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Abstract
In this paper, a survey on distributed control applications for multi Unmanned Aerial Vehicles (UAVs) systems is proposed. 
The focus is on consensus-based control, and both rotary-wing and fixed-wing UAVs are considered. On one side, the latest 
experimental configurations for the implementation of formation flight are analysed and compared for multirotor UAVs. On 
the other hand, the control frameworks taking into account the mobility of the fixed-wing UAVs performing target tracking 
are considered. This approach can be helpful to assess and compare the solutions for practical applications of consensus in 
UAV swarms.

Keywords Consensus · Distributed control · UAV · Swarm · Multi-agent

1 Introduction

The application of distributed control methods to real sys-
tems has been gaining momentum in recent years due to 
the advantages that a multi-agent framework can provide 
with respect to a single operating unit. Multiple Unmanned 
Aerial Vehicles (UAVs) applications represent one of the 
most promising areas of interest of distributed control, as the 
typical weakness of a single-UAV mission can be overcome 
by employing a swarm of drones.

This paper is a follow-up to a previous overview on 
consensus-based control in multi-agent UAV systems con-
ducted by the authors in [1]. Consensus is a distributed con-
trol method aiming at reaching an “agreement” among the 
agents of a system on a given variable of interest, exploiting 
only local information exchange among neighbors [2].

The previous work [1] aimed at categorizing the literature 
focusing on one side on the application of formation control 

through consensus in rotary-wing UAVs, and on the other 
hand on the application of distributed target tracking through 
consensus in fixed-wing UAVs.

The reason for such classification is that rotary-wing 
UAVs are generally deployed in confined and dense areas, 
such as indoor and urban environments since they can 
provide hovering flight and vertical take-off and landing, 
although yielding limited endurance [3]. Thus, a swarm of 
multirotor UAVs requires a collaborative formation control 
framework linked to an obstacle and collision avoidance 
strategy.

On the other hand, due to their considerable endurance 
and high minimum airspeed, fixed-wing UAVs are suitable 
to perform missions as patrolling, surveillance, or data gath-
ering over vast regions [4]. Employing multiple drones to 
perform such tasks requires an efficient framework for dis-
tributed information fusion to enhance the accuracy of target 
detection and tracking.

However, implementing a theoretic distributed control 
model in a real swarm introduces new challenges related to 
the technical limitations of a UAV platform, for instance, 
limited computational power available onboard, poor sens-
ing capabilities, and finite communication range. In the 
recent literature, many studies attempted to test and validate 
distributed methods through some experimental implemen-
tations or to bring the simulations closer to the real setup.

For this reason, in this paper the applications reviewed 
in [1] are addressed from a more practical point of view. In 
particular, several studies implementing consensus-based 
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formation control on a real swarm of multirotor UAVs are 
analyzed and compared according to criterion as the selected 
hardware and platform or the communication infrastructure 
of the swarm.

Instead, regarding distributed target tracking through con-
sensus, we review the works taking into account also the 
mobility of the sensing UAVs. In particular, the coupling 
between target estimation and the motion of the swarm is 
examined in the view of the selected path following method, 
to highlight the inter-dependency between the two tasks.

This approach to classifying the literature could assist 
researchers in the first phase of the experimental setup 
design for testing multirotor consensus-based formation 
strategies. On the other hand, it could help to compare the 
most suitable control frameworks to implement distributed 
target tracking through fixed-wing UAVs.

The rest of the paper is organized as follows. In Section 2, 
some preliminaries on graph theory and consensus control 
are provided. In Section 3, we review the latest attempts to 
implement consensus control on rotary-wing UAV swarms. 
Section 4 focuses on the coupling between target tracking 
and motion control of a swarm. Finally, concluding remarks 
are provided in Section 5.

2  Preliminaries

In this section, we will briefly recap the most significant 
results regarding consensus theory. Some relevant surveys 
for a more comprehensive analysis can be found in the lit-
erature [2, 5, 6].

2.1  Graph Theory

In the scenario of inter-agents communication in a multi-
vehicle system, the exchange of information among n drones 
can be modelled as a graph G . A graph is defined by a non-
empty set of n nodes V connected by a set of edges E , with 
E ⊆ V × V.

The communication flowing among multiple vehicles 
can be either directed or undirected. Given two agents, in 
a directed graph, information can flow from an agent to 
another one, but not necessarily vice versa. The undirected 
graph considers only bidirectional communication, in which 
both agents send and receive information to each other 
simultaneously [1].

