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Abstract

Modern applications require sensitive electronic devices to process high-speed
signals under exposure to several disturbing sources. The Electromagnetic
Interference (EMI) is one of the main threats for reliable and robust electronic
systems, where different external Electromagnetic (EM) sources can compromise
(or even destroy) unprotected devices. An example is the High-Intensity
Radiated Field (HIRF) induced either by a lightning strike or by a standard
radiation transmitter (as well as an intentional EM weapon) that can induce
system failure or even damage.

Recently, the Electromagnetic Compatibility (EMC) community has shown
an increasing interest in energy-selective surfaces. These novel structures distin-
guish between high-power interference and weaker signals, enabling protection
and (wireless) communication at two different energy levels. A simple energy-
selective enclosure is designed by covering an aperture of a conductive shield
with a grid of nonlinear devices, usually diodes. The diodes array remains
transparent to weak signals, while the energy of strong fields is attenuated
thanks to the nonlinear response of the diode grid.

Repeated numerical simulations are required to assess the Shielding Ef-
fectiveness (SE) of these structures, i.e. their performances, under different
working conditions (in terms of shield parameters, incident field or termination
type). On one hand, full-wave solvers allow computing the transient solution of
the scattering problem with a relevant computational cost at every change in
the system configuration. On the other hand, the unloaded enclosure is a Linear
Time Invariant (LTI) system that obeys Maxwell’s equations. This observation
opens the investigation to hybrid simulation approaches that convert the fully
coupled linear/nonlinear EM problem into an equivalent circuit formulation.
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The system is represented by a linear multiport loaded with lumped nonlinear
terminations, and excited with the contribution of the incident field.

A data-driven macromodeling framework fits the above procedure and en-
ables a reusable Reduced Order Model (ROM) of the (linear) shielding enclosure.
Such macromodel can be extracted during a characterization phase, and then
exploited to perform multiple efficient transient simulations for performance
assessment. Several challenges affect both generation of the ROM and their fast
transient simulation. The objective of this work is to address such challenges, in
order to establish a complete modeling and simulation framework that is robust
and efficient, so that it can be used as a numerical tool during computer-aided
design of energy-selective enclosures.

The first contribution of this work is a sequence of data preprocessing
strategies, that combine a regularization and extrapolation procedure in a suit-
able asymptotic modal domain, with structured data compression approaches
built on a modified Singular Value Decomposition (SVD). We show that these
complementary approaches drastically improve model accuracy and robust-
ness, while reducing model sensitivity and identification complexity. Then,
we address the large-scale modeling problem by providing a structured and
compressed rational fitting framework. We equip this process with an efficient
passivity verification based on an adaptive-sampling strategy, since we have
experienced that standard approaches are either unreliable or impractical due
to high computational cost. A passivity enforcement scheme takes advantage of
this algorithm and provides a final model that is suitable for guaranteed stable
numerical simulations. The last contribution of this work is a robust hybrid
transient solver that combines the above macromodeling framework with an
efficient Waveform Relaxation (WR) based decoupling scheme. The presented
result combines an inexact Newton-Krylov iteration and a time partitioning
strategy to improve the well-known convergence issues of a standard WR,
resulting in a fast and reliable transient solver for energy-selective shields and,
in general, for nonlinearly-loaded large-scale electromagnetic structures.

Several numerical results demonstrate how the various formulations and
algorithms introduced in this work effectively advance the state-of-the-art.
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Notation

In this dissertation, we refer to R and C as the real and complex numerical fields,
respectively. We indicate scalars, vectors and matrices with normal, lower case
bold and upper case bold fonts as x, x and X, respectively. The identity matrix
of size n is denoted as In, while the matrix transpose and conjugate transpose
(Hermitian) are defined as XT and XH. The imaginary unit is indicated with
j =
√
−1 and the Laplace variable is always referred with s. The conjugate of

a complex number z is indicated with z∗. The two operators Re {·} and Im {·}
extract the real and imaginary part of their argument. The eigenvalues and
singular values of a matrix X are indicated as λ{X} and σ{X}, respectively.
The p-norm of a matrix is indicated with ∥X∥p, where the Euclidean norm
(p = 2) is assumed when p is omitted. Sets are denoted with calligraphic font X
and their elements are enclosed within curly brackets X = {· · · }. The symbol
⊗ indicates the Kronecker product, and its property are explicitly stated when
needed. With ⊛ we indicate the time-domain convolution operator.



Chapter 1

Introduction

This dissertation addresses the problem of numerical modeling and simulation
of large-scale Linear Time Invariant (LTI) systems terminated with nonlinear
loads, with a dedicated focus on energy selective shielding enclosures. This
chapter introduces the context and motivations of this thesis by presenting the
key challenges and providing the general structure of the manuscript.

1.1 Energy selective surfaces: an overview

Since the 1970s, when a common canonical structure was a single wire antenna
loaded with a diode [1, 2], the simulation of electrical/electromagnetic struc-
tures with nonlinear (NL) terminations has been a major topic of research
interest. In this context, the recent interest in energy selective surfaces provides
a new challenge in the field of electromagnetic/circuit-simulations [3]. These en-
gineered structures aim at replacing standard absorbers to protect an electronic
device from signal interference, such as the Electromagnetic Interference (EMI)
given by High-Intensity Radiated Field (HIRF) caused by lightning strikes or
by intentional electromagnetic weapons [4]. These applications include meta-
surface absorbers [5–7], nonlinear impedance surfaces [8], and energy selective
shielding [9, 10].

In this scenario, the increasing interest in energy selective surfaces is moti-
vated by their ability to guarantee low-power communication while protecting
sensitive devices from dangerous – or even destructive – high-power Electro-
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Fig. 1.1 Illustration of an energy-selective shield obtained by the combination of a
metallic enclosure with a diode grid. The effect of an incident field (aggressor) on an
internal device (victim) is the result of the interplay between the electromagnetic
behavior of the shield and the nonlinear characteristics of diode elements. From [10],
© 2021 IEEE.

magnetic (EM) sources. The simplest power-modulated protecting effect is
obtained by connecting standard shielding enclosures with nonlinear devices
at a set of lumped ports, which can be located across an aperture [9–13].
Figure 1.1 illustrates an example of a cubic-shaped shield, that surrounds
a sensitive device (victim), with an aperture covered by a diode grid. The
penetration of an incident field (aggressor) is modulated by diodes, which
provide a nonlinear shielding effect by switching to a conductive mode when
triggered by a high-intensity field. Conversely, the internal victim can transmit
through the shield aperture at a low-power field level since the currents induced
in the metallic enclosure are sufficiently small to leave the terminations in a
cut-off non-conducting state. In other words, the sheet of diodes may behave
as transparent or reflecting depending on the energy level of the impinging
electromagnetic field.

In contrast with standard protection approaches, based on passive linear
elements (e.g are wires, screens, apertures), the design phase of nonlinearly-
loaded shields cannot be addressed in any analytical closed-form. For this
reason, numerical simulations are the main tool to optimize the structure
according to the designer requirements. Important aspects to characterize the
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electromagnetic protection of an energy selective surface, as in Fig. 1.1, are
attributes of both:

• the enclosure, in terms of its geometrical and physical parameters; ex-
amples are the shield and aperture size, shape, and the corresponding
material properties.

• the nonlinear terminations, as the diodes type and the grid configura-
tion/setting; examples are the number of loads per branch or the number
of branches.

A thorough investigation on the effect of various design choices on the field
intensity inside the shielded area has been proposed in [10]. In this case,
the protection provided by the loaded enclosure is assessed by means of the
nonlinear Shielding Effectiveness (SE) defined as

SE∞(r) = ∥einc(t)∥∞
∥eobs(t, r)∥∞

(1.1)

where einc(t) is the incident electric field, eobs(t, r) is the field observed by the
victim located at the coordinates r, and operator ∥·∥∞ extracts the largest
amplitude of its argument. The SE is selected as the main design feature since
it provides an estimate of the maximum penetrating E-field and enables tuning
the energy selectivity of the protective covering, accordingly. To clarify, a small
value of SE∞(r) corresponds to a high penetration of the incident field einc(t)
as a result of a transparent grid of diodes: in this condition, most of the energy
is transmitted through the aperture. On the contrary, a large value of SE
indicates that the incident field signal is reflected and/or attenuated by the
presence of nonlinear terminations.

This is exemplified in Fig. 1.2, which illustrates the effect of several different
types of nonlinear terminations on a 8×8 grid spread on a 25×25 cm2 aperture
for an enclosure of size 50×50×50 cm3. In the reported example, the selectivity
of the SE is modulated using four types of diodes in different configurations: a
pair of anti-parallel PN-junction (black), a couple of back-to-back Zener (gray)
and two kind of Varactors (red and blue) are combined to obtain six different
terminations for the same grid. Details on the nonlinear elements parameters
are here omitted (see [10]). According to the SE levels reported in Fig. 1.2, the
proposed protective structure behaves as an intensity low-pass (panels a and
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Fig. 1.2 Shielding Effectiveness (SE) plotted as a function of the incident field
amplitude, for a shielding enclosure as in Fig. 1.1 with an aperture loaded by a 8× 8
grid of diodes. Four types of diodes are used to modify the nonlinear characteristic:
PN junction (black), Zener (grey) and Varactors (red and blue). Originally reported
in [10], © 2021 IEEE.

b), high-pass (c and d), band-stop (e), and band-pass (f) filter. This example
shows that the characteristics of the overall EM protection can be optimized
by tuning the nonlinear elements parameters: examples are the threshold
voltage, the semiconductor material, or diodes resistance and reactance. The
SE behavior is always bounded by two limit cases with diodes completely OFF
or ON, resulting in either an open-circuit (OC) or a short-circuit (SC) grid
in the extreme situation of low or high intensity fields, respectively. Only the
transition between these two limits is the SE component that is (strongly)
affected by the termination choice (i.e. diodes parameters), and that requires a
(nonlinear) transient simulation to be defined. This is verified for each panel of
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Fig. 1.2, where the two bounds are reported as black-dashed lines. These two
extreme cases (OC and SC) are fixed once the parameters of the shield are set,
in particular shape and size of the enclosure, aperture size and grid density: a
linear analysis of the unloaded structure is sufficient to define bounds of the
SE. Nevertheless, both investigations (linear and nonlinear) are necessary to
fully characterize the performances of a target nonlinearly-loaded shield.

To verify the shield performances and to satisfy the required EM protection
for different working conditions, the above procedure must be iterated for
several incident field waveforms. To this end, an efficient simulation framework
is crucial. The main objective of this work is to present a general modeling
and simulation framework, that is able to perform fast nonlinear transient
simulation of energy-selective surfaces.

1.1.1 The macromodeling framework

The design of an energy selective surface requires many numerical simulations
to assess the EM protection in several working conditions. The main simulation
challenge arises from the coexistence of a potentially electrically large enclosure
with complex and strongly nonlinear characteristics of possibly many discrete
loads. For the analysis of these large-scale nonlinearly loaded systems, we can
identify two classes of approaches:

1. full-wave electromagnetic solvers
2. hybrid techniques.

Several standard full-wave electromagnetic solvers are suitable for our task.
Examples are the Time Domain Integral Equation (TDIE) approach [14], the
Finite-Difference Time-Domain Method (FDTD) [15], the Time Domain Finite-
Element Method (TDFEM) [16] and the Partial Element Equivalent Circuit
(PEEC) approach [17]. All these solvers are able to retrieve the dynamic
behavior of the shielding structure by coupling the solution of Maxwell’s
equations with the nonlinear characteristic of the attached loading devices.
Nevertheless, all of them suffer from a similar drawback. Anytime a new
configuration or loading condition is changed and a new transient analysis is
required, all these approaches must start their evaluation from scratch. In
other words, even if only part of the problem is slightly modified (as one of
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Fig. 1.3 Representation of the shielding enclosure (hybrid) simulation setup: the
fully-coupled EM problem (left) is cast into an equivalent circuit representation
(right). See Section 4.1 or [13] for a detailed description of the procedure. From [19]
© 2022 IEEE.

the many nonlinear devices), the information among successive simulations is
lost, and the solver must handle the entire system of (nonlinear) equations
again. Thus, using a full-wave electromagnetic solver to perform the (iterative)
design required by an energy-selective enclosure may become quite expensive
and inefficient when considering several loading and excitation conditions [10].

On the other hand, removing the lumped (nonlinear) loads from the shielding
enclosure opens the design investigation to hybrid simulation techniques [13, 18].
Indeed, the unloaded structure (the yellow box with dark metallic connections
reported in Fig. 1.3) without the nonlinear interaction of the termination de-
vices (the red elements) is characterized by linear Maxwell’s equations. Thus,
the shield can be described as a passive multiport LTI system that can be
represented via reduced order (compressed) modeling approaches, discussed
later in Chapter 2 and 3. The information associated with the transfer matrix
H(s) is thus cast in a macromodel form and preserved for subsequent transient
simulations. Then, the original transient scattering field problem can be solved
by the scheme of Fig. 1.3 by attaching the nonlinear loads to an equivalent
circuit synthesis of the surrogate model and including the incident field contri-
bution with time-varying voltage sources. A detailed description of this hybrid
framework will be provided in Section 4.1.
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The literature offers several data-driven strategies for a macromodel genera-
tion from a frequency characterization of the target system [20–23]. Nowadays,
the most relevant algorithm to approximate an LTI component starting from a
set of frequency responses is the Vector Fitting (VF) [21]. VF is well established
in the academic and industrial communities. With this approach, extracting
a rational approximation of a multiport system into a passive macromodel
is straightforward. A modified version of the VF [24] provides a remarkable
speed-up with a relevant number of ports, while the algorithm parallelization is
already well established [25, 26]. The common practice for transient simulation
is to convert the resulting surrogate model to an equivalent circuit [20, 27],
suitable for any circuit solver of the SPICE family [28, 29].

Nevertheless, our type of application, where the large-scale nature of the
linear structure both in terms of dynamical order and number of external ports
becomes a limiting factor and a modeling challenge, opens several research
directions, discussed next.

1.2 Challenges

Modeling and simulation of energy-elective shielding structures poses a number
of challenges from both the macromodeling and the transient simulation stand-
point. As an example, let us consider Figure 1.4, which shows a 50×50×50 cm3

box-shaped enclosure with a 25× 25 cm2 frontal (squared) aperture, which is
covered by a regular grid of P = p× p = 25 ports (in red) connected in series
by (black) metal strips of 2 mm width. This structure is used in the following
as a running example to describe the above challenges.

1.2.1 Characterization and modeling

Our task is to build a model of LTI system associated to the unloaded box.
Figure 1.5 reports the magnitude of impedance and admittance parameters
extracted by a Method of Moments (MoM) solver [31], sampled at K frequency
points. System responses are commonly available as scattering parameters
{H(jωk) = S(jωk), k = 1, . . . , K}, but a suitable conversion to admittance Y
or impedance Z representation is straightforward. The discrete data-set spans
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Fig. 1.4 A shielding enclosure with P = 25 lumped ports (in red), spread on p× p
regular grid, and its DC conductive path. From [30] © 2022 IEEE.

a frequency band ωk ∈ ΩD = ΩL ∪ ΩH . Note the presence of an (unknown)
low-frequency region ΩG due to inherent limitations in frequency-domain field
solvers based on MoM or Finite Elements Method (FEM).

The realization of passive macromodels from band-limited tabulated fre-
quency responses as in Fig. 1.5 poses a number of challenges:

1. the zero-frequency (DC) sample is not available. However, it is funda-
mental to have full control of the macromodel behaviour under static
conditions to obtain a physically consistent time-domain simulation of
the structure under nonlinear terminations. Since frequency-domain field
solvers usually do not provide accurate responses below a critical fmin, to
obtain a consistent DC matrix either a static solver or a physics-based
approach [32] are usually involved. Given that the shielding enclosure is
designed to have very low losses or –in the limit case– lossless when made
of PEC, it turns out that the DC point control is particularly challenging.
In the PEC case, an equivalent static circuit of the box can be easily
obtained as in the right panel of Fig. 1.4. For this structure, both the
impedance and admittance matrices do not exist when the frequency
vanishes, since the DC conductive path represents an ill-defined circuit
when exciting all ports with independent current or voltage sources (see
Chapter 2 for details). This is consistent with the low-frequency asymp-
totic behaviour of both Y(jω) and Z(jω) when ω ∈ ΩL (see Fig. 1.5),
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Fig. 1.5 Admittance (bottom) and impedance (top) responses of a 25-port shielding
enclosure sampled with a MoM field solver. Adapted from [30] © 2022 IEEE.

which is motivated by the presence of a dominant pole at DC in both
cases. Including this pole in the macromodel structure will eventually
lead to asymptotic instabilities, affecting the performances of transient
simulations. For the above reasons, a regularization of the DC matrix is
necessary to guarantee the effectiveness of any time-domain simulation,
especially when nonlinear terminations are involved.

2. the absence of reliable data in a broad low-frequency range, the gap
ΩG. This condition precludes any chance of controlling a macromodel
behaviour in this frequency region, even if a well-defined DC matrix
is included in the training data-set. Nevertheless, during a transient
simulation the nonlinear terminations may emphasize the low-frequency
content of ports signals, which are then affected by a possibly inaccurate
response of the model, also in the case of a high-frequency excitation field.
This situation is particular evident observing Fig. 1.6, which shows the
accuracy of a passive surrogate model obtained with a state-of-the-art
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Fig. 1.6 Standard macromodeling tool [33] accuracy on a 25-port shielding enclosure.
Top: scattering responses used to fit the model (with exact DC matrix). Bottom:
impedance parameters show an accuracy degradation after conversion of model
responses. From [30] © 2022 IEEE.

tool [33] by fitting the S-parameters. The original data-set has been
enriched with a physically consistent DC matrix, that has been used to
enforce an exact macromodel fit at the zero-frequency. The impedance
parameters obtained after model responses conversion clearly show an
inexact behaviour in the low-frequency range. Therefore, some guided
smooth data extrapolation is needed to properly merge the DC point
with (high-frequencies) field solver samples to obtain a full-band training
data-set for MOR engines.

3. the complexity of the macromodeling problem, mostly in terms of in-
put/output ports P . Indeed, to properly cover the shielding aperture
with a suitable grid the number of nonlinear devices can easily reach
hundreds or thousands of elements, each one (or each pair) attached
to an electrical port. Furthermore, in shielding applications also the
macromodel dynamic order (i.e. the number of poles) is likely to be signif-
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icant, depending on the structure electrical size at the largest frequency
of interest. Under such conditions, the required computational cost of
standard techniques as VF is inappropriate or even unfeasible, especially
in the critical case when a passive result is required. Indeed, the passivity
verification is the main bottleneck in the extraction of a reliable model
with a considerable size.

4. the error magnification with a change system representation. A broad-
band accurate macromodel approximation is strongly required to attenu-
ate this challenge, especially approaching DC. On the one hand, the final
model representation must retain all low-frequency features of the system
behavior, like the presence of zeros at DC. On the other hand, we would
like to reduce the large number of responses with a data-compression
strategy to mitigate the model identification effort. Unfortunately, a
standard compressed framework [34] cannot achieve these two objectives
concurrently. Thus, a suitable structured approach is required both in
the data pre-processing and modeling stages.

For these reasons, a large-scale macromodeling problem requires a suitable
framework that has the capability to scale up with the number of ports,
while both preserving a suitable full-band accuracy and enabling the passivity
characterization of the system at hand.

1.2.2 Transient simulation

The simulation problem of Fig. 1.3 can be computed with any compatible
circuit solver. Among the others, solvers of the SPICE family are well-known
due to their general-purpose capability and reliability. These circuit solvers
usually start from a Modified Nodal Analysis (MNA) characterization of the
system under analysis, retrieve a set of Ordinary Differential Equations (ODE)
equations and then find a transient solution exploiting a Newton-based ap-
proach. SPICE engines embed adaptive time sampling techniques and control
parameters to suitably achieved a good tread-off between time performances
and prescribed accuracy. Nevertheless, it is well-known that a MNA circuit
formulation associated with a Newton approach –that requires the evaluation
of a Jacobian matrix– is not likely to scale favorably with the number of circuit
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components and independent variables. Thus, a general-purpose SPICE solver
may not be efficient when applied to the shielding enclosure verification case of
Fig. 1.3.

In this manuscript we will provide an alternative simulation framework
to general-purpose circuit solvers of the SPICE family. Starting from the
linear/nonlinear decoupling approach [13], we exploit a well-know technique to
solve the circuit problem of Fig. 1.3, which is the Waveform Relaxation (WR)
method [35, 36]. Unfortunately, the basic WR approach is likely to fail for the
present application, as discussed next.

Every WR-based algorithm starts from an initial guess of port signals over a
given simulation window and refines their estimate at every iteration, until con-
vergence is detected. The simplest implementation of a WR approach involves
a fixed-point iteration that evaluates sequentially the electromagnetic subsys-
tem response and the nonlinear terminations one. Under proper conditions
(in every formulation the iteration operator must be a contraction [36–40]),
signals estimates stabilize. An extensive literature is available for adjusting the
parameters of the decoupling scheme such that the number of WR iterations is
minimized [37, 41, 39, 42]. A simple choice for this optimization is to define the
decoupling scheme using scattering waves, such that a fixed reference impedance
level can be used to transfer signals information among iterations.

For the addressed shielding enclosure application, impedance matching is
not a reliable option:

• a constant (real) decoupling impedance is inadequate for broadband
matching since the low-loss nature of the shield leads to an almost purely
reactive behavior in the low-frequency range, counterbalanced by sharp
resonances in the high-frequency region;

• a time-varying adaptive approach is not sufficiently robust to track the fast
variations of the instantaneous load impedance provided by the switching
behavior of diodes terminations, which alternates extreme configurations
with very low/high impedance levels associated with conduction/cut-off
modes.

For these reasons, a standard WR scheme with a constant reference impendance
(e.g. R0 = 50 Ω) requires a tremendous number of iterations to converge, as
documented in Fig. 1.7. This example shows successive WR iterations performed
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Fig. 1.7 Transient analysis of a 100-ports nonlinearly loaded shielding enclosure. Scat-
tering signals at the 25-th port are reported for different WR iterations. Convergence
is detected after 807 iterations.

on a shielding enclosure with 100-ports, loaded with anti-parallel pairs of diodes
and excited with a plane wave incident field as detailed in Section 4.6.1. This
sample simulation demonstrates that the number of WR iterations is exceedingly
large and impractical. In order to reduce these iterations, [18] suggested an
iteration-dependent decoupling scheme based on consecutive conversions of the
linear macromodel into differently normalized scattering parameters, which
showed, however, also the main drawback of increasing the offline cost.

1.3 Technical contributions

All presented challenges will be addressed and solved in this thesis as follows.
First, Chapter 2 describes our proposed solutions to all the data-related issues
(points 1, 2 and 4 of Section 1.2.1), by providing

• a regularization and extrapolation procedure based on low-frequency
asymptotic modes [43], extending the preliminary results of [44, 30]. It
will be demonstrated that the proposed pre-processing phase smoothly
merges the high-frequency solver data reaching the DC point with a set
of synthetic samples, by avoiding the low-frequency degeneracy reported
in Fig. 1.5, and by providing as output a well-defined full-band data-set
for modeling purposes.
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• a data-compression (structured) strategy [44] to preserve low-frequency
features while exploiting spatial redundancies in the system responses.
Starting from the method proposed in [34] based on a modified Singular
Value Decomposition (SVD), which is able to reproduce the set of P × P

system responses with a linear combination of a few basis functions,
Chapter 2.2 introduces two representations denoted as Block-Diagonal
SVD (BD-SVD) and Hierarchical SVD (Hi-SVD). These two formulations
are able to preserve low-frequency data features, such as asymptotic
behaviour and expected transfer-function zeros at DC, by improving the
reconstruction error and reducing the resulting sensitivity to a change of
representation.

Chapter 3 introduces the structured Compressed Macromodel (CM) frame-
work, a model generation strategy that embeds the compression strategies of
Chapter 2.2 and drastically reduces the identification problem complexity. The
presented procedure improves the low-frequency accuracy by including DC
zeros in the model structure within the compressed formulation. The scheme
includes a suitable passivity verification scheme based on a multi-stage adaptive
sampling approach [45], designed to handle large-scale systems with many
electrical ports. A passivity enforcement formulation concludes the presented
framework. The final result is a complete procedure to extract compressed
and passive macromodels, structurally imposing DC zeros and improving the
low-frequency accuracy.

Chapter 4 presents a transient solver based on the above compressed macro-
model representation, that allows the evaluation of transient voltages and
currents at nonlinearly loaded ports in a drastically reduced runtime with re-
spect to standard circuit solvers. The presented transient simulation algorithm
is based on a decoupling Waveform Relaxation (WR) approach, strengthened by
a Newton-Krylov iteration as in [46]. The proposed scheme is further enriched
by a time-partitioning approach that is able to drastically improve convergence,
by reducing the number of iterations per time window and consequently the
overall runtime.

Numerical results on shielding enclosure of increasing complexity (up to
1024 ports) are provided along the thesis in each chapter, demonstrating that
the proposed framework is as reliable as state-of-the-art tools from both the
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macromodeling (as IdEM [33]) and the circuit simulation (like HSPICE [28])
standpoints. In particular, both the compressed model generation – including
passivity characterization and data compression – and the proposed transient
solver are shown to provide from one to three orders of magnitude speed-up
with respect to standard approaches.

To summarize, the two key contributions of this work are:

• Improvement and streamlined generation of compact, passive and reliable
macromodels for large-scale components, with hundreds of ports, obtained
from band-limited tabulated frequency responses

• A dedicated simulation environment for nonlinearly-loaded large-scale LTI
systems, with proven effectiveness for the specific case of energy-selective
enclosures.

Conclusions are finally drawn in Chapter 5, which discusses the limitations
and future research directions of this work.



Chapter 2

Large-scale data preprocessing

This Chapter aims at solving two major issues associated with low-loss (or
lossless) large-scale tabulated frequency data.
First, in view of a macromodeling phase the system must be well characterized
over the full bandwidth of interest. This requires to define a suitable training
dataset, minimal in some terms, but able to cover the most relevant features of
interest. Building a model on corrupted data is likely to result in an unreliable
behavior, such that the original system response can not be correctly reproduced.
The most (in)famous source of corruption is noise, but a very similar effect can
be obtained by removing a portion of the data in a sensitive region such that
important features will never be provided to the identification algorithm. It is
the case of the presented shielding enclosures, which are defined by means of a
Method of Moments (MoM) solver. It is well-known that this class of solvers
does not allow obtaining reliable results in a low-frequency range, especially at
DC. With the intent of using the resulting macromodel in a transient simulation
framework with possibly many nonlinear terminations, having a well-defined
DC characterization is fundamental for our purposes. On the other hand, a
shielding enclosure lies in the family of low-loss (more likely loss-less) systems.
We will show in the following that even if we are able to obtain a low-frequency
characterization, the resulting data are very likely to be ill-defined in this band,
resulting in modeling sensitivity issues when changing loading condition.
The second major problem in feeding a standard fitting algorithm with a
shielding enclosure dataset is the size of the problem at hand. This kind
of structures are specifically intended to take advantage of a dense grid of
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lumped ports to attenuate the effect of dangerous EM incident fields. The
density of this grid is one of the main design parameters, and it is reasonable
to assume that a higher number of terminations will improve the overall
flexibility of a nonlinear shielding characteristic. This means that to collect
frequency responses of the P -port (linear) enclosure we will end up with a
large-size dataset, whose memory requirements may compromise the efficiency
of standard macromodeling procedures. Let us show this situation with an
example. In Chapter 4 we will show results built on a shielding enclosure
model in pole-residue form with P = 1024 ports and n̄ = 71 poles. What is
the minimum requirement in terms of memory for both the training dataset
and the resulting model? Let us assume that we would like to use K = 501
frequency samples, available from the field (MoM) solver, to run a model fitting
step that guarantees a proper approximation of the system. The overall data
memory consumption is ≈ 4GB, already considering the simplification of a
symmetric transfer matrix. A full-rank model in pole-residue form with n̄ = 71
poles, either real or complex, requires n̄ + 1 (real valued) residues matrices.
This means that the (symmetric) model itself would require at least 300MB of
memory to store the coefficients matrices with double precision. To manipulate
such amount of data/coefficients in an efficient (and parallel) way is still a
considerable task, which became unfeasible when passivity come into play, as
later discussed in Chapter 3. A better approach is to address the complexity
in terms ports P by providing suitable data compression techniques [34] that
are able to exploit redundancies in the large-scale dataset.

The above alternative strategy splits the effort of identifying model coeffi-
cients in two phases:

P1 preprocessing phase, that reduces the complexity of the training samples
by means of data compression approaches

P2 identification phase, that take advantage of well-established algorithm to
build a suitable model in the reduced dataset space.

