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Abstract

Modern applications require sensitive electronic devices to process high-speed
signals under exposure to several disturbing sources. The Electromagnetic
Interference (EMI) is one of the main threats for reliable and robust electronic
systems, where di�erent external Electromagnetic (EM) sources can compromise
(or even destroy) unprotected devices. An example is the High-Intensity
Radiated Field (HIRF) induced either by a lightning strike or by a standard
radiation transmitter (as well as an intentional EM weapon) that can induce
system failure or even damage.

Recently, the Electromagnetic Compatibility (EMC) community has shown
an increasing interest in energy-selective surfaces. These novel structures distin-
guish between high-power interference and weaker signals, enabling protection
and (wireless) communication at two di�erent energy levels. A simple energy-
selective enclosure is designed by covering an aperture of a conductive shield
with a grid of nonlinear devices, usually diodes. The diodes array remains
transparent to weak signals, while the energy of strong �elds is attenuated
thanks to the nonlinear response of the diode grid.

Repeated numerical simulations are required to assess the Shielding Ef-
fectiveness (SE) of these structures, i.e. their performances, under di�erent
working conditions (in terms of shield parameters, incident �eld or termination
type). On one hand, full-wave solvers allow computing the transient solution of
the scattering problem with a relevant computational cost at every change in
the system con�guration. On the other hand, the unloaded enclosure is a Linear
Time Invariant (LTI) system that obeys Maxwell’s equations. This observation
opens the investigation to hybrid simulation approaches that convert the fully
coupled linear/nonlinear EM problem into an equivalent circuit formulation.
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The system is represented by a linear multiport loaded with lumped nonlinear
terminations, and excited with the contribution of the incident �eld.

A data-driven macromodeling framework �ts the above procedure and en-
ables a reusable Reduced Order Model (ROM) of the (linear) shielding enclosure.
Such macromodel can be extracted during a characterization phase, and then
exploited to perform multiple e�cient transient simulations for performance
assessment. Several challenges a�ect both generation of the ROM and their fast
transient simulation. The objective of this work is to address such challenges, in
order to establish a complete modeling and simulation framework that is robust
and e�cient, so that it can be used as a numerical tool during computer-aided
design of energy-selective enclosures.

The �rst contribution of this work is a sequence of data preprocessing
strategies, that combine a regularization and extrapolation procedure in a suit-
able asymptotic modal domain, with structured data compression approaches
built on a modi�ed Singular Value Decomposition (SVD). We show that these
complementary approaches drastically improve model accuracy and robust-
ness, while reducing model sensitivity and identi�cation complexity. Then,
we address the large-scale modeling problem by providing a structured and
compressed rational �tting framework. We equip this process with an e�cient
passivity veri�cation based on an adaptive-sampling strategy, since we have
experienced that standard approaches are either unreliable or impractical due
to high computational cost. A passivity enforcement scheme takes advantage of
this algorithm and provides a �nal model that is suitable for guaranteed stable
numerical simulations. The last contribution of this work is a robust hybrid
transient solver that combines the above macromodeling framework with an
e�cient Waveform Relaxation (WR) based decoupling scheme. The presented
result combines an inexact Newton-Krylov iteration and a time partitioning
strategy to improve the well-known convergence issues of a standard WR,
resulting in a fast and reliable transient solver for energy-selective shields and,
in general, for nonlinearly-loaded large-scale electromagnetic structures.

Several numerical results demonstrate how the various formulations and
algorithms introduced in this work e�ectively advance the state-of-the-art.
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Notation

In this dissertation, we refer to R and C as the real and complex numerical �elds,
respectively. We indicate scalars, vectors and matrices with normal, lower case
bold and upper case bold fonts as x, x and X, respectively. The identity matrix
of size n is denoted as In, while the matrix transpose and conjugate transpose
(Hermitian) are de�ned as XT and XH. The imaginary unit is indicated with
j =
p
�1 and the Laplace variable is always referred with s. The conjugate of

a complex number z is indicated with z�. The two operators Re f�g and Im f�g
extract the real and imaginary part of their argument. The eigenvalues and
singular values of a matrix X are indicated as �fXg and �fXg, respectively.
The p-norm of a matrix is indicated with kXkp, where the Euclidean norm
(p = 2) is assumed when p is omitted. Sets are denoted with calligraphic font X
and their elements are enclosed within curly brackets X = f� � � g. The symbol

 indicates the Kronecker product, and its property are explicitly stated when
needed. With ~ we indicate the time-domain convolution operator.



Chapter 1

Introduction

This dissertation addresses the problem of numerical modeling and simulation
of large-scale Linear Time Invariant (LTI) systems terminated with nonlinear
loads, with a dedicated focus on energy selective shielding enclosures. This
chapter introduces the context and motivations of this thesis by presenting the
key challenges and providing the general structure of the manuscript.

1.1 Energy selective surfaces: an overview

Since the 1970s, when a common canonical structure was a single wire antenna
loaded with a diode [1, 2], the simulation of electrical/electromagnetic struc-
tures with nonlinear (NL) terminations has been a major topic of research
interest. In this context, the recent interest in energy selective surfaces provides
a new challenge in the �eld of electromagnetic/circuit-simulations [3]. These en-
gineered structures aim at replacing standard absorbers to protect an electronic
device from signal interference, such as the Electromagnetic Interference (EMI)
given by High-Intensity Radiated Field (HIRF) caused by lightning strikes or
by intentional electromagnetic weapons [4]. These applications include meta-
surface absorbers [5�7], nonlinear impedance surfaces [8], and energy selective
shielding [9, 10].

In this scenario, the increasing interest in energy selective surfaces is moti-
vated by their ability to guarantee low-power communication while protecting
sensitive devices from dangerous � or even destructive � high-power Electro-
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Fig. 1.1 Illustration of an energy-selective shield obtained by the combination of a
metallic enclosure with a diode grid. The e�ect of an incident �eld (aggressor) on an
internal device (victim) is the result of the interplay between the electromagnetic
behavior of the shield and the nonlinear characteristics of diode elements. From [10],
' 2021 IEEE.

magnetic (EM) sources. The simplest power-modulated protecting e�ect is
obtained by connecting standard shielding enclosures with nonlinear devices
at a set of lumped ports, which can be located across an aperture [9�13].
Figure 1.1 illustrates an example of a cubic-shaped shield, that surrounds
a sensitive device (victim), with an aperture covered by a diode grid. The
penetration of an incident �eld (aggressor) is modulated by diodes, which
provide a nonlinear shielding e�ect by switching to a conductive mode when
triggered by a high-intensity �eld. Conversely, the internal victim can transmit
through the shield aperture at a low-power �eld level since the currents induced
in the metallic enclosure are su�ciently small to leave the terminations in a
cut-o� non-conducting state. In other words, the sheet of diodes may behave
as transparent or re�ecting depending on the energy level of the impinging
electromagnetic �eld.

In contrast with standard protection approaches, based on passive linear
elements (e.g are wires, screens, apertures), the design phase of nonlinearly-
loaded shields cannot be addressed in any analytical closed-form. For this
reason, numerical simulations are the main tool to optimize the structure
according to the designer requirements. Important aspects to characterize the
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electromagnetic protection of an energy selective surface, as in Fig. 1.1, are
attributes of both:

� the enclosure, in terms of its geometrical and physical parameters; ex-
amples are the shield and aperture size, shape, and the corresponding
material properties.

� the nonlinear terminations, as the diodes type and the grid con�gura-
tion/setting; examples are the number of loads per branch or the number
of branches.

A thorough investigation on the e�ect of various design choices on the �eld
intensity inside the shielded area has been proposed in [10]. In this case,
the protection provided by the loaded enclosure is assessed by means of the
nonlinear Shielding E�ectiveness (SE) de�ned as

SE1(r) =
keinc(t)k1
keobs(t; r)k1

(1.1)

where einc(t) is the incident electric �eld, eobs(t; r) is the �eld observed by the
victim located at the coordinates r, and operator k�k1 extracts the largest
amplitude of its argument. The SE is selected as the main design feature since
it provides an estimate of the maximum penetrating E-�eld and enables tuning
the energy selectivity of the protective covering, accordingly. To clarify, a small
value of SE1(r) corresponds to a high penetration of the incident �eld einc(t)
as a result of a transparent grid of diodes: in this condition, most of the energy
is transmitted through the aperture. On the contrary, a large value of SE
indicates that the incident �eld signal is re�ected and/or attenuated by the
presence of nonlinear terminations.