If (i, j) ∈ E , the two nodes are said to be connected or 
neighbors. A directed graph is said to be strongly connected 
if there is an ordered sequence of edges in the set E from 
every node i to every other node j. An undirected graph is 
said to be connected if there is a sequence of edges in the set 
E between any two nodes in G [7].

Given a graph G it is possible to define the adjacency 
matrix A ∈ ℝ

n×n , such that aij > 0 if node i receives informa-
tion from node j, while aij = 0 otherwise. The parameter aij is 
a positive weight usually set equal to a decreasing function 
of the inter-agent distance. The matrix A is symmetrical for 
an undirected graph. Starting from A , it is possible to define 
the Laplacian matrix L  , such that:

Notice that L  has zero row sum [8]. The multiplication 
of each row of L  for the vector of ones 1n is always equal to 
0. This means that the Laplacian matrix always has at least 
one null eigenvalue, associated with the eigenvector 1n.

2.2  Consensus Algorithm for Continuous Time 
Systems

If the communication between neighbors allows continuous 
information sharing, or if the communication bandwidth is 
large enough, the system could be modelled as a continuous 
time one [2].

Given a generic variable xi with i = 1,...,n (n is the num-
ber of drones), consensus aims to obtain the convergence 
of xi to a common value, only exploiting local information 
exchange. Let Ni be the set of neighbors of a node i. The 
traditional form of consensus algorithm for a continuous 
first-order dynamic system is:

The value of the variable of interest xi is driven towards 
the values of the variables of interest of its neighbors, i.e. 
∥xi(t) − xj(t)∥→ 0 as t → ∞ [9, 10]. It is straightforward 
to notice how applying locally (2) is equivalent to apply 
globally

where x(t) = [x1(t),...,xn(t)]T. This means that the distrib-
uted multi-agent system behaves as a linear dynamic system 
where x(t) is the state vector and −L  is the state matrix. The 
stability properties of such a system depend on the spectrum 
of the state matrix. Since matrix −L  always has at least 
one null eigenvalue, the system is not asymptotically stable. 
Still, the system could be internally stable if 0 is the only 
null eigenvalue of the spectrum, and the other eigenvalues 
have negative real parts.

In [2] it is shown that such conditions on −L  hold if 
a directed (undirected) graph contains a directed spanning 
tree (is connected). This means that the system is internally 

(1)lii =

n
∑

j=1,j≠i

aij, lij = −aij for i, j = 1, ..., n

(2)ẋi(t) = −
∑

j∈Ni

aij[xi(t) − xj(t)].

(3)�̇(t) = −L �(t),
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stable, and its state variables xi(t) remain bounded for any 
initial condition xi(0).

From algebraic control theory [11], the equilibrium state 
of such a linear system is only affected by its kernel, i.e., the 
eigenvectors associated to the null eigenvalue.

In particular, x(t) → (1nνT)x(0) as t → ∞ , where ν is the 
unit left eigenvector of L  associated to the eigenvalue 0. 
Since (1nνT) is a matrix with identical rows, it is clear how 
each xi tends to a common value given by a weighted aver-
age 

∑n

i=1
�ixi(0) of the initial states, meaning that the system 

reaches consensus [2].
Similar results can be found for second-order dynamic 

systems in [12] and discrete-time systems in [1, 2].

3  Formation Control and Collision 
Avoidance

Several applications employing multi-rotor UAVs as deliv-
ery services, bridge inspection, and traffic monitoring are 
deployed in urban environments, where an adequate safety 
level must be maintained [13]. A crucial requirement in such 
conditions is the capability of generating a formation while 
avoiding collisions between members of the swarm and 
crashes with external obstacles [14].

One of the most investigated issues in this field is con-
sensus-based formation control [15–17]. Consensus is a dis-
placement-based control methodology [18], meaning that, 
to achieve the desired formation, the agents only need the 
relative positions (displacements) of their neighbors with 
respect to a local reference system aligned to a global one.

Displacement-based formation control is usually catego-
rized in three main strategies that can be realized through 
a second-order consensus protocol: leader-follower (LF), 
behaviour-based (BB) and virtual structure (VS), [5].

However, the basic formation algorithms do not consider 
the collision between agents that could occur while trying 
to reach the desired positions.