These two steps are strongly related one another, since:

• suitable transformations are expected from P1 to consistently map the
outcome of P2 in the original space dimension;

• the model resulting from P2 cannot retain any information of the original
system that are lost during P1.
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These two conditions seems to be straightforward, but we will see in this
Chapter that it may be tricky to guarantee both of them overall the entire
model domain of definition, i.e. for the all frequency band of interest. Indeed,
particular data features such as low-frequency trends, like DC zeros, maybe
not be retained while approximating system responses with a reduced number
of basis functions [34].

The focus of this Chapter is the preprocessing phase P1 described above,
providing two major contributions originally documented in [30]. First, a
regularization and extrapolation procedure will be presented in Section 2.1 to
obtain a broadband reliable dataset for macromodeling purposes, with specific
focus on the DC characterization of the system. Second, the complexity in
terms of number ports will be addressed in Section 2.2 by providing data
compression techniques that are able to preserve low-frequency features, such
as DC zeros, while approximating system behavior with a linear combination
of basis functions.

2.1 Dealing with lossless solver data

Let us consider an unloaded shielding enclosure as depicted in Fig. 1.4, character-
ized by P ×P band-limited frequency responses from a MoM solver as reported
in Fig.1.5. The discrete K samples span a frequency band ΩD ∈ 2π[fmin, fmax],
with 2πfk = ωk ∈ ΩD = ΩL ∪ ΩH , where responses start from a non-zero
frequency fmin > 0 due to intrinsic limitations in the solver. We can thus
identify three frequency bands, from right to left in Fig. 1.5:

• ΩH is the range at higher frequencies where resonances are mostly located
• ΩL is the region where it is reasonable to assume that the structure

behaves as electrically small, since both the admittance and impedance
responses show an asymptotic trend

• ΩG = (0, 2πfmin) is where the system characterization is not available in
the dataset, and can be regarded as a missing gap in the data.

The presence of a low-frequency gap ΩG prevents control on the model behavior,
thus of its accuracy and sensitivity, in a broad frequency portion that has an
influence on a transient simulation due to the presence of nonlinear loads.
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The objective of this Section is to integrate and possibly modify the original
frequency samples from the solver so that the two conditions below are satisfied:

C1: the system responses must be well-defined and non-singular at any fre-
quency (including DC), irrespective to the multiport representation;

C2: the structure must be fully characterized over the entire frequency band
of interest; any gap in the data must be avoided.

To this end, two procedures will be illustrated

• a regularization approach to fulfill condition C1 and rule out singularities
on the imaginary axis at DC;

• an extrapolation step to recover the unknown responses in the low-
frequency gap ΩG and satisfy condition C2.

It will be shown that a direct extrapolation from system responses (either
impedance, admittance or scattering) to extend the asymptotic behavior and
fill the low-frequency gap may be ineffective. For these reasons, a more advanced
and robust approach based on a regularized modal extrapolation [30, 44] is
presented in the following sections.

2.1.1 DC Regularization

Above considerations are now made more precise, with reference to the DC
circuit of a box structure with no metal losses, reported in the right panel
of Fig. 1.4. As previously stated, both admittance Y0 = Y(s = 0) and
impedance Z0 = Z(s = 0) matrices are ill-defined at DC. Indeed, by exciting
all ports with independent voltage/current sources, attempting to compute
admittance/impedance parameters, leads to an ill-defined circuit due to the
presence of

• p independent voltage sources loops lead to a singular Y0, see left panel
of Fig.2.1;

• p(p−1) independent current sources cutsets cause a singular Z0, see right
panel of Fig.2.1.

This observation is consistent with the presence of a pole at s = 0 in both
representations. Therefore, the goal of this section is to apply a minimal
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Fig. 2.1 Setup to compute admittance (left) and impedance (right) DC matrices of a
p × p = 9 ports shielding enclosure, as in Fig. 1.4. Both circuits are ill-defined at
DC, and do not admit any solution.

modification to the ideal DC circuit of Fig. 1.4 to remove the pole on the
imaginary axis. To this end, it is possible to add at each port

1. a series resistance r to regularize Y(s);
2. a shunt resistance R to regularize Z(s).

The final result is the topology presented in Fig. 2.2, which is non-singular at
all frequencies for any system representation. This leads to the following DC
matrices1

Z0 = Ip ⊗ Z′
0, Z′

0 = r Ip + R (Ip − ϑuuT) (2.1)

Y0 = Ip ⊗Y′
0, Y′

0 = (p rIp + RuuT)
p(Rr + r2) (2.2)

S0 = Ip ⊗ S′
0, S′

0 = Φ′ − 1
Φ′ + 1Ip −

2ϑΦuuT

(Φ′ + 1)(φ + 1) (2.3)

with p denoting the number of vertically aligned ports, ϑ = 1/p, uT = [1, · · · , 1],
u ∈ Rp, Φ = R/R0, φ = r/R0, Φ′ = Φ + φ, and R0 indicating the reference
scattering impedance. These expressions assume a vertical numbering of the
ports, as indicated in Fig. 1.4. In case a horizontal numbering is adopted, the

1A step-by-step direct computation of the DC impedance matrix Z0 is reported in
Appendix A.
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same expressions hold provided that the ordering of the terms in the Kronecker
products is reverted.
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Fig. 2.2 Proposed regularized topology. Originally reported in [30] © 2022 IEEE.

2.1.2 Regularization of MoM data

The proposed regularized topology of Fig. 2.2 imposes the DC responses of
the system, making the original data incompatible with the DC behavior
since not included by the field solver solution in the first place. For this
reason, the original data for all frequency points in ΩD needs to be modified
by ensuring compatibility of all samples with the introduced DC point. This
leads to the regularization procedure defined in Algorithm 1, which is built
on the assumption of a missing DC point in the available frequency data
{H(jωk), ωk ∈ ΩD}. The procedure computes a set of modified responses by
connecting at each port a shunt resistance R and then a series resistance r.
Notice that all matrices inversions are well-defined at any available discrete
frequency sample, so that this strategy does not suffer from numerical issues.

Figure 2.3 illustrates the final result of the proposed data regularization in
terms of impedance parameters. It is evident from Fig. 2.3 that the perturbation
introduced to the original MoM data by this procedure is practically invisible
at all frequency samples, mainly due to the particular selected values for shunt
and series resistances, in this case R = 100 MΩ and r = 0.1 Ω respectively.
There is not an optimal choice for these two regularization parameters, but to
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Fig. 2.3 Set of regularized impedance parameters of a 5×5 shielding enclosure (P = 25)
and DC responses, represented as black-dashed lines. Regularization is performed
by Algorithm 1, choosing Rp = 100 MΩ and r = 0.1 Ω. The high-frequency detail
confirms a broad-band negligible perturbation of the proposed procedure. Originally
reported in [30] © 2022 IEEE.

reduce the perturbation on the original data their value should be very large,
in the case of R, and small, considering r. This is later confirmed by numerical
results in Section 2.1.6.

On the other hand, Fig. 2.3 shows also that the first available frequency
sample (at fmin) does not merge smoothly with the selected DC values, reported
to the low-frequency band as black-dashed lines. Indeed, the frequency gap ΩG

is still too wide to reliably characterize the system behavior from fmin up to
DC. A procedure to provide consistent extrapolated samples in this unknown
frequency region, and satisfy condition C2, is needed.

Algorithm 1 Data regularization as in [30]
Require: Frequency data {H(jωk), ωk ∈ ΩD}, R, r

1: H(jωk)← 0.5(H(jωk) + H(jωk)T)
2: Convert H(jωk) to admittance Y(jωk)
3: Add shunt resistance R to Y(jωk)← Y(jωk) + 1

R
IP

4: Add series resistance r to Z(jωk) = [Y(jωk)]−1

5: Regularize impedance as Z(jωk)← Z(jωk) + rIP

6: Add DC point Z0 from (2.1) as Z(jω)|ω=0 = Z0
7: return Z(jωk): regularized data including DC point
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2.1.3 Modal asymptotic extrapolation

Filling the low-frequency gap region with extrapolated and consistent responses
may seem a simple task. Indeed, both the admittance and impedance responses
show an asymptotic low frequency behavior, such that Y(jω) → ∞ and
Z(jω) → ∞ for ω → 0 (see Fig. 1.5). A direct extrapolation of matrix
elements from one of the two representations seems sufficient to obtain the
required missing samples. Nevertheless, these behaviors imply the presence of
both inductive and capacitive modes, responsible for the DC singularities of
both system representations. This means that a direct fit of the impedance
parameters would recover accurately only capacity modes, more visible in this
representation, providing with a rough approximation of the inductive ones
The opposite situation arises when considering the admittance parameters, as
illustrated with an example in Fig. 2.5.

A better alternative to a direct extrapolation is the conversion to a modal do-
main, where modes are well distinguishable [44, 30]. This leads to a concurrent
approximation of inductive/capacitive modes best suited for the lossless raw
MoM data: the procedure presented below should be performed before applying
Algorithm 1 and the regularization step of Section 2.1.2. Nevertheless, regular-
ization and extrapolation are not independent, since the analytical DC matrix
Y0 of (2.2) is used here to define the required modal basis. This provides two
major differences with respect to other approaches based on direct computation
of system modes [43]. First, these other methods are less numerically robust
since the direct computation from sampled responses exposes the procedure
to data corruptions due to noise or low-frequency solver inaccuracy. Second,
the choice of using the real-valued (symmetric) DC matrix Y0 leads to a real
(and orthogonal) modal transformation matrix, necessary to preserve realness
and causality [47, 48] when using the data for building a model. This choice is
further justified by the assumption that low-frequency modes at non-vanishing
frequencies smoothly extend to the corresponding modes at DC.

The proposed procedure starts with the eigendecomposition of the DC
admittance matrix Y0

Y0 = QΛ0QT, Λ0 = QTY0Q =
 1

R′ Ic 0
0 1

r
Iℓ

 (2.4)
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with R′ = R + r. The eigenvalues multiplicity is ℓ = p for inductive modes 1/r

and c = p(p− 1) for capacitive modes 1/R′, in agreement with observations on
admittance and impedance singularities of Section 2.1.1.

The orthogonality of modal matrix Q =
è
Qp Qs

é
is guaranteed by the

symmetry of Y0, which enables to define QT
s Qs = Iℓ, QT

p Qp = Ic, and QT
p Qs =

0. Therefore,
Y0 = 1

R′ QpQT
p + 1

r
QsQT

s . (2.5)

Correspondingly, the physical and modal DC impedance matrices read

Z0 = R′QpQT
p + rQsQT

s and Λ−1
0 = QTZ0Q =

R′Ic 0
0 rIℓ

 . (2.6)

The modal transformation into DC asymptotic domain holds for all frequencies
in the original dataset ωk ∈ ΩD as

Ym(jωk) = QTY(jωk)Q , ωk ∈ ΩD. (2.7)

The same reasoning can be applied to both the impedance and scattering
representation. As already mentioned, Q is a real-valued constant matrix such
that the above similarity transformation (2.7) provides the modal admittance
elements as linear combinations of the physical ones with real coefficients.

The result of (2.7) on both admittance and impedance parameters are
reported in Fig. 2.4, which shows the typical ±20 dB/dec slope of purely
inductive/capacitive modes in the low-frequency range ΩL. Note that those
responses (modes) that tend to zero in one representation are the same that
explode to∞ for the other one.This trend confirms what mentioned before, and
further illustrated later in Fig. 2.5, on the sensitivity of a direct extrapolation
of the asymptotic behavior from admittance or impedance (physical) responses.

With the goal of obtaining a low-frequency extrapolation, the following
analysis is restricted only to the band ΩL where the modal responses show the
±20 dB/dec trend. Imposing such asymptotic behavior leads to

Ym(jω) ≈ 1
jωΓm + jωCm, ω ∈ ΩL (2.8)
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Fig. 2.4 Admittance (bottom) and impedance (top) responses of a 25-port shielding
enclosure after conversion to the DC asymptotic modal domain via (2.7). Physical
parameters sampled with a MoM field solver are reported in Fig. 1.5. Partially
adapted from [30] © 2022 IEEE.

where Γm and Cm are constant matrices such that (Γm)ij ̸= 0⇒ (Cm)ij = 0 for
any (i, j)-th entry, and vice versa. Correspondingly, the same approximation
holds in the physical domain

Y(jω) ≈ Q
A

1
jωk

Γm + jωCm

B
QT = 1

jωΓ + jωC, ω ∈ ΩL (2.9)

where Γ and C are no more sparse but full. Note that when ω → 0 the last
term in (2.9) becomes negligible and all elements of Y(jω)→∞ as expected.
Taking a closer look to (2.8), the leading capacitive and inductive terms can
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be separated in a matrix form as

Ym(jω) ≈
 jω åC jωæX
jωæXT 1

jω
åΓ
 , ω ∈ ΩL (2.10)

where åC, åΓ, æX are constant matrix blocks.

Figure 2.5 illustrates the result of a direct fit of Y(jω), limited to the
range ΩL, imposing the low-frequency approximation (2.9). The extrapolated
responses in both the physical and modal domain, obtained via post-processing,
show how a perfect accuracy in the admittance representation (top panel)
is lost converting to the impedance parameters (bottom) due to the poor
approximation of some system modes (middle). Indeed, the capacitive modes
(the ones that tend to zero in Ym(jω)) are visible only in the impedance
representation, hence they can be merely roughly delineated observing the
admittance responses. This confirms that a direct extrapolation of (2.9) is not
the best possible approach.

A two-step element-wise regression can now be applied to recover each term
of (2.10) from the original data samples.

As initial step, each (i, j)-th entry of (2.10) is classified either as inductive or
capacitive by using the asymptotic slope of the (modal) admittance magnitude.
For each frequency in the low-frequency range, a least squares fit is performed
to compute coefficients µij and νij as

yij;k ≈ µij ξk + νij, ∀ωk ∈ ΩL (2.11)

where ξk = log10 ωk and yij;k = log10 |Ym;ij(jωk)|. While νij is disregarded, the
other coefficient is rounded to µij = −1, to indicate that the (i, j)-th entry
belongs to the inductive term Γm, or to the capacitive group Cm for which
µij = 1. The result of this step for two shielding enclosures (with 25 and 64
ports) is reported in Fig. 2.6, where filled dots denote matrix elements assigned
to the capacitive term Cm. Figure 2.6 confirms the low-frequency structure
assumed in (2.10).

The second step assigns numerical values to the matrices Cm and Γm.
This is again achieved via a regression procedure, arranged differently for
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Fig. 2.5 Direct fit of admittance responses imposing (2.9) for a 25-port shielding
enclosure. Only dominant inductive modes are accurately approximated, resulting
in a poor representation of the impendace parameters. Top: original admittance
responses; middle: after conversion to the DC asymptotic modal domain via (2.7);
bottom: impedance responses, obtained as post-processing of the top panel.

capacitive/inductive modes as

µij = +1 : ωkCm;ij ≈ ηij;k, ∀ωk ∈ ΩL

µij = −1 : −ω−1
k Γm;ij ≈ ηij;k, ∀ωk ∈ ΩL

(2.12)

where now only the imaginary part of the response is used to define ηij;k =
Im {Ym;ij(jωk)}. The coefficients from (2.12) are assembled to form a low-
frequency extrapolation model

Υm(jωk) = 1
jωk

Γm + jωkCm, ωk ∈ ΩG ∪ ΩL . (2.13)
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A set of synthetic samples KGL can be generated by evaluating (2.13) for
ωk ∈ ΩG ∪ ΩL thus filling the low-frequency gap with physical consistent new
samples.

The proposed two-step procedure is completely data-driven, and the only
necessary prior assumption is the asymptotic modal expansion as in (2.8)
and (2.13). The low-frequency matrix structure defined in (2.10) is not required
a priori, but it is obtained numerically. Further, notice that the resulting low-
frequency model (2.13) is evaluated both in the gap bad ΩG and in its training
band ΩL. This enables to smoothly merge the synthetically-generated responses
and the solver data as

Ym(jωk)←



Λ0 ωk = 0
Υm(jωk) ∀ωk ∈ ΩG

αkYm(jωk) + βkΥm(jωk) ∀ωk ∈ ΩL

Ym(jωk) ∀ωk ∈ ΩH

(2.14)

where the first line allows including the DC point. Via (2.14) all samples in
the overlap region ΩL are averaged via frequency-dependent coefficients αk and
βk, which are linearly (or logarithmically)-spaced from 0 to 1 in ΩL preserving
the relation αk + βk = 1. This refinement step enables to avoid a possibly
inconsistent (or even sharp) transition between computed Υm(jωk) and original
data Ym(jωk).

2.1.4 Regularization in the modal domain

The proposed data preprocessing combines the regularization and extrapolation
discussed in Sec 2.1.1 and 2.1.3. The actual proposed algorithm aims at
perturbing only modes that are responsible for singularities in a given represen-
tation, leaving the rest of the (modal) matrix unaltered. This approach reduces
the overall perturbation with respect to a full regularization in the physical
domain, which indirectly affects all modes concurrently.

The proposed modal regularization strategy is applied at all non-zero
frequencies of the data samples obtained in (2.14), and its main steps are
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Fig. 2.6 Low-frequency modal behavior of Ym(jω) ∈ ΩL: each dot corresponds to
a coefficient µij = +1, which indicates membership of a transfer function entry to
the capacitive group Cm(jω). Results are reported for boxes with P = 5× 5 = 25
(left) and P = 8× 8 = 64 (right) ports. The modal structure (2.10) is verified for all
investigated cases.

1. regularization of capacitive blocks, that cause the degeneracy of admit-
tance matrix Ym at ω → 0, by adding the contribution of DC eigenvalues
R′ as ãYm(jωk) = Ym(jωk) +

 1
R′ Ic 0
0 0

 , ωk ∈ ΩG ∪ ΩD. (2.15)

2. regularization of inductive blocks of âZm, that cause its degeneracy at DC,
by adding the contribution of DC eigenvalues r as

Z̆m(jωk) = ãYm(jωk)−1 +
0 0
0 rIℓ

 , ωk ∈ ΩG ∪ ΩD. (2.16)

3. conversion of the regularized data samples to the physical domain

Z̆(jωk) = QZ̆m(jωk)QT, ωk ∈ ΩG ∪ ΩD. (2.17)

Notice that step 1 and 2 leads to admittance and impedance matrices that
are not singular and can be inverted at any frequencies, as implied by the
regularization process. Indeed, the modal impedance dataset resulting from
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the first step has the low-frequency structure

âZm(jω) = ãYm(jω)−1 =
(jω åC + 1

R′ Ic)−1 + ⋆3 ⋆2

⋆2 jω åΓ−1 + ⋆4

 , ω ∈ ΩG, (2.18)

where matrix blocks with leading terms (jω)ν for ω → 0 are indicated with the
generic symbol ⋆ν . It is easy to see that the singularity of âZm(jω) is provided
only by the leading inductive terms in the bottom-right block of (2.18). Thus,
step 2 aims at regularized only this term producing as result the modal structure

Z̆m(jω) =
R′Ic + ⋆1 ⋆2

⋆2 rIℓ + ⋆1

 , ω ∈ ΩG, (2.19)

which is consistent with the DC eigenvalues Λ−1
0 derived in (2.6). This further

demonstrates how the above procedure leads to a compatible result with
both the regularization DC circuit of Fig. 2.2 and to the direct approach
presented in Section 2.1.1 (Algorithm 1), providing as additional benefit a
reliable extrapolation procedure.

The above derivation assumed an initial modal admittance matrix struc-
ture (2.10), which in fact is only an approximation consisting of the sole
asymptotic leading terms. However, even assuming each matrix block to be
expressed as a full Taylor polynomial expansion at s = jω = 0 (including only
odd powers of frequency due to the assumed lossless nature of the enclosure)
the same result of (2.19) holds true, although the leading powers in (2.18) may
be different. Details are straightforward and here omitted.

Algorithm 2 summarizes the full preprocessing data procedure presented
in this Chapter, which includes regularization and extrapolation steps in the
modal domain. Figure 2.7 reports the impedance parameters after the presented
data conditioning for a 25-port shielding enclosure. The final dataset includes
K = 8904 frequency samples in the interval [0, 1] GHz, considering both the
DC and KGL = 903 extrapolated points in the low-frequency range. This result
shows that the proposed strategy does not affect in-band responses, which are
perfectly overlapped by the original solver data also in the transition band ΩL ,
and smoothly fill the gap bandwidth ΩG up to DC.
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Algorithm 2 Regularization and extrapolation in the modal domain
Require: Frequency data {H(jωk), ωk ∈ ΩD}, R, r, KGL

1: H(jωk)← 0.5(H(jωk) + H(jωk)T)
2: Convert H(jωk) to admittance Y(jωk)
3: Define a regularization DC circuit (e.g. Fig. 2.3)
4: Compute Y0 = Y(jω = 0)
5: Find modal matrix Q from the eigenvalue decomposition of Y0 = QΛQT

6: Convert to the modal domain Ym(jωk) = QTY(jωk)Q , ωk ∈ ΩD

7: Assign coefficients µij = ±1 via regression (2.11)
8: Compute capacitive/inductive coefficients of the low-frequency model

Υm(jω) via least-squares (2.12)
9: Evaluate KGL samples of Υm(jωk) with ωk ∈ ΩG ∪ ΩL

10: Define αk and βk, such that αk + βk = 1 , ∀ωk ∈ ΩG ∪ ΩL

11: Merge data as in (2.14)

12: Regularize admittance ãYm(jωk)← Ym(jωk) +
C

1
R′ Ic 0
0 0

D
, ωk ∈ ΩG ∪ ΩD

13: Regularize impedance as Z̆m(jωk)← [ãYm(jωk)]−1+
C
0 0
0 rIℓ

D
, ωk ∈ ΩG∪ΩD

14: Convert to physical domain Z̆(jωk) = QZ̆m(jωk)QT, ωk ∈ ΩG ∪ ΩD

15: return Z̆(jω): full-band regularized and extrapolated data

Summary of key results

The main outcomes of the proposed regularization and extrapolation procedure
are

1. a well-define DC point, which enables to avoid matrix singularities at all
frequencies through the regularization step;

2. a full-band dataset, well-defined in [0, fmax], obtained by filling the gap
region ΩG with synthetic samples through themodal extrapolation step;

3. a (structured) modal dataset that retains DC contribution as diagonal
entries of the transfer matrix.

It is sufficient to use the modal responses as training dataset to build a model
that preserve a high level of accuracy in the entire (physical) low-frequency
range. Notice that the modal impedance matrix in the low-frequency band
ΩG shows the rich structure of (2.19), with diagonal entries that converge to a
constant valued, and off diagonal elements with first and second order zeros. The
same structure is preserved in all system representations, including admittance
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Fig. 2.7 Proposed regularization and extrapolation procedure with respect to field
solver (MoM) data for a 25-port shielding enclosure (R = 100MΩ, r = 0.1Ω). Only a
representative set of impedance responses are reported. From [30] © 2022 IEEE.

and scattering parameters. Thus, these elements must be properly considered
when approximating the system behavior: they will play an important role in
the proposed data and model compressed representations, to be presented next.

2.1.5 Extensions

In order to apply the proposed strategy to a general multiport system with
a possibly different asymptotic behavior at DC, the only step required is to
define a proper DC regularization circuit as the one provided in Fig. 2.3. In
fact, the presented procedure aims at solving the most generic critical situation
with both admittance and impedance matrices singular at DC. The case when
only inductive or capacitive modes are responsible for an ill-defined Y0 or Z0

can be seen as a particular case of the above strategy. In particular, only series
or shunt resistances are necessary to regularize the corresponding DC matrix
(line 3 of Algorithm 2).

The proposed procedure is valid if the losses in the low-frequency range
are sufficiently small, such that the asymptotic approximation (2.8) holds.
Nevertheless, the extrapolation procedure can be extended to lossy systems
either by including resistive components into (2.8) or by generating a synthetic
lossless dataset by subtracting the DC matrix contribution at all frequencies
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and neglecting the real part of the resulting port admittance or impedance
matrix.

The proposed regularization step has been designed to deal with a lack of
system characterization at DC. As already mentioned, the artificial DC circuit
is aimed at providing a well-defined response when the frequency vanishes, to
be used for subsequence macromodeling and simulation purposes. If a DC point
is already available from an independent system characterization, either from
a field solver or from direct measurements, this can be used in the proposed
procedure by substituting the synthetic DC matrices (2.1)-(2.3). Only lines 3
and 4 of Algorithm 2 will be affected. The rest of the procedure applies with
minor changes, necessary to adjust the modal regularization with new system
eigenvalues.

2.1.6 Numerical results

This section provides numerical results that demonstrate the effectiveness of
the proposed regularization and extrapolation procedure.

Changing regularization parameters

The 25-port shielding enclosure used as running examples through this section
is here exploited to show the effect of the regularization parameters. Figure 2.7
shows the impedance responses resulting from a full regularization and ex-
trapolation procedure performed in the modal domain in the range [0, 1] GHz.
This result is obtained by setting shunt and series resistances to R = 100MΩ
and r = 0.1Ω, respectively. The perturbation on the original MoM data of
a direct regularization step (Algorithm 1) was tested with different values
of R ∈ [106, 109] Ω and r ∈ [10−3, 1] Ω. A set of comprehensive admittance
responses with three combinations of regularization parameters is reported in
Fig. 2.8. For the selected results, the shunt resistance is fixed to R = 1MΩ
while the series resistance is systematically reduced (from top to bottom panel)
choosing r = {1, 0.1, 0.01}Ω. This picture demonstrates that

• a significant perturbation in the original data is needed to obtain a DC
point that smoothly merges with the low-frequency responses in ΩL; this
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Fig. 2.8 Representative admittance responses of a 25-port shielding enclosures chang-
ing regularization parameters of Algorithm 1. Top: R = 1MΩ and r = 1Ω; Middle:
R = 1MΩ and r = 0.1Ω; Bottom: R = 1MΩ and r = 0.01Ω.

is the effect of an extreme choice of shunt and series resistances, which in
this case are R = 1MΩ and r = 1Ω, respectively;

• reducing r the discrepancies between original and regularized samples are
attenuated, especially in the low-frequency range ΩL, at the price of a
larger DC level.

Notice that a similar reasoning can be verified observing the effect of different
shunt resistances values R on the impedance responses. In this case (not shown),
a larger value of R reduces the perturbation on the regularized data. The
tread off between perturbation on the field solver (MoM) data and resulting
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Fig. 2.9 As in Fig. 2.7 for a shielding enclosure with 100-ports

DC value is a design choice left to the user, whenever a DC characterization is
not already available from a different source. A general guideline is to keep
the DC value as close as possible to the system response at the first available
frequency, at the price of a modest variation of the original data. To this end,
a recommendation is to preserve all data features by selecting very small and
large values of r and R, respectively.

From 100 to 400 ports

In this section, the shielding enclosure grid is modified by increasing the density
of the p× p = P lumped ports and the proposed data conditioning approach is
applied to the resulting LTI systems. This section provides results of Algorithm 2
(R = 100MΩ,r = 0.1Ω) on enclosures with p = {10, 20} and P = {100, 400} in
the range [0, 1] GHz. Considering that the runtime is of course case-dependent,
as well as influenced on the actual setup for running the algorithms, Table 2.1
provides a summary of the selected parameters and of the overall elapsed time.
In particular, Figure 2.9 compares a set of representative admittance responses
of a 100-port box after regularization with the original MoM data, showing
only negligible variations at the higher frequencies. Figure 2.10 demonstrates
the effectiveness of the proposed data conditioning on a 400-port shielding
enclosure: the full-band impedance parameters show a perfect agreement with
the original data. The resulting large-scale dataset is now suitable for successive
macromodeling steps, as will be discussed in Chapter 3.
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Fig. 2.10 As in Fig. 2.7 for a shielding enclosure with 400-ports.

Table 2.1 Data regularization and extrapolation results. Table summarizes frequency
data information in terms of ports (P ) and samples (K), the selected parameters of
Algorithm 2, and the total elapsed time.

P K R (MΩ) r (Ω) KGL Time(s)
25 8001 100 0.1 366 2.78
100 501 100 0.1 349 3.78
400 1001 100 0.1 296 101.1

2.2 Structure-preserving data compression

In this section, we address a second major problem associated with large-scale
data for macromodeling applications, namely the scalability with number of
interface ports. Indeed, for the considered shielding enclosure application,
when the density of the aperture grid is augmented, the corresponding number
of system ports P drastically increases, leading to a complexity that may
become impractical to be handled, both from macromodeling and transient
simulations standpoint. The procedure originally presented in [30] is reported
in the following.

Considering the model generation, even if the literature offers several ways
to address this problem, there is still room for improvement. For instance, the
well-know VF algorithm has been already optimized in its Fast VF implemen-
tation [24] to reduce the fitting cost by compressing the least-squares solution
of the coefficients via QR factorization. Nevertheless, this approach still does
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not scale favorably with the number of ports, as it will be detailed in the next
section.

An approach to improve the efficiency of any identification algorithm is to
reduce the size of frequency tabulated data by exploiting the natural redundancy
in the system responses, and consequentially reducing the computational cost for
macromodel generation. This strategy enables to optimize the model structure
by avoiding the need to identify P ×P responses with a rational approximation
that requires P 2 sets of coefficients, one for each transfer matrix element.

