures (e.g., random regular
graphs), thus leading to the emergence of popular disadvan-
tageous norms. Thus, we confirm that the network structure
itself plays a non-negligible role in shaping the collective dy-
namics, but when decision-making and opinion dynamic co-
evolve, the impact can be unexpected and counter-intuitive.

We hope to have convinced the reader that the proposed co-
evolutionary modeling framework is of interest to the various
scientific communities that study social systems using dynam-
ical mathematical models. The general formulation of our
modeling framework and the promising preliminary results
obtained have paved the way for several avenues of future re-
search. On the one hand, further efforts should be devoted
toward a rigorous theoretical analysis of the model, beginning
with a comprehensive convergence result for the fully rational
case. Further analysis of the network topology may be consid-
ered, including the impact of introducing directed interactions
on either layer, or the effect of negative interaction weights on
the emergence of polarization phenomena8. The role of clus-
tering in favoring or hindering the occurrence of a paradigm
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shift should also be investigated, especially in the presence
of strongly connected components in directed networks or
communities with negative weights. Time-varying networks
are recognized as being more realistic, with several possi-
ble directions including activity-driven networks13, adaptive
topologies15, or state-dependent weights11. Moreover, while
a coordination game was used for the decision-making pro-
cess, the proposed framework can easily be adjusted to con-
sider other network games, such as anti-coordination, Pris-
oner’s Dilemma, etc. Among the several fields in which the
proposed framework may find application, we want to men-
tion marketing and financial markets. In marketing and prod-
uct promotion, it has often been observed that the mere fact
that a novel product is superior to the competitors may be not
sufficient for it to succeed, even if the superiority is widely
acknowledged. The proposed framework can offer mathemat-
ical tools to represent realistic diffusion of a new product and
predict its outcome.

Existing literature61–63 has recognized that in financial mar-
kets, there is a coevolution of a trader’s (individual) reputation
and trading strategies; while the reputation can be generally
modeled through a continuous variable (similar to opinions),
the trading strategies can either be represented as edge cre-
ation/deletion operations62, or as a complex decision-making
process63. Ideas drawn from these existing works may en-
able our proposed framework to better describe the phenom-
ena studied in this work and suggest their possible extension
to the particular application of financial markets.
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Appendix A: Proof of Proposition 1

We prove that if yi(0) ∈ [−1,1] for all i ∈ V , then yi(t) ∈
[−1,1], for all i ∈ V and for all t ≥ 0. That is, the opinions
are always well defined if the initial opinions are well defined.
We proceed by induction. Let us assume that the opinions are
well posed at a generic time t, that is, yi(t) ∈ [−1,1], for all
i ∈ V . Let i ∈ V be the individual that is activated at time
t. Clearly, all the opinions of the individuals j ∈ V r {i} are
well defined, since they remain the same. For the opinion of

individual i, we obtain the following bound:

|yi(t +1)| =

∣∣∣∣∣(1−µi)
n

∑
j=1

wi jy j(t)+µi
1
di

n

∑
k=1

aikxk(t)

∣∣∣∣∣
≤ (1−µi)

∣∣∣∣∣ n

∑
j=1

wi jy j(t)

∣∣∣∣∣+µi

∣∣∣∣∣ 1
di

n

∑
k=1

aikxk(t)

∣∣∣∣∣
≤ (1−µi)

n

∑
j=1
|wi j||y j(t)|+µi

1
di

n

∑
k=1

aik|xk(t)|

≤ (1−µi)
n

∑
j=1
|wi j|+µi ≤ 1.

(A1)
Since we have selected a generic time t and the bound holds
for all i ∈ V , the opinions at the next time step are well de-
fined: yi(t +1) ∈ [−1,1]. This yields the proof.

Appendix B: Analytical derivation of Eq. (8)

We compute the condition for which the payoff for choos-
ing action +1 is greater than the payoff for choosing action
−1. Using (7a) and (7b), we observe that the inequality
πi(+1|yi,x−i)≥ πi(−1|yi,x−i) holds if and only if

1
2

λiyi +
1−λi

2di
(1+α)

n

∑
j=1

ai j(1+ x j)

≥−1
2

λiyi +
1−λi

2di

n

∑
j=1

ai j(1− x j)
(B1)

which, after rearranging and recalling that di = ∑ j=1 ai j,
yields

1−λi

2di
(2+α)

n

∑
j=1

ai jx j ≥−
(

1
2
(1−λi)α +λiyi

)
. (B2)

The inequality in (8) can then be recovered from the above by
further rearranging and simplifying.