This is why collision/obstacle avoidance methodologies 
have been developed along with formation strategies. Most 
of the collision-free approaches through consensus fall into 
the optimization-based or force-field categories [1, 19].

As pointed out in [1], force-fields are more suitable to 
operate in dynamic environments and present a higher 
number of experimental validation in the recent literature. 
Instead, optimization approaches prevent the occurrence of 
local minima at the price of a higher computational cost.

In a completely distributed experimental setup that aims 
at validating a formation strategy, a drone runs on-board the 
consensus algorithm (Guidance layer), is able to estimate its 
position (Navigation layer) and share it with its neighbors, 
while tracking its desired trajectory through commands com-
puted on-board (Control layer). However, researchers tried to 

overcome the difficulties of putting together such a consider-
ably distributed setup by deploying centralized solutions in 
certain layers. Keeping this in mind, the studies are classified 
in the view of an increasing level of decentralization.

Table 1 clarifies the differences among the implementa-
tions described in the following Sections 3.1, 3.2 and 3.3. It 
reports where the control and guidance layers are performed, 
and where the navigation information of agent i is sent for 
further processing. The term “ground” in Table 1 denotes a 
centralized computing unit, e.g. a Ground Control Station 
(GCS).

The focus is kept on the hardware solutions chosen in the 
studies to validate the swarming procedure, on the control 
and sensing frequencies proven to be sufficient for the out-
come, and on the differences between simulation expecta-
tions and experimental results.

3.1  Guidance Performed on Ground

In this subsection, we report the studies in which only the 
inner (attitude) loop of the control layer is performed on-
board. The observation of the pose of the UAVs is performed 
by a centralized motion capture system and later sent to the 
GCS. Here, this information is used to execute both the guid-
ance algorithm and the outer (position) loop of the control 
layer. The desired attitude is transmitted, through some user-
defined protocol (UDP), to the drones that run on-board their 
inner loop to achieve it. This kind of setup is quite central-
ized and it is usually employed to test the performance of the 
guidance layer and to validate its assumptions.

In [20], consensus is employed to change the formation 
shape of 4 quadrotor UAVs. A receding-horizon optimiza-
tion minimizes a cost function in which the derivatives of the 
formation errors add up. Collision avoidance during forma-
tion change is performed through a reassignment strategy, 
assuming a first-order kinematic model for the drones. Two 
UAVs trade trajectories if their relative position before and 
after a formation change switches orientation. A Vicon sys-
tem observes the position of the UAVs at 150Hz. The authors 
adopted Matlab to compute first the trajectory commands 
and later the desired attitude. This is sent, through a Zigbee 
network at 50Hz, to each drone, running the inner loop at 
1kHz. The study simulated a distributed navigation layer by 

Table 1  Implementation features of the reported studies

Control Layer Guidance Layer Navigation
Info of UAV i

Section 3.1 position on ground, 
attitude on-board

on ground to ground

Section 3.2 on-board on-board to all UAVs
Section 3.3 on-board on-board to UAV i
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varying the neighborhood range of the UAVs, showing how 
greater sensing radii lead to faster consensus, as expected. 
The authors also performed a high speed formation test to 
push the limit of their kinematic assumption, observing a 
degradation of the performance in terms of position errors.

A similar implementation framework is provided in [21] 
for a Crazyfile nano quadrotor swarm. The poses of the 
UAVs are observed by an Optitrack system at 100Hz. The 
study considers a general distributed guidance layer whose 
output is a reference trajectory tracked by the position con-
trol layer running in Simulink at 100Hz. The desired attitude 
and thrust are sent, through a specific Client, to each UAV, 
tracking them at 250Hz. It is possible to notice how the fre-
quencies of the guidance loop and of the position informa-
tion update are very similar to the previous study [20].

This configuration is adopted by the authors in [22] to test 
a formation algorithm based on an artificial potential func-
tion. The aim of this guidance layer is to aggregate several 
UAVs from random initial positions to a safe formation. The 
authors investigated the effects of increasing the number of 
UAVs in a real swarm, observing that a larger swarm yields 
a slightly higher formation error.

3.2  Guidance on‑board and no Inter‑agent 
Communication

In this subsection, we describe the works in which the guid-
ance algorithm runs on a companion computer, and the 
control layer runs entirely on-board. A centralized motion 
capture system provides the absolute position information of 
all the drones to each agent, so that the relative positions are 
computed on-board. This kind of setup is employed to test 
the feasibility of running the Guidance and Control layers 
on the on-board hardware.