A data compression technique coupled with a macromodeling identification
step has been already presented in [34]. This strategy takes advantage of a
standard truncated Singular Value Decomposition (SVD) to reduce the spatial
redundancy in the system port responses, and builds a Compressed Macromodel
(CM) via VF applied to a reduced set of basis functions. In this section, the
data compression proposed in [34] will be extended to deal with the modal
data structure of shielding enclosures and to preserve low-frequency features,
such as zeros at DC.

The data reduction strategy of [34] is first summarized in Section 2.2.1. Two
proposed improved algorithms, namely the Block-Diagonal SVD (BD-SVD) and
the Hierarchical SVD (Hi-SVD), are then introduced in Section 2.2.2. Numerical
results on enclosures with up to 400 ports are reported in Section 2.2.3.

2.2.1 SVD data compression: background

The data compression strategy presented in [34] requires a set of tabulated
frequency responses of a P -port LTI system, defined as {H(jωk) = Hk, k =
1, · · · , K}. The procedure starts stacking columns of Hk ∈ CP ×P in a row
vector xk ∈ CP 2 defined as

xk = vec(Hk)T . (2.20)

The reverse mapping (xk)ℓ = (Hk)i,j can be obtained defining suitable indexes
as

ℓ = i + (j − 1)P,

i = 1 + mod(ℓ− 1, P )
j = ⌈ℓ/P ⌉

(2.21)
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where ⌈·⌉ rounds towards infinity and mod is the integer division remainder.
With a formal terminology, defining the set of frequency responses as the tensor
H ∈ CK×P ×P , the unfolding or (mode-1) matricization of tensor H [49] can be
defined as

X =


←− x1 −→

... ... ...
←− xK −→

 =


↑ · · · ↑

m1 · · · mP 2

↓ · · · ↓

 (2.22)

where X ∈ CP 2 collects rows vectors (2.20) in a matrix form.

A truncated SVD decomposition is applied to the real matrix obtained
stacking real and imaginary part of X, asRe {X}

Im {X}

 ≈ ŪΣ̄V̄T (2.23)

where Σ̄ ∈ Rρ×ρ is a diagonal matrix that collects the ρ leading singular values,
Ū ∈ R2K×ρ and V̄ ∈ RP 2×ρ are the left and right singular vector matrices.
By definition, ŪTŪ = Iρ and V̄TV̄ = Iρ. Notice that the number of retained
singular values ρ is chosen such that ρ≪ min{2K, P 2}, ensuring that (2.23) is
a low-rank approximation and consequentially V̄V̄T ̸= IP 2 . Next, the real and
imaginary components of the scaled (left) singular vectors are recombined as

W̄ =
è
IK jIK

é
ŪΣ̄ (2.24)

in order to approximate the matricization of system responses as

X ≈ X̄ = W̄V̄T . (2.25)

On the one hand, splitting real and imaginary elements in (2.23) enables to
preserve (by construction) the causality [47] of X̄, since relationships between
real/imaginary components are preserved by (2.24) and (2.23). On the other
hand, the ℓ-th entry of the P × P original transfer matrix can be estimated as

mℓ ≈
ρØ

q=1
vℓ,qw̄q . (2.26)
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which corresponds to the ℓ-th column of X, while w̄q indicates the q-th column
of W̄. The set {w̄q, q = 1, · · · , ρ} collecting these vectors is regarded as a
set of basis functions. In short, the original P 2 responses can be effectively
approximated as a linear combination of a reduced set of ρ frequency-dependent
basis functions, as detailed in both (2.25) and (2.26).

A rational approximation of all w̄q enables to build a surrogate model
to reconstruct the P × P system behavior with a major saving in terms
of computational costs, whenever ρ ≪ P 2. Furthermore, a bound on the
approximation error (2.25) is available [34] as

E =
...X− X̄

...
2
≤
√

2σρ+1 . (2.27)

with σρ+1 first neglected singular value. Note that the truncation error (2.27)
cannot be recovered by next steps of the modeling process: the behavioral model
build on top of X̄ will show an error with respect to the original X at least of√

2σρ+1. Therefore, the error introduced by the data compression approximation
will set a bound for the accuracy of all subsequent macromodeling steps.

The above compression strategy does not preserve the responses structure
of a shielding enclosure data, especially in the modal domain. Indeed, the
truncated SVD approximation (2.26) does not maintain the presence of zeros
at DC even in the case of a small threshold σρ+1, as illustrated in Fig. 2.11
for a P = 25 port enclosure. Before compression, the reported data have
been extrapolated and regularized by means of the procedure proposed in
Section 2.1.3, following Algorithm 2 (r = 0.1Ω, R = 100MΩ and KGL = 903).
The final dataset provides system responses in the frequency range [0, 1] GHz
with K = 8904 samples. A total of ρ = 73 basis functions have been obtained
imposing a threshold σ < 10−6 to the SVD truncation (2.23). The bottom panel
of Fig. 2.11 shows how all basis functions saturates to a different non-vanishing
level at low-frequencies: the presence of a DC zero is not embedded in the basis
structure and typical low-frequency decays of −20dB/dec (and −40dB/dec)
are retained only up to a given point by the linear combination of nonzero
basis (2.26). Hence, after an SVD the DC zero behavior might only be recovered
by numerical cancellation, which after truncation is prevented by the selected
threshold σρ+1. This trend must be interpreted as an additional loss introduced
by the data compression, which will lead to a non-physical modeling, and to
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Fig. 2.11 Representative responses of a 25-port shielding enclosure after data com-
pression via basic SVD [34]. Top: DC zeros of different orders are not preserved by
the low-rank approximation (2.32). Bottom: resulting basis functions (ρ = 73 with
threshold σρ+1 = 10−6) do not retain the low-frequency behavior of the enclosure
and are non-vanishing at DC. From [30] © 2022 IEEE.

a consequent unreliable transient simulation. Thus, the DC zeros behavior
must be retained through the all modeling procedure. This includes the data
compression step, and motivates the extension of the standard SVD reduction
of [34] to more sophisticated compression approaches that are able to preserve
a suitable data structure.

2.2.2 Structured SVD compression

The proposed data compression approach is based on the idea of using a specific
set of basis functions that inherits the same structural properties of the original
system, in order to preserve these features while reducing the data complexity.
The aim of following procedures is to preserve the presence of DC zeros in the
system responses.
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Fig. 2.12 Preserving low-frequency features while compressing the data of a 25-port
box. Top: modal responses are clustered according to the order of DC zeros. Bottom:
all set of responses are suitably reconstructed by presented compression strategies.
From [30] © 2022 IEEE.

Let us start with the system responses matricization as in (2.22), which
stacks the P × P transfer matrix entries following the column-based ordering
defined by (2.20). First, the columns of X are rearranged by defining a
permutation matrix P such that

X = MP =
è
M1 M2 M3

é
P , PPT = I (2.28)

to identify group of responses Mν , with Pν number of columns for each set such
that qν Pν = P 2. For the specific case of (modal) shielding enclosures responses,
ν = {1, 2, 3} and M1 ∈ CK×P1 stores the entries of H(s) that saturate to a
nonzero DC value, while the other two blocks M2,3 gather all entries with DC
zero of order 1 or 2, respectively. Figure 2.12 (and later Fig. 2.14d) shows
an example of the three groups of responses on a 25-port box, automatically
identified by means of a procedure similar to the one of Section 2.1.3.
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The basic SVD reduction of Section 2.2.1 on the reordered matrix M leads
to a reconstruction of each group Mν of responses that relies on all basis
functions. To see this, the (full) decomposition (2.26) can be combined with
(2.28) to obtain

M =
è
M1 M2 M3

é
=
è
W1 W2 W3

é
VT = (2.29)

=
è
W1 W2 W3

é 
V11 V12 V13

V21 V22 V23

V31 V32 V33

 .

where the 3×3 block expansion enables to see how each group of basis functions
Wν is associated to sets Mν , with ν = {1, 2, 3}. It is clear from (2.29) that

M1 = W1V11 + W2V21 + W3V31

M2 = W1V12 + W2V22 + W3V32

M3 = W1V13 + W2V23 + W3V33

(2.30)

which confirms that each Mν is affected by all sets W1,2,3 through independent
blocks of the transformation matrix VT.

The objective now is to create a direct relationship between the structure
of one data responses group and one basis functions set. To this end, it
is convenient to start assuming that the last subset W3 is built using only
responses from group M3, which collect double order zeros at DC: thus W3

will inherit the same low-frequency behavior. To preserve this property and
reconstruct M3 in (2.30), both blocks V13 and V23 must vanish. Similarly, the
requirement of having single DC zeros behavior on basis set W2 is achieved by
setting V12 = 0. This means that imposing a lower-triangular structure to VT

preserve DC zeros while reducing the data complexity in terms of number of
responses. The above condition requires building each basis subset Wν from a
restricted set of responses. Two different strategies can be considered

• Block-Diagonal SVD (BD-SVD): each subset Mν is treated independently,
giving a block-diagonal VT;

• Hierarchical SVD (Hi-SVD): each subset Mν is processed iteratively with
ordering ν = 3, 2, 1; at each step, the projection of the current responses
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onto the basis functions generated at previous steps is removed, and the
resulting deflated responses are processed by SVD; this process results in
a block-triangular VT.

Both strategies were implemented and tested. Although under the pure data
processing standpoint these two approaches are equivalent, with the hierarchical
approach potentially leading to a smaller total number of basis functions, it
turns out that the block-diagonal approach leads to better results in terms of
overall accuracy after macromodel generation (see Sec. 3.2) and is preferred.
Both approaches are summarized below for completeness.

Block-Diagonal SVD

The first strategy aims at obtaining a block-diagonal VT, by processing each
subset of responses Mν for ν = {1, 2, 3} individually and by means of disjoint
SVDs. This implies computing the low-rank approximationRe {Mν}

Im {Mν}

 ≈ ŪνΣ̄νV̄T
ν , ν = 1, 2, 3 (2.31)

such that Σ̄ν gathers the leading ρν singular values, and Ūν ∈ R2K×ρν , V̄ν ∈
RPν×ρν , with ŪT

ν Ūν = I and V̄T
ν V̄ν = I. The individual set of basis functions

can now be defined as

W̄ν =
è
IK jIK

é
ŪνΣ̄ν , V̄′

ν = V̄T
ν , ν = 1, 2, 3 (2.32)

that allows to approximate (2.31) as

Mν ≈ M̄ν = W̄νV̄′
ν , ν = 1, 2, 3. (2.33)

The overall Block-Diagonal SVD (BD-SVD) approximation reads as

M ≈ M̄ =
è
M̄1 M̄2 M̄3

é
=
è
W̄1 W̄2 W̄3

é 
V̄′

1 0 0
0 V̄′

2 0
0 0 V̄′

3

 . (2.34)

The major advantages of the BD-SVD are
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• a major flexibility in the accuracy control for individual responses; this
enables to specifically tune the accuracy at DC when the data is expressed
in the modal domain, since the diagonal matrix entries corresponds to
the system eigenvalues when f = 0.

• a sparse transformation V̄, which is reflected in the resulting macromodel
coefficients.

On the other hand, a compression strategy applied to the entire dataset may
result in a smaller number of overall basis functions ρ with respect to the
proposed BD-SVD, for which ρ = q

ν ρν and no correlations hence redundancies
between different subsets is exploited.

Hierarchical SVD

The main difference of the Hi-SVD strategy with respect to the BD-SVD is that
subsets of responses are not approximated independently. Indeed, processing
each set in a specific order ν = {3, 2, 1} and removing the contribution of
already processed responses by projection, guarantees that data features are
equivalently retained in the resulting basis functions. The procedure starts with
the group M3 that collects responses with double DC zeros. Following the same
procedure reported in Sec. 2.2.2, the SVD approximation is computed (2.31)
for ν = 3 as æM3 ≈ Ū3V̄′

3 (2.35)

where V̄′
3 = Σ̄3V̄T

3 . The real-valued matrix V̄′
3 embeds also the scaling factors

induced by the leading ρ3 singular values so that the columns of Ū3 are
orthonormal.

The next step is to remove from æM2 its projection onto the column space
of the orthogonal (and real) matrix Ū3. The result is approximated through a
second truncated SVD via (2.31)-(2.33), obtaining

æM2 − Ū3(ŪT
3
æM2) ≈ Ū2Σ̄2V̄T

2 = Ū2V̄′
2. (2.36)

With a simple manipulation this expression can be rewritten as

æM2 ≈ Ū2V̄′
2 + Ū3(ŪT

3
æM2) = Ū2V̄′

2 + Ū3V̄′
3,2 (2.37)
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where V̄′
3,2 = ŪT

3
æM2 ∈ Rρ3×P2 . Finally, the same procedure is replicated for

the last group, obtaining

æM1 − Ū2V̄′
2,1 − Ū3V̄′

3,1 ≈ Ū1V̄′
1 (2.38)

with V̄′
2,1 = ŪT

2
æM1 ∈ Rρ2×P1 and V̄′

3,1 = ŪT
3
æM1 ∈ Rρ3×P1 . All steps

from (2.35)-(2.38) can be defined in an iterative fashion [30] for ℓ = {3, 2, 1} as

æMℓ −
3Ø

j=ℓ+1
ŪjV̄′

j,ℓ ≈ ŪℓΣ̄ℓV̄T
ℓ (2.39)

with V̄′
ℓ = Σ̄ℓV̄T

ℓ and V̄′
j,ℓ = ŪT

j
æMℓ. Collecting all approximations in a

block-triangular structure reads

æM =
èæM1

æM2
æM3

é
≈ (2.40)

≈
è
Ū1 Ū2 Ū3

é 
V̄′

1 0 0
V̄′

2,1 V̄′
2 0

V̄′
3,1 V̄′

3,2 V̄′
3

 . (2.41)

Finally, reconstructing complex-valued responses as in (2.32) leads to the
Hierarchical SVD approximation

M ≈ M̄ =
è
M̄1 M̄2 M̄3

é
= (2.42)

=
è
W̄1 W̄2 W̄3

é 
V̄′

1 0 0
V̄′

2,1 V̄′
2 0

V̄′
3,1 V̄′

3,2 V̄′
3

 . (2.43)

With respect to the unstructured SVD [34] and to the BD-SVD, the Hi-SVD
constructs set of unitary basis functions such that the euclidean norm of all
q-th basis w̄ν,q is always ∥w̄ν,q∥2 = 1 (and not ∥w̄ν,q∥2 = σν,q). Coherently, the
rows in the superposition matrices V̄′

ν are no longer orthonormal due to the
scaling in (2.39) by the singular value matrices Σ̄ν . This is not a problem since
such condition is not required in the following.
The Hierarchical SVD strategy retains all benefits of the BD-SVD approach,
while generally resulting in a smaller number of basis functions ρ = q

ν ρν at
the same approximation level.
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Fig. 2.13 Block-Diagonal SVD (BD-SVD) basis functions (ρ = 151) retain low-
frequency data features, such as DC zeros. Only first and last basis of each W̄ν with
ν = {1, 2, 3} are reported. From [30] © 2022 IEEE.

2.2.3 Numerical results

This section reports numerical results that confirm the effectiveness of proposed
compression strategies. All results have been obtained using a prototype
MATLAB code on a Workstation based on Core i9-7900X CPU (3.3 GHz) with
64 GB of RAM.

A 25-port enclosure example

The same 25-port enclosure in Section 2.2.1 is here used to compare proposed
compression strategies with the standard unstructured SVD approach, demon-
strating their advantages. The BD-SVD and the Hi-SVD are applied to the
full-band (modal) scattering samples by grouping system responses as in the
top panel of 2.12, according to the DC zeros order. In both cases, the same
thresholds {10−8, 10−6, 10−6} are used to approximate the corresponding group
of responses M1,M2 and M3. Since the compression is applied in the modal
domain, the truncation error bound for M1 is set to guarantee an accurate
DC response while reconstructing the diagonal elements of the transfer matrix
Sm(jω), which are nonzero at low-frequencies. Figure 2.12 demonstrates that
all data features are always retained by the proposed strategies, for all groups
of responses. This is confirmed by the subset of basis functions obtained with
the BD-SVD reported in Fig. 2.13, which inherits the order of DC zeros for
each block. As expected, the overall number of basis functions (ρBD-SVD = 151
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Fig. 2.14 Comparison of data reduction techniques on a 25-port box. Compression
accuracy on all transfer function entries via: Standard SVD(a), proposed Block-
Diagonal SVD (b) and Hierarchical SVD (c). Panel (d) indicates the grouping of
transfer matrix elements according to the DC zeros responses.

and ρHi-SVD = 108) is almost double with respect to a standard SVD (ρ = 73).
Yet, the compression factor is close to 50%, already considering as reference
only the upper triangular P (P + 1)/2 entries of the transfer function. All data
compression techniques provide a similar reconstruction error for all scatter-
ing elements, as reported in Fig. 2.14. Nevertheless, the proposed structured
strategies provide a drastic improvement in terms of DC accuracy, as reported
in Table 2.3.
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Scaling up to 400 ports

This section summarizes the data compression result on shielding enclosures
with increasing size in terms of ports. With reference to the p× p regular grid
covering the enclosure aperture, results are presented for boxes with P = 64,
100, 225 and 400 ports, correspondingly p = 8, 10, 15, 20 grid branches.

The data conditioning procedure provided in Section 2.1.3 was applied to
all cases as in the previous example to obtain a set of regularized parameters
defined in the band [0, 1] GHz. A compression of all (modal) scattering responses
was obtained by means of the proposed BD-SVD, applied with truncation
thresholds {10−8, 10−6, 10−6} to each set Mν , with ν = {1, 2, 3}. Table 2.2
shows a summary of the compression results. What is striking about this table
is the dramatic reduction in terms of basis functions ρ when the number of
response (i.e. ports) increases. Indeed, considering as reference only the upper-
triangular responses of the transfer function, the compression factor defined as

2ρ
P (P +1) reaches an impressive value of 0.3% for the largest ports count (P = 400).
On the other hand, even if the basic SVD [34] result in almost half the quantity
of basis functions to obtain an analogous accuracy level, the total elapsed time
required by the two algorithms is similar, with a minor memory requirement for
the BD-SVD while computing the approximation (2.31). To conclude, Table 2.3
compares the absolute errors on the DC matrix reconstruction for the main
system representations (scattering, admittance and impedance). As expected,
all scattering errors of the proposed compression strategy are coherent with
the accuracy threshold selected for the set M1 (10−8), which collects the DC
eigenvalues contribution. The presented BD-SVD outperforms the standard
SVD [34] of at least an order of magnitude for all cases, even if the same
threshold error is used in both SVD approximations, with a major advancement
considering the mean value of the error due to the proposed reconstruction
potentiality to guarantee that all vanishing matrix entries remains null at DC.

2.3 Conclusions

This Chapter provided a complete strategy to preprocess large-scale low-loss
frequency data of electromagnetic systems with a large ports count, with
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Table 2.2 Data compression results. The second column indicates the number of
upper-triangular responses of the transfer function, used to denote compression level.
The RMSE is computed on S(jω). Adapted from [30] © 2022 IEEE.

P P (P + 1)/2 SVD as in [34] Block-Diagonal SVD
Total ρ % of Total Time (s) RMSE ρ % of Total Time (s) RMSE

25 325 73 22.46 0.81 9.16 · 10−7 151 46.46 0.43 1.79 · 10−7

64 2080 80 3.85 13.7 9.55 · 10−7 198 9.52 4.89 3.20 · 10−7

100 5050 82 1.62 2.13 8.22 · 10−7 205 4.05 2.60 1.93 · 10−7

225 25425 79 0.31 14.5 1.07 · 10−6 212 0.83 18.51 2.38 · 10−7

400 80200 85 0.11 40.0 1.04 · 10−6 238 0.30 42.89 2.76 · 10−7

Table 2.3 DC accuracy of data compression. δH is the absolute error between
original and compressed DC matrices, with H = {S, Y, Z} indicating the scattering,
admittance or impedance representation, respectively.

δS
max δS

mean δY
max δY

mean δZ
max δZ

mean

P SVD as in [34]
25 6.02 · 10−8 1.50 · 10−8 1.97 · 10−5 8.34 · 10−6 4.00 · 106 1.07 · 106

64 6.83 · 10−8 1.03 · 10−8 3.73 · 10−5 1.35 · 10−5 3.74 · 106 6.90 · 105

100 1.58 · 10−8 2.56 · 10−9 1.13 · 10−5 3.34 · 10−6 1.42 · 106 1.63 · 105

225 3.87 · 10−8 2.71 · 10−9 7.42 · 10−6 2.06 · 10−6 3.89 · 106 2.30 · 105

400 5.20 · 10−8 3.02 · 10−9 2.27 · 10−5 5.00 · 10−6 4.56 · 106 1.86 · 105

P Block-Diagonal SVD
25 4.90 · 10−14 2.06 · 10−15 1.83 · 10−11 3.33 · 10−12 4.33 0.256
64 1.25 · 10−9 2.89 · 10−11 5.39 · 10−7 4.54 · 10−8 1.32 · 105 2.38 · 103

100 8.79 · 10−10 8.74 · 10−12 9.96 · 10−8 5.57 · 10−9 8.66 · 104 774
225 2.48 · 10−9 9.03 · 10−12 3.70 · 10−7 1.04 · 10−8 2.44 · 105 786
400 2.46 · 10−9 9.11 · 10−12 7.11 · 10−7 1.31 · 10−8 2.22 · 105 702

the main objective of improving numerical performance of macromodeling
algorithms in terms of processing time and memory requirements, accuracy,
and robustness. The main outcomes of the presented preprocessing phase are:

1. a procedure to define a suitable physic-based DC circuit, necessary to
remove possible system degeneracy at all frequencies due to the low-loss
(or in the limit case loss-less) nature of the electromagnetic structure;
this result is particularly appealing when a static characterization of
the device is not available from other sources, as field measurements or
specialized solvers;
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2. a full-band dataset for macromodeling purposes, filling unknown frequency
regions with consistent synthetic responses that smoothly merged with the
original ones; this solution is achieved by means of a robust regularization
and extrapolation procedure, designed on a suitable data projection into
an asymptotic modal domain;

3. a modal representation of the system to structurally isolate the dominant
low-frequency content in different transfer matrix elements; this step
enables to take proper care of the fitting accuracy in this frequency
region, which is particularly relevant (and critical) when the final model
is employed for transient simulations with nonlinear components;

4. two structured data compression strategies based on a customized Singular
Value Decomposition (SVD) approximation to reduce the overall number
of responses necessary to characterize the (full) original system, while
preserving low-frequency features of the data.

The overall result is a robust preprocessing strategy for large-scale data that
guarantees a suitable starting point for any modeling algorithm, by reducing
model sensitivity to terminations as will be documented in Chapter 3. Indeed,
it will be demonstrated that the above steps enable to strongly attenuate the
effect of loading conditions to the full-band (compressed) representation of the
original system.

Several numerical results based on shielding enclosures of increasing size
(up to 400 ports) were presented in this Chapter. All examples support the
above observations, demonstrating the effectiveness of proposed algorithms.
Beyond the considered shielding enclosures modeling and simulation problem,
the proposed data conditioning approaches (regularization, extrapolation and
structured compression) are completely general and can be applied to other
applications with similar characteristics.



Chapter 3

Macromodeling of large-scale
LTI systems

This Chapter addresses the problem of constructing a low-complexity model
of a passive large scale LTI system starting from frequency tabulated data.
This goal is addressed by splitting the overall macrodeling challenges in two
sub-problems:

1. compact model extraction of a low-loss system with massive ports count,
and strong sensitivity to the loading condition, especially at low-frequency;

2. passivity characterization and enforcement of a large-scale model.

As already discussed in the introduction, shielding enclosures applications
drive the modeling complexity to a higher level with respect to state-of-the-art
solutions. On the one hand, the number of lumped ports can easily reach
hundreds or even thousands of elements, which are used to close the shield
aperture with a diode grid, see Fig. 1.4. On the other hand, the large number of
poles necessary to reach the required full-band accuracy leads to a representation
of the system that is far beyond the standard definition of “reduced-order”.
Hence, trough this work the term large-scale refers to both dynamic order and
number of input/output ports.

Even if formulations of standard rational identification as Vector Fitting
(VF) [21] are already available in a form that is able to scale favorably with
the number of ports, as the Fast VF [24, 34], or its parallel implementation for
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multicore [25] and GPU hardware [50], various challenges remain, as discussed
below.

Error magnification due to the change of representation is a well-known
problem of macromodeling techniques. A reduced-order model usually provides
a high level of accuracy in the representation used for the fitting, usually
scattering with a reference resistance level R0, while loading the model with
a termination different from R0 may degrade the approximation quality [51].
This situation is exacerbated in case of low-loss (and in the limit case lossless)
electromagnetic components due to the poor conditioning in the low-frequency
range. A significant number of ports aggravates this situation and further
stresses the macromodeling procedure due to the increased level of (computa-
tional) complexity. It is thus fundamental to have an efficient fitting framework
to handle the modeling complexity while at least mitigating the sensitivity to
loading condition.

Once a proper model of the multiport structure is somehow obtained,
the second major macromodeling challenge comes into play: the passivity
characterization and enforcement of a large-scale LTI system.
The addressed shielding enclosures are passive structures that by definition
are unable to generate energy on their own [47, 52–54]. Thus, a representative
macromodel must not only reproduce the electromagnetic behavior of the
enclosure, but also inherit the passivity property. To this end, state-of-the-art
macromodeling techniques are equipped with suitable perturbation schemes
that process the (non-passive) outcome of an identification approach (as VF)
and enforce the model passivity by solving a constrained problem [55–67].
Indeed, the model passivity qualification (and enforcement) is a fundamental
step to guarantee the stability of any transient numerical simulation [68].

Regardless of the recent developments offered by the literature [69], standard
passivity enforcement schemes are still not suitable to scale with the complexity
offered by shielding enclosures. On the one hand, modifying the macromodel
coefficients and guaranteeing an overall passive behavior is a straightforward
task with either standard [64] or advanced perturbation approaches [70, 71], if
a suitable passivity characterization is available. On the other hand, finding the
location of passivity violations represents the main criticality of the enforcement
procedure. A suitable perturbation scheme must provide both the model
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qualification (passive/non-passive) and the exact location of passivity violations,
the latter necessary for the successive perturbation step. For this reason,
the passivity characterization is the most demanding phase from both the
computational and storage perspectives. Before [45], to the best of the author’s
knowledge, robust approaches compatible with the large-scale application
of shielding enclosures and requiring limited computing resources were not
available.

These challenges motivated a novel interest in a passivity verification tech-
nique based on an adaptive-sampling approach [45]. The latter strategy, re-
ported in Section 3.3, completely avoids both Hamiltonian and LMI conditions
in favor of an efficient and reliable scheme, here validated with an extensive
regression test. This kind of framework does not allow for a theoretical assur-
ance of finding all passivity violations but can be equipped with a number of
strategies to make the occurrence of missed violations very unlikely.

This chapter is organized as follows. Section 3.1 introduces the background
material for rational approximation and passivity verification of LTI systems.
Section 3.2 focuses on the first macromodeling challenge by introducing a
complete framework that addresses the complexity of the system in terms of
electrical ports while preserving the low-frequency behavior [30]. This result
is obtained by integrating standard fitting techniques as Vector Fitting (VF)
with the compressed data representation presented in Chapter 2. Section 3.3
addresses the passivity characterization of a large-scale model by providing an ef-
ficient and reliable sampling-based passivity verification scheme [45]. Section 3.4
provides a passivity enforcement algorithm compatible with the presented struc-
tured and compressed macromodeling framework. Section 3.5 validates the
overall procedure, both in terms of passivity verification and fitting. We will
demonstrate that the outcome of this Chapter is an efficient strategy to build
a compressed passive macromodel, with a DC-preserving reduction approach
and a reduced sensitivity to loading conditions.
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3.1 Background on model fitting and passivity

This chapter provides a complete macromodeling framework for passive Linear
Time Invariant (LTI) systems. To this end, we include the following fundamental
background material for later use. Among the several rational-approximation
fitting approaches [72, 23, 20, 22], we select and summarize the VF algorithm in
Section 3.1.1. Notice that the provided framework is nevertheless not restricted
to this identification scheme, and it is generally suitable for any rational mod-
eling approach. Thus, we introduce in Sec. 3.1.2 the Compressed Macromodel
(CM) framework presented in [34] as starting fitting strategy to address the
large-scale nature of the shielding enclosure application. Section 3.1.3 addresses
the surrogate model passivity characterization to suitably retain this system
property through the modeling step and ensure stable transient simulation
results. Section 3.1.4 concludes this background introduction with a comparison
on the three main classes of passivity verification approaches, motivating the
addressed problem.

3.1.1 Rational fitting: the VF algorithm

This section presents the well-known Vector Fitting (VF) algorithm [21] in
its most efficient sequential implementation to deal with large-scale multiport
structures, namely the Fast-VF [24]. VF is one of the most popular data-driven
strategies for LTI systems identification [73–75], and over the last decades it
has been already exploited for multicore parallelization [25] and optimization
for GPU architectures [50].