Appendix C: Proof of Theorem 3

Consider a generic node i. According to (6), a neces-
sary condition for node i to change action to +1 is that
πi(+1;yi,x−i) ≥ πi(−1;yi,x−i). Using their explicit expres-
sion in (7a) and (7b), we bound

πi(+1;yi,x−i)≤
1
2

λ +
(1−λ )(1+α)

2di

n

∑
j=1

ai j(1+ x j), (C1)

πi(−1;yi,x−i)≥−
1
2

λ +
1−λ

2di

n

∑
j=1

ai j(1− x j). (C2)

In order to start the diffusion, one individual has to adopt +1
when all the others (except for the stubborn innovator) take
−1. We study separately the case in which the first adopter of
action +1 is a neighbor of the innovator or not. If i : (i,s) /∈ EA,



A two-layer model for coevolving opinion dynamics and collective decision-making in complex social systems 13

a necessary (but not sufficient) condition for node i to be the
first adopter is derived from the inequalities above as

1
2

λ ≥−1
2
+1−λ =⇒ λ ≥ 1

2
. (C3)

For a generic individual i : (i,s) ∈ EA, the bounds above yield
the following necessary condition for i to be the first adopter
of action +1:

1
2

λ +(1−λ )(1+α)
1
di
≥−1

2
λ +(1−λ )

di−1
di

, (C4)

yielding

λ (2di−2−α)≥ di−2−α. (C5)

If di > 2+α , then

λ ≥ 1
2
− 2+α

4di−4−2α
. (C6)

If di ≤ 2+α , then the necessary condition above is always
verified. We observe that the necessary condition for a neigh-
bor of the innovator is always less restrictive than the one for
the other individuals, independent of the evolutionary advan-
tage α and of the degree di. The necessary condition is ob-
tained by minimizing over all the neighbors of the innovator.

Appendix D: Network models and their implementation

In the numerical simulations of this paper, we use different
network topologies generated according to four different al-
gorithms to obtain a network with n nodes and average degree
d. Details on the properties of the generated networks can be
found in the book by Newman56, while more details on the
specific implementation of these algorithms in this paper are
reported in the following.

Regular random (RR): the network is generated using a
configuration model, that is, each node is given d half-
links. A pair of half-links is selected uniformly at ran-
dom and, if the pair consist of nodes that are not already
connected through an edge, then the two half-links are
removed and an edge between the two nodes is added.
The procedure is repeated until all the half-links are re-
moved.

Erdős-Rényi (ER): the network is selected uniformly at ran-
dom from the ensemble of graphs with n nodes and
dn/2 edges. This is implemented by selecting a pair
of nodes uniformly at random and, if they are not al-
ready connected by an edge, adding the edge between
them to the edge set. This procedure is repeated until
dn/2 edges are added to the edge set.

Watts-Strogatz (WS): the network is generated as follows.
First, a regular ring lattice where each node is con-
nected to the d nearest neighbors is constructed. Then,
each edge is randomly rewired with probability equal

to p, independently of the other edges. Edge rewiring
is performed by randomly chose one of the two nodes
connected by the edge and substituting it with another
node, chosen uniformly at random among the other
n− 2 nodes. In all the implementations of WS graphs
in this paper, we fix p = 0.2.

Barabási-Albert (BA): the network is generated following
the preferential attachment algorithm. First, a com-
plete network with d + 1 nodes is generated. Then, a
new node is introduced in the network and d/2 edges
are generated to connect the new node to d/2 existing
nodes. Specifically, the probability that the new node
is connected with a node i is proportional to the degree
of node i. The procedure is repeated until the node set
contains all the n nodes.
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9D. Acemoğlu, G. Como, F. Fagnani, and A. Ozdaglar, “Opinion fluctu-
ations and disagreement in social networks,” Mathematics of Operations
Research 38, 1–27 (2013).

10R. Hegselmann and U. Krause, “Opinion dynamics and bounded confidence
models, analysis, and simulation,” Journal of Artificial Societies and Social
Simulation 5 (2002).

11J. Lorenz, “Continuous opinion dynamics under bounded confidence: A
survey,” International Journal of Modern Physics C 18, 1819–1838 (2007).

12W. Quattrociocchi, G. Caldarelli, and A. Scala, “Opinion dynamics on in-
teracting networks: media competition and social influence,” Scientific Re-
ports 4, 4938 (2014).

13L. Zino, A. Rizzo, and M. Porfiri, “Consensus over activity-driven net-
works,” IEEE Transactions on Control of Network Systems 7, 866–877
(2020).