In [23], the authors tested on a swarm of Crazyfile UAVs 
a formation algorithm whose protocol weights several 
behaviours. First, it aims at generating a V-shape forma-
tion through consensus. It then uses a repulsive potential to 
avoid collision and a feedforward PD controller to track the 
desired position of the centroid of the swarm. Moreover, the 
study suggests a method for achieving a smooth rotation of 
the entire swarm to avoid sudden formation errors during 
maneuvers. The drones are localized by a BitCraze system. 
The authors proved the validity of their approach regarding 
formation rotation, observing smooth trajectories even dur-
ing a 180 degree swarm rotation.

Another behaviour-based approach can be found in [24], 
where a swarm of ArDrone2 was employed to generate an 
α-lattice, i.e., a formation in which each drone keeps a fixed 
separation distance with respect to its neighbors. This is a 
well-known formation algorithm developed in [15]. The 
authors employed an Optitrack system to send at 100Hz 
the position information of each agent to every drone. The 

experimental results showed two significant differences with 
respect to simulations: the presence of a steady state error in 
the inter-agent distances, and the occurrence of oscillations 
once the desired relative distance was reached. The authors 
were able to attenuate both these unintended behaviours 
by adding a distributed integral action on the inter-agent 
distance error and by appropriately tuning the gains in the 
consensus protocol, respectively.

3.3  Guidance on‑board and Inter‑agent 
Communication

This subsection is devoted to the analysis of those studies in 
which both the Guidance and Control layers run on-board. 
Additionally, each drone only receives its own position 
information by the centralized motion capture system or, 
in the case of outdoor applications, by a Global Navigation 
Satellite System (GNSS). This means that the agents will 
have to share with the other members of the swarm their 
own position through some ad hoc wireless network for the 
deployment of the mission. This kind of experimental setup 
is very decentralized, and it aims at evaluating the effects of 
inter-agent communication on the performance of the forma-
tion strategy.

The authors in [25] designed a formation strategy and 
tested it on a swarm of four quad-copters UAVs. The guid-
ance algorithm is a retraction-balancing procedure, in which 
the agents deploy themselves toward an evenly spaced geo-
metric configuration as a circle or a convex polygon. The 
resulting desired linear velocity is passed to a distributed 
MPC, that encodes it as the terminal velocity reference. 
The optimal input is then transformed into a desired thrust 
and attitude, tracked by a backstepping controller. A Vicon 
system captures at 100Hz the motion of each UAV, that for-
wards this information to all of its neighbors. All the com-
putations are performed on-board as it was shown how the 
MPC position controller could be executed at 50Hz on a 
low-power companion computer. The experimental results 
showed the occurrence of a slight drift of about 5cm in the 
hovering positions due to external disturbances, delay on the 
transfer of control commands, or on wireless communica-
tion. For a communication delay between agents greater than 
5ms, the authors noted the occurrence of oscillations and an 
increase of the hovering position error of about 30%.

A virtual structure formation algorithm for outdoor 
environments was tested in [26]. The UAVs reach consen-
sus on their deviation vectors, so that a geometric shape 
is preserved during maneuvers. Since the test is performed 
outdoors, each drone uses a GPS module with an accuracy 
of 1.2m to get its own position and velocity at 10Hz. This 
information is spread across the swarm through a Zigbee 
network. The UAVs’ companion computers execute the for-
mation algorithm at 5Hz, while the inner attitude controller 
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runs at 500Hz. The experimental outcomes were very similar 
to the simulation results, so that the authors adopted an anal-
ogous setup to validate a more elaborate guidance algorithm.

Indeed, in [27], the implementation of a formation con-
tainment problem through consensus was investigated. 
In such control framework, the designated leaders of the 
swarm deploy themselves in a geometric formation through 
the strategy described in [26]. Moreover, several follow-
ers employ the containment protocol to keep a formation 
specified by the convex combination of the states of the 
leaders. Eventually, this will yield a swarm behaviour such 
that the follower UAVs converge inside the geometric shape 
deployed by the leaders, and their velocities will coincide. In 
the experimental setup, the authors used 3 leaders generating 
a triangular formation and 2 followers converging inside it. 
The formation containment was realized despite the pres-
ence of wind, that resulted in a slight drift in the position 
of the UAVs. Hence, the accuracy of 1.2m provided by the 
GPS was adequate for a triangular formation whose edges 
were about 17m.