Starting from a set of tabulated input/output frequency responses {H̆(sk) ∈
CP ×P , k = 1, · · · , K}, with P electrical ports and sk = jωk, this algorithm
builds a rational approximation of the target system transfer matrix and solves
the fitting problem

H̆(sk) ≈ H(sk) where H(s) =
n̄Ø

n=1

Rn

s− pn

+ R0 (3.1)

where the set of n̄ poles pn and residues Rn are iteratively estimated. Note
that (3.1) assumes a common set of poles for all transfer matrix elements.
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The VF algorithm performs a two-step procedure. First, a pole relocation
scheme is applied to iteratively estimate model poles pn. Then, the correspond-
ing residues Rn are evaluated. The fitting problem (3.1) is solved by improving
an initial guess of the model poles pn every iteration.
We start defining the rational model representation (3.1) similarly to [20] as

H(s; x) = N(s; x)
D(s; x) =

qn̄
n=0 Cnϕn(s)qn̄

n=1 dnϕn(s) + 1 (3.2)

where partial fractions are collected as

ϕ0(s) = 1 and ϕn(s) = 1
s− pn

, with n = 1, · · · , n̄ . (3.3)

The model decision variables of (3.2) are gathered in

x = (c1, · · · , cP 2 , d)T (3.4)

with
cℓ = (cℓ,0, · · · , cℓ,n̄)T , d = (d1, · · · , dn̄)T (3.5)

where cℓ,n denotes the (i, j)-th component of matrix Cn ∈ RP ×P mapped
through the linear index ℓ = i+(j−1)P . With this formulation, the denominator
D(s; x) is the classic VF weight function, used to multiply both sides of (3.1)
and to obtain the linearized optimization problem

n̄Ø
n=0

Cnϕn(sk)−
A

n̄Ø
n=1

dnϕn(sk) + 1
B

H̆(sk) ≈ 0 (3.6)

that must be solved for all frequencies sk = jωk in a least square sense. We
now collect the partial fraction basis evaluated in the set of available frequency
samples {sk = jωk, k = 1, · · · , K} to obtain matrices

Φ1 =


ϕ1(s1) · · · ϕn̄(s1)

... . . . ...
ϕ1(sK) · · · ϕn̄(sK)

 and Φ0 =
1
1K Φ1

2
(3.7)
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where 11 = (1, · · · , 1)T ∈ RK is a column vector of ones. Then, we cast the
ℓ-th entry of each transfer matrix H̆ℓ(sk) = H̆i,j(sk) into

H̆ℓ = diag
î
H̆ℓ(s1), · · · , H̆ℓ(sK)

ï
, bℓ =

1
H̆ℓ(s1), · · · , H̆ℓ(sK)

2T
. (3.8)

The fitting problem (3.6) formulated for each individual element ℓ of the transfer
matrix and for all K frequency samples reads

1
Φ0 −H̆ℓΦ1

2cℓ

d

 ≈ bℓ (3.9)

and can be stacked for all P 2 responses to obtain the complete linear system
Φ0 0 · · · 0 −H̆1Φ1

0 Φ0 · · · 0 −H̆2Φ1
... ... . . . ... ...
0 0 · · · Φ0 −H̆P 2Φ1

x =


b1

b2
...

bP 2

 . (3.10)

Solving (3.10) for x (3.4) gives coefficients of the denominator (the weight
function) d and all residues cℓ, which are disregarded. The initial set of poles
pn is replaced with zeros of the denominator in (3.1), denoted with zn. The
main idea is that the zeros of D(s; x) must simplify the (unknown) exact
system poles when (3.10) is solved exactly. Thus, the denominator of (3.1) is
unitary if the set pn matches the poles of the original structure. The zeros
zn are computed solving an eigenvalue problem associated to the state-space
realization {AD, BD, CD, DD} of the denominator such that

zn = eig
î
AD −BDD−1

D CD

ï
(3.11)

and the (relocation) process pn ← zn is iterated until convergence. When an
unstable zero appears, the real part of the corresponding pole is changed in
sign to ensure the model stability (pole flipping step). At last, when the poles
stabilize the original fitting problem (3.1) is solved and model coefficients Rn

are computed. Standard modifications of (3.1) and (3.9) ensure real-valued
residues also in the case of complex-conjugate pairs of poles. We refer to [20]
for implementation details.
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A direct solution of (3.10) is computationally expensive due to the large
dimension of the regressor matrix. Indeed, one should notice that the dimen-
sion of the left-side matrix is KP 2 × (P 2(n̄ + 1) + n̄), which does not scale
favorably with the model complexity, both in terms of ports P and poles n̄.
Nevertheless, an efficient implementation of the VF takes advantage of a “thin”
QR factorization to speed up and optimize the relocation process. Starting
from (3.9), we can write

1
Φ0 −H̆ℓΦ1

2
= QℓRℓ = Qℓ

R11
ℓ R12

ℓ

0 R22
ℓ

 (3.12)

where the only matrix associated to the denominator residues is the lower
block R22

ℓ ∈ Rn̄×n̄. Stacking all terms R22
ℓ for all ports contribution leads to a

compressed set of equations


R22
1
...

R22
P 2

d =


QT

1 b1
...

QT
P 2bP 2

 . (3.13)

The regressor dimension is now n̄P 2 × n̄ and the denominator coefficients are
computed with a major saving of memory. Nevertheless, the presented Fast-VF
scheme [24] requires P 2 computations of QR factorizations in (3.12). Thus, this
operation is significantly demanding when P reaches thousands of elements.

3.1.2 The Compressed Macromodeling framework

Section 2.2 introduced a SVD data compression technique based on the estab-
lished method of [34], and presented structured SVD approaches [30] that are
able to preserve particular features in groups of responses, such as single or
multiple zeros at DC. All reduction methods lead to an approximation of the
matricized system responses, which can be written as

X ≈ X̄ = W̄V̄T , (3.14)

where V̄ ∈ RP 2×ρ is either full or block-sparse depending on whether the
standard method [34] or one of the structured approaches (BD-SVD or Hi-SVD)
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is adopted. In the latter, V̄T accounts also for the permutation matrix P used
in (2.28) to reorder responses for individual group processing. The matrix
W̄ ∈ CK×ρ collects in its columns the various basis functions w̄q obtained by
SVD approximation, which may be further separated in groups characterized
by different low-frequency behavior.

The compressed macromodeling framework of [34] applies to each basis
function w̄q, building a set of rational macromodels

wq(s) = rq∞ +
NwØ
n=1

rqn

s− pn

, q = 1, · · · , ρ (3.15)

where pn are a set of Nw common poles, rqn are the associated model coefficients
(residues), with rq∞ direct coupling term. This Compressed Macromodel (CM)
can be identified by feeding to the Fast VF algorithm [24] the set of all basis
functions, concurrently, and by solving the fitting problem

wq(jωk) ≈ (w̄q)k, q = 1, . . . , ρ, k = 1, . . . , K (3.16)

where each k-th element (w̄q)k of every basis is associated to the frequency
sample ωk. The resulting CM (3.15) can be cast in a row vector form as

w(s) =
è
w1(s) w2(s) · · · wρ(s)

é
, (3.17)

which is equivalent to the state-space realization

w(s)T = Cw(sI−Aw)−1bw + dw . (3.18)

where Aw ∈ RNw×Nw is a diagonal matrix that retains poles pn, bw = 1Nw is
a vector of ones, Cw ∈ Rρ×Nw stores model residues rqn, and dw ∈ Rρ collects
the direct coupling terms rq∞. Classic adjustments [20] enable to modify the
above representation to deal with complex conjugate pair of model poles while
preserving the realness of all coefficients. The original P × P system transfer
function can be retrieved as

H(s) =
n̄Ø

n=1

Rn

s− pn

+ R0 = C(sI−A)−1B + D = mat(V̄w(s)T) (3.19)
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where mat reconstructs a matrix of proper size from a vector collecting its entries,
and {A, B, C, D} is a set of compatible state-space matrices. For later use,
notice that the number of system states N , i.e. the dynamic order and size of
matrix A ∈ RN×N , is in general N ≫ P , and in the particular case of a minimal
representation (with full-rank Rn) can be defined as N = n̄P [20, 76, 77].
The above compressed framework enables a dramatic reduction of model
coefficients, to be identified by enforcing (3.16) and necessary for the subsequent
passivity enforcement (discussed next). Indeed, the number of required decision
variables to retrieve the system responses is related to the overall count of
basis functions, and ρ ≪ P 2 by the low-rank approximation (3.14). This
leads to a drastic reduction of the computational cost required to build a full
passive behavioral model. On the other hand, if the macromodel structure
does not inherit all features of basis functions groups, the effort spent in the
DC-preserving data compression is lost at this stage.

On the computational cost of the CM framework

The main bottleneck of the SVD-based compression method is the memory cost
since the overall number of frequency samples K and responses P could result in

a matrix
Re {X}
Im {X}

 ∈ R2K×P 2 of an excessive size for the available resources. In

terms of operations, this SVD requires O(4P 2K2) flops, assuming that P 2 > K,
and leads to ρ basis functions that can be fed to an identification algorithm
such as Fast-VF. On the other hand, the Fast-VF algorithm requires a set of
QR factorizations to speed up the pole relocation process at each iteration,
see (3.12). This operation is usually less expensive in terms of memory since
applied P 2 times on smaller matrices of size CK×(2n̄+1), where n̄ indicates
the number of poles. An effective implementation would perform these QR
factorization using parallel computing threads. Notice that also the cost of the
least squares (LS) to compute the denominator coefficients at each iteration,
see (3.13), is dominated by the number of responses. This cost is O(2P 2n̄3)
flops if all P 2 responses are processed concurrently.

Table 3.1 summarizes the overall cost in terms of operations for the proposed
CM framework and the standard Fast-VF. Notice that we reasonably assumed
that 2K ≥ (2n̄+1) for the QR, that P 2 ≥ K for the SVD, and that ρ≪ P 2 for
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Table 3.1 Summary of the number of operations required by the standard Fast-VF
and by the proposed CM framework, the latter applied on ρ basis functions. Residues
computation cost is omitted.

QR (flops) LS (flops) SVD (flops) Total for I iterations
Fast-VF O(P 24K(2n̄ + 1)2) O(2P 2n̄3) - O(4IP 2(K(2n̄ + 1)2) + n̄3/2)

CM O(ρ 4K(2n̄ + 1)2) O(2ρn̄3) O(P 24K2) O(4Iρ(K(2n̄ + 1)2 + n̄3/2) + 4P 2K2)

the SVD truncation. Considering a number of VF iterations I and comparing
the overall cost of Fast-VF and CM, the latter is preferable when

O(4IP 2(K(2n̄ + 1)2 + n̄3/2)) > O(4Iρ(K(2n̄ + 1)2 + n̄3/2) + 4P 2K2) (3.20)

is satisfied. Eliminating common factors and removing the terms that under
our running assumptions are negligible, this condition simplifies to 4In̄2 > K.
The larger the number of VF iterations, the more costly is Fast-VF with respect
to the single instance of the SVD. Correspondingly, the larger is the number
of required system poles for a fixed number of frequency samples, the more
convenient is the CM approach (with quadratic scaling). For the systems that
are the subject of this work, it is always verified that ρ≪ P 2, which is in any
case the dominant and key condition that supports applicability of the CM
approach.

3.1.3 Passivity of LTI systems

This section provides a background on multiport systems passivity, summa-
rizing well-known results [20] and setting notation for later sections. This
work considers only models in the scattering representation, but the extended
framework for the passivity characterization of other system representation
(immitance or hybrid) applies with minor modifications, as already detailed in
the literature [20].

The passivity characterization of a P-port system starts with the definition
of the absorbed instantaneous power as

p(t) = v(t)Ti(t) = i(t)Tv(t) = a(t)Ta(t)− b(t)Tb(t) (3.21)
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where v(t) = [v1(t), . . . , vP (t)]T and i(t) = [i1(t), . . . , iP (t)]T are time-varying
column vectors storing ports voltages and currents, respectively, and a(t) and
b(t) collect input/output scattering waves with reference impedance R0.

The cumulative net energy absorbed by the multiport system at a given
instant of time t is defined as

E(t) =
Ú t

−∞
p(τ)dτ . (3.22)

For any passive multiport system, the cumulative net energy (3.22) is non-
negative for any time t so that

E(t) ≥ 0 , ∀t . (3.23)

The above definition of passivity is now made more precise for the particular
case of lumped P -ports LTI systems. For this family of Multi Input Multi
Output (MIMO) devices, the input/output behavior can be represented in
terms of a transfer function H(s) ∈ CP ×P , where s is the Laplace variable. We
recall that Section 3.2 provides a compressed identification framework to obtain
a model of H(s) ∈ CP ×P , ultimately represented in a pole-residue form (3.19) or
as an equivalent state-space realization. Thus, we will assume in the following
two working conditions:

A1 the asymptotic stability of (3.1) is guaranteed by construction so that all
model poles pn have strictly negative real part, as obtained with the VF,
see Section 3.1.1;

A2 all matrices in (3.1) are real-valued, as guaranteed via standard manipu-
lations [20].

We have the following result.

Theorem 3.1 [20, 53, 54, 47] An LTI system in scattering representations
with transfer matrix H(s) is passive if and only if H(s) is Bounded Real (BR).

In the case of a rational transfer matrix H(s) the above theorem simplifies to a
set of simple conditions.

Theorem 3.2 [20, 53, 54] A rational matrix H(s) is BR if and only if
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C1. H(s) has no poles in C+ such that the system is asymptotically stable,
with Re {pn} < 0 ∀n;

C2. H∗(jω) = H(−jω);
C3. I−H(jω)HH(jω) ≥ 0, ∀ω ∈ R.

Under the working conditions A1,2 of (4.8), C1,2 are guaranteed by construction
and only C3 must be verified for all frequencies.
A reformulation of C3 based on the Singular Value Decomposition (SVD) of
H(jω) at each frequency denoted as

H(jω) = U(jω)Σ(jω)V(jω)H (3.24)

leads to the condition

σmax{H(jω)} = ∥H(jω)∥2 ≤ γ = 1 ∀ω ∈ R. (3.25)

The above sufficient condition for passivity implies that the maximum singular
value of the scattering transfer matrix must be below a critical threshold γ = 1
for all (real) frequency ω. Notice that (3.25) enables to define the passivity
metric function

φ(ω) = σmax{H(jω)} (3.26)

which has the interesting property of being continuous, since H(jω) is regular
in an open subset of the complex plane containing the imaginary axis (i.e.
there are no poles in Rjω), and is generally smooth but not differentiable in a
finite number of points, due to crossing of singular values trajectories. The first
attribute of (3.26) is particularly appealing since enables the use of sampling
approaches for checking the system passivity, as it will be further discussed
next.

An alternative passivity characterization of a state-space system involves
the well-known Bounded Real Lemma (BRL) or Kalman-Yakubovich-Popov
(KYP) Lemma [20, 54, 78].
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Lemma 3.1 A scattering LTI system is passive (dissipative) if and only if

∃P = PT > 0 :
x

u

TATP + PA + CTC PB + CTD
BTP + DTC −(I−DTD)

x

u

 ≤ 0

(3.27)

The passivity verification problem can be cast in a closed algebraic form.
Using the state-space realization of the scattering model (3.19), we define the
so-called Hamiltonian matrix

M =
A + BR−1DTC BR−1BT

−CTS−1C −AT −CTDR−1BT

 (3.28)

with R = I−DTD and S = I−DDT. It is well known [79, 64, 20] that a sufficient
passivity condition for a scattering model is that M has no purely imaginary
eigenvalues µk = jω̂k. These eigenvalues provide all frequency locations where
trajectories of singular values of H(jω) cross the passivity threshold γ = 1, as
detailed in [64, 79]. Thus, the imaginary eigenvalues of (3.28) can be used to
localize model passivity violations on the frequency axis.

Note that the above theorem requires the asymptotic passivity of H(jω),
since the non-singularity of I−DTD implies that ∥D∥2 < γ = 1. The Hamil-
tonian matrix M is only defined when I−DTD is non-singular, equivalently
when ∥D∥2 < γ = 1. These conditions imply the asymptotic passivity of H(jω)
for ω →∞. If the singular values of the direct coupling term D are too close
to the passivity threshold γ, the above non-singularity condition can be relaxed
by means of an extended eigenvalue problem as

Mev = jω0Kv, (3.29)

where we can define the extended Hamiltonian pencil (Me, K) as in [80]

Me =


A 0 B 0
0 −AT 0 −CT

0 BT −I DT

C 0 D −I

 K =


I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

 (3.30)
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Its purely imaginary generalized eigenvalues µk can be computed to localize
passivity violation of the system. Since obtaining the spectrum of the extended
pencil (3.30) increases the computational effort with respect to (3.28), this
approach is recommended only if the standard Hamiltonian matrix (3.28)
is ill-defined. In this work, the extended pencil (3.30) is used only when
|σmax{D}− 1| < 10−4, as will be documented in some of the examples reported
in Section 3.5.1.

3.1.4 Discussion on passivity verification

To summarize, the three approaches for passivity verification of a (scattering)
system are:

1. Sampling of local passivity conditions, by verifying whether the passivity
metric exceeds the allowed limit φ(ω) > γ = 1 over a finite number of
frequency samples {ωk, k = 1, . . . , K}. This is the computationally less
expensive verification in terms of both memory and number of elementary
operations, since each frequency ωk can be processed individually. Indeed,
the complexity in computing the maximum singular value σmax at a given
frequency point is O(P 3), while only considering the overall number of
operations for K samples the complexity grows to O(KP 3). On the other
hand, the main disadvantage of this approach is that by checking passivity
over a finite number of points some narrow violation may be missed by
the checking algorithm, since very close to the passivity threshold γ = 1
or spread over a small frequency region. Nevertheless, another advantage
of this approach is that, in view of passivity enforcement, all frequency
bands where passivity violations are located and the corresponding local
singular value maxima σmax are available for postprocessing.

2. Linear Matrix Inequalities, provide a fully algebraic approach, thanks to
the BRL presented in Lemma 3.1, thus is very robust and does not require
any sort of sampling. Unfortunately, checking the feasibility of (3.27) is
a very expensive procedure that requires O(N6) operations. Even if a
particular formulation [81] reduces its cost to O(N4), this approach is
not suitable for a massive number of ports P . On the other, a passivity
check based on (3.27) provides only a boolean result, and it is of no
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Characterization method Operations Storage
Linear Matrix Inequalities [81] O(N4) (N + P )2

Hamiltonian (full) O((2N)3) 4N2

Sampling O(K(P 3 + P 2n̄)) P 2

N : model order (states) K: frequency samples
P : input-output ports n̄: (common) poles

Table 3.2 CPU cost and required storage for different passivity characterization
strategies. Adapted from [45] © 2021 IEEE.

use for localizing passivity violations in view of a passivity enforcement
loop. Those enforcement schemes that embed (3.27) as constraint [55, 82]
provide the same scalability of the corresponding check [67], hence are
not suitable for a large-scale system.

3. Spectral properties of Hamiltonian Matrices, are the state-of-the-art
method for low/medium size models since provide an algebraic approach
to pinpoint passivity violations. As already mentioned, the solution of
eigenproblem (3.28) enables to retrieve passivity violations location along
the frequency axis, at the price of finding purely imaginary eigenval-
ues of M with O((2N)3) operations. Even if some improvement has
been demonstrated [65, 66] for medium size models, taking advantage of
spare-representations and an Arnoldi process attempting to compute only
purely imaginary eigenvalues (instead of the all spectrum of M), the
extension to a large-scale system is still limited. Indeed, these approaches
require the inversion of a P × P matrix while computing the Krylov
subspace iteration, leading to an approach that alleviates only partially
the computational effort of a large-scale model. When the number of
ports P reaches thousands of elements, this strategy is not appropriate.

A comparison of these strategies in terms of both number of required floating
points operations, up to a constant factor associated to the selected implemen-
tation/algorithm, and of required storage memory is reported in Table 3.2.

To motivate the proposed approach, we recall here the same example
presented while introducing Chapter 2. Supposing that we want to build a
rational passive macromodel of a shielding enclosure with P = 1024 lumped
ports and n̄ = 71 poles, for a total of N = 72704 states, as the one illustrated
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in Section 3.5.2. In the following, we will try to provide some estimate in terms
of performances for the three classes of passivity characterization approaches.
While for both the LMI and the Hamiltonian strategy is possible to know
in advance the overall required memory, approximately 43GB and 160GB
respectively, for the adaptive sampling scheme we can provide only the single-
point evaluation that requires storing 16MB. We recall that for the latter it is
not possible to anticipate the total number of required samples K, since the
(scalar) investigated function, the passivity metric (3.26), changes accordingly
to singular values trajectories. Nevertheless, even considering a very large
number K = 105 of frequency samples, the relative CPU cost for both LMI
and Hamiltonian approaches is 2 · 105× and 26× higher with respect to the
sampling approach.

We conclude that the only approach that is able to manage the large-scale
nature of the investigated models is the passivity characterization framework
based on sampling strategies. This motivates the focus of the Section 3.3, which
will provide a passivity verification scheme [45] aimed at reducing the chances
of missing violations via sampling, hence at providing a wrong classification of
a passive/non-passive model.

3.2 Structured Compressed macromodeling

This section provides fundamental steps for the construction of a large-scale
macromodel, where the term large-scale is mostly related with the electri-
cal ports count. The final goal is to provide a flexible compressed modeling
procedure, equipped with a full-band error control strategy, to reduce the
induced approximation error while changing system representation, and ul-
timately attenuate the sensitivity of the model to loading conditions. Thus,
the compressed structured macromodeling framework [30] is introduced by
integrating the DC-preserving data reduction techniques of Chapter 2.2 with
an ad hoc procedure to ensure an accurate model extraction. The procedure
is reported enriching the same steps of [30]. Numerical results on shielding
enclosures with increasing ports count are presented later in Section 3.5.2, after
the introduction of a reliable passivity verification and enforcement scheme in
Sections 3.3 and 3.4, respectively.
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3.2.1 Fitting structured basis functions

The goal now is to integrate the proposed data-compression techniques of
Chapter 2.2 into a suitable identification framework, which generalizes pre-
vious approaches by providing full control on the system DC behavior at all
macromodeling phases.

The novel contribution of [30] is the realization of a compressed structured
macromodel ãw(s) =

è âw1(s) âw2(s) · · · âwρ(s)
é

(3.31)

where each model âwq(s) preserves the feature of each basis w̄q of W̄. In
essence, DC zeros of any order are imposed by construction in the macromodel
generation. This condition is obtained by imposing

ãw(s)T = Γ(s) ·w(s)T (3.32)

where Γ(s) is the block-diagonal matrix

Γ(s) = diag{m1(s)Iρ1 , · · · , mν(s)Iρν , · · · , mν̄(s)Iρν̄} (3.33)

with frequency-dependent weighting factors mν(s) defined for each ν-th group
of ρν bases as the high-pass filter

mν(s) =
νÙ

i=1

s

s− p∞
i

, ν = 1, . . . , ν̄. (3.34)

The particular case of shielding enclosures (to be identified in the modal domain)
requires of imposing DC zeros with multiplicity from 0 to 2 for ν = {1, 2, 3},
respectively. This can be achieved defining

Γ(s) =


m1(s) · Iρ1 0 0

0 m2(s) · Iρ2 0
0 0 m3(s) · Iρ3

 . (3.35)

with ν̄ = 3 and

m1(s) = 1, m2(s) = s

s− p∞
2

, m3(s) = s

s− p∞
2
· s

s− p∞
3

. (3.36)
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These weighting functions enable to reproduce the required DC behavior,
preserving both the rational model form and the unitary bounding condition
of scattering systems, since the high-pass filter structure (3.34) guarantees that
|mν(jω)| ≤ 1 for ν = 1, . . . , ν̄ and all frequencies. On the other hand, the effect
of Γ(s) in the modeling band is minimized by selecting all poles p∞

ν after the
maximum fitting frequency, such that

ωmax < |p∞
ν | , ∀ν (3.37)

where ωmax is the maximum frequency used for the model identification. Fur-
thermore, the behavior for s = ∞ of the two compressed representations,
structured (3.32) and standard (3.17), can be identically tuned by the direct
coupling coefficients rq,∞. Indeed, being

lim
s→∞

Γ(s) = Iρ (3.38)

the two asymptotic responses of w(s) and ãw(s) are the same.

The identification of a macromodel with the proposed structure (3.32) is
a task that can be achieved with standard algorithms, such as the Fast VF.
Two possible approaches are available. On the one hand, we can adapt the
core of VF itself defining modified frequency-dependent basis functions that
include the low-frequency structure, i.e. the zero at DC and an additional high
frequency pole p∞

ν . A simpler approach is presented here, following [30]. Indeed,
the identification problem can be modified rescaling each basis at all frequencies
by the inverse of the corresponding weighting matrix Γ−1

k = Γ(jω)−1. With
this second approach, a standard rational representation (3.15) is suitable to
the modified fitting problem rewritten as

wq(jωk) ≈ (æwq)k = (Γk)−1
qq (w̄q)k, q = 1, . . . , ρ, k = 1, . . . , K (3.39)

which can be solved with a standard modeling engine, as the Fast VF. Indeed, all
rescaled basis vectors æwq show a non-vanishing value at DC, since all DC zeros
are canceled out when rescaling for the inverse high-pass filter of (3.34). The
final structured compressed model is obtained as in (3.32) by multiplication of
the rational model with the filtering term Γ(s), and by enforcing the prescribed
low-frequency behavior by construction.
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The result of rescaling procedure (3.39) on a 25-port shielding enclosure
is reported in Fig. 3.1. The proposed strategy enables to further improve the
fitting process accuracy by including standard weighting schemes [20] directly
in the filtering term. For example, all bases can be normalized to a common
magnitude level by including an additional weight, in terms of the 2-norm or
RMS value of each q-th basis, to each diagonal entry of the filtering term Γqq(s)
in (3.32) and (3.39).

Fig. 3.1 Subset of BD-SVD basis functions rescaled via (3.39). Original bases are
reported in Fig. 2.13. From [30] © 2022 IEEE.

To guarantee an exact model behavior at DC also for non-vanishing re-
sponses, the standard least square problem (3.39) is enriched with a constraint
at s1 = jω1 = 0 (the first available frequency point with index k = 1), defined
as

(æwq)1 = rq∞ +
NwØ
n=1

rqn

−pn

q = 1, . . . , ρ, (3.40)

and suitably embedded in the identification step, i.e. in the VF iteration.

3.2.2 Compressed Model representations

In view of passivity enforcement, it is shown here how the compressed structured
macromodel (3.31) can be mapped to the original P × P multiport scattering
representation H(s) through a constant algebraic transformation. First, matrix
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Ψ ∈ RP ×ρP is defined as in [34]

V̄ =


V̄1
...

V̄P

 , Ψ =
è
V̄1 V̄2 · · · V̄P

é
(3.41)

where each V̄j ∈ RP ×ρ is obtained rearranging the blocks of rows in V̄ in-
dexed by {j(P − 1) + 1, . . . , jP}. It can be demonstrated that the equivalent
representations hold

H(s) =
n̄Ø

n=1

Rn

s− pn

+ R0 = mat(V̄ãw(s)T) = Ψ(IP ⊗ãw(s)T) =
ρØ

q=1
Kq âwq(s)

(3.42)
where the mat operator reshapes a vector of P 2 elements into a P × P matrix,
and where Kq ∈ RP ×P is a set of matrices defined as

Kq =
è
v̄1

q v̄2
q · · · v̄P

q

é
(3.43)

with vector v̄j
q selecting the q-th column of V̄j. It is important to notice that

each Kq inherits the same sparsity pattern of V̄ in (2.34). Finally, the model
response at a given frequency can be denoted as Hk = H(jωk), and let hk be a
column vector of length P 2 stacking its columns. This vectorized macromodel
response can be written as

hk = vec(Hk) = V̄ãw(jωk)T = V̄Γkw(jωk)T = V̄Γk(Iρ⊗φT
k ) vec(Rw) (3.44)

where Rw ∈ R(Nw+1)×ρ stores all model coefficients rqn, rq∞ in (3.15), and
φk = φ(jωk) ∈ CNw+1 stacks the partial fraction basis functions φ0(sk) = 1,
φn(jωk) = (jωk − pn)−1. The last step exploited the known properties of the
Kronecker product.1

1The Kronecker product can be used to rewrite a matrix equation like AXB = C in a
vectorized form as (BT ⊗A)vec(X) = vec(AXB) = vec(C).
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3.3 Passivity check via adaptive sampling

This Chapter aims at providing a complete framework for the generation of
passive large-scale macromodels. In this context, the model passivity charac-
terization plays a crucial role as a prerequisite for each iteration of a passivity
enforcement loop. As the passive structure that is intended to replicate, the
compact black-box model must not be able to generate energy. This simple idea
is verified in this section through a multi-stage adaptive sampling scheme [45].