14J. Hasanyan, L. Zino, D. A. Burbano Lombana, A. Rizzo, and M. Por-
firi, “Leader-follower consensus on activity-driven networks,” Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences
476, 20190485 (2020).

15P. Holme and M. E. J. Newman, “Nonequilibrium phase transition in the co-
evolution of networks and opinions,” Physical Review E 74, 056108 (2006).

16J. Smith, Evolution and the Theory of Games (Cambridge University Press,
1982).

17H. Peyton Young, “The dynamics of social innovation,” Proceedings of the
National Academy of Sciences 108, 21285–21291 (2011).

18A. Montanari and A. Saberi, “The spread of innovations in social net-
works,” Proceedings of the National Academy of Sciences 107, 20196–
20201 (2010).

19P. Ramazi, J. Riehl, and M. Cao, “Networks of conforming or noncon-
forming individuals tend to reach satisfactory decisions,” Proceedings of
the National Academy of Sciences 113, 12985–12990 (2016).

20J. Haidt, “The emotional dog and its rational tail: a social intuitionist ap-
proach to moral judgment,” Psychological Review 108, 814–834 (2001).



A two-layer model for coevolving opinion dynamics and collective decision-making in complex social systems 14

21S. Gavrilets and P. J. Richerson, “Collective action and the evolution of
social norm internalization,” Proceedings of the National Academy of Sci-
ences 114, 6068–6073 (2017).

22B. Lindström, S. Jangard, I. Selbing, and A. Olsson, “The Role of a “Com-
mon Is Moral” Heuristic in the Stability and Change of Moral Norms,”
Journal of Experimental Psychology: General 147, 228–242 (2018).

23F. Gargiulo and J. J. Ramasco, “Influence of Opinion Dynamics on the Evo-
lution of Games,” PloS One 7, e48916 (2012).

24A. C. R. Martins, “Continuous opinions and discrete actions in opinion dy-
namics problems,” International Journal of Modern Physics C 19, 617–624
(2008).

25D. Centola, R. Willer, and M. Macy, “The Emperor’s Dilemma: A Compu-
tational Model of Self-Enforcing Norms,” American Journal of Sociology
110, 1009–1040 (2005).

26C.-F. Schleussner, J. F. Donges, D. A. Engemann, and A. Levermann,
“Clustered marginalization of minorities during social transitions induced
by co-evolution of behaviour and network structure,” Scientific Reports 6,
30790 (2016).

27P. Duggins, “A Psychologically-Motivated Model of Opinion Change with
Applications to American Politics,” Journal of Artificial Societies and So-
cial Simulation 20, 1–13 (2017).

28M. Ye, Y. Qin, A. Govaert, B. D. O. Anderson, and M. Cao, “An Influence
Network Model to Study Discrepancies in Expressed and Private Opinions,”
Automatica 107, 371–381 (2019).

29C. Granell, S. Gómez, and A. Arenas, “Dynamical interplay between
awareness and epidemic spreading in multiplex networks,” Physical Review
Letters 111, 128701 (2013).

30W. Wang, Q.-H. Liu, J. Liang, Y. Hu, and T. Zhou, “Coevolution spreading
in complex networks,” Physics Reports 820, 1 – 51 (2019).

31L. V. Gambuzza, M. Frasca, and J. Gómez-Gardeñes, “Intra-layer synchro-
nization in multiplex networks,” Europhysics Letters 110, 20010 (2015).

32V. Nicosia, P. S. Skardal, A. Arenas, and V. Latora, “Collective phenomena
emerging from the interactions between dynamical processes in multiplex
networks,” Physical Review Letters 118, 138302 (2017).

33A. Barrat, A. Baronchelli, L. Dall’Asta, and V. Loreto, “Agreement dy-
namics on interaction networks with diverse topologies,” Chaos: An Inter-
disciplinary Journal of Nonlinear Science 17, 026111 (2007).

34M. Jalili, “Social power and opinion formation in complex networks,” Phys-
ica A: Statistical Mechanics and its Applications 392, 959 – 966 (2013).

35Q.-H. Liu, F.-M. Lü, Q. Zhang, M. Tang, and T. Zhou, “Impacts of opin-
ion leaders on social contagions,” Chaos: An Interdisciplinary Journal of
Nonlinear Science 28, 053103 (2018).

36R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani,
“Epidemic processes in complex networks,” Reviews of Moderns Physics
87, 925–979 (2015).