A tighter formation based on GPS positioning can be 
found in [28], where an Artificial Potential Function (APF) 
method was tested outdoors. The interaction scheme is 
highly hierarchical and draws inspiration from pidgeon 
flocks. Thanks to this communication topology, each UAV 
only needs to broadcast its position and velocity information 
to 3 members of the swarm to maintain the relative posi-
tions of the entire swarm fixed. This procedure alleviates 
communication cost especially in large swarms. The authors 
performed flight tests with 4 quadcoptes. A GPS module 
was employed by each agent to get its own position and 
velocity information that was shared through Xbee modules. 
The guidance algorithm was executed on-board at 20Hz. The 
experimental setup specified a diamond formation with a 
side length of 3m. Also in this case, the accuracy provided 
by the GPS was enough to make the system reach consensus 
despite the presence of external disturbances.

Another outdoor experimental test was conducted in [29], 
where the authors proposed a formation strategy based on 
Voronoi partition. The agents are able to distributively com-
pute their task regions, and to switch trajectories whether 
an agent has to pass through another one’s region to reach 
its target position. The authors adopted an Ultra Wide Band 
(UWB) localization system instead of the GPS even though 
the experimental tests were performed outside. This is due 
to the higher accuracy of the UWB system, that is able to 
reach a maximum positioning error of less than 10cm. Each 
one of the five drones in the experiment receives its position 
information at 50Hz and executes the formation algorithm at 
25Hz. The results showed good convergence of the swarm to 
the desired formation with no collisions. However the speed 
of the UAVs was kept under 0.5m/s. For higher speeds or for 
a greater number of drones in the swarm, the authors warned 

that the UWB would not be appropriate due to its limited 
sensing range, while the GPS would not be accurate enough.

3.4  Discussion

In this section, several studies performing experimental 
implementation of consensus-based formation were dis-
cussed. The level of decentralization in the described con-
figurations increases over the years, with the most recent 
studies deploying quite distributed hardware solutions. The 
comparison of the outlined methods was performed in terms 
of how the authors tried to decentralized the Guidance, Navi-
gation and Control layers of the mission.

The increased computational capabilities of the recently 
developed companion computers allow the on-board deploy-
ment of both the Guidance and Control layers. This is due to 
the fact that relatively low control frequencies, in the range 
of 20 – 50 Hz, were proven to be sufficient for updating the 
commands of the swarming algorithm in the Guidance layer.

A distributed Navigation layer regarding position tracking 
of the UAVs in the swarm is a crucial feature in a consensus 
strategy. In outdoor environments, the on-board GPS module 
is frequently used to get position and velocity information. 
However, GPS accuracy could not be high enough for more 
elaborate formation strategies. Centralized motion capture 
systems have been used in indoor GPS-denied environments, 
or to get more precise information in outdoor tests. However, 
these schemes require fixed anchors or cameras deployed in 
the test area, thus confining their application to experimen-
tal tests. Some recent studies about relative sensing of the 
inter-agent distance have been emerging [30–32] and could 
represent a starting point to actually decentralize the Naviga-
tion layer. Note that a relative position update frequency of 
about 50 – 100Hz has proven to be sufficient for the success-
ful deployment of many of the discussed methods.

It is worth noticing how most of the works reported satis-
factory outcomes of the experiments, with the major discrep-
ancy between simulation and real tests being the occurrence 
of oscillations once the formation is achieved, especially in 
potential field-based methods. These oscillations are gener-
ally caused by bad tuning of the control parameters, or by 
communication delay between agents. In this sense, some 
recent studies are trying to attenuate this unintended effect, 
[33, 34].

4  Distributed Target Tracking

Fixed-wing UAVs are frequently employed in operations as 
patrolling, surveillance or data collection in outdoor envi-
ronments, where the target tracking task plays a crucial role 
[4]. Deploying a network of n mobile sensors can drastically 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 Journal of Intelligent & Robotic Systems          (2022) 106:43 

1 3

   43  Page 6 of 10

reduce the measurement noise of an observed process with 
respect to the performance of a single drone [35, 36].

Given a dynamic target such:

where �(k) ∈ ℝ
m and �(k) ∈ ℝ

m are the state and the input 
noise of the process, and a sensing model such:

where �i(k) ∈ ℝ
p and �i(k) ∈ ℝ

p are the measured output of 
sensor i and the measurement noise affecting it, distributed 
target tracking consists in generating a distributed filter such 
that the estimation error covariances of the local estimates 
�̂i , for all i = 1,… , n are bounded.