This section illustrates the passivity verification scheme originally reported
in [45], providing an efficient tool for checking passivity of large-scale macro-
models with a large ports count.
The first step of the proposed methodology requires to further re-formulate
the passivity condition of a scattering system (3.25) in terms of the passivity
metric (3.26) observations, by stating the passivity verification problem as

Find all local maxima larger than a given threshold γ of a continuous uni-
variate function of frequency φ(ω) over the entire frequency axis.

The solution of this (classic) optimization problem seems straightforward,
however:

1. It is necessary to detect all local maxima of φ(ω), to verify whether ones
of them exceed the passivity threshold γ. Unfortunately, φ(ω) commonly
shows multiple maxima.

2. The passivity metric variation is characterized by sharp peaks, narrowed
in a very small frequency band, usually close to the critical threshold.
Hence, the exact location of all local maxima is hard to be detected
via sampling, and it is equally difficult to verify with a finite number of
samples whether a given point or its neighbors correspond to a passivity
violation.

An example of these behaviors is reported in both Fig. 3.2 and Fig. 3.3, the
latter depicting a detailed view in a zoomed frequency region.

These challenges motivate the main passivity-driven features of the pre-
sented multi-stage adaptive sampling scheme [45], which tunes its resolution
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Fig. 3.2 Top panel: graphical illustration of the adaptive sampling-based passiv-
ity characterization. Bottom panel: rescaled passivity metric θ(ζ) after adaptive
frequency warping. From [45] © 2021 IEEE.

by monitoring fast variations of φ(ω) and its distance to the critical threshold
γ, while limiting the overall number of required observations K.

The same structure provided by [45] is used in the following to illustrate the
two-stage passivity verification scheme. Section 3.3.1 provides the initial parti-
tioning approach that leads to the definition of (potentially many) frequency
subbands, aimed at rescaling the passivity metric into a smoother equivalent
function through a warping procedure. Section 3.3.2 illustrates a hierarchical
refinement scheme based on a tree-search approach to identify all possible peaks
in each (independent) subband. The result of these two steps is a reliable
and efficient passivity characterization scheme, presented in Sec. 3.3.3, that
is able to overcome most of the limitations of standard methods presented in
Section 3.1.4. Numerical results supporting this statement will be provided
both in Section 3.5.1 and through the following algorithm description.
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Fig. 3.3 Enlarged view of Figure 3.2. From [45] © 2021 IEEE.

3.3.1 Stage 1: adaptive frequency warping via poles
location

The first step of the procedure defines an invertible nonlinear transformation

θ(ζ) = φ(W−1(ζ)) (3.45)

inducing the change of variable ζ = W(ω). The goal of (3.45) is to obtain
a smoothed version of the passivity metric φ(ω), by “flattening” sharp peaks
so that the resulting θ(ζ) exhibits a uniform variation in the band of interest.
This condition is reached by means of a suitable warping function W , obtained
as follows. First, a set of control points Ω = {ω̂ℓ, ℓ = 0, . . . , L} are defined as

0 = ω̂0 < ω̂1 < · · · < ω̂ℓ < ω̂ℓ+1 < · · · < ω̂L =∞ (3.46)
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The nonlinear change of variable W is constructed assembling piecewise linear
mapping of each subband bounded by two control points ω ∈ [ω̂ℓ, ω̂ℓ+1] to the
corresponding normalized interval ζ ∈ [ℓ, ℓ + 1]. This condition formally reads

ζ = ℓ + ω − ω̂ℓ

∆ℓ

∀ω ∈ [ω̂ℓ, ω̂ℓ+1], ℓ = 0, . . . , L− 2 (3.47)

with ∆ℓ = ω̂ℓ+1 − ω̂ℓ length of the ℓ-th subband. To deal with the asymptotic
(infinite) frequency, the last subband is defined as

ζ = ℓ + ω − ω̂ℓ

ω
∀ω ∈ [ω̂ℓ, ω̂ℓ+1], ℓ = L− 1 (3.48)

The effect of the warping function W is to map the (infinite) frequency
axis ω ∈ [0, +∞) into the normalized interval [0, L], producing the result
of Fig. 3.2 and Fig. 3.3. Both figures show how nonuniform controls points
(indicated with crosses) in the original frequency axis (top panels) are mapped
to an equivalent uniform distribution into the normalized interval (bottom),
while retaining the same singular value information. The warping effect of the
set Ω is provided by the concentration and location of control points, which
must be selected to enclose sharp peaks of the passivity metric φ(ω), such
that in the (normalized) domain ζ all tight spikes are enlarged while broad
maxima are tightened. The result is that the warped passivity metric θ(ζ)
show local minima in each (normalized) subband with a similar extension,
while fast variations and maxima around the passivity threshold are practically
eliminated. The optimal situation is characterized by single (or a very limited
number of) peaks in each interval, mostly located at one of the subband edge.
This condition is reached in Fig. 3.2 with a proper choice of control points,
detailed next.

Control points selection

The control points selection procedure [45] is based on the assumption that
variations in the passivity metric φ(ω), i.e. in the singular values trajectories,
of rational model (4.8) are ultimately induced by poles/residues location, which
turns out to be responsible for variations of the transfer matrix responses.
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Notice that the final goal is to tune the size of each interval ∆ℓ, choosing
control points ω̂ℓ such that

• a tight subband (small ∆ℓ) encloses sharp changes in φ(ω), so that the
warping effect is able to flatten (enlarge) these maxima in the normalized
axis ζ

• a wide interval (large ∆ℓ) captures gradual (in the limit case nearly
constant) variations of φ(ω), inducing a relaxation of θ(ζ).

Thus, a set of points is obtained by taking advantage of poles location, as
originally presented in [66], defining

ωn,r = βn + αntan rπ

2(R + 1) r = −R, · · · , R (3.49)

for each pair of complex conjugate poles pn = αn ± jβn, where R is a control
parameter necessary to tune the resulting number of samples for each pole.
Points defined as in (3.49) include negative values, which are disregarded. Thus,
the set of control points Ω includes all ωn,r ≥ 0 sorted in ascending order. At
last, set Ω is processed to avoid an excessive number of samples by setting a
maximum resolution ∆ω defined as in [45]

∆ω = pmax

Nρ
(3.50)

with pmax = max(ωmax, maxn |pn|) and ρ≫ 1 additional control parameter.

Using the set of control points Ω defined blindly as in [45] leads to a poor
preprocessing step for passivity verification purposes, considering that

Cp1 an excessive number of subbands are created if the control parameters
values are set as in [45]. This is a conservative choice that may compromise
the efficiency of a sampling scheme, which ideally requires a small value
of points per pole R. On the other hand, reducing this parameter may
compromise the spacing of control points at the highest frequencies, in
particular when ω > ωmax.

Cp2 sampling via (3.49) in case of real poles leads to a poor distribution of
control points.
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C3 the pruning procedure by means of (3.50) may remove poles with a small
imaginary part, that show a tight interval ∆ℓ.

A set of control parameters Rν with ν = {cp, rp, hf} are defined to compen-
sate for Cp1,p2. These are selected such that:

• Rcp, for complex (conjugate) poles, and can be safely small, even Rcp = 1;
• Rrp, for real poles, so should be at least Rrp ≥ 2;
• Rhf , for poles with magnitude of real/imaginary component strictly larger

than ωmax, and should be even bigger, with at least Rhf ≥ 3.

The third condition C3 is mitigated by artificially changing the real compo-
nent of highly resonant poles in (3.49), so that

αn ← c · αn if Qn ≈
|βn|

2 |αn|
> Qmax (3.51)

with common settings c = 50 and Qmax = 500.

Finally, a dedicated sample distribution is used for the last frequency band
beyond the last training point ωmax. Indeed, the adaptive sampling must cover
the all frequency axis, including ω =∞, so that this sample is included into Ω
as well as other κ + 1 logarithmically spaced points defined as

ων = ωmax · 10d ν
κ ν = 0, · · · , κ (3.52)

with the purpose of extending to d decades after ωmax. The last two parameters
(out of eight) of the warping procedure are normally set to d ≥ 0.5 and κ ≥ 2.

To summarize, the first stage of the presented passivity verification scheme
includes a warping strategy based on a fixed set of control points, chosen on
the basis of poles location. This procedure relies on eight control parameters,
whose recommended values are reported in Table 3.3 after a reliability assess-
ment through an extensive heuristic study on a large number of testcases, see
Section 3.5.1. On the other hand, these parameters enable a strong algorithm
flexibility when embedded in a passivity enforcement scheme. Indeed, the
number of control points (i.e. subbands) can be suitably reduced to speed
up early stages of the passivity enforcement loop, when violations are easily
detectable with few subbands, and increased to guarantee that later iterations
will not miss smaller peaks, which are closer to the passivity threshold and



78 Macromodeling of large-scale LTI systems

hard to detect. This condition is reached changing Rν , as demonstrated with
an example in Sec. 3.3.3.

3.3.2 Stage 2: A Modified Naive Multi-scale Search
Optimization

The second stage of the presented scheme provides an adaptive sampling
algorithm to possibly identify all local maxima of θ(ζ) above the passivity
threshold γ = 1, equipped with a hierarchical strategy to be applied on each
normalized interval ζ ∈ Xℓ = [ℓ, ℓ + 1].

Among the several sparse sampling techniques, the presented passivity
verification builds on a tree-based algorithm that follows a divide-and-conquer
approach equipped with restarting strategies, namely the Naive Multi-scale
Search Optimization (NMSO) [83]. Notice that the presented problem – find
a (global) maxima of a monovariate objective function as θ(ζ) with a finite
number of samples– lies in the class of well-known optimization problems
extensively addressed by the literature [84–88]. Nevertheless, as most of the
alternatives already available, also the effectiveness of the NMSO may be
compromised by the presence of multiple local maxima in the search domain.
This motivates the first stage of the presented procedure, the warping and
frequency splitting approach of Section 3.3.1, whose objective is to minimize
the number of peaks included in each subband Xℓ = [ζℓ, ζℓ+1]. Thus, the second
stage of the passivity verification applies on each individual Xℓ the (modified)
NMSO algorithm, which is usually able to perform at its best thanks to the
provided working conditions (mostly only one maximum per subband).

The following framework simplifies the notation by referring to the search
space as the normalized interval X = X0 = [0, 1].

The presented algorithm expands nodes of a tree T at a given level h ≥ 0
every iteration, with the goal of obtaining a sparse segmentation of the search
space X into a number of Mh cells defined as

Xh,i = [iM−h, (i + 1)M−h], i = 0, . . . , Mh − 1. (3.53)
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where h indicates the refinement level (or scale). The center of every cell,
here indicated as leaf or node, is analytically defined as ζh,i = (i + 1

2)M−h.
Each expansion sequence increases the leaves number of a factor M ≥ 2, by
adaptively creating new children at a deeper scale. Our implementation is
based on an odd expansion factor M .

As already stated, the final goal is to find all maxima of θ(ζ) in X with the
minimum number of evaluations θh,i = θ(ζh,i) of the objective function. This
condition is achieved by means of the adaptive hierarchical refinement strategy
illustrated in Fig. 3.4. Notice that, once a prescribed scale h is defined, two set
of leaves can be identified:

Lh the set of all possible nodes of the complete tree, meaning the maximum
number of evaluations at the scale h, indicated by (all) dots of Fig. 3.4

Eh ⊆ Lh the (sub)set of evaluated leaves, corresponding to actual samples of
the objective function, the colored dots of Fig. 3.4.

h = 0

h = 1

h = 2

h = 3

ζ = 0 ζ = 1

ζh,i

{ζh+1,j , j ∈ Jh,i}

Fig. 3.4 Representation of a M -tree, with odd M = 3, up to the level h = 3. Leaves
are indicated with dots, colored ones showing the set of evaluated nodes Eh. Yellow
dots denote expanded leaves, that cannot be part of a new refinement, while red dots
indicate candidates for future refinements (elements of C). From [45] © 2021 IEEE.
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3.3.3 The adaptive sampling scheme

Algorithm 3 reports a summary of the procedure, which is detailed through
this section. The tree expansion process follows a global iteration index µ.
Observing the set of computed leaves Eµ at a given iteration µ, three scales of
the tree T can be identified

• hmin: the highest level among all leaves in Eµ

• hmax: the deepest level among all leaves in Eµ

• h (current level): the level of the leaf under investigation, the latter
indicated as current node.

Furthermore, the set of evaluated leaves Eµ can be partitioned as

Eµ = Cµ ∪ Bµ (3.54)

where

Cµ gathers all (candidates) nodes that can be exploited for an expansion, e.g.
the yellow dots of Fig. 3.4;

Bµ (the basket) collects leaves that cannot be a candidate for refinement since
fulfilling a stopping criterion (see next).

Implementation assumptions

With the goal of keeping under control the overall count of samples, an (initial)
maximum number of function evaluations (samples) is set through the budget
ne. Depending on tree evolution, this budget may be updated dynamically
through iterations, see later (3.72). Therefore, the algorithm is parameterized
by a sequence of tentative budgets collected in vector ne. If the initial budget
needs to be increased, the next element in vector ne will be used as current
budget. This procedure will be formally detailed later in a suitable paragraph.
We recall that our implementation uses an odd expansion factor M .

Algorithm initialization

The algorithm starts by initializing the iteration index µ = 0 and computes
all tree leaves up to a given initial refinement level h0 ≥ 0. This requires to
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Algorithm 3 Find θmax = arg max θ(ζ) for ζ ∈ [0, 1]
Require: h0, M , δζ, δθ, δη, ε, ϱ, ne, δne

1: Initialize µ = 0, h← h0, B0 = ∅
2: Initialize C0 = {ζh,i, i = 0, .., Mh − 1}, K = Mh

3: Initialize θmax = −∞
4: while Cµ ̸= ∅ do
5: Choose current point ζh,ı∗ via (3.58)
6: Expand current point via (3.57)
7: K ← K + M − 1
8: Update θmax ← max{θmax, {ζh+1,j, j ∈ Jh,ı∗}}
9: if K > ne then

10: if U1 AND (U2 OR U3) then
11: update budget via (3.72)
12: update ε← ϱ ε
13: else
14: go to 27
15: end if
16: end if
17: if S1 OR S2 OR S3 then
18: insert new points in basket via (3.67)
19: h← hmin
20: reset ε
21: else
22: flag new points for refinement via (3.65)
23: h← h + 1
24: end if
25: µ← µ + 1
26: end while
27: return samples Eµ = Cµ ∪ Bµ and maximum θmax

compute samples of the target function θ (the passivity metric after rescaling)
at all points in the set {ζh0,i, i = 0, . . . , Mh − 1}. These new nodes are then
gathered in the set E0 = C0, while the basket is initialized as B0 = ∅.

Leaves refinement (expansion process)

The refinement of a cell Xh,i into M leaves (children) at scale h + 1 is defined as

Xh+1,j, j ∈ Jh,i = {Mi, . . . , M(i + 1)− 1} (3.55)
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where indexes of leaves inside the cone of influence of leaf ζh,i are collected in
Jh,i. Notice that the implementation assumption of an odd partition factor
M enables to re-use the information of the node under refinement, since it
coincides with the middle point of its children

ζh+1,Mi+⌊M/2⌋ = ζh,i, (3.56)

thus avoiding one evaluation. A new labeling of the node can be simply applied
as in the illustrative example of Fig. 3.4. Consider also that relabeling ζh,i

(after its expansion) can lead to an update of the minimum level hmin among
candidates for the next refinement. Thus, the refinement of a node can be
formally expressed as

Eµ+1 = (Eµ − {ζh,i}) ∪ {ζh+1,j : j ∈ Jh,i} (3.57)

Best candidate for expansion

The main step of a tree-based adaptive sampling procedure is the refinement
of a leaf (3.57), which requires being able of selecting the best candidate from
the set Cµ. With the goal of identifying all local maxima, this corresponds to
the node defined as

ζh,ı∗ = arg max{θ(ζh,i) : ζh,i ∈ Cµ} (3.58)

readily the leaf at the h-th level with the biggest target function value. In
other words, our framework is based on the simple strategy of expanding nodes
with the largest passivity metric among all available points, following the same
principle that rules any optimistic optimization algorithm [85, 86] as the NMSO.

Restarting criteria and nodes grouping

The algorithm presented in [45] proposes several stopping conditions to restart
a sequence of expansion, i.e. to decide if leaves created during the last refine-
ment (3.57) do not require being further exploited. This choice is based on a
set of control parameters such that three main restart criteria are checked:
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S1 : a maximum resolution is achieved at the refinement scale h + 1 when

M−h−1 < δζ (3.59)

with δζ control parameter.
S2 : the maximum change of the target function within neighbor children

(leaves expanded at level h + 1) is below a prescribed threshold

∆h,i < δθ (3.60)

defining

∆h,i = max{|θh+1,j+1 − θh+1,j|, j = Mi, . . . , M(i + 1)− 2} (3.61)

with δθ control parameter.
S3 : the maximum change of the target function within neighbor children is

smaller than their distance from the passivity threshold

∆h,i < |âθh,i − γ|, (3.62)

with âθh,i = max{θ(ζh+1,j), j ∈ Jh,i} (3.63)

This last criterion (3.62) is checked only after a minimum resolution has
been reached, so that

M−h−1 < δη (3.64)

with δη control parameter.

These three conditions enable a classification procedure on the resulting nodes
from an expansion process, assigning leaves to either Cµ+1 or Bµ+1.

In particular, if all criteria S1, S2, S3 are not verified (false) all leaves ζh+1,j

obtained from the latest expansion are classified as potentially critical and are
assigned to the set of candidates for refinements as

Cµ+1 = (Cµ − {ζh,i}) ∪ {ζh+1,j, j ∈ Jh,i} . (3.65)
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Notice that one of these ζh+1,j is most likely to be refined at the next iteration
(if the budget is not exceeded), while the rest are still kept in consideration
for possible future expansions. This step increases the tree depth with an
increment of the current level as

h← h + 1 . (3.66)

In the other case, even if only one of the conditions S1, S2, S3 is verified all
leaves ζh+1,j are classified as non-critical and are assigned to the basket

Bµ+1 = (Bµ − {ζh,i}) ∪ {ζh+1,j, j ∈ Jh,i}. (3.67)

This situation corresponds to a restart of the exploration path so that the
current level is reset to

h← hmin (3.68)

in order to improve the exploration feature of the overall sampling strategy by
neglecting further refinements of nodes ζh+1,j.

Budget improvement

When the maximum number of samples, the budget, is reached the adaptive
sampling process is terminated. Nevertheless, it may be the case that the
algorithm stops either while exploiting a critical node or before exploring a
portion of the space never expanded. To avoid these situations, a budget
improvement (equivalently denoted as increase or update) is triggered by three
criteria

U1 : all children from the latest expansion are passive

âθh,i < γ (3.69)

U2 : one of the children is within a relative distance ε to the passivity
threshold

γ − âθh,iâθh,i

< ε (3.70)

with ε control parameter.
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U3 : the maximum change of the target function (3.63) within neighbor
children is larger than their distance to the passivity threshold

|γ − âθh,i| < ∆h,i (3.71)

Equivalently to S3, this criterion is checked only when a target resolution
is exceeded (3.64).

A budget update is triggered by the verification of U1 and at least one be-
tween U2 and U3. Notice that this situation enables to avoid further refinements
when a passivity violation is already detected, boosting performances in view
of a passivity enforcement scheme as in Section 3.4. The budget improvement
is in general defined as

ne ← ne + δne (3.72)

with δne a control parameter that can varies with the iteration count.

Notice that criterion U2 may be become ineffective (since always true)
while increasing the refinement level h when the peak under investigation is
very close to the passivity threshold. To avoid this situation, any budget
improvement (3.72) is associated to a tightening of ε in (3.70) by defining the
gain ϱ < 1 as ε← ϱε, while every restart of the expansion sequence restores
the original value of ε.

Recycling basket elements

The algorithm proposed in [45] differs from the original NMSO also for the use
of the basket Bµ. Indeed, the passivity-driven sampling always precludes the
use of nodes in the basket to start new expansion sequence when all possible
candidates have been exploited and Cµ = ∅. This implementation choice is
performed in favor of runtime at the price of a reduced exploration capability.
On the other hand, simple modifications apply to restore the original NMSO
feature, the so-called basket reuse, that relocates elements of Bµ to the set of
possible candidates for refinement Cµ+1 when needed. The recommendation
of [45] is to apply this strategy only if a very rigorous verification is needed, as
a final step of a very meticulous passivity enforcement procedure.
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Table 3.3 Stage 1: frequency warping. Algorithm parameters as in [45] © 2021 IEEE.

Step 1: Frequency Warping
Mode ρ Rcp Rrp Rhf c Qmax κ d Emphasis
soft 103 1 2 5 50 500 3 0.5 speed
hard ∞ 3 3 6 50 500 3 0.5 accuracy
final ∞ 3 3 6 50 500 3 0.5 qualification

Table 3.4 Stage 2: adaptive sampling. Algorithm parameters as in [45] © 2021 IEEE.

Step 2: Modified NMSO
Mode M δζ , δθ δη ε ϱ ne Emphasis
soft 5 10−8 10−3 10−3 0.1 7, 10, 20, . . . , 100 speed
hard 5 10−8 10−2 10−3 0.1 10, 20, . . . , 100 accuracy
final 3 10−8 10−3 10−4 0.1 50, 100, . . . , 250 qualification

Three parameters combinations are recommended to improve speed (soft),
accuracy (hard) and to stress model qualification (final).

Parameters settings

A summary of the two set of control parameters necessary for the stage 1 and 2
of the presented scheme are reported in Table 3.3 and 3.4, respectively. Both of
them illustrate three sets of recommended settings from [45], depending on the
required level of accuracy while performing the passivity verification. Three
operating modes are suggested:

1. soft, suitable for initial passivity enforcement iterations when passivity
violations are easily detectable and the sampling accuracy is not an issue

2. hard, to be used when the passivity metric is expected to be very close to
the critical threshold γ, since the model is either very accurate or it is
the result of a possible incomplete passivity enforcement scheme

3. final, for the model characterization after completing passivity enforce-
ment, as a final passivity certification stage.

Figure 3.5 shows the result of both the soft and final mode on a significant
example, the benchmark #444, selected among the full database provided in
Sec. 3.5.1. Starting with rational model of a P = 92 ports system with n̄ = 16
poles (and a resulting number of states N = 1472), the presented adaptive
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Fig. 3.5 Passivity characterization via adaptive sampling: benchmark #444. While
the top panel shows the passivity metric φ(ω), the bottom panel reports the rescaling
effect introduced by the Stage 1 of the procedure. From [45] © 2021 IEEE.

sampling scheme with the soft parameters configurations required K = 2255
function evaluations (samples) to identify 28 points with φ(ω) > γ, by splitting
the frequency axis with L = 30 control points. The other two modes, hard and
final, provided respectively K = 4245 samples, of which 47 over the threshold,
and K = 9827 evaluations, with 271 violations. Both cases take advantage of
the same number of control points L = 55.

Considering that the worst-case cost in terms of operations of the proposed
algorithm is O(Kmax(P 3 + P 2n̄)), with Kmax = (L− 1) ·max{ne}, all results
confirm an efficient adaptive sampling capability also for this critical example.
Indeed, both the soft and hard modes required ≈ 78% of the corresponding



88 Macromodeling of large-scale LTI systems

Fig. 3.6 Detailed view of Fig. 3.5 on a band with critical passivity violations, close to
the passivity threshold, and hard to be identified with relaxed parameters settings
(soft mode). From [45] © 2021 IEEE.

Kmax, while the verification with the final setting stopped with ≈ 73% of the
upper limit cost.

Notice that local maxima identified by the presented algorithm in each
subband Xℓ are not necessarily maxima of the passivity metric φ(ω) over the
frequency axis. Thus, a suitable postprocessing phase is needed to remove
among all identified points those that do not correspond to an actual peak of
the passivity metric. The final adaptive sampling result is the identification of
7, 14, and 21 local maxima after soft, hard, and final mode, respectively.
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Notice that these outcomes are consistent with running the adaptive sam-
pling in soft configuration, allowing an infinite number of function evaluations
by setting ne =∞ and enabling the basket reuse.

3.4 Enforcing structured model passivity

The macromodel of a passive structure must not generate energy of its own.
Therefore, the model passivity must be verified and enforced through a suitable
iteration process. The focus of this section is the passivity enforcement of
the structured compressed macromodel (3.42), assuming that an appropriate
passivity characterization is available, as the one presented in Section 3.3. The
asymptotic model stability is a requirement that is not questioned here, since
provided by construction from standard VF. Only the scattering multiport
representation will be considered in the following, but the generalization of this
procedure for other representations is straightforward [20].
For the moment, it is sufficient to see that a passive scattering model requires a
bounded real transfer function. Since model asymptotic stability and realness
of coefficients matrices is guaranteed by construction, this condition is implied
by

σmax{H(jω)} ≤ 1 ∀ω ∈ R, (3.73)

where σmax indicates the largest singular value of the system response H(jω).

The literature offers several approaches [55, 64, 57, 80] to enforce (3.73).
The iterative scheme adopted here is based on the perturbation of local singular
values where the passivity condition (3.73) is violated. This procedure, that
iteratively remove these passivity violations by perturbing model coefficients,
is well-established in most of state-of-the-art modeling tools [33]. Considering
a single passive violation that occurs at frequency ωk, the singular value
decomposition of the model response H(jωk) = Hk ∈ CP ×P reads

Hk = UkΣkVH
k (3.74)

where Uk,Vk are (unitary orthogonal) singular vector matrices, and Σk collects
the P singular values. To find the passivity violations, i.e. all frequencies ωk,
we use the adaptive sampling scheme [45] provided in Section 3.3.
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A standard procedure is to write a first-order perturbation of each singular
value that violates (3.73) as

âσk ≈ σk + ∆σk = σk + Re
î
uH

k ∆Hkvk

ï
(3.75)

where σk > 1 is a critical singular value (hence a passivity violation), uk and
vk are the associated left and right singular vectors, while ∆Hk is the resulting
perturbation of the model response at the frequency ωk. To guarantee local
passivity at this frequency, condition (3.73) requires that âσk < 1 and leads to

Re
î
uH

k ∆Hkvk

ï
≤ 1− σk . (3.76)

The condition (3.76) can be used to enforce passivity at all frequencies,
including the asymptotic point at s =∞, by perturbing all model coefficients
concurrently. Note that in the compressed framework the perturbation required
to obtain a passive direct coupling is not straightforward: all strategies suggested
by [34] are either sub-optimal or based on the definition of a Linear Matrix
Inequality (LMI), hence computationally very expensive (see Section 3.3). On
the contrary, the approach proposed in [30] perturbs all coefficients concurrently
while enforcing (3.76) at all frequencies, including s =∞. The direct coupling
terms rq∞ are then locked only when the asymptotic passivity is reached, in
order to decrease the number of free variables with a (minor) improvement in
terms of runtime and a smaller complexity.

The first step of the passivity enforcement relates model coefficients with
the (vectorized) induced perturbation as

xw = vec(∆Rw) (3.77)

where ∆Rw is the model coefficients perturbation, gathered as in (3.44) by
collecting also direct coupling terms. Using (3.44), the local singular value
perturbation can be defined as

Re
î
uH

k ∆Hkvk

ï
= Re

î
(vT

k ⊗ uH
k )vec(∆Hk)

ï
(3.78)

= Re
î
(vT

k ⊗ uH
k )V̄ Γk(Iρ ⊗φT

k )
ï

ü ûú ý
pT

xw
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showing that the local passivity constraints (3.76) can be written in terms of
model coefficients as

pT
k xw ≤ 1− σk . (3.79)

Notice that in practical situation (3.79) is cast in a matrix form since aggregate
constraints are needed to compensate for multiple passivity violations.

The constrained least-squares problem iteratively solved by the passivity
enforcement aims at minimizing the cost function

E2 =
ρØ

q=1
E2

q =
ρØ

q=1

KØ
k=1
|∆ âwq(jωk)|2 (3.80)

subject to a set of inequalities constraints (3.79) and, in our case, to equality
constraints (3.40) to enforce the prescribed level of accuracy at DC.

Notice that (3.80) is quadratic in the free variables xw, which are only the
ρ · (Nw + 1) instead of the P 2 · (Nw + 1) associated to the full model (3.42).
Indeed, working with the compressed macromodel coefficients allows for a
drastic reduction in decision variables while equivalently enforcing the passivity
of the full-size P ×P system. Thus, the complexity of the passivity enforcement
scheme is independent from the number of system electrical ports P and it
is only associated with the dimension of the basis functions set ρ used for
the data compression. Furthermore, the low-frequency structure introduced
by means of the filtering term Γ(s) does not introduce extra unknowns into
the process, since poles p∞

ν are constant, and this matrix plays the role of a
frequency weight in the constraint definition (3.78).