This is exempli�ed in Fig. 1.2, which illustrates the e�ect of several di�erent
types of nonlinear terminations on a 8�8 grid spread on a 25�25 cm2 aperture
for an enclosure of size 50�50�50 cm3. In the reported example, the selectivity
of the SE is modulated using four types of diodes in di�erent con�gurations: a
pair of anti-parallel PN-junction (black), a couple of back-to-back Zener (gray)
and two kind of Varactors (red and blue) are combined to obtain six di�erent
terminations for the same grid. Details on the nonlinear elements parameters
are here omitted (see [10]). According to the SE levels reported in Fig. 1.2, the
proposed protective structure behaves as an intensity low-pass (panels a and



1.1 Energy selective surfaces: an overview 5

10 0 10 1 10 2 10 3 10 4
0

10

20

(a)

10 0 10 1 10 2 10 3 10 4
0

10

20

(b)

10 0 10 1 10 2 10 3 10 4
0

10

20

(c)

10 0 10 1 10 2 10 3 10 4
0

10

20

(d)

10 0 10 1 10 2 10 3 10 4
0

10

20

30

(e)

10 0 10 1 10 2 10 3 10 4
0

10

20

(f)

Fig. 1.2 Shielding E�ectiveness (SE) plotted as a function of the incident �eld
amplitude, for a shielding enclosure as in Fig. 1.1 with an aperture loaded by a 8� 8
grid of diodes. Four types of diodes are used to modify the nonlinear characteristic:
PN junction (black), Zener (grey) and Varactors (red and blue). Originally reported
in [10], ' 2021 IEEE.

b), high-pass (c and d), band-stop (e), and band-pass (f) �lter. This example
shows that the characteristics of the overall EM protection can be optimized
by tuning the nonlinear elements parameters: examples are the threshold
voltage, the semiconductor material, or diodes resistance and reactance. The
SE behavior is always bounded by two limit cases with diodes completely OFF
or ON, resulting in either an open-circuit (OC) or a short-circuit (SC) grid
in the extreme situation of low or high intensity �elds, respectively. Only the
transition between these two limits is the SE component that is (strongly)
a�ected by the termination choice (i.e. diodes parameters), and that requires a
(nonlinear) transient simulation to be de�ned. This is veri�ed for each panel of
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Fig. 1.2, where the two bounds are reported as black-dashed lines. These two
extreme cases (OC and SC) are �xed once the parameters of the shield are set,
in particular shape and size of the enclosure, aperture size and grid density: a
linear analysis of the unloaded structure is su�cient to de�ne bounds of the
SE. Nevertheless, both investigations (linear and nonlinear) are necessary to
fully characterize the performances of a target nonlinearly-loaded shield.

To verify the shield performances and to satisfy the required EM protection
for di�erent working conditions, the above procedure must be iterated for
several incident �eld waveforms. To this end, an e�cient simulation framework
is crucial. The main objective of this work is to present a general modeling
and simulation framework, that is able to perform fast nonlinear transient
simulation of energy-selective surfaces.

1.1.1 The macromodeling framework

The design of an energy selective surface requires many numerical simulations
to assess the EM protection in several working conditions. The main simulation
challenge arises from the coexistence of a potentially electrically large enclosure
with complex and strongly nonlinear characteristics of possibly many discrete
loads. For the analysis of these large-scale nonlinearly loaded systems, we can
identify two classes of approaches:

1. full-wave electromagnetic solvers
2. hybrid techniques.

Several standard full-wave electromagnetic solvers are suitable for our task.
Examples are the Time Domain Integral Equation (TDIE) approach [14], the
Finite-Di�erence Time-Domain Method (FDTD) [15], the Time Domain Finite-
Element Method (TDFEM) [16] and the Partial Element Equivalent Circuit
(PEEC) approach [17]. All these solvers are able to retrieve the dynamic
behavior of the shielding structure by coupling the solution of Maxwell’s
equations with the nonlinear characteristic of the attached loading devices.
Nevertheless, all of them su�er from a similar drawback. Anytime a new
con�guration or loading condition is changed and a new transient analysis is
required, all these approaches must start their evaluation from scratch. In
other words, even if only part of the problem is slightly modi�ed (as one of
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Fig. 1.3 Representation of the shielding enclosure (hybrid) simulation setup: the
fully-coupled EM problem (left) is cast into an equivalent circuit representation
(right). See Section 4.1 or [13] for a detailed description of the procedure. From [19]
' 2022 IEEE.

the many nonlinear devices), the information among successive simulations is
lost, and the solver must handle the entire system of (nonlinear) equations
again. Thus, using a full-wave electromagnetic solver to perform the (iterative)
design required by an energy-selective enclosure may become quite expensive
and ine�cient when considering several loading and excitation conditions [10].

On the other hand, removing the lumped (nonlinear) loads from the shielding
enclosure opens the design investigation to hybrid simulation techniques [13, 18].
Indeed, the unloaded structure (the yellow box with dark metallic connections
reported in Fig. 1.3) without the nonlinear interaction of the termination de-
vices (the red elements) is characterized by linear Maxwell’s equations. Thus,
the shield can be described as a passive multiport LTI system that can be
represented via reduced order (compressed) modeling approaches, discussed
later in Chapter 2 and 3. The information associated with the transfer matrix
H(s) is thus cast in a macromodel form and preserved for subsequent transient
simulations. Then, the original transient scattering �eld problem can be solved
by the scheme of Fig. 1.3 by attaching the nonlinear loads to an equivalent
circuit synthesis of the surrogate model and including the incident �eld contri-
bution with time-varying voltage sources. A detailed description of this hybrid
framework will be provided in Section 4.1.
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The literature o�ers several data-driven strategies for a macromodel genera-
tion from a frequency characterization of the target system [20�23]. Nowadays,
the most relevant algorithm to approximate an LTI component starting from a
set of frequency responses is the Vector Fitting (VF) [21]. VF is well established
in the academic and industrial communities. With this approach, extracting
a rational approximation of a multiport system into a passive macromodel
is straightforward. A modi�ed version of the VF [24] provides a remarkable
speed-up with a relevant number of ports, while the algorithm parallelization is
already well established [25, 26]. The common practice for transient simulation
is to convert the resulting surrogate model to an equivalent circuit [20, 27],
suitable for any circuit solver of the SPICE family [28, 29].

Nevertheless, our type of application, where the large-scale nature of the
linear structure both in terms of dynamical order and number of external ports
becomes a limiting factor and a modeling challenge, opens several research
directions, discussed next.

1.2 Challenges

Modeling and simulation of energy-elective shielding structures poses a number
of challenges from both the macromodeling and the transient simulation stand-
point. As an example, let us consider Figure 1.4, which shows a 50�50�50 cm3

box-shaped enclosure with a 25� 25 cm2 frontal (squared) aperture, which is
covered by a regular grid of P = p� p = 25 ports (in red) connected in series
by (black) metal strips of 2 mm width. This structure is used in the following
as a running example to describe the above challenges.

1.2.1 Characterization and modeling

Our task is to build a model of LTI system associated to the unloaded box.
Figure 1.5 reports the magnitude of impedance and admittance parameters
extracted by a Method of Moments (MoM) solver [31], sampled at K frequency
points. System responses are commonly available as scattering parameters
fH(j!k) = S(j!k); k = 1; : : : ; Kg, but a suitable conversion to admittance Y
or impedance Z representation is straightforward. The discrete data-set spans
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Fig. 1.4 A shielding enclosure with P = 25 lumped ports (in red), spread on p� p
regular grid, and its DC conductive path. From [30] ' 2022 IEEE.

a frequency band !k 2 
D = 
L [ 
H . Note the presence of an (unknown)
low-frequency region 
G due to inherent limitations in frequency-domain �eld
solvers based on MoM or Finite Elements Method (FEM).