The aim of the whole process is to reduce the uncertainty 
related to the estimation of the target, i.e., to minimize the 
covariance of the estimation error.

Kalman-like filters are widely used for this purpose and 
can be classified into consensus on measurements (CM), 
estimates (CE), and information matrices (CI), depending on 
the quantity the filter reaches consensus on [37, 38].

As indicated in [1], CE and CI provide more cohesive 
local estimates with respect to CM. Moreover, CI can limit 
the computational time of the estimation since it functions 
even with a single consensus step per iteration, and it is 
directly linked with the concept of the information value of 
an observation. This is why CI and hybrid methods based 
on it are relevant for real implementations.

According to information theory [39], the variance of 
an unbiased estimator, i.e., the uncertainty related to the 
estimated state of a target, is bounded below by the inverse 
of the Fisher information matrix. This is a measure of the 
information value provided by an observation [40]. Thus, 
minimizing the covariance is equivalent to maximize the 
information value of a measurement.

Since the observations are performed by the UAVs, it is 
clear how the estimation task and the motion of the swarm 
constitute a cascade structure: the state of a moving target is 
estimated through some consensus-based filtering process, 
and the swarm moves toward the target employing some 
path following algorithm to increase the information value 
of their observations. This cascade framework is also known 
as information-driven mobility [41].

While in our previous work the main focus was solely on 
the distributed estimation process, here also the motion of 
the swarm is taken into account.

In this context, in the next subsections the studies are 
classified in the view of the path following algorithm the 
UAVs employ to maximize their information value. Comply-
ing with the categories described in [42], three kinds of path 
following algorithms are considered here: artificial potential 
field (APF), optimization-based and geometric methods.

(4)�(k + 1) = �(k)�(k) + �(k)�(k)

(5)�i(k) = �i(k)�(k) + �i(k)

The focus is maintained on the sensor model used in the 
simulations, on the type of consensus strategy employed 
for target estimation, and on the path following algorithm 
adopted for chasing the target.

4.1  APF Path Following

The Artificial Potential Field is a well-known method for 
path planning consisting in the formulation of attractive and 
repulsive potentials either between agents of the swarm, with 
respect to external obstacles or target positions [1]. The 
input commands for the mobile agents are usually provided 
by the gradient of the potential so that the swarm is driven 
towards low potential equilibrium points.

The concept of information-driven mobility was first inves-
tigated in relation to multi-agent APF in [41]. The authors 
considered a swarm of double-integrator particles tracking 
a target moving in ℝ2 through a range sensor model. This 
kind of sensor measures the relative distance (range) ρi with 
respect to the target, providing a noisy version of its position. 
The covariance of the measurements decreases as the sensing 
agents move closer to the target, i.e., the information value Ii 
of an observation is a decreasing function of the range, such 
that Ii = f(ρi). With this in mind, the authors designed a con-
sensus protocol equal to the gradient of the weighted sum of 
two potential functions: a collective potential and an agent-
target interaction potential. The first one has a minimum in 
the desired separation distance between the sensing agents. 
The second one drives the UAVs toward the estimated target, 
and it is equal to I� =

∑n

i=1
(f −1(Ii))

2 =
∑n

i=1
�2
i
 . It is straight-

forward to notice how minimizing the potential leads to the 
reduction of the individual target ranges, and to the preserva-
tion of a safe distance between agents. This motion behaviour 
is also known as flocking, [15].

In [43, 44], the authors coupled the flocking behavior with 
the estimation process introducing a cascade structure. In 
particular, they broke up the entire dynamics into three sub-
systems: structural dynamics Σs, translational dynamics Σt 
and error dynamics Σe. The first one describes the motion of 
the agents with respect to the center of mass of the swarm, 
while the second one refers to the motion of the center of 
mass. The last system Σe describes the evolution of the col-
lective estimation error and is based on the consensus on 
estimates filtering approach. The authors ultimately proved 
that the agents are able to generate a flock chasing a target, 
with all the sensing agents asymptotically reaching a con-
sensus on the state estimates of the target (if zero noise is 
considered in the error dynamics).