3.5 Results on passivity and modeling

We now report a set of results to demonstrate the efficiency and scalability of the
proposed macromodeling framework. First, Section 3.5.1 presents numerical
results to estimate the performance of the passivity verification scheme of
Section 3.3. Then, Section 3.5.2 demonstrates the scalability of the passive
macromodeling procedure on shielding enclosure structures with increasing
complexity, up to 1024 ports. All numerical examples are obtained with the
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same Workstation of Section 2.2.3, based on an i9-7900X CPU running at
3.3 GHz with 64 GB RAM.

3.5.1 The passivity verification scheme

The sampling-based passivity verification presented in Section 3.3 is here
validated on numerous benchmarks, in order to assess both reliability and
efficiency of the algorithm. Results originally documented in [45] are reported
here with the intent of providing a complete overview of the scheme. At first,
a comprehensive result on a large number of benchmarks obtained from a
vast database of macromodels is reported. At last, two significant large-scale
examples are presented, namely a 400-port shielding enclosure and a 640-port
via array (the latter to show that proposed algorithm is general purpose and
applicable to any rational macromodel).

Quality check: assessing consistency and efficiency

This section provides results of the passivity check scheme on a total of 447 mod-
els with different complexity, both in terms of ports and dynamic order. These
benchmarks are obtained from a database of 243 different structures, processed
by means of a state-of-the-art commercial macromodeling tool (IdEM [33]) to
obtain a standard VF rational model as in (3.1). After the fitting step, 206 of
these models were non-passive, depicting a variety of passivity metric behaviors
exceeding the passivity threshold γ. Since the violation extent of some models
was sufficiently large to be identified with a trivial search, we postprocessed 204
of these non-passive models with few iterations of a passivity enforcement loop.
Since the goal of the presented algorithm is to adaptively sample the passivity
metric, which is strongly modified during each enforcement iteration, these
(almost passive) models can be regarded as an independent set of test cases.
Furthermore, since at each enforcement iteration the leading violations are
removed or contracted toward the passivity threshold, the latest set of models
show a most challenging framework due to the presence of tight violations that
are hardly detectable with a poor verification approach. The final outcome is a
set of 447 models, used to stress the presented passivity verification scheme.
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Table 3.5 Summary of sampling-based passivity check. From [45] © 2021 IEEE.

# Tests Passive TP FP FN Passive but FN
447 179 446 0 1 1

Each test is classified as: True Positive (TP), False
Positive (FP), False Negative (FN), see text.

Table 3.5 illustrates a first summary of this investigation, by comparing
the sampling-based passivity results with the standard Hamiltonian approach
based on (3.28) or (3.30). To this end, each testcase can be classified as

• TP(True Positive), if both passivity verification approaches provided the
same result, either passive or not passive;

• FP (False Positive), if the sampling scheme flagged the model as passive
while the Hamiltonian verification did not;

• FN (False Negative), if the Hamiltonian verification flagged a model as
passive while the sampling scheme did not;

• Passive but FN reports the number of non-passive models that the
Hamiltionian check failed to classify, missing some passivity violation.

The two algorithms provided the same model classification for 99.9% of
the cases, while only once the presented sampling algorithm identified a non-
passive model while the Hamiltonian-based characterization provided a positive
(passive) outcome. A further investigation shows that the only False Negative
was produced by a non-passive model with a very narrow and small violation
(|σmax− 1| ≈ 1 · 10−10), reported in Fig. 3.7. In this case, imaginary eigenvalues
of the Hamitolnian matrix (3.28) were not detected so that the corresponding
check provided a passive flag. From the outcome of this intensive testing
campaign, two interesting conclusions can be stated in terms of reliability.
First, the provided sampling approach seems to be as robust as standard
Hamiltonian approaches, with the advantage of identifying also those critical
small violations that may be lost in the uncommon (and extraordinary) event
of a Hamiltonian test fail the due to an ill-conditioned matrix.
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Fig. 3.7 False Negative case (#260): the tight passivity violation is not identified
with a standard Hamiltonian-based check. Bottom: detail of the rescaled metric θ(ζ)
after warping of φ(ω). From [45] © 2021 IEEE.

Next, the two passivity verification approaches are compared in terms of
runtime. Figure 3.8 shows the result produced with a prototype MATLAB [89]
code, requiring a full Hamiltonian solver, and compares the required elapsed
time (top panel) of the two strategies for an increasing model complexity,
reported in terms of ports P , poles n̄ and states N in the bottom panel. From
this figure it is evident that the Hamiltonian check is still unbeatable in the
small-size models case, even if both strategies provided the same outcome in less
than a second. Turning to the large-scale investigated examples, the opposite
situation arises. In this configuration, the proposed scheme is able to provide
results in less than 10 seconds for all examples, providing a speedup of 50×
with respect to the standard Hamiltonian characterization.

Notice also that, as expected, the runtime of the proposed algorithm is
case-dependent and can not be inferred a priori looking at the model complexity.
This is clearly confirmed by Fig. 3.8, which in fact demonstrates how two models
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Fig. 3.8 Regression test results: elapsed time (top) and model complexity (bottom)
are reported for all 447 benchmarks. From [45] © 2021 IEEE.

with similar complexity may lead to quite different results, as reported for most
of the medium-size tests. Indeed, some observations are in order:

1. the extendend Hamiltonian pencil (3.30), more numerically stable and
robust, was necessary to handle models with almost singular direct cou-
pling term ∥D∥2 ≈ 1, at the price of an increased runtime with respect
to the classic Hamiltonian formulation (3.28);

2. the Hamiltonian approach is able to detect only the crossing of γ by sin-
gular values trajectories, while the presented sampling technique increases
the resolution at local maxima which are close to the threshold up to the
point to distinguish whether they are associated to a passivity violation
or not.

The latter further supports previous consideration on the False Negative testcase
reported in Fig. 3.7. Indeed, this tight violation is the result of a narrowband
singular value crossing of threshold γ in two nearby frequency points, that
find their couterpart in two (almost defective) imaginary eigenvalues of an ill-
conditioned Hamiltonian matrix. In the same condition, the adaptive sampling
scheme improves the refinement level until the local maxima characterization is
satisfactory. On the other hand, if the peaks of the passivity metric stay very
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close to the threshold without exceeding it, the presented strategy will perform
in the same way with the different outcome of not detecting any violation.
This may provide a slight computational overhead when the passivity metric
is consistently near γ. Conversely, the computational effort of a Hamiltonian
approach remains constant, in the latter case without identifying any imaginary
eigenvalues, with the possible risk of encounter the situation of Fig. 3.7, thus
providing an unreliable result.

This further supports the need of a localized search strategy for each
subband, even if this choice may increase the sampling effort in region of the
space where passivity violations are not an issue. To this end, an illustrative
example is presented in Fig. 3.9. This toy case is built on a system with two
complex conjugate pairs of poles, defined to be very close one another, such
that p1

n = α1
n ± jω1

n and p2
n = α2

n ± jω2
n where ωi

n = ωi
0 + n · δωi and δωi ≪ ωi

0.
The passivity metric of this system changes unpredictably according to the
residues, and it may show strong variations. On the other hand, it is likely
that the two trajectories centered at ω1

0 and ω2
0 will not be distinguishable

using a coarse sampling approach or with the only use of control points, as
documented in Fig. 3.9. This motivates the presence of samples in frequency
regions that may seem unnecessarily over-sampled, as at those frequencies
higher than 10 GHz in Fig. 3.2. Notice that without knowing in advance the
passivity metric variations, assuming the worst case scenario enables avoiding
to miss narrow maxima as it already happened in the very simple example of
Fig. 3.9.

Fig. 3.9 A synthetic example to show how control points alone cannot provide
full information of local peaks (and their variation): a local refinement is needed.
From [45] © 2021 IEEE.
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A 400-ports shielding enclosure

In this section a shielding enclosure with P = 400 is used as benchmark to
analyze the sampling-based passivity verification with several Hamiltonian
strategies available in the commercial macromodeling tool IdEM [33].

For this example, the unprocessed MoM dataset, defined as a set of 500
frequency responses in the range [0.25, 990]MHz, is used to build a standard VF
model via IdEM [33]. The result is a rational representation with n̄ = 26 poles,
that can be suitably converted into an equivalent state-space realization with
order N = 10400. Model validation for a selected set of responses is reported
in Fig. 3.10, proving a sufficient level of accuracy. Table 3.6 summarizes the
comparison result of four different passivity check strategies:

1. Full Hamiltonian: computes imaginary eigenvalues of the standard Hamil-
tonian matrix (3.28);

2. Sparse Hamiltonian: takes advantage of an iterative multishift Krylov
subspace iteration within the Hamiltonian solver, as reported in [65];

3. Adaptive Hamiltonian: mixes a sparse Hamiltonian eigensolver with a
sampling strategy, as described in [66];

4. The two-stage adaptive sampling scheme of [45].

All Hamiltonian-based check are applied as available in [33], using two operating
modes with T = 1 and T = 8 parallel threads, respectively. The adaptive

Fig. 3.10 Shielding enclosure model validation. From [45] © 2021 IEEE.
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Hamiltonian [33] Proposed in [45]
# Threads Full Sparse Adaptive soft hard final

8 180 76 75 0.4 1.41 4.49
1 226 189 183 1.03 3.19 9.82

Table 3.6 Passivity check of a shielding enclosure model. Runtime (minutes) of four
strategies, under both single- and multi-threaded mode. From [45] © 2021 IEEE.

sampling approach was implemented as a prototype serial MATLAB [89] code,
run by limiting the MATLAB environment to the required multithread level,
affecting the low-level performances of the SVD, therefore slowing down the
single-point passivity metric evaluation (3.26).

Fig. 3.11 Shielding enclosure: passivity metric (top) and a relevant band detail
(bottom). From [45] © 2021 IEEE.

Table 3.6 demonstrates the efficiency of the presented adaptive sampling
technique with respect to standard Hamiltonian approaches, providing a better
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runtime in all cases and an unchanged result in terms of characterization.
Figure 3.11 illustrates the passivity metric (envelop of maxima singular value
trajectories), and indicates with red dots the identified local maxima associated
to passivity violations

A 640-ports via array

The next example is a 20×20 vias array (4:1 signal to ground ratio) constructed
on a 8-layer Printed Circuit Board (PCB). The overall structure is a 640-ports
LTI system, where the first 320 port are defined in the top layer and the
others on the bottom one. The MoM field solver [90] was used to build a set
of responses {H̆(jωk) ∈ CP ×P , k = 1, · · · , K} with K = 150 samples up to
30 GHz. A rational model with n̄ = 40 poles and an overall number of states
N = 25600 was obtained by fitting this dataset with the VF-based identification
tool IdEM [33].

The same passivity verification comparison of the previous example is
provided, in order to assess performances of the adaptive sampling passivity
verification against standard Hamiltonian approaches available in IdEM [33].
Model validation on a set of representative responses is reported in Fig. 3.12.
Figure 3.13 provides the passivity metric (3.26) characteristic obtained with
the sampling-based check of Sec. 3.3, indicating with red dots local maxima
associated to passivity violations. As it can be noticed from the bottom panel
of Fig. 3.13, the different sampling operating modes, soft, hard (not shown) and
final, identified a slightly different number of maxima (10 for the first, and 11
for the other two) motivating the need of different parameters setting. Indeed,
the peak close to 4 GHz is not detected by the fast (soft) mode, that performs
a check in the band up to 4.3 GHz, and it stops after detection of the (largest)
violation close to 2 GHz. This result is consistent with the observations on the
parameters settings provided in Sec. 3.3.3.

Table 3.7 summarizes execution time of the four passivity verification algo-
rithms, showing a drastic improvement with respect to standard Hamiltonian
approaches, at least for the two operating mode soft and hard. Notice that an
excessive memory demand prevents the full Hamiltonian characterization.
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Fig. 3.12 Via array model validation on a set of representative responses. From [45]
© 2021 IEEE.

Fig. 3.13 Sampling-based passivity check results on the via array model. Both hard
(not displayed) and final parameters setting enable to locate all local maxima (see
bottom panel). From [45] © 2021 IEEE.
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Hamiltonian [33] Proposed in [45]
# Threads Full Sparse Adaptive soft hard final

8 Fail 19 29 1.53 8.15 17.35
1 Fail 67 68 4.41 23.1 47.05

Table 3.7 Passivity check of a via array model with P = 640. Elapsed time (minutes)
of four passivity verification strategies, under both single- and multi-threaded mode.
From [45] © 2021 IEEE.

Discussion of sampling-based passivity check results

The results originally presented in [45] prove that the sampling-based passivity
check is the only approach that is able to manage a large-scale macromodel
characterization. Some observations on the algorithm behavior are in order.

• The frequency warping procedure of stage 1 may lead to a large number
of frequency intervals when the number of model poles n̄ increases. Nev-
ertheless, this condition does not limit the algorithm capabilities since
all subbands are treated independently by the actual sampling (stage 2).
Thus, a data-based parallelization of the presented scheme is trivial, and
it is expected to further enhance the already competitive serial implemen-
tation that produced the presented results. Code parallelization has not
been exploited yet, and it is left for later investigations.

• A too soft parameters setting may not allow detecting more than one
maximum per subband. Specifically, this condition may be verified with a
conservative (small) budget selection or with excessively strong stopping
criteria.

• The passivity metric smoothness is the main responsible for the time
performances of the passivity-based check, whose efficiency is strictly
problem dependent and can only be inferred on a statistically base. If
local maxima are sharp and close to the passivity threshold, the adaptive
refinement strategy will possibly require many function evaluations to
estimate if any peak is associated with a passivity violation, as in Fig. 3.13.
This condition is exacerbated by the presence of many local maxima,
reducing the overall speed of the algorithm. On the other hand, if the
passivity metric shows large passivity violations, these are easily detected
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and the algorithm will prevent further refinements, providing a very fast
result.

• Since the algorithm of stage 2 is based on the NMSO, whose asymptotic
consistency is guaranteed [83], by allowing both an infinite budget and bas-
ket reuse the same asymptotic converge is inherited by the passivity-based
sampling. This means that relaxing these two conditions, all local maxima
can be properly identified. This approach was never exploited since not
necessary in all available test cases, that were correctly characterized by
the presented implementation.

3.5.2 Passive modeling of shielding enclosures

This section provides numerical results on the proposed macromodeling strategy
applied to shielding enclosures of increasing size in terms of ports. The original
MoM data is pre-processed with the full-band regularization and extrapolation
routine described in Chapter 2, which provides a suitable starting point for the
modeling phase. This section enriches the results of [30] with additional infor-
mation of the large-scale examples. To conclude, a shielding enclosure with 1024
ports and 72704 states is presented to further stress the scalability of the entire
macromodeling procedure, including fitting and passivity enforcement [19].

A 25-port box

The final result on the 25 port shielding enclosure used as running example
through Chapter 2 is presented here. Two models are constructed on top of the
full-band (modal) scattering responses now defined in the range [0, 1]GHz, and
are used to illustrate the difference of a standard compressed model [34] against
the proposed structured-compressed model of Section 3.2.1. Both models are
fit with the same number of poles Nw = 89, but using two different set of basis
functions. The first model is trained by solving the fitting problem (3.16) on
the unstructured bases obtained from [34] and reported in the bottom panel
of Fig. 2.11. The other model is built on the set of basis resulting from the
BD-SVD of Section 2.2.2, and reported in Fig. 3.1 after rescaling via (3.39)
to enforce the proper low-frequency structure. In addition to the DC-zeros
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multiplicity, model responses level at DC is enforced through the additional
constraint (3.40) to guarantee an exact match with the fitting data.

The enforcement scheme provided in Section 3.4 is used to finally obtain
a passive structured-compressed macromodel of the 25-port box. Details on
performances are provided in the next section in terms of iterations and run-
time. Panel (a) of Fig. 3.14 shows the envelope of maximum singular values
before and after the proposed enforcement loop, confirming a final passive
result. The two models responses are compared in Fig. 3.14, using as reference
the three main system representations: scattering, admittance and impedance
are depicted from panel (b) to (d), respectively. Notice that these results
are obtained after post-processing of scattering (modal) responses of both
macromodels.

Figure 3.14 clearly shows a superior accuracy of the proposed structured
compressed model under different loading conditions, as confirmed by the model
behavior in different representations, in the entire modeling bandwidth up to
DC. A similar result is obtained for all examples reported next.

Scaling up to 400 ports

In this section, the compressed dataset presented in Chapter 2.2.3 are used
as a starting point for the proposed macromodeling scheme, which retains the
low-frequency behavior of the data. In particular, models of shielding enclosures
with 64, 100, 225 and 400 ports will be presented here. Notice that all models
are constructed on scattering (modal) parameters, in the range [0, 1]GHz,
fitting the set of ρ structured basis functions obtained via BD-SVD. Table 3.8
summarizes the result of the structured macromodeling procedure. Regarding
execution time, the VF step shows that, thanks to the data compression phase,
the model extraction is not affected by the number of ports P but only by
the dimension of the basis set ρ, as expected. On the other hand, most of the
elapsed time is spent for the passivity enforcement. Unfortunately, the adopted
iterative scheme does not allow estimating the required number of iterations
(i.e. the elapsed time) in advance, since the importance of passivity violations
are related to the particular trajectories of all singular values. Nevertheless,
the maximum RMS error clearly shows that all models are extremely accurate
throughout the whole bandwidth.
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Fig. 3.14 A 25-port shielding enclosure: (a) passivity characterization before and after
Passivity Enforcement (PE); model validation on a set of representative responses in
scattering, admittance and impedance representation(b)-(d). From [30] © 2022 IEEE.
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Ports ρ Order VF Passivity Enforcement RMS error
Time (s) Time (min) Iterations on S(jω)

25 73 89 86.11 3.5 53 6.77 · 10−4

64 80 85 76.0 13.0 101 3.62 · 10−3

100 82 79 41.5 9.65 43 7.79 · 10−4

225 79 79 58.1 30 41 4.78 · 10−4

400 85 79 65.2 152 52 9.57 · 10−4

Table 3.8 Structured compressed macromodeling on shielding enclosures, built on
the data-compression results of Table 2.2. From [30] © 2022 IEEE.

Figures 3.15 and 3.16 confirm that a similar level of accuracy is preserved
for all representations, after conversion of (modal) models responses to the
physical domain. To conclude, a comparison of standard compressed models as
in [34] with the proposed structured ones confirms how the latter are able to
preserve the same accuracy level down to DC, with a major improvement of
the overall macromodeling phase.

Fig. 3.15 As in Fig. 3.14 for shielding enclosures with P = 64 (panels a and b),
P = 100 (c), and P = 225 (d). Panel (c) from [30] © 2022 IEEE.
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Fig. 3.16 As in Fig. 3.14 for a 400-port box. From [30] © 2022 IEEE.

A passive 1024-ports shielding enclosure

The last result presented in this chapter is aimed at demonstrating the ef-
fectiveness of the overall macromodeling procedure, including the passivity
enforcement. For this reason, a passive model of a shielding enclosure with
1024 ports is presented here, which is the largest test case considered in this
work.

The starting point is the usual frequency characterization consisting of
K = 750 samples in the range [0.02, 1]GHz obtained with the MoM field solver.
The original dataset has been first regularized and extrapolated up to DC
following the procedure of Chapter 2, and a compressed macromodel has been
realized following [34], since requirements on low-frequency accuracy were
relaxed in favor of a simpler result obtained with a reduced number of basis,
hence of model coefficients. This should not be intended as a limitation, but
instead considered as a further confirmation of the presented strategy flexibility
that still guarantees a certain level of accuracy in the low-frequency range
thanks to the additional synthetic samples and the modal representation. The
final rational representation has n̄ = 71 common poles, with a total number
of N = 72704 states, and it is built on a reduced set of 41 basis functions.
Building a full-size model as in (3.19) would have required ≈ 5 · 106 coefficients,
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against the 2952 identified with the compressed framework, with an overall
saving of ≈ 1000× in terms of free variables to be identified during the fitting
step.

Fig. 3.17 Passive model of a 1024-port enclosure: model validation on a set of
representative response, magnitude (a) and phase (b); passivity metric before and
after passivity enforcement (c). From [19] © 2022 IEEE.

The model validation for the scattering parameters, after conversion from
the modal responses, is reported in panels (a) and (b) of Fig. 3.17. Panel (c)
shows the effect of a passivity enforcement scheme on the passivity metric (3.26),
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demonstrating that all singular values are confined just below the passivity
threshold γ = 1, hence the final outcome is passive. To reach this result, the
model extraction required a total of 119 seconds, including data compression,
and around 44.3 hours to enforce the model passivity by taking advantage of
the presented sampling-based check. The overall enforcement loop required
82 iterations, with the first 70 performed using the Algorithm 3 in soft mode
while only 12 rounds required the hard parameters setting, see Tables 3.3 and
3.4. Consider that the passivity enforcement was setup to automatically switch
between the two modes whether the first reach a final passive outcome or when
the maximum iteration count (of 70) is hit, in favor of a faster check during the
first phase. The final check mode at last confirmed the passivity qualification
outcome. The documented result shows how the passivity characterization
(and enforcement) is still the most demanding phase of the all macromodeling
procedure.

Notice that this level of complexity (1024 ports and 72704 states) with a
standard macromodeling tool as IdEM [33] is practically not affordable without
decreasing the overall complexity, i.e. the number model of poles, and ultimately
affecting the final accuracy.

3.6 Conclusions

This Chapter provided a complete framework aimed at improving the state-of-
the-art of macromodeling approaches for the construction of large-scale low-loss
multiport passive systems. The main results of the presented strategy involved
two fields of applications:

1. the identification process in case of high interface ports count and strong
sensitivity to the change of system representation, due to the low-loss
nature of the structure under analysis.

2. the passivity characterization of large-scale macromodels.

The corresponding main outcomes can be summarized as:

1. a complete strategy for reducing the model complexity in terms of coef-
ficients, by controlling low-frequency accuracy and imposing particular
features as DC zeros of several orders. The provided approach builds
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on structured data-compression strategies, that exploit port responses
redundancies, and preserve specific features of the data (as zeros at DC),
which are here included in both the fitting and passivity enforcement
stage. The final result is a procedure that enables to control full-band
modeling accuracy up to DC and reduces the overall model sensitivity to
loading condition, as demonstrated through numerical results.

2. a flexible and sparse compressed model representation, to be further
exploited in transient simulation solvers that are aware of the sparse
configuration to speed-up time-domain numerical solutions. Indeed,
as it will be demonstrated in Chapter 4, the synthesis as equivalent
circuit of large-scale rational model is not the most efficient choice for
the integration in system-level simulations. As a matter of fact, when
both the dynamic order and the count of electrical ports are relevant, the
number of circuit elements associated to model coefficients may drastically
affect the efficiency of reliable transient solvers, as those of the SPICE
family.

3. a hierarchical adaptive-sampling passivity characterization algorithm for
large-scale macromodels. The two-stage scheme, based on a pole-based
warping frequency strategy followed by a passivity-driven tree-search
approach, is proven to be as reliable as state-of-the-art approaches based
on Hamiltonian matrices, with the advantage of a much better scalability
with the model complexity. The presented implementation, combined
with a suitable passivity enforcement scheme, enables building accurate
passive macromodels with many ports and high dynamic order, pushing
the limit of large-scale modeling.

Several numerical results have been presented to support the above state-
ments. Models up to 1024 ports and 72704 states have been shown through
this Chapter, always providing a satisfactory approximation of the related
electromagnetic structure behavior.

Future investigation in the direction of a further increased system complexity
are still needed. First, the code parallelization of the presented schemes have
never been addressed so far, especially regarding the passivity characterization
algorithm. A naive implementation of the sampling-based check that takes
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advantage of multicore or GPU architectures would further push the poten-
tiality of this approach, providing a sensible speed-up to the main bottleneck
of the overall procedure, hence the passivity enforcement. To conclude, the
investigation of power-integrity modeling applications, that are similarly char-
acterized by a relevant number of ports and strong sensitivity to the change of
termination, is left for future research.

All presented results will be used as starting point for Chapter 4, whose
aim is the application of these compact large-scale models in a suitable hybrid
transient simulation framework for the time-domain characterization of shielding
enclosures.



Chapter 4

Transient analysis

This Chapter provides a transient hybrid solver formulation that combines a
macromodeling framework and an iterative decoupling approach based on an
advanced Waveform Relaxation (WR) method. Thus, we continue our investi-
gation on the challenging problem associated with energy-selective shielding
enclosures [3, 7, 10] moving the focus to their time-domain analysis. The
reference structure is a multiport Linear Time Invariant (LTI) system (the
metallic box) terminated with nonlinear components at a set of lumped ports,
spread across an aperture, as illustrated in Fig. 1.3. The objective of a shielding
enclosure design is to verify the shielding performances in terms of Shield-
ing Effectiveness (SE) with different incident fields, i.e. we want to estimate
the electric field that can be observed inside the protective frame under the
effect of a (possibly dangerous) incident signal. The analysis of an energy-
selective nonlinear characteristic requires a time-domain simulation since this
behavior is achieved due to the loading condition provided by the nonlinear
devices. Full-wave electromagnetic solvers are suitable for solving the coupled
linear/nonlinear Electromagnetic problem the in time domain. Nevertheless,
these approaches turn out to be very inefficient when repeated analyses are
required. Hybrid techniques can overcame this limitation by providing an
equivalent formulation suitable for circuit solvers, see Fig. 1.3.

The main goal of this chapter is to provide a better alternative to a SPICE
engine for performing transient simulations of large-scale nonlinearly loaded
systems. To this end, we take advantage of the hybrid decoupling approach [13]
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to split the problem into linear/nonlinear sub-systems, and we use a time-
domain method for computing transient signals at the lumped (decoupled)
ports. The presented procedure is a Waveform Relaxation (WR) scheme [35, 36],
which is merely a method that iteratively improves an initial approximation of
the target signals. The standard WR is implemented as a fixed-point iteration
that corrects an estimate of the port signals by evaluating the response of
the linear system and the nonlinear loads alternatively. This approximation
stabilizes if the iteration operator is a contraction [36–40]. To improve the
algorithm convergence, the decoupling network parameters can be suitably
optimized [37, 41, 39, 42]. These approaches are however ineffective for the
present application, and better solutions are needed.

This chapter illustrates the results originally reported in [19] and presents
an efficient WR-based hybrid solver to overcome the well-known convergence
difficulties induced by a poor match of the decoupling impedance level. The
scheme of [19] builds on the result of [46] and introduces a novel algorithm
by combining an inexact Newton-Krylov iteration and a time partitioning
(windowing) approach [36]. The combination of these two ingredients drastically
improves the local convergence in each interval of time and reduces the required
computational effort, both in terms of time and memory. The presented
scheme provides an integrated framework specifically designed to handle large-
scale systems, equipped with suitable sub-systems evaluations and a restarting
process. A large set of numerical results is used to validate the improved WR
solver against the state-of-the-art HSPICE engine, demonstrating its reliability
and efficiency for shielding enclosures applications with up to 1024 electrical
ports.

This chapter documents the results of [19] as follows. First, background
elements concerning the hybrid strategy and the standard WR scheme are
reported in Section 4.1 and Sec. 4.2, respectively. Then, advanced WR formu-
lations to handle the windowing strategy and the quasi-Newton iteration are
summarized in Sec. 4.3 and Sec. 4.4. The fully integrated algorithm of [19]
is presented in Sec. 4.5, while a complete validation of the scheme through
numerical results is provided in Sec. 4.6. Conclusions are finally drawn in
Section 4.7.
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4.1 Background: model-based hybrid solvers

This section summarizes the three-step hybrid method proposed in [13] to
compute the transient analysis of scattered electromagnetic fields by a metallic
structure loaded with lumped nonlinear elements. This procedure is essential
to evaluate the performance of any shielding enclosure, and it corresponds
to finding a solution to the electromagnetic problem illustrated in Fig. 1.3.
The main goal is to estimate the total electric field eobs(t, r) observed at
the coordinates r, located inside the shielding enclosure. To this end, we
start assuming a Perfectly Electrically Conducting (PEC) system (the shield),
electrically large, with multiple nonlinear devices (electrically small) connected
to a set of lumped ports. The structure is subject to an incident plane wave
electrical pulse einc(t). Under such conditions, part of the incident field is
scattered by the structure due to the induced currents that flow through the
lumped terminations, which provide a nonlinear loading effect. To compute the
observed field eobs(t, r), the scheme proposed in [13] suggested the following
three steps:

1. Replacing of the metallic enclosure under field excitation with a generalized
Thevenin equivalent circuit. To convert the metallic structure excited by
an electric field to a classic Thevenin equivalent form as in the right panel
of Fig. 1.3, two ingredients are necessary, H(s) and voc(t). These elements
can be obtained by solving two independent field problems addressed by
a frequency domain solver as MoM [31]. First, the impedance transfer
matrix Z(s) ∈ CP ×P of the unloaded structure must be characterized in a
prescribed frequency bandwidth. To compute the impedance parameters
all loads are detached from the enclosure, ports are excited with current
sources and the corresponding ports voltages are computed for a set of
frequency points K. This sub-system corresponds to the multiport yellow
box of Fig. 1.3, where H(s) indicates a generic system representation
suitably obtained after postprocessing of Z(s). The second ingredient of
the Thevenin equivalent is the set of voltage sources voc(t) ∈ RP , which
translates the effect of the incident electric field einc(t). To this end, the
corresponding frequency domain transfer function under the excitation
field Hoc(s) ∈ CP , such that Voc(s) = Hoc(s)Einc(s), is obtained by
running a proper field solver with all electrical ports left open. Thus, the
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simulation parameters in terms of the electric field are accounted for only
by voltage sources of a generalized Thevenin equivalent circuit. Note that
the frequency characterization of the enclosure H(s) is independent of
the field excitation einc(t), hence these parameters are the ideal candidate
for a macromodeling approach as the one proposed in Chapter 3. On the
other hand, changing the polarization or orientation of einc(t) requires
re-evaluating Hoc(s).