The realization of passive macromodels from band-limited tabulated fre-
quency responses as in Fig. 1.5 poses a number of challenges:

1. the zero-frequency (DC) sample is not available. However, it is funda-
mental to have full control of the macromodel behaviour under static
conditions to obtain a physically consistent time-domain simulation of
the structure under nonlinear terminations. Since frequency-domain �eld
solvers usually do not provide accurate responses below a critical fmin, to
obtain a consistent DC matrix either a static solver or a physics-based
approach [32] are usually involved. Given that the shielding enclosure is
designed to have very low losses or �in the limit case� lossless when made
of PEC, it turns out that the DC point control is particularly challenging.
In the PEC case, an equivalent static circuit of the box can be easily
obtained as in the right panel of Fig. 1.4. For this structure, both the
impedance and admittance matrices do not exist when the frequency
vanishes, since the DC conductive path represents an ill-de�ned circuit
when exciting all ports with independent current or voltage sources (see
Chapter 2 for details). This is consistent with the low-frequency asymp-
totic behaviour of both Y(j!) and Z(j!) when ! 2 
L (see Fig. 1.5),
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Fig. 1.5 Admittance (bottom) and impedance (top) responses of a 25-port shielding
enclosure sampled with a MoM �eld solver. Adapted from [30] ' 2022 IEEE.

which is motivated by the presence of a dominant pole at DC in both
cases. Including this pole in the macromodel structure will eventually
lead to asymptotic instabilities, a�ecting the performances of transient
simulations. For the above reasons, a regularization of the DC matrix is
necessary to guarantee the e�ectiveness of any time-domain simulation,
especially when nonlinear terminations are involved.

2. the absence of reliable data in a broad low-frequency range, the gap

G. This condition precludes any chance of controlling a macromodel
behaviour in this frequency region, even if a well-de�ned DC matrix
is included in the training data-set. Nevertheless, during a transient
simulation the nonlinear terminations may emphasize the low-frequency
content of ports signals, which are then a�ected by a possibly inaccurate
response of the model, also in the case of a high-frequency excitation �eld.
This situation is particular evident observing Fig. 1.6, which shows the
accuracy of a passive surrogate model obtained with a state-of-the-art
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Fig. 1.6 Standard macromodeling tool [33] accuracy on a 25-port shielding enclosure.
Top: scattering responses used to �t the model (with exact DC matrix). Bottom:
impedance parameters show an accuracy degradation after conversion of model
responses. From [30] ' 2022 IEEE.

tool [33] by �tting the S-parameters. The original data-set has been
enriched with a physically consistent DC matrix, that has been used to
enforce an exact macromodel �t at the zero-frequency. The impedance
parameters obtained after model responses conversion clearly show an
inexact behaviour in the low-frequency range. Therefore, some guided
smooth data extrapolation is needed to properly merge the DC point
with (high-frequencies) �eld solver samples to obtain a full-band training
data-set for MOR engines.

3. the complexity of the macromodeling problem, mostly in terms of in-
put/output ports P . Indeed, to properly cover the shielding aperture
with a suitable grid the number of nonlinear devices can easily reach
hundreds or thousands of elements, each one (or each pair) attached
to an electrical port. Furthermore, in shielding applications also the
macromodel dynamic order (i.e. the number of poles) is likely to be signif-
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icant, depending on the structure electrical size at the largest frequency
of interest. Under such conditions, the required computational cost of
standard techniques as VF is inappropriate or even unfeasible, especially
in the critical case when a passive result is required. Indeed, the passivity
veri�cation is the main bottleneck in the extraction of a reliable model
with a considerable size.

4. the error magni�cation with a change system representation. A broad-
band accurate macromodel approximation is strongly required to attenu-
ate this challenge, especially approaching DC. On the one hand, the �nal
model representation must retain all low-frequency features of the system
behavior, like the presence of zeros at DC. On the other hand, we would
like to reduce the large number of responses with a data-compression
strategy to mitigate the model identi�cation e�ort. Unfortunately, a
standard compressed framework [34] cannot achieve these two objectives
concurrently. Thus, a suitable structured approach is required both in
the data pre-processing and modeling stages.

For these reasons, a large-scale macromodeling problem requires a suitable
framework that has the capability to scale up with the number of ports,
while both preserving a suitable full-band accuracy and enabling the passivity
characterization of the system at hand.

1.2.2 Transient simulation

The simulation problem of Fig. 1.3 can be computed with any compatible
circuit solver. Among the others, solvers of the SPICE family are well-known
due to their general-purpose capability and reliability. These circuit solvers
usually start from a Modi�ed Nodal Analysis (MNA) characterization of the
system under analysis, retrieve a set of Ordinary Di�erential Equations (ODE)
equations and then �nd a transient solution exploiting a Newton-based ap-
proach. SPICE engines embed adaptive time sampling techniques and control
parameters to suitably achieved a good tread-o� between time performances
and prescribed accuracy. Nevertheless, it is well-known that a MNA circuit
formulation associated with a Newton approach �that requires the evaluation
of a Jacobian matrix� is not likely to scale favorably with the number of circuit
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components and independent variables. Thus, a general-purpose SPICE solver
may not be e�cient when applied to the shielding enclosure veri�cation case of
Fig. 1.3.

In this manuscript we will provide an alternative simulation framework
to general-purpose circuit solvers of the SPICE family. Starting from the
linear/nonlinear decoupling approach [13], we exploit a well-know technique to
solve the circuit problem of Fig. 1.3, which is the Waveform Relaxation (WR)
method [35, 36]. Unfortunately, the basic WR approach is likely to fail for the
present application, as discussed next.

Every WR-based algorithm starts from an initial guess of port signals over a
given simulation window and re�nes their estimate at every iteration, until con-
vergence is detected. The simplest implementation of a WR approach involves
a �xed-point iteration that evaluates sequentially the electromagnetic subsys-
tem response and the nonlinear terminations one. Under proper conditions
(in every formulation the iteration operator must be a contraction [36�40]),
signals estimates stabilize. An extensive literature is available for adjusting the
parameters of the decoupling scheme such that the number of WR iterations is
minimized [37, 41, 39, 42]. A simple choice for this optimization is to de�ne the
decoupling scheme using scattering waves, such that a �xed reference impedance
level can be used to transfer signals information among iterations.

For the addressed shielding enclosure application, impedance matching is
not a reliable option:

� a constant (real) decoupling impedance is inadequate for broadband
matching since the low-loss nature of the shield leads to an almost purely
reactive behavior in the low-frequency range, counterbalanced by sharp
resonances in the high-frequency region;

� a time-varying adaptive approach is not su�ciently robust to track the fast
variations of the instantaneous load impedance provided by the switching
behavior of diodes terminations, which alternates extreme con�gurations
with very low/high impedance levels associated with conduction/cut-o�
modes.

For these reasons, a standard WR scheme with a constant reference impendance
(e.g. R0 = 50 
) requires a tremendous number of iterations to converge, as
documented in Fig. 1.7. This example shows successive WR iterations performed



14 Introduction

Fig. 1.7 Transient analysis of a 100-ports nonlinearly loaded shielding enclosure. Scat-
tering signals at the 25-th port are reported for di�erent WR iterations. Convergence
is detected after 807 iterations.

on a shielding enclosure with 100-ports, loaded with anti-parallel pairs of diodes
and excited with a plane wave incident �eld as detailed in Section 4.6.1. This
sample simulation demonstrates that the number of WR iterations is exceedingly
large and impractical. In order to reduce these iterations, [18] suggested an
iteration-dependent decoupling scheme based on consecutive conversions of the
linear macromodel into di�erently normalized scattering parameters, which
showed, however, also the main drawback of increasing the o�ine cost.

1.3 Technical contributions

All presented challenges will be addressed and solved in this thesis as follows.
First, Chapter 2 describes our proposed solutions to all the data-related issues
(points 1, 2 and 4 of Section 1.2.1), by providing

� a regularization and extrapolation procedure based on low-frequency
asymptotic modes [43], extending the preliminary results of [44, 30]. It
will be demonstrated that the proposed pre-processing phase smoothly
merges the high-frequency solver data reaching the DC point with a set
of synthetic samples, by avoiding the low-frequency degeneracy reported
in Fig. 1.5, and by providing as output a well-de�ned full-band data-set
for modeling purposes.
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� a data-compression (structured) strategy [44] to preserve low-frequency
features while exploiting spatial redundancies in the system responses.
Starting from the method proposed in [34] based on a modi�ed Singular
Value Decomposition (SVD), which is able to reproduce the set of P � P
system responses with a linear combination of a few basis functions,
Chapter 2.2 introduces two representations denoted as Block-Diagonal
SVD (BD-SVD) and Hierarchical SVD (Hi-SVD). These two formulations
are able to preserve low-frequency data features, such as asymptotic
behaviour and expected transfer-function zeros at DC, by improving the
reconstruction error and reducing the resulting sensitivity to a change of
representation.