The stability analysis of the cascade structure was further 
extended in [45]. In particular, the input noise was consid-
ered as an acceleration input in the error dynamics Σe, and 
the authors proved the stability of the whole system given 
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bounded input and measurement noise. Again, consensus on 
estimates was chosen as the distributed filtering algorithm.

The same cascade framework was analysed also in [46], 
where the authors studied the optimal observation config-
uration problem for a swarm of double integrator agents. 
This means to find the best relative position of the swarm 
with respect to the target, so that the information value of 
the measurements is maximized. With respect to [41], the 
authors considered a range-bearing sensor model, so that 
the information value is a function of both the range ρi and 
the azimuth 𝜃i with respect to the target. By employing the 
determinant of the information matrix as a measure of the 
quality of the observations, it was found that the optimal 
configuration requires the agents to be located in an evenly 
spaced manner on the circumference of radius rmin centered 
at the target position. Here, rmin is the minimum effective 
observation distance of the sensors with respect to the target.

To deal with the presence of m multiple targets, an inter-
esting approach called semi-flocking was developed in [47]. 
The n mobile sensors (with n ≫ m) are driven towards the 
targets that are currently being chased by fewer drones, so 
that eventually each target will be tracked by a number of 
UAVs roughly equal to n

m
 . The authors did not address the 

estimation Σe subsystem, assuming that the positions of the 
m targets were already known. However, such an approach 
could be the starting point to formulate a cascade structure 
for multi-target tracking applications.

Another study worth mentioning as a starting point for 
future application is [48]. Indeed, the authors performed the 
experimental validation of a collaborative target tracking 
mission on a real swarm of fixed-wing UAVs. The drones 
track a collaborative target, that is a multi-rotor UAV broad-
casting its position and velocity to the entire swarm through 
Xbee modules. Hence, also in this case no distributed esti-
mation Σe is performed as every agent already knows the 
state of the target. However, the study could provide inter-
esting insights for the implementation of path following 
through potential-based algorithms to real fixed-wing UAVs. 
The aim of the swarm is to drive its centroid toward the posi-
tion of the target, and later to remain inside a bounded region 
centered at it. For the experiments, the authors employed 
three fixed-wing aircraft flying at different altitudes to avoid 
collisions. The target broadcasts its position at 5Hz, while 
the agents share at 10Hz with all the other members of the 
swarm their own GPS position, to compute the centroid 
state. The flight tests provided satisfactory results, despite 
the presence of a noticeable wind (3m/s) and recurrent com-
munication loss between UAVs.

4.2  Optimization‑based Path Following

Optimization-based methods encode the path following 
problem into a cost function to be minimized under several 

constraints. A popular optimization technique is the Model 
Predictive Control (MPC), that predicts the state of the sys-
tem up to a certain time instant and applies the first com-
puted optimal input. A typical drawback of applying MPC 
to distributed systems is given by its considerable compu-
tational load.

This is why a faster version of the decentralized MPC was 
developed in [49]. The mobile agents are simulated through 
the fixed-wing UAV two-dimensional kinematic model, and 
carry an onboard radar able to provide the relative distance, 
azimuth, and pitch angle with respect to the target. Its posi-
tion is derived in a distributed fashion through a hybrid CM/
CI approach and then plugged in the cost function of the 
MPC. Indeed, the authors proposed a cost function minimiz-
ing both the relative distance of the UAV with respect to the 
target and the drone’s angular and linear velocities. Collision 
avoidance between agents is ensured by a nonlinear inequal-
ity constraint. The MPC framework is first linearized and 
then, through the use of Lagrangian multipliers, transformed 
into an unconstrained optimization problem, that is much 
faster to solve distributively.

A decentralized version of the MPC was used also in [50], 
but the authors opted to directly maximize the information 
value of the measurements in the cost function, instead of 
minimizing the relative distance with the target. The kin-
ematic model of the UAVs is the same as in [49], while the 
sensor model is able to provide the range ρi and the azimuth 
𝜃i. The filtering approach is based on a novel consensus on 
information, in which also the communication noise between 
agents is taken into account. The authors suggested that it 
can be treated as an additive observation noise affecting 
the information value coming from neighbour agents. In 
this way, maximizing the collective information in the cost 
function leads the swarm to reach a compromise between 
observation and communication. Indeed, communication 
degrades as the distance between agents increases, while col-
lective observations acquire greater value when performed 
by farther points of view. Interestingly, the best trade-off is 
reached through the configuration found in [46], i.e., evenly 
spaced points in a circumference.