2. Transient analysis of port voltages with nonlinear terminations. This step
is the actual (transient) numerical simulation of the circuit reported in
Fig. 1.3, and it requires assembling all elements of the Thevenin equivalent
circuit, including nonlinear terminations, to properly retain an equivalent
of the nonlinearly loaded electromagnetic structure excited with the
incident electric field. To this end, the two frequency domain datasets
from the previous step must be suitably converted into a compatible
time-domain form. First, a macromodel of H(s) is built and converted
to an equivalent representation suitable for the selected transient solver.
Then, a model of Hoc(s) is synthesized and exploited in a time-domain
convolution with the electric incident field wave einc(t) to compute the
time-domain voltage sources voc(t) as final outcome. Thus, the solution
of the equivalent Thevenin circuit loaded with nonlinear devices, as
illustrated in Fig. 1.3, is obtained through a proper transient-solver. It
can be demonstrated that the transient port voltages computed with
this approach are equivalent (up to modeling errors) to the one observed
solving for the full EM field coupling problem.

3. Calculation of observed electric field. The original radiation problem is
cast into a set of equivalent linear sub-problems solved by taking advantage
of the superposition theorem. Indeed, considering the contribution of an
individual incident plane wave Einc(s, r), the total observed electric field
can be computed as the sum of three contributions

Eobs(s, r) =
PØ

i=1
CiVi +DEinc + Einc(s, r) (4.1)
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where operator Ci represents the radiated field from a unit voltage source
Vi located at the i-th port, with all other ports short-circuited, D is the
scattering operator of the short-circuited enclosure.

The combination of these three steps is a robust and efficient procedure to
compute the scattered EM problem with an equivalent circuit-based formulation,
as confirmed by several results presented in [13].

We remark that the target of this dissertation lies within the first two steps
of the above procedure, while Step 3 will not be considered in this work since
only related to a (straightforward) post-processing phase. Indeed, Chapter 2
aimed at solving issues that characterized the dataset H(s) from Step 1, and
Chapter 3 provided a complete framework for the generation of the models that
are employed during the numerical simulation of Step 2. The latter is finally
improved by this Chapter, which focuses on providing an efficient and reliable
transient solver to compute the solution of the nonlinearly loaded Thevenin
equivalent circuit of Fig. 1.3. For these reasons, the decoupling approach (Steps
1 and 2) is further detailed next, setting notation for later use.

4.1.1 Modeling of the decoupled LTI enclosure

This section provides a brief overview of the decoupling scheme [13] used to
compute scattered EM fields of the shielding enclosures loaded with nonlinear
terminations, formalizing the results of Steps 1 and 2 described above. Regard-
ing the simulation setting illustrated in Fig. 1.3, the goal of this section is to
compute voltages v(t) and currents i(t) at each lumped port.

To this end, we start defining the exchanged scattering waves at the ports

a(t) = (v(t) + R0i(t))/2 (4.2)
b(t) = (v(t)−R0i(t))/2 (4.3)

with R0 diagonal matrix storing the reference resistance level, and a(t), b(t) ∈
RP incident/reflected scattering (voltage) waves.
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Using the Laplace variable s = jω, the reflected waves at the lumped ports
can be defined in the frequency domain as

B(s) = H(s)A(s) + Θ(s) (4.4)

where B(s) = L{b(t)} and A(s) = L{a(t)}, with L Laplace transformation.
Notice that H(s) ∈ CP ×P is the transfer function (scattering matrix) of the
enclosure with detached loads, while Θ(s) ∈ CP stores contributions of the
incident field under matching conditions. The latter can be written as

Θ(s) = 1
2(IP −H(s))Voc(s) (4.5)

with Voc(s) = L{voc(t)} denoting the voltages across the ports when all loads
are detached and the structure is excited with the incident plane field einc(t).
These set of voltages can be retrieved as

Voc(s) = Hoc(s)Einc(s) (4.6)

where Einc(s) = L{einc(t)} and Hoc(s) ∈ CP is the open-circuit transfer function
obtained following Step 1.

As already anticipated, a full-wave frequency domain solver as MoM [31]
can be suitably called to characterize the two transfer functions Hoc(s) and
H(s) in the band of interest, creating two frequency datasets H̆oc(jωℓ) and
H̆(jωℓ) in a set of points ℓ = 1, · · · , L. We further stress that only responses of
H̆oc(jωℓ) should be re-evaluated when a different incident field einc(t) is applied
to the structure, while H̆(jωℓ) is fixed by the enclosure geometry.

These datasets are then exploited in a macromodeling step, either with a
standard approach [21–23], or using the one proposed in Chapter 3, by enforcing
the fitting condition

H(jωℓ) ≈ H̆(jωℓ), Hoc(jωℓ) ≈ H̆oc(jωℓ) , (4.7)

where the surrogate rational models are defined as

H(s) =
n̄Ø

n=1

Rn

s− pn

+ R0 , Hoc(s) =
n̄Ø

n=1

Υn

s− poc,n

+ Υ0 (4.8)
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with Rn ∈ RP ×P and Υn ∈ RP model residues, and pn and poc,n corresponding
poles. The passivity of H(s) is enforced in this work by means of the scheme
proposed in Chapter 3.

When performing a transient simulation, the macromodel in (4.8) should
be suitably embedded in a circuit solver. A common practice converts the
rational form (4.8) in a state-space set of Ordinary Differential Equations
(ODE), synthesizes an equivalent circuit representation of the model, and then
runs the time-domain analysis with the selected SPICE engine. On the other
hand, advanced SPICE solvers such as HSPICE [28] enable a direct definition
of the pole-residue form (4.8), the Foster form, via suitable behavioral elements.
The latter representation avoids the state-space conversion and reveals its
efficiency in a numerical integration phase, taking advantage of a recursive
convolution formulation, as detailed later.

4.2 The Waveform Relaxation method for time-
domain analysis

Waveform Relaxation (WR) algorithms [35, 36] are a class of transient simu-
lation approaches to analyze the behavior of a dynamic nonlinear system in
time-domain. The main feature of any WR scheme is the ability to decompose a
set of differential equations into a manageable number of (smaller) sub-problems,
to be solved almost independently by iteratively updating relaxation sources.
WR methods may differ by the definition of the relaxation process or by the
strategy used to split the original system. Several examples are available in the
literature [35, 36, 38, 39, 42].

This section provides a compact introduction to a scattering-based method
belonging to the family of WR algorithms, with a specific focus on the Longitu-
dinal Partitioning (LP) approach [39], which takes advantage of the scattering
waves exchanged between a large-scale structure (usually linear) and its ter-
minations (usually nonlinear) to set up a decoupling network. The general
iterative setting is depicted in Fig. 4.1, where the relaxation sources at any
iteration ν are the incident/reflected scattering waves of (4.2).
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Fig. 4.1 WR-LP decoupling approach applied to the circuit problem of Fig. 1.3.
Originally reported in [19] © 2022 IEEE.

This figure represents the WR decoupling applied to the circuit problem of
Figure 1.3 the latter can be characterized by the following system of nonlinear
equations b(t) = (Ha) (t) + ϑ(t)

a(t) = G(b(t))
(4.9)

with time-varying signals a(t), b(t) and ϑ(t) defined as port scattering waves
and forcing term, respectively. The two operators H and G indicate the convo-
lution with the shielding enclosure impulse response and the nonlinear map of
the scattering fields provided by the terminations, respectively. Note that both
operators are purely algebraic under the assumption of a suitable characteri-
zation of both enclosure (the discretized convolution can be represented as a
matrix operator acting on a vector of discrete time samples) and loads.

The WR-LP scheme computes a solution of (4.9) solving at each ν-th
iteration the following problembν(t) = (Haν−1) (t) + ϑ(t)

aν(t) = G(bν(t)) .
(4.10)
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Starting from an initial guess, which is commonly a0 = 0, the two equations
of (4.10) are solved sequentially until suitable stopping criteria are reached. A
common choice is to monitor the iteration error and to define a convergence
threshold as

∥aν − aν−1∥∞ < ϵ (4.11)

where the ∞-norm ∥·∥∞ selects the element with the largest amplitude among
all signal components.
The WR-LP algorithm of (4.10) shows its full potentiality if

C1 the scheme converges;
C2 the computation of both H and G is fast;
C3 the number of iterations to obtain convergence is small.

All these conditions will be discussed next. In particular, C1 is the topic
of Section 4.2.1, C2 is detailed in Sec. 4.2.2 and 4.2.3, while C3 is the main
objective of the full scheme provided by [19] and reported in Section 4.5.

4.2.1 Convergence of WR

Any fixed-point iteration algorithm as WR converges when the mapping op-
erator among iterations is a contraction in a prescribed norm. Verifying this
condition in the case of the WR-LP scheme is a straightforward task when
considering linear terminations and converting (4.10) to the frequency domain.
Following the same procedure of [39], we can rewrite all vectors and operators
of (4.10) as functions of the Laplace-domainBν = HAν−1 + Θ

Aν = ΓBν(t) .
(4.12)

with B = B(s) ∈ CP and A = A(s) ∈ CP scattering waves, H = H(s) ∈ CP ×P

and Γ = Γ(s) ∈ CP ×P scattering matrices of the (linear) electromagnetic
structure and terminations, respectively. The last term Θ = Θ(s) ∈ CP

denotes the incident field contribution (4.5).
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Defining Υ = ΓΘ, the solution after I iterations is

AI = ΓHAI−1 + Υ =
I−1Ø
ν=0

(ΓH)νΥ (4.13)

and matches the result of [39]. The solution when I → ∞

A∞ =
∞Ø

ν=0
(ΓH)νΥ (4.14)

corresponds to the solution of (4.12) satisfies the condition

ρmax{ΓH} = max
ω,i
|λi{Γ(jω)H(jω)}| < 1 (4.15)

where λi{·} indicates the i-th eigenvalue of the enclosed matrix. Note that a
faster convergence rate is associated with a smaller ρmax. Recalling that

ρmax{ΓH} ≤ ∥ΓH∥ ≤ ∥Γ∥ ∥H∥ (4.16)

a sufficient condition for the convergence of the WR-LP scheme [39] is

∥H(jω)∥2 < 1 , ∥Γ(jω)∥2 < 1 ∀ω (4.17)

which corresponds to the requirement of the strict dissipativity of both the
electromagnetic structure and terminations. From a simplistic point of view,
one can notice that the frequency-dependent convergence rate decreases the
more passive are the two components of the decoupling scheme, meaning that
the algorithm requires a smaller number of iterations to reach convergence.

The proposed hybrid framework guarantees that both the shielding enclosure
H(jω) and the nonlinear terminations (diodes) are passive by construction,
thus ensuring the overall convergence of a WR approach. Nevertheless:

• the selected shielding enclosure (made of PEC) is almost lossless in the
lower bandwidth and strongly resonant in the highest frequency region
(see Chapter 2), meaning that the overall losses are minimal and that
∥H(jω)∥2 ≲ 1 for most of the band of interest;
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• the selected nonlinear loads (diodes pairs) are likely to have a small dissi-
pation during the transition between the two extreme behaviors associated
with their conduction and cutoff modes. Thus, also the terminations are
in general ∥Γ(jω)∥2 ≲ 1 with the (most likely) worst-case situation given
by the extreme modes, when they do not dissipate energy since they can
be characterized as short and open circuits with ∥Γ(jω)∥2 = 1.

The above working conditions of the selected application may discourage the
use of any WR approach due to the poor spectral radius ρmax ≲ 1 and the
guarantee of a slow convergence rate. Nevertheless, following the procedure
of [19], we will demonstrate that a proper configuration of WR provides a
promising approach that gains both convergence and scalability under the
worst-case scenario given by the large-scale problem at hand.

4.2.2 Evaluation of the linear system

An essential prerequisite of a competitive WR algorithm is a rapid evaluation
of both terms obtained via the selected decoupling scheme (4.10), illustrated
in Fig. 4.1. In this section, the first equation of (4.10) is addressed, namely
the computation of linear operator H, following the same strategy of [13, 18]
and in particular of [19]. Starting from the frequency domain definitions of
scattering waves and forcing term (4.4)-(4.6), we can define all operations cast
in H as

b(t) = h(t) ⊛ a(t) + ϑ(t) (4.18)
ϑ(t) = (IP − h(t)) ⊛ voc(t)/2 (4.19)

voc(t) = hoc(t) ⊛ einc(t) (4.20)

with ⊛ time-domain convolution operator. Notice that the contribution of
the forcing term ϑ(t) in (4.10) is constant through WR iterations and can be
computed during the algorithm initialization.

All steps of (4.18) can be efficiently evaluated by taking advantage of a
recursive convolution formulation valid for the two impulse responses h(t) and
hoc(t), which are suitably described by a pole-residue model (4.8). Under this
condition, these signal convolutions reduce to the solutions of an IIR filter as
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defined in the following. We start assuming a uniform integration time-step
∆t such that each instant of time can be defined as tk = k∆t for k = 0, · · · , k̄.
First, we analyze a single port/pole toy system identified by a unique pole p

with corresponding residue R. The resulting output y(t) under excitation u(t)
at every instant of time tk can be defined as

âyk = Râxk, âxk = αâxk−1 + β0âuk + β1âuk−1 (4.21)

where âxk = x(tk) indicates the discrete state associate to the pole p with
corresponding residue R. As detailed in [20], the invariant coefficients α = ep∆t

and β0,1 can be defined according to the selected time discretization method.

To handle the general multiport case, we need to consider that the number
of both input/output (ports) P and poles n̄ affects the overall count of system
states N . Thus, we start associating to each model pole (4.8) an auxiliary
vector collecting the time-domain state evolution xn(t) ∈ RP , and we take
advantage of the recursive convolution formulation (4.21) to approximate time
samples as

xn(tk) ≈ αnxn(tk−1) + β0,na(tk) + β1,na(tk−1) ∀k = 1, . . . , k̄ (4.22)

with αn and βj,n as in (4.21). Discrete reflected waves of (4.18) are then
retrieved adding contributions of all states through model coefficients as

b(tk) ≈
n̄Ø

n=1
Rnxn(tk) + R0a(tk) + ϑ(tk) ∀k = 1, . . . , k̄ . (4.23)

Notice that both (4.22) and (4.23) require a proper initialization at the first
instant of time t0 of the auxiliary state vector x0, which stores all contributions
xn(t0), and of the input scattering wave a0 = a(t0). Note also that in case of
complex conjugate poles coefficients Rn of (4.23) are complex-valued. In this
case, only the (doubled) real-valued contribution of the product Rnxn(tk) is
added to the output vector b(tk).
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Fig. 4.2 Illustration of the characteristic equation (the operator G) for a pair of ideal
diodes in anti-parallel configuration, with reference resistance level R0 = 50 Ω.

4.2.3 Evaluation of nonlinear loads

This dissertation focuses only on static nonlinear terminations, which are
identical and not coupled through electrical ports. Under these conditions,
that fit the case of diodes pairs, the algebraic operator G is a map between the
incident/reflected scattering waves defined as

a(t) = G(b(t)) (4.24)

which can be applied independently to each component. Figure 4.2 illustrates
an example of (4.24) when the selected termination is a pair of ideal diodes
in anti-parallel configuration, like the one used through the numerical results
of Section 4.6. Note that the input of G is the reflected scattering wave b(t)
from the shielding enclosure, computed via recursive convolution. The practical
implementation of the operator G in this work relies on a unique lookup table,
defined sampling with a fine sweep of the scattering termination equation.
Extensions to general nonlinear terminations will be discussed in Chapter 5.

4.3 Accelerating WR with windowing

In the WR framework, time partitioning techniques are well-established [36, 91]
and already applied for efficient parallelization implementations [38]. In this
work, we will further exploit a time windowing approach to break the simulation
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window into small chunks with the objective of reducing the number of iterations
required to reach convergence, ultimately improving the resulting runtime.

This property of the WR is illustrated with an example in Fig. 4.3, where the
WR-LP error evolution among iterations is reported for a shielding enclosure
with 100 ports. The simulation setting includes the electromagnetic structure
terminated with identical pairs of ideal diodes in antiparallel configuration and
excited with a plane incident electrical field, as detailed later in Section 4.6.1.
Breaking the transient simulation interval, up to tmax ≈ 15.5 ns, in short
portions provides a drastic improvement of the convergence rate. Indeed,
the error at each iteration ν computed reducing the observation window on
different pieces of the simulation interval [0, σtmax], with σ ∈ {0.25, 0.5, 0.75, 1},
demonstrates how the WR convergence is reached faster for the shortest chunks,
while a larger number of runs is required for the full-size window. Figure 4.3
illustrates the error evolution among iterations for both the approximation
accessible from the previous iteration ν − 1, reported in the bottom panel,
and the exact solution computed imposing an error threshold of ε = 10−8 and
depicted in the top panel.

This example further stresses the opportunity of splitting the simulation
interval to reach convergence with a prescribed target threshold, as already
investigated since the very beginning of the WR approaches [36]. The simple
strategy in [36] tried to both minimize the number of time points processed at
each iteration and to optimize the window length to ensure a uniform converge
in each time interval. In this dissertation, we focus only on the first partition
effort by setting an upper bound to the computational burden required in terms
of memory and by enabling to process all chucks independently, adding an
outer iteration loop to the standard WR-LP scheme. To this end, we proposed
in [19] to apply a uniform partition by means of M control points

0 = T0 < T1 < · · ·Tm < · · ·TM = tmax = K∆t (4.25)

fixing the number k̄ of uniformly sampled time points in each window, with
Tm − Tm−1 = k̄∆t, simplifying the implementation effort.
Notice that this configuration includes two extreme cases. If the window is
composed of only one sample (with k̄ = 1 and M = K), the transient evaluation
is similar to the one applied by standard SPICE solvers. On the contrary, in
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Fig. 4.3 Monitoring WR error evolution among iterations for different portions of the
simulation window. Ports scattering waves a(t) are compared with the exact WR
solution âa(t) (top panel), and with the signals available from the previous iteration
(bottom). Reference âa(t) computed with error threshold ε = 10−8. From [19] © 2022
IEEE.

the limit case when only a time window M = 1 (with k̄ = K) is considered the
algorithm simplifies to the standard WR scheme, and all samples are processed
at the same time for each WR iteration. As a result of the latter configuration,
the convergence rate of the scheme is the one associated with the red dots in
Fig. 4.3.

The solution proposed in [19] lies in between these two extreme situations,
limiting the WR iteration to k̄ > 1 time points and imposing an upper bound
to the number of samples to be handled simultaneously by improving the
overall convergence of the scheme. Thus, the presented approach integrates a
simple strategy to suitably initialize the (restarted) WR when dealing with time
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partitioning. The initial conditions for sub-systems evaluation are combined
with the windowing approach in Section 4.5, while a WR-based iterative solver
is presented next to replace the basic WR loop with a significant advantage in
terms of global convergence.

4.4 WR and inexact Newton-Krylov methods

We start introducing a discrete and vectorized version of the continuous WR-LP
scheme (4.9), by imposing a uniformly sampled time vector tk = k∆t with
k = 0, . . . , k̄. Under this condition, all time-varying signals a(t), and b(t) and
ϑ(t) can be cast as

åa = vec (a(t1), . . . , a(tk̄)) ∈ Rk̄P , åb = vec (b(t1), . . . , b(tk̄)) ∈ Rk̄P (4.26)

collecting all ports contribution and leading to
åb = æH(åx0, a0) · åa + åϑ
åa = æG(åb)

(4.27)

where algebraic operators æH and æG are now discrete. We recall that æG
denotes the evaluation of the nonlinear function of the loads. Whereas the
discrete convolution æH as defined in (4.27) is formally associated with matrix
multiplication, while the actual implementation takes advantage of a recursive
convolution computation to obtain the auxiliary states vectors via (4.22) and
to compute the scattering waves as in (4.23). The notation of æH(åx0, a0) in the
first row of (4.27) expresses the dependency of the linear operator to a set of
initial conditions, as available at the first time instant t0 = 0, which are required
to define both (4.22) and (4.23). These correspond to the input scattering wave
a0 = a(t0) and the discrete auxiliary state vector åx0, respectively.

We are now able to replace the standard WR iteration and solve (4.27) by
properly defining a nonlinear multivariate problem. Indeed, we can reformu-
late (4.27) eliminating åb as

åF(åa) = 0, åF(åa) = åa−æG(æH(åx0, a0) · åa + åϑ) (4.28)
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where åF is the nonlinear residual map RP k̄ → RP k̄ of the discrete k̄ samples. A
solution of (4.28) can be obtained with a standard (iterative) Newton method
as åaη+1 = åaη − [åJ(åaη)]−1 åF(åaη) (4.29)

with Jacobian denoted as åJ(åaη) and where åaη is the approximated signal
available at the η-th iteration.

The Newton iteration can be summarized as

1. find an approximation of åF(åaη)
2. solve for sη the system of equations

åJ(åaη)sη = −åF(åaη) (4.30)

3. find åaη+1 = åaη + ληsη where λη is the iteration step length.

Following the procedure proposed in [46], we can avoid computing the Jacobian
from Step 2, which represents the most demanding operation due to the large-
scale nature of åaη. To this end, we replace the exact solution of the descent
direction sη with the approximation

...åJ(åaη)sη + åF(åaη)
... ≤ γ

...åF(åaη)
... (4.31)

known as inexact Newton condition. The solution of (4.31) can be efficiently
computed avoiding the factorization of the Jacobian by taking advantage of an
iterative scheme to approximate åJ(åaη) with a proper Krylov subspace definition.

To solve the inexact Newton iteration we selected the GMRES method as
provided in [92]. Following the results of [46], we applied the WR-NGMRES
scheme to strengthen the Newton-based iteration with an initial condition
obtained with a reduced number of WR-LP iterations νi as in Section 4.2.

The iterative algorithm is terminated when the nonlinear residual drops
below an accuracy threshold defined as

...åF(åaη)
... < τr

...åF(åaη−1)
...+ τa (4.32)

where control terms τr and τa are used to tune the relative and absolute accuracy,
respectively.
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This iterative solver provides the following advantages:

1. the global convergence of the scheme is ensured when GMRES is properly
initialized, therefore a small number νi of standard WR fixed point
iteration is run as a preprocessing step.

2. the number of iterations to achieve convergence is drastically reduced if
the WR-NGMRES is applied instead of the standard WR-LP.

Both these conditions will be supported by numerical results in Section 4.6.
The main drawbacks of this formulation are that:

• several function evaluations may be necessary to correctly approximate
(4.31) and construct a basis of the Krylov subspace;

• the dimension of the nonlinear multivariate function (4.28) scales badly
with the length of åa, thus with the number of ports P or the window size
k̄.

To overcome these limitations, a suitable combination of windowing, evaluation
restart, and inexact Newton-Krylov iterations is suggested in [19] and reported
in the following.

4.5 Integrating WR-NGMRES and windowing

We now present the transient simulation scheme proposed in [19], whose out-
come is an efficient and reliable framework that can handle the large-scale
nature of the shielding enclosure verification under nonlinear load terminations.
The presented method combines the windowing approach of Section 4.3 and the
inexact Newton-Krylov iterations of Section 4.4 through a suitable restarting
process. This approach, reported in Algorithm 4, exploits a WR-based decou-
pling method also in the case of poor matching conditions with remarkable
convergence properties.

We start by defining a set of control points (4.25) to obtain M windows,
with k̄ time-points in each partition Im = [Tm−1, Tm]. To discriminate signals
belonging to different time frames Im, we enrich the discretized signals (4.26)
notation as åaν,m = vec (aν(tm

1 ), . . . , aν(tm
k̄ )) ∈ Rk̄P (4.33)
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where m refers to the outer iteration on time intervals, and ν indicates the
inner loop performed via either fixed-point WR or quasi-Newton iterations.
Notice that the last time point of each window Im−1 should match the initial
step of Im, ensuring a continuous partition of the simulation interval. Thus,
samples of (4.33) can be formally defined as

tm
k = Tm−1 + k∆t, with tm

0 = tm−1
k̄

= Tm−1 . (4.34)

We can now focus on the core of the presented scheme, summarized in
pseudo-code form in Algorithm 4. Inputs of the Algorithm 4 are all quantities
required for the evaluation of the two algebraic operators æH and æG in (4.27), and
all parameters necessary to tune the windowing step and the convergence criteria
(both in terms of accuracy and iterations). At first, zero vectors state/solution
are suitably initialized (line 1 and 2). Then, the outer loop on each m-th time
windows is started (line 2) and the (constant) initial solution value âam−1 is
propagated to all k̄ samples (line 4). Thus, the recursive convolution operator
is suitably set to the initial conditions associated to the processed window (line
5), as summarized by the brief notation æHm = æH(âxm−1, âam−1).

The WR-NGMRES algorithm is then run (line 6). At first, the standard
WR-LP method is applied solving each step of the system

åbν,m = æHm · åaν−1,m + åϑ
åaν,m = æG(åbν,m)

(4.35)

for νi iterations or until convergence is detected (line 10). Then, the NGMRES
is applied to solve

åFm(åaν,m) = åaν,m −æG(æHm · åaν,m + åϑ) = 0 (4.36)

for a maximum of νmax iterations or until convergence is reached (line 17).
Since (4.36) provides a final approximation of the discrete incident wave åaν,m,
at last åbν,m is evaluated with final linear convolution (line 20). Notice that the
latter step enables also to update all state variables, including values at the
last time instant Tm, necessary to initialize the iteration on the next m + 1
time window. Thus, initial conditions for the consecutive outer iteration are
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Algorithm 4 Pseudocode of the WR-based scheme of [19].
Require: åϑ, {αn, β0,n, β1,n}, {Rn}, æG
Require: M , k̄, νi, ϵ, νmax, τr and τa

1: Initialize states âx0 = 0 ∈ RP n̄

2: Initialize solution âa0 = 0 ∈ RP

3: for m = 1 to M do
4: Initialize åa0,m = (1k̄ ⊗ âam−1)
5: Initialize operator æHm = æH(âxm−1, âam−1)
6: for ν = 1 to νi do
7: Apply convolution åbν,m = æHm · åaν−1,m + åϑ
8: Apply terminations åaν,m = æG(åbν,m)
9: if ∥åaν,m − åaν−1,m∥∞ < ϵ then

10: Break
11: end if
12: end for
13: while ν < νmax do
14: ν ← ν + 1
15: Solve åFm(åaν,m) = 0 via NGMRES
16: if ∥åFm(åaν,m)∥ < τr∥åFm(åaν−1,m)∥+ τa then
17: Break
18: end if
19: end while
20: Update åbν,m = æHm · åaν−1,m + åϑ
21: Store final states âxm = åxν,m(Tm)
22: Store final solution âam = aν,m(Tm)
23: end for
24: Merge converged signals for all m windows
25: return Converged port signals åa and åb
retrieved both in terms of state variables (line 21) and input signal (line 22).
To conclude the loop on time windows, all chunks of the resulting ports signals
are gathered in a unique output result.

4.6 Transient simulations results

This section provides numerical results to assess the reliability and perfor-
mances of the presented transient solver. These examples have been originally
documented in [19], and are here reported supporting the presented WR-based
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solver. The structure used for this investigation is the standard shielding
enclosure of Fig. 1.3 loaded with nonlinear devices. The selected nonlinear
terminations are anti-parallel ideal diodes pairs, each one defined by the relation
iD = Is(evD/VT − 1) with thermal voltage VT ≈ 25 mV and saturation current
Is = 1 nA. Thus, the comprehensive nonlinear characteristic of every load
connected to one of the P electrical ports is i = Is(ev/VT − e−v/VT ).

The excitation is an incident plane wave, with electric polarization parallel
to the diode grid branches and with orthogonal orientation. The selected
electric field signal is a Gaussian modulated pulse defined as

einc(t) = sin(2πfc(t− t0))eg(t), eg(t) = Ee− (t−t0)2

2σ2 (4.37)

with center frequency fc, time delay t0, amplitude E and pulse width σ. Notice
that we will modify both the center frequency and the signal amplitude among
test cases to create a comprehensive set of simulation benchmarks, stressing
resonances of the linear structure and exacerbating the nonlinear characteristic
of the loads while defining performances of the shielding structure. This condi-
tion aggravates the lack of matching conditions at the WR decoupling ports,
thus demonstrating the potential of an integrated WR simulation framework.