Chapter 3 introduces the structured Compressed Macromodel (CM) frame-
work, a model generation strategy that embeds the compression strategies of
Chapter 2.2 and drastically reduces the identi�cation problem complexity. The
presented procedure improves the low-frequency accuracy by including DC
zeros in the model structure within the compressed formulation. The scheme
includes a suitable passivity veri�cation scheme based on a multi-stage adaptive
sampling approach [45], designed to handle large-scale systems with many
electrical ports. A passivity enforcement formulation concludes the presented
framework. The �nal result is a complete procedure to extract compressed
and passive macromodels, structurally imposing DC zeros and improving the
low-frequency accuracy.

Chapter 4 presents a transient solver based on the above compressed macro-
model representation, that allows the evaluation of transient voltages and
currents at nonlinearly loaded ports in a drastically reduced runtime with re-
spect to standard circuit solvers. The presented transient simulation algorithm
is based on a decoupling Waveform Relaxation (WR) approach, strengthened by
a Newton-Krylov iteration as in [46]. The proposed scheme is further enriched
by a time-partitioning approach that is able to drastically improve convergence,
by reducing the number of iterations per time window and consequently the
overall runtime.

Numerical results on shielding enclosure of increasing complexity (up to
1024 ports) are provided along the thesis in each chapter, demonstrating that
the proposed framework is as reliable as state-of-the-art tools from both the
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macromodeling (as IdEM [33]) and the circuit simulation (like HSPICE [28])
standpoints. In particular, both the compressed model generation � including
passivity characterization and data compression � and the proposed transient
solver are shown to provide from one to three orders of magnitude speed-up
with respect to standard approaches.

To summarize, the two key contributions of this work are:

� Improvement and streamlined generation of compact, passive and reliable
macromodels for large-scale components, with hundreds of ports, obtained
from band-limited tabulated frequency responses

� A dedicated simulation environment for nonlinearly-loaded large-scale LTI
systems, with proven e�ectiveness for the speci�c case of energy-selective
enclosures.

Conclusions are �nally drawn in Chapter 5, which discusses the limitations
and future research directions of this work.



Chapter 2

Large-scale data preprocessing

This Chapter aims at solving two major issues associated with low-loss (or
lossless) large-scale tabulated frequency data.
First, in view of a macromodeling phase the system must be well characterized
over the full bandwidth of interest. This requires to de�ne a suitable training
dataset, minimal in some terms, but able to cover the most relevant features of
interest. Building a model on corrupted data is likely to result in an unreliable
behavior, such that the original system response can not be correctly reproduced.
The most (in)famous source of corruption is noise, but a very similar e�ect can
be obtained by removing a portion of the data in a sensitive region such that
important features will never be provided to the identi�cation algorithm. It is
the case of the presented shielding enclosures, which are de�ned by means of a
Method of Moments (MoM) solver. It is well-known that this class of solvers
does not allow obtaining reliable results in a low-frequency range, especially at
DC. With the intent of using the resulting macromodel in a transient simulation
framework with possibly many nonlinear terminations, having a well-de�ned
DC characterization is fundamental for our purposes. On the other hand, a
shielding enclosure lies in the family of low-loss (more likely loss-less) systems.
We will show in the following that even if we are able to obtain a low-frequency
characterization, the resulting data are very likely to be ill-de�ned in this band,
resulting in modeling sensitivity issues when changing loading condition.
The second major problem in feeding a standard �tting algorithm with a
shielding enclosure dataset is the size of the problem at hand. This kind
of structures are speci�cally intended to take advantage of a dense grid of
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lumped ports to attenuate the e�ect of dangerous EM incident �elds. The
density of this grid is one of the main design parameters, and it is reasonable
to assume that a higher number of terminations will improve the overall
�exibility of a nonlinear shielding characteristic. This means that to collect
frequency responses of the P -port (linear) enclosure we will end up with a
large-size dataset, whose memory requirements may compromise the e�ciency
of standard macromodeling procedures. Let us show this situation with an
example. In Chapter 4 we will show results built on a shielding enclosure
model in pole-residue form with P = 1024 ports and �n = 71 poles. What is
the minimum requirement in terms of memory for both the training dataset
and the resulting model? Let us assume that we would like to use K = 501
frequency samples, available from the �eld (MoM) solver, to run a model �tting
step that guarantees a proper approximation of the system. The overall data
memory consumption is � 4GB, already considering the simpli�cation of a
symmetric transfer matrix. A full-rank model in pole-residue form with �n = 71
poles, either real or complex, requires �n + 1 (real valued) residues matrices.
This means that the (symmetric) model itself would require at least 300MB of
memory to store the coe�cients matrices with double precision. To manipulate
such amount of data/coe�cients in an e�cient (and parallel) way is still a
considerable task, which became unfeasible when passivity come into play, as
later discussed in Chapter 3. A better approach is to address the complexity
in terms ports P by providing suitable data compression techniques [34] that
are able to exploit redundancies in the large-scale dataset.

The above alternative strategy splits the e�ort of identifying model coe�-
cients in two phases:

P1 preprocessing phase, that reduces the complexity of the training samples
by means of data compression approaches

P2 identi�cation phase, that take advantage of well-established algorithm to
build a suitable model in the reduced dataset space.

These two steps are strongly related one another, since:

� suitable transformations are expected from P1 to consistently map the
outcome of P2 in the original space dimension;

� the model resulting from P2 cannot retain any information of the original
system that are lost during P1.
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These two conditions seems to be straightforward, but we will see in this
Chapter that it may be tricky to guarantee both of them overall the entire
model domain of de�nition, i.e. for the all frequency band of interest. Indeed,
particular data features such as low-frequency trends, like DC zeros, maybe
not be retained while approximating system responses with a reduced number
of basis functions [34].

The focus of this Chapter is the preprocessing phase P1 described above,
providing two major contributions originally documented in [30]. First, a
regularization and extrapolation procedure will be presented in Section 2.1 to
obtain a broadband reliable dataset for macromodeling purposes, with speci�c
focus on the DC characterization of the system. Second, the complexity in
terms of number ports will be addressed in Section 2.2 by providing data
compression techniques that are able to preserve low-frequency features, such
as DC zeros, while approximating system behavior with a linear combination
of basis functions.

2.1 Dealing with lossless solver data

Let us consider an unloaded shielding enclosure as depicted in Fig. 1.4, character-
ized by P �P band-limited frequency responses from a MoM solver as reported
in Fig.1.5. The discrete K samples span a frequency band 
D 2 2�[fmin; fmax],
with 2�fk = !k 2 
D = 
L [ 
H , where responses start from a non-zero
frequency fmin > 0 due to intrinsic limitations in the solver. We can thus
identify three frequency bands, from right to left in Fig. 1.5:

� 
H is the range at higher frequencies where resonances are mostly located
� 
L is the region where it is reasonable to assume that the structure

behaves as electrically small, since both the admittance and impedance
responses show an asymptotic trend

� 
G = (0; 2�fmin) is where the system characterization is not available in
the dataset, and can be regarded as a missing gap in the data.

The presence of a low-frequency gap 
G prevents control on the model behavior,
thus of its accuracy and sensitivity, in a broad frequency portion that has an
in�uence on a transient simulation due to the presence of nonlinear loads.
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The objective of this Section is to integrate and possibly modify the original
frequency samples from the solver so that the two conditions below are satis�ed:

C1: the system responses must be well-de�ned and non-singular at any fre-
quency (including DC), irrespective to the multiport representation;

C2: the structure must be fully characterized over the entire frequency band
of interest; any gap in the data must be avoided.