4.3  Geometric Path Following

Geometric algorithms for path following are based on the online 
computation and manipulation of several geometric quantities 
as the relative distance with respect to the desired trajectory, 
known as cross-track error, or the desired heading angle, [42].

The authors in [51] developed a road-map assisted target 
tracking mission. This kind of application for ground mov-
ing targets requires an a priori approximation of the road, 
treated as a sequence of constant curvature segments. This 
additional information is considered as a pseudo-measure-
ment that augments the real sensor measurement model, 
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already providing the cross-track error and the azimuth of 
the target. The authors adopted a two-dimensional fixed-
wing kinematic model and consensus on information as the 
filtering algorithm. Once the target position is estimated, a 
vector-field path following algorithm is employed, It consists 
in computing the desired heading angle needed to reach the 
proximity of the target and to loiter above it afterward. To 
achieve an even inter-agent angular separation during loi-
ter, a velocity control based on the relative angular position 
is employed, so that the circular observation configuration 
described in [46, 50] is achieved likewise.

4.4  Discussion

In this section, the coupling between the distributed target 
tracking performed by a swarm of fixed-wing UAVs and 
its motion control was analysed. The concept of collective 
information value of the swarm’s observations was intro-
duced, highlighting how it affects the motion of the UAVs.

Artificial potential fields represent a largely adopted solu-
tion for path planning when it comes to distributed motion 
control. The intuitiveness of this approach as well as the 
ease of the stability proofs make it suitable to be employed 
in cascade with the estimation process.

The main filtering strategy adopted to achieve distributed 
target tracking is based on consensus on information, or on 
hybrid methods related to it. This may be because the infor-
mation form of the distributed Kalman filter is directly linked 
to the information value of an observation. Indeed, in this kind 
of framework, the update step fusing the information coming 
from local and neighbors’ measurements is just a trivial sum.

The experimental validations regarding estimation track-
ing methods for multi-UAV systems are still very limited 
in the literature. Some studies started to validate their dis-
tributed path following algorithm tracking a collaborative 
target. However, the performance of the estimation process 
plays a crucial role in the stability of the cascade structure. 
This is why future research should focus on the experimental 
validation of the coupling between motion and estimation.

5  Conclusions

This work provides an overview of consensus-based meth-
odologies applied to multi-UAV systems.

Regarding the implementation of formation control for 
multi-rotor platforms, we compared the adopted hardware 
solutions and the necessary update frequencies of the algo-
rithms, highlighting the discrepancies between simula-
tions and experimental tests. In recent years, the research is 
moving towards increasing levels of decentralization in the 
inter-agent communication and in the on-board computa-
tion. Instead, in GPS-denied environments, the localization 

of the UAVs is still centralized. Among the solutions for 
the inter-agent communication network, WiFi and Zigbee 
represent the most commonly adopted wireless protocols in 
the outlined studies. All of the indoor experiments described 
here need a motion capture system to obtain the position 
of the UAVs. Generally, Optitrack and Vicon are used for 
this purpose. The flight tests analysed in this review showed 
that although being a much lower cost solution, Optitrack 
provides sufficient accuracy (millimeter level) and sam-
pling frequency (about 100Hz) for the outcome of the tests. 
Finally, it is worth noticing how the companion computers 
employed in the studies for the on-board computation of 
the Guidance algorithms are available off-the-shelf at very 
affordable prices (less than 200 USD).

Regarding distributed target tracking, we emphasized 
the coupling between the estimation process and the motion 
control of a swarm of fixed-wing UAVs. The focus was kept 
on the studies applying a distributed filtering algorithm in 
cascade with a path following strategy. This analysis sug-
gests that the best control framework to adopt is constituted 
by a consensus on information-based estimation process 
coupled with an artificial potential field method for follow-
ing the target. This is due to the simplicity of performing 
simultaneously data fusion and swarm aggregation through 
the application of information theory. Regarding the choice 
of the measurement sensors needed for the collection of the 
data, the most frequently adopted solution in the studies is 
given by direction-finding sensors. They are made up of the 
combination of a photoelectric/infrared imaging sensor and 
an ultrasonic/laser radar, which are able to provide both the 
range and azimuth of the target.

The outlined approach to classify the literature could 
help researchers on one side to choose the most suitable 
framework for the validation of consensus-based formation 
strategies, and on the other hand to select a convenient path 
following algorithm for distributed target tracking.
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