This section provides numerical results with four specific aims. Section 4.6.1
compares different reference WR schemes and confirms the improvements of
the presented method in terms of convergence and number of iterations. Sec-
tion 4.6.2 provides a comparison concerning a state-of-the-art SPICE solver,
confirming that a suitable Waveform Relaxation (WR) can improve perfor-
mances in terms of both accuracy and computational time. Section 4.6.3
illustrates the outcome of a testing campaign obtained by sweeping both center
frequency and amplitude of the excitation signal einc(t) for a total of 50 simu-
lations. This systematic test enables us to confirm the previous comparison
with a standard SPICE approach from a statistical standpoint. Section 4.6.4
concludes the numerical results, testing the scalability of the method in a
large-scale setting and using, at last, the model with 72704 states and 1024
electrical ports presented in Chapter 3.

All benchmarks are tested using νi = 1 iteration of the standard WR-LP
and imposing a maximum of νmax = 100 inexact-Newton iterations, even if this
hard limit has never been reached, as illustrated next. All results are obtained
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Fig. 4.4 Open-circuit voltages used in Sec. 4.6.1 to excite the 100-ports shielding
enclosure and to compare WR schemes results. The selected incident field is a
Gaussian Modulated Pulse centered at 450 MHz and with unitary amplitude.

with a prototype MATLAB code run on a Workstation with 64 GB of RAM
and an i9-7900X CPU core (3.3 GHz), limiting the simulation environment to
one computational thread.

4.6.1 Analysis of WR iterations

This section compares different WR iterations results on a shielding enclosure
with P = 100 ports and a corresponding 10× 10 grid of diodes. To estimate
performances of the shielding we followed the procedure summarized in Sec-
tion 4.1 (see [13] for details), and we started with a frequency characterization
via MoM solver [31] of both the unloaded structure transfer function H(s) and
of the open-circuit responses Hoc(s) under the incident field influence. Thus, we
generated reduced order models from both sampled responses via the procedure
described in Chapter 3. This step enabled us to suitably get all ingredients to
define the discrete recursive convolution operator æH of (4.27), and to finally
run the WR-based study.

The excitation electrical field einc(t) is defined as in (4.37) with fc = 450MHz,
σ ≈ 0.415 ns and unitary amplitude E = 1. The resulting open-circuit voltage
sources voc(t) after convolution (4.18) are reported in Fig. 4.4. These are
necessary to set the simulation benchmark as illustrated in 1.3, which is then
used to run a series of transient simulations with different solvers. In all cases,
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a time-domain analysis has been performed up to tmax ≈ 15.5 ns with a uniform
integration time step ∆t = 2.22 ps.

The fully integrated scheme presented in Section 4.5 is then compared with
the standard WR-LP scheme [39], the WR method improved with the time
partitioning approach of Sec. 4.3, and the WR-NGMRES method [39], i.e. the
WR-based solver improved with a quasi Newton-Krylov iteration applied to
the full simulation window as described in Sec. 4.4. All these WR algorithms
are implemented in a suitable MATLAB environment and compared with a
common setting, i.e. one computational thread and same accuracy thresholds
to verify convergence ε = τr = τa = 10−6. Thus, this test enables to split
contributions of all separated ingredients that are integrated into the presented
WR-based solver.

WR Standard LP NGMRES Windowing Proposed [19]
Iter (mean) 807 25 (2+23) 90.6 25.45 7.6 6.52
Iter [min,max] - - [1-127] [1-41] [1-9] [1-9]
Windows (M) 1 1 10 100 10 100
Time (s) 650 779 88.9 30.3 45.4 15.6

Table 4.1 Comparison of four WR-based implementations, imposing convergence
with stopping threshold ε = τr = τa = 10−6. The number of iterations is documented
both in terms of mean and minimum/maximum values when windowing is applied
(last four cases). As in [19] © 2022 IEEE.

Table 4.1 summarizes the result of the four algorithms in terms of conver-
gence (iterations) and computational time. Some observations are in order.

• The standard WR-LP decoupling method required the largest amount of
iterations to converge (807), with a consequent significant runtime of 650
seconds due to the long sequence of evaluations of both operators æH andæG.

• The inexact Netwon-Krylov implementation of the WR-NGMRES method
improved the convergence rate since only 25 iterations are necessary to
obtain an accurate result, but it deteriorated the overall runtime requiring
779 seconds. This behavior is not surprising due to the (large) number of
evaluations needed to build a suitable basis for the Krylov subspace that
solves the inexact-Newton step avoiding the system Jacobian computation.
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To support this observation, we verified that most of the algorithm effort
is spent for the NGMRES iterations (23), which represent approximately
the 99.6% of the total runtime.

• The time windowing approach drastically improved the standard WR
result in terms of runtime with more than 20× of speed-up, even if the
overall number of iterations (2545, with an average of 25.45 evaluations
for each of the M = 100 windows) is quite large. This result is reasonable
if we consider that the convergence rate is improved (see Sec. 4.3 and [36])
but also that a reduced number of points are iteratively evaluated by
the two discrete operators. Intuitively, each sequential evaluation is
much faster if applied to a smaller time partition and not to the entire
simulation interval. Thus 807 operations on the full window are more
expensive than 2545 iterations on smaller chunks.

• The presented approach, which combines the WR-NGMRES and the
time windowing methods, provided the best results both in terms of
iterations (with average values of 7.6 and 6.52, considering M = 10
and M = 100 windows respectively) but also in terms of runtime (15.6
seconds), enabling an overall speed-up of about 40× with respect to the
standard WR iteration. Notice that the smallest time partition with
M = 10 degraded the algorithm efficiency, as expected. Thus, all results
in the following sections are obtained by fixing M = 100 windows as
reference choice.

Figure 4.5 shows an example of the converged ports voltages, demonstrating
the accuracy of all methods with respect to a state-of-the-art SPICE solver.

4.6.2 A comparison with SPICE

We now compare the presented WR solver with a state-of-the-art SPICE engine,
assessing performances related to computational time and final accuracy. The
shielding enclosure selected for this investigation is the P = 400 ports system
already presented in Section 3.5.2, and modeled by means of a Compressed
Macromodel representation (3.19). The excitation electrical field is the Gaussian
pulse einc(t) = eg(t) of (4.37), with standard deviation σ ≈ 0.47 ns and



4.6 Transient simulations results 135

Fig. 4.5 Transient results of a 100-port shielding enclosure with different WR solvers.
Table 4.1 summarizes all results for this example. Notice that only signals obtained
with M = 100 windows are reported. From [19] © 2022 IEEE.

amplitude E = 104 selected to enhance the nonlinear behavior of all anti-
parallel diodes. The time-domain verification of this system is performed up
to tmax = 20 ns, setting for the WR approach a uniform integration time step
of ∆t = 25 ps. This setting enables us to stress the limits of both transient
solvers, as detailed in the following.

The SPICE engine selected for this investigation is a solver commonly
available in the industry environment (HSPICE–L-2016.06-SP2-1 win64) that
enables tuning several control parameters to perform time-domain simulations.
Since we want to assess the efficiency and reliability of the presented solver,
we collected solutions of the SPICE engine for the same transient analysis
with different options settings, and we compared these results with the WR
outcomes. In order to guarantee a fair comparison we should consider that:

• All presented WR schemes rely on a fixed integration time-step ∆t, while
HSPICE performs an adaptive stepping analysis to optimize the number
of samples. Thus, the output signals of the two solvers are likely to
be sampled at different instants of time, and they cannot be compared
without a suitable interpolation procedure. Thus, the resulting induced
interpolation error should be considered when comparing the two solutions
in terms of accuracy.
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Fig. 4.6 Comparing WR and HSPICE transient results for a 400-port shielding
enclosure with nonlinear terminations. Summary of the results in terms of accuracy,
runtime and speed-up including four HSPICE settings (details in the text). From [19]
© 2022 IEEE.

• The model representation used in the solver affects the outcome, especially
in terms of runtime [27]. HSPICE enables to define surrogate models
both as equivalent circuits and as pole-residue (4.8) transfer functions
(via the Foster form). In this investigation, we compared both model
representations. Nevertheless, notice that not all SPICE engines embed a
Foster form and that the most common synthesis requires using a (sparse)
state-space system representation [27, 20].

• To limit the number of control parameter changes, we focus on the most
relevant in terms of final sensitivity. To this end, the HSPICE parameters
modified in the following are:

– OPTION.DELMAX, which sets an upper bound on the maximum allowed
integration time-step, limiting the (automatic) adaptive stepping
procedure;

– OPTION.ACCURATE, which gathers several internal settings to boost
the final solution accuracy.

Figure 4.6 provides a graphical summary of the result from this bench-
mark, comparing the outcome of the presented framework (τa = τr = 10−4)
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concerning HSPICE in terms of RMS error (vertical bars), speed-up (circles)
and computational time (text notes). Notice that the graph shows the results
of four HSPICE configurations, indicated with colored bars:

1. Equivalent Circuit (red bar): the SPICE engine embeds the macromodel
in a standard equivalent circuit representation [20, 27], and the transient
simulation runs with default HSPICE options;

2. Foster Form (a) (green): a suitable pole-residue (Foster) form includes
the macromodel in the HSPICE environment, and the simulation runs
with default options;

3. Foster Form (b) (cyan): as in case (a) but enhancing the HSPICE accuracy
with the control parameter OPTION.ACCURATE;

4. Foster Form (c) (purple): as in case (b) but adding an upper bound to
the integration time step imposing OPTION.DELMAX=10−11.

For this specific example, Figure 4.6 indicates the following observations.
First, regarding the solution accuracy, different HSPICE configurations strongly
modify the simulation result. In particular, it is interesting to notice that:

• two model representations with the same simulation settings provide
different results in HSPICE (red and green bars) with respect to the same
reference signal, in this case the presented WR scheme;

• improving the simulation accuracy, the HSPICE result with the model in
pole-residue form approaches the WR solution.

The latter point motivates the choice of using the Waveform Relaxation (WR)
signal as reference instead of the SPICE solution, at least for this example.
Regarding runtime, the presented Waveform Relaxation (WR) iteration always
provides the fastest solution (112.7 seconds), showing a speedup that ranges
from 21× up to 185× with respect to all HSPICE configurations. Notice that
the Foster model form is always faster and more precise than the equivalent
circuit representation, by at least an order of magnitude in all cases.

Figure 4.7 depicts the first two HSPICE Foster results for the transient
voltage with the worst-case error concerning the WR solution, i.e. the signal at
port 399. These results confirm how the HSPICE solutions get closer to the
WR signal when improving the transient solver accuracy by tuning its control
parameters. The benchmarks provided in the following sections take advantage
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Fig. 4.7 Comparing WR and HSPICE transient results for a 400-port shielding
enclosure with nonlinear terminations. The same port voltage signal is reported for
two different HSPICE settings (details in the text). From [19] © 2022 IEEE.

of these observations, with all tests enabling OPTION.ACCURATE and adopting
the Foster model form.

4.6.3 Systematic analysis against SPICE

We now focus on a systematic assessment of the presented WR scheme perfor-
mances with respect to HSPICE, using as a running example the same 100-port
model reported in Sec. 4.6.1 but modifying the excitation field waveform (4.37)
in terms of frequency and amplitude. This test includes 25 independent tran-
sient simulations obtained from the combination of 5 (linearly spaced) center
frequencies fc ∈ [100, 800] MHz and 5 (logarithmic spaced) values of amplitude
E ∈ [1, 104]. Note that we adjusted the Gaussian pulse width σ of (4.37) to
each center frequency. This procedure allows preserving the overall waveform
shape through a time-domain stretching effect, conserving the center frequency
location but modifying the pulse spectrum accordingly.

The final result reported in Fig. 4.8 gathers 50 transient simulations per-
formed via HSPICE with the two leading model representations presented in
Section 4.6.2, the equivalent circuit synthesis and the pole-residue (Foster)
form. Regarding the WR algorithm options, all simulations are computed with
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Fig. 4.8 Systematic transient analyses on a P = 100 nonlinearly loaded shielding
enclosure changing incident field, center frequency and amplitude. Details in the
text. From [19] © 2022 IEEE.

accuracy threshold ε = τa = τr = 10−6 for approximately K ≈ 7000 time
samples and adapting the integration time step to the field center frequency
as ∆t = 0.001/fc. The latter setting is necessary to ensure a suitable descrip-
tion of the open-circuit voltages voc that are used as excitation sources in the
equivalent circuit problem formulation, see Fig 1.3.

Figure 4.8 compares runtime, accuracy and speed-up of the presented WR
scheme with HSPICE. This illustration identifies each simulation with a circle,
whose size specifies the worst-case RMS error between port voltages computed
with the two solvers.
Figure 4.9 reports the transient voltages that correspond to the two largest
circles, i.e. the simulation test cases with the worst agreement between HSPICE
and the WR signals. It is evident from these results that the WR and Foster
solvers always provide the same solution, while the equivalent circuit outcomes
are the ones responsible for the dominant RMS errors of Fig. 4.8, confirming
the observations of Section 4.6.2.
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Fig. 4.9 Systematic analysis results: port voltages with worst-case RMS errors
between WR and HSPICE (Foster or equivalent circuit representation) among all
simulations of Fig. 4.8. From [19] © 2022 IEEE.

On the other hand, Fig. 4.8 also demonstrates that the main advantage of
the presented WR iteration is provided in terms of speed-up, ranging from 10×
to 1000× in the case of HSPICE-Foster and equivalent circuit form, respectively.
From an average perspective, the speed-up factor is bounded between 10− 25×
running Foster-based simulations and 100− 250× embedding in HSPICE an
equivalent circuit representation of the model.

4.6.4 Scaling with system complexity

This last section concludes the numerical results by assessing the scalability
of the presented transient solver when the number of electrical ports (and
nonlinear terminations) reaches thousands of elements. To this end, the largest
shielding enclosure model with P = 1024 ports already documented in Chapter 3
is here included in the full WR simulation setting, providing a comparison
with the two other structures reported in this Chapter with P = 100 and 400
ports. Thus, these three shielding enclosures are excited with the same incident
electrical field pulse defined as in (4.37), with amplitude E = 104 and centered
at fc = 400MHz.
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Ports HSPICE (Foster)
Time

Proposed
Time (s) RMS Error Speed-Up Factor

100 306.5 s 8.2 2.26 · 10−3 37×
400 76 min 112.7 3.67 · 10−3 41×
1024 6.4 h 257.8 1.87 · 10−3 89×

Table 4.2 Scaling with ports: transient solvers comparison. From [19] © 2022 IEEE.

Table 4.2 provides a comparison of the resulting transient simulation out-
comes for both HSPICE and the WR solver. Figure 4.10 and Fig. 4.11 illustrate
a set of representative port voltages for the 400 and 1024-port enclosures, re-
spectively. Both cases demonstrate a high level of accuracy of the presented WR
scheme with respect to the HSPICE solution, with a worst-case RMS deviation
of 3.67 · 10−3 and 1.88 · 10−3, respectively. Note that Table 4.2 confirms both
that the RMS error is close to 10−3 for all cases, and the presented approach is
likely to scale favorably with the model size since the speed-up factor increases
with the port count, reaching a maximum of 89×.

To conclude, two additional observations are in order. First, for this
investigation only the HSPICE-Foster configuration has been exploited, which
is very likely to represent the best possible setting for this engine, i.e. the fastest
way to obtain a solution with a SPICE-based solver. Second, our prototype
WR implementation can be efficiently used to solve the largest benchmark with
1024-ports on a standard notebook with 16GB of RAM and a Core i5-10210U
CPU. In this case, the MATLAB environment would require approximately 3
minutes to solve a simulation problem that cannot be solved with the standard
HSPICE engine due to excessive memory requirements.

4.7 Conclusions

This Chapter presented an iterative transient solver for the time-domain analysis
of large-scale systems terminated with (static) nonlinear loads. The provided
strategy belongs to the family of Waveform Relaxation (WR) approaches and
constructs a suitable decoupling framework on top of a macromodeling scheme.
The provided approach enables us to:
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Fig. 4.10 Transient analysis of a nonlinearly loaded shielding enclosure with 400-ports.
Top panels illustrate a representative set of ports voltages and currents, while the
last two focus on the port 336, which shows the worst-case RMS error 3.67 · 10−3

among all responses. From [19] © 2022 IEEE.

1. Decouple the simulation of the (linear) macromodel of the electromagnetic
structure and the evaluation of nonlinear devices, which can be performed
separately due to a standard Longitudinal Partitioning (LP) approach [39],
see Section 4.2.
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Fig. 4.11 Transient analysis of a nonlinearly loaded shielding enclosure with 1024-
ports. As in Fig. 4.10, but only voltage at port 241 is reported (worst-case RMS
error of 1.87 · 10−3). From [19] © 2022 IEEE.

2. Control (and limit) the memory requirements of the individual WR
iterations with a suitable segmentation of the simulation window [36, 38],
see Sec. 4.3.

3. Overcome the well-known lack of (or poor) convergence of the WR
decoupling method defining an inexact Newton-Krylov step [46], see
Sec. 4.4.

4. Improve the overall convergence of the scheme, thanks to a fully integrated
environment that combines the time partitioning (windowing) scheme,
the formulation of the problem based on a quasi-Newton iteration, and
a suitable restarting procedure of the WR evaluations operators, see
Sec. 4.5.
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5. Outperform prior state-of-the-art iterative solver methods belonging to
the same WR class, as well as standard circuit solvers like HSPICE, both
in terms of accuracy and runtime, see Section. 4.6.

6. Formulate a general framework based on surrogate models, which is likely
to scale favorably with the number of electrical ports and that ultimately
enables a divide-and-conquer macromodeling approach to solve highly
complex and coupled linear/nonlinear circuit problems.

Numerical results support the above conclusions illustrating transient anal-
yses of nonlinearly loaded shielding enclosures structures with up to 1024
electrical ports.

Future investigations will be devoted to addressing the remaining open issues
of the presented strategy. From an implementation standpoint, the algorithm
can be improved by embedding an adaptive time partitioning approach [36] and
exploiting parallelization both in terms of windows [38, 93] and sub-systems
evaluations. On the other hand, the framework validation is currently limited
to static nonlinear terminations. Nevertheless, the presented formulation can
be extended with minor modification to deal with more complex and general
nonlinear components by embedding proper Model Order Reduction (MOR)
techniques [94, 95] to describe dynamic nonlinearities and to obtain a fast
evaluation of the nonlinear sub-system. To conclude, the extension of the
presented solver to other structures beyond the proposed shielding enclosure
application is expected to be applicable with minor modifications.



Chapter 5

Conclusions

This dissertation investigated the numerical challenges of modeling and simulat-
ing energy selective enclosures. The particular features and challenges induced
by this application enabled the development of data pre-processing, modeling
and simulation strategies for large-scale LTI systems coupled with nonlinear
devices. The final result of this thesis is a general and robust integrated
framework that starts from tabulated frequency data or measurements of an
unloaded large-scale shielding enclosure, delivers a compact model and vali-
dates the performances of the nonlinearly loaded structure in the time domain
with an efficient simulation strategy. Several numerical results supported the
effectiveness of all steps in the presented strategies. The main contributions of
this thesis are summarized in the following.

Large-scale data preprocessing Chapter 2 presented several data pre-
processing methods for improving and/or enabling successive macromodeling
steps. At first, we compensated for an initial incomplete frequency character-
ization of the structure due to full-wave field solver limitations. To fill the
low-frequency (LF) gap with well-defined synthetic responses, we designed an
extrapolation and regularization procedure in a suitable asymptotic modal
domain. Then, we introduced customized compression strategies to reduce
the data complexity while preserving LF data features. These approaches,
code-named Hierarchical SVD (Hi-SVD) and Block-Diagonal SVD (BD-SVD),
drastically improved the full-bad accuracy during reconstruction, down to DC.
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Structured and compressed macromodeling framework In Chapter 3,
we introduced a macromodeling framework suitable for the shielding application,
where the resulting models are large-scale both in terms of dynamic order (i.e.
the number of poles) and input/output ports. At first, we reviewed rational
approximation strategies, we introduced the VF algorithm and the classic
Compressed Macromodel (CM) framework based on a standard SVD, and
we provided background notions on the passivity characterization. Then, we
presented a compressed and structured macromodeling strategy to embed the
data-reduction methods of Chapter 2 in a suitable model representation that
inherited low-frequency data features, such as DC zeros of various orders. We
equipped the proposed strategy with a sampling-based passivity verification
algorithm and a consistent enforcement scheme to ensure the certification of a
final passive model.

Transient analysis via WR-based decoupling scheme In Chapter 4,
we focused on the transient analysis of nonlinearly loaded shielding enclosures.
To this end, we adopted a hybrid simulation approach that converted the
fully-coupled electromagnetic problem into an equivalent circuit formulation.
This strategy decoupled the linear/nonlinear sub-problems and enabled both a
suitable macromodeling framework and a Waveform Relaxation (WR) approach.
In this context, we proposed a simulation scheme that improved the convergence
rate of the standard WR solver by combining a time windowing strategy and
an inexact Newton-Krylov iteration. We validated the presented scheme on
shielding enclosures macromodels with up to 1024 ports and 72704 states,
demonstrating the effectiveness and reliability of the proposed solution with
respect to state-of-the-art SPICE engines.

5.1 Open investigations

The strategies provided through this work open the investigation of further
research directions to develop a more general, robust and reliable framework
for the next generation’s applications.
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Data extrapolation of lossy system The extrapolation procedure pre-
sented in Chapter 3 assumed a low-loss asymptotic behavior. Nevertheless, a
more general approach may be needed in the case of lossy systems. Indeed, the
proposed strategy applies with no relevant modifications if the real component
of the responses in the low-frequency range is sufficiently small to be approxi-
mated as null. This condition is not always satisfied in the case of significant
losses. In this context, there is no guarantee that the low-frequency asymptotic
behavior assumed in (2.9) still holds. Thus, two possible approaches can be
investigated. First, we can improve the low-frequency approximation (2.9) by
including a resistive frequency-dependent block and extend the component-wise
fit (2.12) also to the real part of each response. Alternatively, we could generate
a synthetic low-loss dataset by subtracting the contribution of the DC ma-
trix (when known) from all frequencies and apply the proposed extrapolation
procedure as is. These alternative approaches are left as future investigations.

Parallelization of the passivity verification algorithm A parallel imple-
mentation of the passivity verification scheme presented in Chapter 3 would
improve the main bottleneck of the macromodeling procedure, hence the passiv-
ity enforcement phase. Indeed, Stage 2 (Section 3.3.2) of the proposed scheme
naturally fits the parallel computation paradigms since the tree-based adaptive
sampling scheme runs on each subband independently. Thus, we expect to
provide a drastic speed-up by tackling the search effort on a multicore or GPU
architecture. Nevertheless, this implementation requires careful consideration
in terms of resources. On the one hand, the memory requirement is affected by
the macromodel size, whose coefficients are necessary to compute the system re-
sponses for all subbands. Thus, the P ×P residue matrices should be streamed
among the parallel architecture. On the other hand, the required sample
distribution among subbands is not uniform, and some frequency intervals will
be more expensive and time-consuming than others. Thus, the precise impact
of a parallel framework cannot be estimated a priori. We might estimate an
ideal speedup condition (never achievable in practice), corresponding to a cut
of the adaptive sampling cost by a factor of NT (the number of computing
threads), in case the number of subbands is an integer multiple of NT , and in
case the cost for adaptive subsampling each subband is identical (balanced). If



148 Conclusions

these conditions are not met, the speedup would be dominated by the slowest
subband requiring more internal samples.

Optimization of transient simulation via WR The presented WR imple-
mentation still leaves open several future research directions. First, we expect
to improve the algorithm efficiency at each iteration with a suitable multicore
or GPU-based parallelization [38, 93]. On the other hand, in the direction of
a better convergence rate, an automatic or dynamic time windowing strategy
can be adopted. From the formulation standpoint, the presented application is
limited to static nonlinearities, and a suitable extension to more advanced and
general nonlinear devices is needed. To conclude, the presented solver can be
modified to take advantage of possible time-varying or spatial redundancies in
the decoupling signals, thus using a projection-based approach to compress the
dimension of exchanged signals.

Extension to standard applications The last open question is related to
the application side. Through this work, we mostly presented results associated
with the shielding enclosure case. Nevertheless, the presented strategies are
general and applicable to a wide range of problems. We recall that the standard
WR solver is already proven to be effective for transmission lines (TLs) [39]
and Power Distribution Networks (PDNs) [38] analysis. Thus, we expect the
proposed framework to perform even better due to the combination of a suitable
compressed macromodeling approach. The validation of the presented strategies
on standard applications, such as TLs, PDNs and PCBs, is thus considered a
future research activity of great interest.
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Appendix A

DC characterization

This appendix provides a step-by-step computation of the impedance matrix
Z0 as in (2.1) obtained with the proposed regularized DC topology presented
in Fig. 2.2. The final result is a full characterization of the system DC response,
including admittance (2.2) and scattering (2.3) representations, irrespective to
the port numbering arrangement.

Since in the proposed regularized topology of Fig. 2.2 identical series re-
sistances r are added at each lumped port of a p × p = P regular grid, it is
straightforward to see that

Z0 = r IP + âZ (A.1)

where âZ is the multi-port P × P impedance matrix obtained by removing all
resistors r from the circuit of Fig. 2.2. Elements of âZ are computed following
their definition, by taking advantage of the regular grid configuration and
addressing each branch separately.

The calculation of âZ starts considering an individual p×p block correspond-
ing to a generic m-th branch, in the following indicated with âZmm and obtained
as in Fig. A.1 by

• exciting all ports located at the m-th grid branch with current sources
• leaving all ports in other branches open.
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Fig. A.1 Circuit to compute the impedance matrix âZmm associated to the m-th grid
branch. Since all resistances on other branches are short-circuited, each vk = 0 ∀k
that does not belong to the m-th branch is vanishing. The trans-impedance matrix
block âZmn with m ̸= n is null.

Computing the voltage drop on each port of the m-th branch enables to define
diagonal and off-diagonal elements of âZmm as

(âZmm)i,i = (p− 1)R2

pR
= p− 1

p
R ∀i = 1, · · · , p (A.2)

(âZmm)i,j = −R
R

R + (p− 1)R = −R

p
∀i ̸= j. (A.3)

The resulting p× p impedance matrix can be defined in a compact form as

âZmm = R


1− ϑ −ϑ · · · −ϑ

−ϑ 1− ϑ
. . . ...

... . . . . . . −ϑ

−ϑ · · · −ϑ 1− ϑ

 = R(Ip − ϑuuT) (A.4)

where ϑ = 1/p, uT = [1, · · · , 1], and u ∈ Rp.
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Consider now blocks âZmn ∈ Rp×p collecting trans-impedances between ports
located in different branches. Due to the presence of a return path through the
box enclosure (the short circuit on the right side of Fig. A.1), all voltages at
the m-th branch are vanishing when the current excitation sources are located
in another n-th branch, so that the trans-impedance matrix reads

âZmn = 0 ∀m ̸= n. (A.5)

Combining (A.4) and (A.5) with (A.1) to include (regularization) series re-
sistances r, each block in the DC impedance matrix Z0 associated to a given
branch can be defined as

Z′
0 = Z′

mm = r Ip + âZmm = r Ip + R (Ip − ϑuuT) m = 1, . . . , p (A.6)
Z′

mn = âZmn = 0 ∀m ̸= n (A.7)

Therefore, the complete P × P DC impedance matrix Z0 is obtained
by collecting all blocks Z′

0 corresponding to individual branches, with an
arrangement that depends on the global numbering of the ports. Using a
vertical numbering (superscript v) the ports are numbered consecutively in
each branch and then all branches are listed consecutively, as in the left panel
of Fig. A.2. The complementary horizontal numbering (superscript h) indicates
a global listing of all ports, as depicted in the right panel of Fig. A.2. These
two cases correspond to

Zv
0 = Ip ⊗ Z′

0, Zh
0 = Z′

0 ⊗ Ip (A.8)

where ⊗ indicates the Kronecker product. Using the Sherman-Morrison for-
mula, the DC admittance and scattering matrices with vertical port alignment
(superscript v) can be analytically computed as in

Yv
0 = Ip ⊗Y′

0, Y′
0 = (p rIp + RuuT)

p(Rr + r2) (A.9)

Sv
0 = Ip ⊗ S′

0, S′
0 = Φ′ − 1

Φ′ + 1Ip −
2ϑΦuuT

(Φ′ + 1)(φ + 1) (A.10)
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Fig. A.2 Vertical (left) and horizontal (right) ports numbering for a P = 3× 3 = 9
shielding enclosure.

where Φ = R/R0, φ = r/R0, Φ′ = Φ + φ, and R0 denoting the scattering port
reference impedance, usually 50 Ω. For the horizontal port numbering scheme,
the order of the Kronecker product factors is reversed as in (A.8).
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