To this end, two procedures will be illustrated

� a regularization approach to ful�ll condition C1 and rule out singularities
on the imaginary axis at DC;

� an extrapolation step to recover the unknown responses in the low-
frequency gap 
G and satisfy condition C2.

It will be shown that a direct extrapolation from system responses (either
impedance, admittance or scattering) to extend the asymptotic behavior and
�ll the low-frequency gap may be ine�ective. For these reasons, a more advanced
and robust approach based on a regularized modal extrapolation [30, 44] is
presented in the following sections.

2.1.1 DC Regularization

Above considerations are now made more precise, with reference to the DC
circuit of a box structure with no metal losses, reported in the right panel
of Fig. 1.4. As previously stated, both admittance Y0 = Y(s = 0) and
impedance Z0 = Z(s = 0) matrices are ill-de�ned at DC. Indeed, by exciting
all ports with independent voltage/current sources, attempting to compute
admittance/impedance parameters, leads to an ill-de�ned circuit due to the
presence of

� p independent voltage sources loops lead to a singular Y0, see left panel
of Fig.2.1;

� p(p�1) independent current sources cutsets cause a singular Z0, see right
panel of Fig.2.1.

This observation is consistent with the presence of a pole at s = 0 in both
representations. Therefore, the goal of this section is to apply a minimal
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Fig. 2.1 Setup to compute admittance (left) and impedance (right) DC matrices of a
p � p = 9 ports shielding enclosure, as in Fig. 1.4. Both circuits are ill-de�ned at
DC, and do not admit any solution.

modi�cation to the ideal DC circuit of Fig. 1.4 to remove the pole on the
imaginary axis. To this end, it is possible to add at each port

1. a series resistance r to regularize Y(s);
2. a shunt resistance R to regularize Z(s).

The �nal result is the topology presented in Fig. 2.2, which is non-singular at
all frequencies for any system representation. This leads to the following DC
matrices1

Z0 = Ip 
 Z00; Z00 = r Ip +R (Ip � #uuT) (2.1)

Y0 = Ip 
Y00; Y00 =
(p rIp +RuuT)
p(Rr + r2)

(2.2)

S0 = Ip 
 S00; S00 =
�0 � 1
�0 + 1

Ip �
2#�uuT

(�0 + 1)(’+ 1)
(2.3)

with p denoting the number of vertically aligned ports, # = 1=p, uT = [1; � � � ; 1],
u 2 Rp, � = R=R0, ’ = r=R0, �0 = � + ’, and R0 indicating the reference
scattering impedance. These expressions assume a vertical numbering of the
ports, as indicated in Fig. 1.4. In case a horizontal numbering is adopted, the

1A step-by-step direct computation of the DC impedance matrix Z0 is reported in
Appendix A.
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same expressions hold provided that the ordering of the terms in the Kronecker
products is reverted.
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Fig. 2.2 Proposed regularized topology. Originally reported in [30] ' 2022 IEEE.

2.1.2 Regularization of MoM data

The proposed regularized topology of Fig. 2.2 imposes the DC responses of
the system, making the original data incompatible with the DC behavior
since not included by the �eld solver solution in the �rst place. For this
reason, the original data for all frequency points in 
D needs to be modi�ed
by ensuring compatibility of all samples with the introduced DC point. This
leads to the regularization procedure de�ned in Algorithm 1, which is built
on the assumption of a missing DC point in the available frequency data
fH(j!k); !k 2 
Dg. The procedure computes a set of modi�ed responses by
connecting at each port a shunt resistance R and then a series resistance r.
Notice that all matrices inversions are well-de�ned at any available discrete
frequency sample, so that this strategy does not su�er from numerical issues.

Figure 2.3 illustrates the �nal result of the proposed data regularization in
terms of impedance parameters. It is evident from Fig. 2.3 that the perturbation
introduced to the original MoM data by this procedure is practically invisible
at all frequency samples, mainly due to the particular selected values for shunt
and series resistances, in this case R = 100 M
 and r = 0:1 
 respectively.
There is not an optimal choice for these two regularization parameters, but to
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Fig. 2.3 Set of regularized impedance parameters of a 5�5 shielding enclosure (P = 25)
and DC responses, represented as black-dashed lines. Regularization is performed
by Algorithm 1, choosing Rp = 100 M
 and r = 0:1 
. The high-frequency detail
con�rms a broad-band negligible perturbation of the proposed procedure. Originally
reported in [30] ' 2022 IEEE.

reduce the perturbation on the original data their value should be very large,
in the case of R, and small, considering r. This is later con�rmed by numerical
results in Section 2.1.6.

On the other hand, Fig. 2.3 shows also that the �rst available frequency
sample (at fmin) does not merge smoothly with the selected DC values, reported
to the low-frequency band as black-dashed lines. Indeed, the frequency gap 
G

is still too wide to reliably characterize the system behavior from fmin up to
DC. A procedure to provide consistent extrapolated samples in this unknown
frequency region, and satisfy condition C2, is needed.

Algorithm 1 Data regularization as in [30]
Require: Frequency data fH(j!k); !k 2 
Dg, R, r
1: H(j!k) 0:5(H(j!k) + H(j!k)T)
2: Convert H(j!k) to admittance Y(j!k)
3: Add shunt resistance R to Y(j!k) Y(j!k) + 1

RIP
4: Add series resistance r to Z(j!k) = [Y(j!k)]�1

5: Regularize impedance as Z(j!k) Z(j!k) + rIP
6: Add DC point Z0 from (2.1) as Z(j!)j!=0 = Z0
7: return Z(j!k): regularized data including DC point
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2.1.3 Modal asymptotic extrapolation

Filling the low-frequency gap region with extrapolated and consistent responses
may seem a simple task. Indeed, both the admittance and impedance responses
show an asymptotic low frequency behavior, such that Y(j!) ! 1 and
Z(j!) ! 1 for ! ! 0 (see Fig. 1.5). A direct extrapolation of matrix
elements from one of the two representations seems su�cient to obtain the
required missing samples. Nevertheless, these behaviors imply the presence of
both inductive and capacitive modes, responsible for the DC singularities of
both system representations. This means that a direct �t of the impedance
parameters would recover accurately only capacity modes, more visible in this
representation, providing with a rough approximation of the inductive ones
The opposite situation arises when considering the admittance parameters, as
illustrated with an example in Fig. 2.5.

A better alternative to a direct extrapolation is the conversion to a modal do-
main, where modes are well distinguishable [44, 30]. This leads to a concurrent
approximation of inductive/capacitive modes best suited for the lossless raw
MoM data: the procedure presented below should be performed before applying
Algorithm 1 and the regularization step of Section 2.1.2. Nevertheless, regular-
ization and extrapolation are not independent, since the analytical DC matrix
Y0 of (2.2) is used here to de�ne the required modal basis. This provides two
major di�erences with respect to other approaches based on direct computation
of system modes [43]. First, these other methods are less numerically robust
since the direct computation from sampled responses exposes the procedure
to data corruptions due to noise or low-frequency solver inaccuracy. Second,
the choice of using the real-valued (symmetric) DC matrix Y0 leads to a real
(and orthogonal) modal transformation matrix, necessary to preserve realness
and causality [47, 48] when using the data for building a model. This choice is
further justi�ed by the assumption that low-frequency modes at non-vanishing
frequencies smoothly extend to the corresponding modes at DC.

The proposed procedure starts with the eigendecomposition of the DC
admittance matrix Y0

Y0 = Q�0QT; �0 = QTY0Q =

2

4
1
R0 Ic 0
0 1

r I‘

3

5 (2.4)
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with R0 = R + r. The eigenvalues multiplicity is ‘ = p for inductive modes 1=r
and c = p(p� 1) for capacitive modes 1=R0, in agreement with observations on
admittance and impedance singularities of Section 2.1.1.

The orthogonality of modal matrix Q =
h
Qp Qs

i
is guaranteed by the

symmetry of Y0, which enables to de�ne QT
s Qs = I‘, QT

pQp = Ic, and QT
pQs =

0. Therefore,
Y0 =

1
R0

QpQT
p +

1
r
QsQT

s : (2.5)

Correspondingly, the physical and modal DC impedance matrices read

Z0 = R0QpQT
p + rQsQT

s and ��1
0 = QTZ0Q =

2

4R
0Ic 0
0 rI‘

3

5 : (2.6)

The modal transformation into DC asymptotic domain holds for all frequencies
in the original dataset !k 2 
D as

Ym(j!k) = QTY(j!k)Q ; !k 2 
D: (2.7)

The same reasoning can be applied to both the impedance and scattering
representation. As already mentioned, Q is a real-valued constant matrix such
that the above similarity transformation (2.7) provides the modal admittance
elements as linear combinations of the physical ones with real coe�cients.