37M. Rohden, A. Sorge, D. Witthaut, and M. Timme, “Impact of network
topology on synchrony of oscillatory power grids,” Chaos: An Interdisci-
plinary Journal of Nonlinear Science 24, 013123 (2014).

38C. Nowzari, V. M. Preciado, and G. J. Pappas, “Optimal resource allocation
for control of networked epidemic models,” IEEE Transactions on Control
of Network Systems 4, 159–169 (2017).

39X. F. Wang and G. Chen, “Pinning control of scale-free dynamical net-
works,” Physica A: Statistical Mechanics and its Applications 310, 521 –
531 (2002).

40P. DeLellis, M. di Bernardo, and M. Porfiri, “Pinning control of complex
networks via edge snapping,” Chaos: An Interdisciplinary Journal of Non-
linear Science 21, 033119 (2011).

41R. Willer, K. Kuwabara, and M. W. Macy, “The False Enforcement of
Unpopular Norms,” American Journal of Sociology 115, 451–490 (2009).

42D. Smerdon, T. Offerman, and U. Gneezy, “’everybody’s doing it’: on the
persistence of bad social norms,” Experimental Economics (2019).

43D. A. Prentice and D. T. Miller, “Pluralistic ignorance and alcohol use on
campus: Some consequences of misperceiving the social norm,” Journal of
Personality and Social Psychology , 243–256 (1993).

44M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A.
Porter, “Multilayer networks,” Journal of Complex Networks 2, 203–271
(2014).

45We observe that more realistic activation rules which account for temporal
and inter-individual heterogeneity may be simply implemented by associ-
ating a (possibly inhomogeneous) Poisson clock to the activation of each
individual.

46A. V. Proskurnikov and R. Tempo, “A tutorial on modeling and analysis
of dynamic social networks. Part I,” Annual Reviews in Control 43, 65–79
(2017).

47A. V. Proskurnikov and R. Tempo, “A tutorial on modeling and analysis of
dynamic social networks. Part II,” Annual Reviews in Control 45, 166–190
(2018).

48Y. Chen, W. Xia, M. Cao, and J. Lü, “Random asynchronous iterations in
distributed coordination algorithms,” Automatica 109, 108505 (2019).

49A node s ∈ V is reachable from r ∈ V if and only if there exists a sequence
of nodes (i1 = r, i1, . . . , i` = s) such that (ii, ii+1) is an edge, for any i ∈
{1, . . . , `−1}.

50L. Blume, “The statistical mechanics of best-response strategy revision,”
Games and Economic Behavior 11, 111–145 (1995).

51S. Morris, “Contagion,” The Review of Economic Studies 67, 57–78
(2000).

52A layer is connected if every node is reachable from all the others.
53H. Simon, “Bounded rationality in social science: Today and tomorrow,”

Mind & Society: Cognitive Studies in Economics and Social Sciences 1,
25–39 (2000).

54A. Moinet, R. Pastor-Satorras, and A. Barrat, “Effect of risk perception on
epidemic spreading in temporal networks,” Physical Review E 97, 012313
(2018).

55L. Zino, A. Rizzo, and M. Porfiri, “Modeling memory effects in activity-
driven networks,” SIAM Journal on Applied Dynamical Systems 17, 2830–
2854 (2018).

56M. Newman, Networks: An Introduction (Oxford University Press, 2010).
57K. Abbink, L. Gangadharan, T. Handfield, and J. Thrasher, “Peer punish-

ment promotes enforcement of bad social norms,” Nature Communications
8 (2017).

58D. A. Prentice and D. T. Miller, “Pluralistic Ignorance and Alcohol Use on
Campus: Some Consequences of Misperceiving the Social Norm,” Journal
of personality and social psychology 64, 243–256 (1993).

59G. Mackie, “Ending footbinding and Infibulation: A Convention Account,”
American Sociological Review , 999–1017 (1996).

60B. Ryan and N. C. Gross, “The Diffusion of Hybrid Seed Corn In Two Iowa
Communities,” Rural Sociology 8, 15 (1943).

61P. Curty and M. Marsili, “Phase coexistence in a forecasting game,” Journal
of Statistical Mechanics: Theory and Experiment 2006, P03013 (2006).

62J. da Gama Batista, J.-P. Bouchaud, and D. Challet, “Sudden trust collapse
in networked societies,” The European Physical Journal B 88, 55 (2015).

63P. DeLellis, A. DiMeglio, F. Garofalo, and F. L. Iudice, “The evolving cob-
web of relations among partially rational investors,” PloS One 12, e0171891
(2017).