The result of (2.7) on both admittance and impedance parameters are
reported in Fig. 2.4, which shows the typical �20 dB/dec slope of purely
inductive/capacitive modes in the low-frequency range 
L. Note that those
responses (modes) that tend to zero in one representation are the same that
explode to1 for the other one.This trend con�rms what mentioned before, and
further illustrated later in Fig. 2.5, on the sensitivity of a direct extrapolation
of the asymptotic behavior from admittance or impedance (physical) responses.

With the goal of obtaining a low-frequency extrapolation, the following
analysis is restricted only to the band 
L where the modal responses show the
�20 dB/dec trend. Imposing such asymptotic behavior leads to

Ym(j!) �
1
j!

�m + j!Cm; ! 2 
L (2.8)
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Fig. 2.4 Admittance (bottom) and impedance (top) responses of a 25-port shielding
enclosure after conversion to the DC asymptotic modal domain via (2.7). Physical
parameters sampled with a MoM �eld solver are reported in Fig. 1.5. Partially
adapted from [30] ' 2022 IEEE.

where �m and Cm are constant matrices such that (�m)ij 6= 0) (Cm)ij = 0 for
any (i; j)-th entry, and vice versa. Correspondingly, the same approximation
holds in the physical domain

Y(j!) � Q
 

1
j!k

�m + j!Cm

!

QT =
1
j!

� + j!C; ! 2 
L (2.9)

where � and C are no more sparse but full. Note that when ! ! 0 the last
term in (2.9) becomes negligible and all elements of Y(j!)!1 as expected.
Taking a closer look to (2.8), the leading capacitive and inductive terms can
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be separated in a matrix form as

Ym(j!) �

2

4 j! eC j!fX
j!fXT 1

j!
e�

3

5 ; ! 2 
L (2.10)

where eC, e�, fX are constant matrix blocks.

Figure 2.5 illustrates the result of a direct �t of Y(j!), limited to the
range 
L, imposing the low-frequency approximation (2.9). The extrapolated
responses in both the physical and modal domain, obtained via post-processing,
show how a perfect accuracy in the admittance representation (top panel)
is lost converting to the impedance parameters (bottom) due to the poor
approximation of some system modes (middle). Indeed, the capacitive modes
(the ones that tend to zero in Ym(j!)) are visible only in the impedance
representation, hence they can be merely roughly delineated observing the
admittance responses. This con�rms that a direct extrapolation of (2.9) is not
the best possible approach.

A two-step element-wise regression can now be applied to recover each term
of (2.10) from the original data samples.

As initial step, each (i; j)-th entry of (2.10) is classi�ed either as inductive or
capacitive by using the asymptotic slope of the (modal) admittance magnitude.
For each frequency in the low-frequency range, a least squares �t is performed
to compute coe�cients �ij and �ij as

yij;k � �ij �k + �ij; 8!k 2 
L (2.11)

where �k = log10 !k and yij;k = log10 jYm;ij(j!k)j. While �ij is disregarded, the
other coe�cient is rounded to �ij = �1, to indicate that the (i; j)-th entry
belongs to the inductive term �m, or to the capacitive group Cm for which
�ij = 1. The result of this step for two shielding enclosures (with 25 and 64
ports) is reported in Fig. 2.6, where �lled dots denote matrix elements assigned
to the capacitive term Cm. Figure 2.6 con�rms the low-frequency structure
assumed in (2.10).

The second step assigns numerical values to the matrices Cm and �m.
This is again achieved via a regression procedure, arranged di�erently for
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Fig. 2.5 Direct �t of admittance responses imposing (2.9) for a 25-port shielding
enclosure. Only dominant inductive modes are accurately approximated, resulting
in a poor representation of the impendace parameters. Top: original admittance
responses; middle: after conversion to the DC asymptotic modal domain via (2.7);
bottom: impedance responses, obtained as post-processing of the top panel.

capacitive/inductive modes as

�ij = +1 : !kCm;ij � �ij;k; 8!k 2 
L

�ij = �1 : �!�1
k �m;ij � �ij;k; 8!k 2 
L

(2.12)

where now only the imaginary part of the response is used to de�ne �ij;k =
Im fYm;ij(j!k)g. The coe�cients from (2.12) are assembled to form a low-
frequency extrapolation model

�m(j!k) =
1

j!k
�m + j!kCm; !k 2 
G [ 
L : (2.13)
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A set of synthetic samples KGL can be generated by evaluating (2.13) for
!k 2 
G [ 
L thus �lling the low-frequency gap with physical consistent new
samples.

The proposed two-step procedure is completely data-driven, and the only
necessary prior assumption is the asymptotic modal expansion as in (2.8)
and (2.13). The low-frequency matrix structure de�ned in (2.10) is not required
a priori, but it is obtained numerically. Further, notice that the resulting low-
frequency model (2.13) is evaluated both in the gap bad 
G and in its training
band 
L. This enables to smoothly merge the synthetically-generated responses
and the solver data as

Ym(j!k) 

8
>>>>>>>><

>>>>>>>>:

�0 !k = 0

�m(j!k) 8!k 2 
G

�kYm(j!k) + �k�m(j!k) 8!k 2 
L

Ym(j!k) 8!k 2 
H

(2.14)

where the �rst line allows including the DC point. Via (2.14) all samples in
the overlap region 
L are averaged via frequency-dependent coe�cients �k and
�k, which are linearly (or logarithmically)-spaced from 0 to 1 in 
L preserving
the relation �k + �k = 1. This re�nement step enables to avoid a possibly
inconsistent (or even sharp) transition between computed �m(j!k) and original
data Ym(j!k).

2.1.4 Regularization in the modal domain

The proposed data preprocessing combines the regularization and extrapolation
discussed in Sec 2.1.1 and 2.1.3. The actual proposed algorithm aims at
perturbing only modes that are responsible for singularities in a given represen-
tation, leaving the rest of the (modal) matrix unaltered. This approach reduces
the overall perturbation with respect to a full regularization in the physical
domain, which indirectly a�ects all modes concurrently.

The proposed modal regularization strategy is applied at all non-zero
frequencies of the data samples obtained in (2.14), and its main steps are
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Fig. 2.6 Low-frequency modal behavior of Ym(j!) 2 
L: each dot corresponds to
a coe�cient �ij = +1, which indicates membership of a transfer function entry to
the capacitive group Cm(j!). Results are reported for boxes with P = 5� 5 = 25
(left) and P = 8� 8 = 64 (right) ports. The modal structure (2.10) is veri�ed for all
investigated cases.

1. regularization of capacitive blocks, that cause the degeneracy of admit-
tance matrix Ym at ! ! 0, by adding the contribution of DC eigenvalues
R0 as

cYm(j!k) = Ym(j!k) +

2

4
1
R0 Ic 0
0 0

3

5 ; !k 2 
G [ 
D: (2.15)

2. regularization of inductive blocks of bZm, that cause its degeneracy at DC,
by adding the contribution of DC eigenvalues r as

�Zm(j!k) = cYm(j!k)�1 +

2

40 0
0 rI‘

3

5 ; !k 2 
G [ 
D: (2.16)

3. conversion of the regularized data samples to the physical domain

�Z(j!k) = Q�Zm(j!k)QT; !k 2 
G [ 
D: (2.17)

Notice that step 1 and 2 leads to admittance and impedance matrices that
are not singular and can be inverted at any frequencies, as implied by the
regularization process. Indeed, the modal impedance dataset resulting from
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the �rst step has the low-frequency structure

bZm(j!) = cYm(j!)�1 =

2

4(j! eC + 1
R0 Ic)

�1 + ?3 ?2

?2 j! e��1 + ?4

3

5 ; ! 2 
G; (2.18)

where matrix blocks with leading terms (j!)� for ! ! 0 are indicated with the
generic symbol ?� . It is easy to see that the singularity of bZm(j!) is provided
only by the leading inductive terms in the bottom-right block of (2.18). Thus,
step 2 aims at regularized only this term producing as result the modal structure

�Zm(j!) =

2

4R
0Ic + ?1 ?2

?2 rI‘ + ?1

3

5 ; ! 2 
G; (2.19)

which is consistent with the DC eigenvalues ��1
0 derived in (2.6). This further

demonstrates how the above procedure leads to a compatible result with
both the regularization DC circuit of Fig. 2.2 and to the direct approach
presented in Section 2.1.1 (Algorithm 1), providing as additional bene�t a
reliable extrapolation procedure.

The above derivation assumed an initial modal admittance matrix struc-
ture (2.10), which in fact is only an approximation consisting of the sole
asymptotic leading terms. However, even assuming each matrix block to be
expressed as a full Taylor polynomial expansion at s = j! = 0 (including only
odd powers of frequency due to the assumed lossless nature of the enclosure)
the same result of (2.19) holds true, although the leading powers in (2.18) may
be di�erent. Details are straightforward and here omitted.

Algorithm 2 summarizes the full preprocessing data procedure presented
in this Chapter, which includes regularization and extrapolation steps in the
modal domain. Figure 2.7 reports the impedance parameters after the presented
data conditioning for a 25-port shielding enclosure. The �nal dataset includes
K = 8904 frequency samples in the interval [0; 1] GHz, considering both the
DC and KGL = 903 extrapolated points in the low-frequency range. This result
shows that the proposed strategy does not a�ect in-band responses, which are
perfectly overlapped by the original solver data also in the transition band 
L ,
and smoothly �ll the gap bandwidth 
G up to DC.
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Algorithm 2 Regularization and extrapolation in the modal domain
Require: Frequency data fH(j!k); !k 2 
Dg, R, r, KGL
1: H(j!k) 0:5(H(j!k) + H(j!k)T)
2: Convert H(j!k) to admittance Y(j!k)
3: De�ne a regularization DC circuit (e.g. Fig. 2.3)
4: Compute Y0 = Y(j! = 0)
5: Find modal matrix Q from the eigenvalue decomposition of Y0 = Q�QT

6: Convert to the modal domain Ym(j!k) = QTY(j!k)Q ; !k 2 
D
7: Assign coe�cients �ij = �1 via regression (2.11)
8: Compute capacitive/inductive coe�cients of the low-frequency model

�m(j!) via least-squares (2.12)
9: Evaluate KGL samples of �m(j!k) with !k 2 
G [ 
L
10: De�ne �k and �k, such that �k + �k = 1 ; 8!k 2 
G [ 
L
11: Merge data as in (2.14)

12: Regularize admittance cYm(j!k) Ym(j!k) +
"

1
R0 Ic 0
0 0

#

; !k 2 
G [ 
D

13: Regularize impedance as �Zm(j!k) [cYm(j!k)]�1+
"
0 0
0 rI‘

#

; !k 2 
G[
D

14: Convert to physical domain �Z(j!k) = Q�Zm(j!k)QT; !k 2 
G [ 
D
15: return �Z(j!): full-band regularized and extrapolated data

Summary of key results

The main outcomes of the proposed regularization and extrapolation procedure
are

1. a well-de�ne DC point, which enables to avoid matrix singularities at all
frequencies through the regularization step;

2. a full-band dataset, well-de�ned in [0; fmax], obtained by �lling the gap
region 
G with synthetic samples through themodal extrapolation step;

3. a (structured) modal dataset that retains DC contribution as diagonal
entries of the transfer matrix.

It is su�cient to use the modal responses as training dataset to build a model
that preserve a high level of accuracy in the entire (physical) low-frequency
range. Notice that the modal impedance matrix in the low-frequency band

G shows the rich structure of (2.19), with diagonal entries that converge to a
constant valued, and o� diagonal elements with �rst and second order zeros. The
same structure is preserved in all system representations, including admittance
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Fig. 2.7 Proposed regularization and extrapolation procedure with respect to �eld
solver (MoM) data for a 25-port shielding enclosure (R = 100M
, r = 0:1
). Only a
representative set of impedance responses are reported. From [30] ' 2022 IEEE.

and scattering parameters. Thus, these elements must be properly considered
when approximating the system behavior: they will play an important role in
the proposed data and model compressed representations, to be presented next.

2.1.5 Extensions

In order to apply the proposed strategy to a general multiport system with
a possibly di�erent asymptotic behavior at DC, the only step required is to
de�ne a proper DC regularization circuit as the one provided in Fig. 2.3. In
fact, the presented procedure aims at solving the most generic critical situation
with both admittance and impedance matrices singular at DC. The case when
only inductive or capacitive modes are responsible for an ill-de�ned Y0 or Z0

can be seen as a particular case of the above strategy. In particular, only series
or shunt resistances are necessary to regularize the corresponding DC matrix
(line 3 of Algorithm 2).

The proposed procedure is valid if the losses in the low-frequency range
are su�ciently small, such that the asymptotic approximation (2.8) holds.
Nevertheless, the extrapolation procedure can be extended to lossy systems
either by including resistive components into (2.8) or by generating a synthetic
lossless dataset by subtracting the DC matrix contribution at all frequencies



34 Large-scale data preprocessing

and neglecting the real part of the resulting port admittance or impedance
matrix.

The proposed regularization step has been designed to deal with a lack of
system characterization at DC. As already mentioned, the arti�cial DC circuit
is aimed at providing a well-de�ned response when the frequency vanishes, to
be used for subsequence macromodeling and simulation purposes. If a DC point
is already available from an independent system characterization, either from
a �eld solver or from direct measurements, this can be used in the proposed
procedure by substituting the synthetic DC matrices (2.1)-(2.3). Only lines 3
and 4 of Algorithm 2 will be a�ected. The rest of the procedure applies with
minor changes, necessary to adjust the modal regularization with new system
eigenvalues.

2.1.6 Numerical results

This section provides numerical results that demonstrate the e�ectiveness of
the proposed regularization and extrapolation procedure.

Changing regularization parameters

The 25-port shielding enclosure used as running examples through this section
is here exploited to show the e�ect of the regularization parameters. Figure 2.7
shows the impedance responses resulting from a full regularization and ex-
trapolation procedure performed in the modal domain in the range [0; 1] GHz.
This result is obtained by setting shunt and series resistances to R = 100M

and r = 0:1
, respectively. The perturbation on the original MoM data of
a direct regularization step (Algorithm 1) was tested with di�erent values
of R 2 [106; 109] 
 and r 2 [10�3; 1] 
. A set of comprehensive admittance
responses with three combinations of regularization parameters is reported in
Fig. 2.8. For the selected results, the shunt resistance is �xed to R = 1M

while the series resistance is systematically reduced (from top to bottom panel)
choosing r = f1; 0:1; 0:01g
. This picture demonstrates that

� a signi�cant perturbation in the original data is needed to obtain a DC
point that smoothly merges with the low-frequency responses in 
L; this
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Fig. 2.8 Representative admittance responses of a 25-port shielding enclosures chang-
ing regularization parameters of Algorithm 1. Top: R = 1M
 and r = 1
; Middle:
R = 1M
 and r = 0:1
; Bottom: R = 1M
 and r = 0:01
.

is the e�ect of an extreme choice of shunt and series resistances, which in
this case are R = 1M
 and r = 1
, respectively;

� reducing r the discrepancies between original and regularized samples are
attenuated, especially in the low-frequency range 
L, at the price of a
larger DC level.

Notice that a similar reasoning can be veri�ed observing the e�ect of di�erent
shunt resistances values R on the impedance responses. In this case (not shown),
a larger value of R reduces the perturbation on the regularized data. The
tread o� between perturbation on the �eld solver (MoM) data and resulting
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Fig. 2.9 As in Fig. 2.7 for a shielding enclosure with 100-ports

DC value is a design choice left to the user, whenever a DC characterization is
not already available from a di�erent source. A general guideline is to keep
the DC value as close as possible to the system response at the �rst available
frequency, at the price of a modest variation of the original data. To this end,
a recommendation is to preserve all data features by selecting very small and
large values of r and R, respectively.

From 100 to 400 ports

In this section, the shielding enclosure grid is modi�ed by increasing the density
of the p� p = P lumped ports and the proposed data conditioning approach is
applied to the resulting LTI systems. This section provides results of Algorithm 2
(R = 100M
,r = 0:1
) on enclosures with p = f10; 20g and P = f100; 400g in
the range [0; 1] GHz. Considering that the runtime is of course case-dependent,
as well as in�uenced on the actual setup for running the algorithms, Table 2.1
provides a summary of the selected parameters and of the overall elapsed time.
In particular, Figure 2.9 compares a set of representative admittance responses
of a 100-port box after regularization with the original MoM data, showing
only negligible variations at the higher frequencies. Figure 2.10 demonstrates
the e�ectiveness of the proposed data conditioning on a 400-port shielding
enclosure: the full-band impedance parameters show a perfect agreement with
the original data. The resulting large-scale dataset is now suitable for successive
macromodeling steps, as will be discussed in Chapter 3.
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Fig. 2.10 As in Fig. 2.7 for a shielding enclosure with 400-ports.

Table 2.1 Data regularization and extrapolation results. Table summarizes frequency
data information in terms of ports (P ) and samples (K), the selected parameters of
Algorithm 2, and the total elapsed time.

P K R (M
) r (
) KGL Time(s)

25 8001 100 0.1 366 2.78
100 501 100 0.1 349 3.78
400 1001 100 0.1 296 101.1

2.2 Structure-preserving data compression

In this section, we address a second major problem associated with large-scale
data for macromodeling applications, namely the scalability with number of
interface ports. Indeed, for the considered shielding enclosure application,
when the density of the aperture grid is augmented, the corresponding number
of system ports P drastically increases, leading to a complexity that may
become impractical to be handled, both from macromodeling and transient
simulations standpoint. The procedure originally presented in [30] is reported
in the following.

Considering the model generation, even if the literature o�ers several ways
to address this problem, there is still room for improvement. For instance, the
well-know VF algorithm has been already optimized in its Fast VF implemen-
tation [24] to reduce the �tting cost by compressing the least-squares solution
of the coe�cients via QR factorization. Nevertheless, this approach still does



38 Large-scale data preprocessing

not scale favorably with the number of ports, as it will be detailed in the next
section.

An approach to improve the e�ciency of any identi�cation algorithm is to
reduce the size of frequency tabulated data by exploiting the natural redundancy
in the system responses, and consequentially reducing the computational cost for
macromodel generation. This strategy enables to optimize the model structure
by avoiding the need to identify P �P responses with a rational approximation
that requires P 2 sets of coe�cients, one for each transfer matrix element.

A data compression technique coupled with a macromodeling identi�cation
step has been already presented in [34]. This strategy takes advantage of a
standard truncated Singular Value Decomposition (SVD) to reduce the spatial
redundancy in the system port responses, and builds a Compressed Macromodel
(CM) via VF applied to a reduced set of basis functions. In this section, the
data compression proposed in [34] will be extended to deal with the modal
data structure of shielding enclosures and to preserve low-frequency features,
such as zeros at DC.

The data reduction strategy of [34] is �rst summarized in Section 2.2.1. Two
proposed improved algorithms, namely the Block-Diagonal SVD (BD-SVD) and
the Hierarchical SVD (Hi-SVD), are then introduced in Section 2.2.2. Numerical
results on enclosures with up to 400 ports are reported in Section 2.2.3.

2.2.1 SVD data compression: background

The data compression strategy presented in [34] requires a set of tabulated
frequency responses of a P -port LTI system, de�ned as fH(j!k) = Hk; k =
1; � � � ; Kg. The procedure starts stacking columns of Hk 2 CP�P in a row
vector xk 2 CP 2 de�ned as

xk = vec(Hk)T : (2.20)

The reverse mapping (xk)‘ = (Hk)i;j can be obtained de�ning suitable indexes
as

‘ = i+ (j � 1)P;

8
><

>:

i = 1 + mod(‘� 1; P )

j = d‘=P e
(2.21)
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where d�e rounds towards in�nity and mod is the integer division remainder.
With a formal terminology, de�ning the set of frequency responses as the tensor
H 2 CK�P�P , the unfolding or (mode-1) matricization of tensor H [49] can be
de�ned as

X =

2

6664

 � x1 �!
...

...
...

 � xK �!

3

7775 =

2

664

" � � � "
m1 � � � mP 2

# � � � #

3

775 (2.22)

where X 2 CP 2 collects rows vectors (2.20) in a matrix form.

A truncated SVD decomposition is applied to the real matrix obtained
stacking real and imaginary part of X, as

2

4Re fXg
Im fXg

3

5 � �U �� �VT (2.23)

where �� 2 R��� is a diagonal matrix that collects the � leading singular values,
�U 2 R2K�� and �V 2 RP 2�� are the left and right singular vector matrices.
By de�nition, �UT �U = I� and �VT �V = I�. Notice that the number of retained
singular values � is chosen such that �� minf2K;P 2g, ensuring that (2.23) is
a low-rank approximation and consequentially �V �VT 6= IP 2 . Next, the real and
imaginary components of the scaled (left) singular vectors are recombined as

�W =
h
IK jIK

i
�U �� (2.24)

in order to approximate the matricization of system responses as

X � �X = �W �VT : (2.25)

On the one hand, splitting real and imaginary elements in (2.23) enables to
preserve (by construction) the causality [47] of �X, since relationships between
real/imaginary components are preserved by (2.24) and (2.23). On the other
hand, the ‘-th entry of the P � P original transfer matrix can be estimated as

m‘ �
�X

q=1
v‘;q �wq : (2.26)
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which corresponds to the ‘-th column of X, while �wq indicates the q-th column
of �W. The set f �wq; q = 1; � � � ; �g collecting these vectors is regarded as a
set of basis functions. In short, the original P 2 responses can be e�ectively
approximated as a linear combination of a reduced set of � frequency-dependent
basis functions, as detailed in both (2.25) and (2.26).

A rational approximation of all �wq enables to build a surrogate model
to reconstruct the P � P system behavior with a major saving in terms
of computational costs, whenever � � P 2. Furthermore, a bound on the
approximation error (2.25) is available [34] as

E =



X� �X





2
�
p

2��+1 : (2.27)

with ��+1 �rst neglected singular value. Note that the truncation error (2.27)
cannot be recovered by next steps of the modeling process: the behavioral model
build on top of �X will show an error with respect to the original X at least ofp

2��+1. Therefore, the error introduced by the data compression approximation
will set a bound for the accuracy of all subsequent macromodeling steps.

The above compression strategy does not preserve the responses structure
of a shielding enclosure data, especially in the modal domain. Indeed, the
truncated SVD approximation (2.26) does not maintain the presence of zeros
at DC even in the case of a small threshold ��+1, as illustrated in Fig. 2.11
for a P = 25 port enclosure. Before compression, the reported data have
been extrapolated and regularized by means of the procedure proposed in
Section 2.1.3, following Algorithm 2 (r = 0:1
, R = 100M
 and KGL = 903).
The �nal dataset provides system responses in the frequency range [0; 1] GHz
with K = 8904 samples. A total of � = 73 basis functions have been obtained
imposing a threshold � < 10�6 to the SVD truncation (2.23). The bottom panel
of Fig. 2.11 shows how all basis functions saturates to a di�erent non-vanishing
level at low-frequencies: the presence of a DC zero is not embedded in the basis
structure and typical low-frequency decays of �20dB/dec (and �40dB/dec)
are retained only up to a given point by the linear combination of nonzero
basis (2.26). Hence, after an SVD the DC zero behavior might only be recovered
by numerical cancellation, which after truncation is prevented by the selected
threshold ��+1. This trend must be interpreted as an additional loss introduced
by the data compression, which will lead to a non-physical modeling, and to
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Fig. 2.11 Representative responses of a 25-port shielding enclosure after data com-
pression via basic SVD [34]. Top: DC zeros of di�erent orders are not preserved by
the low-rank approximation (2.32). Bottom: resulting basis functions (� = 73 with
threshold ��+1 = 10�6) do not retain the low-frequency behavior of the enclosure
and are non-vanishing at DC. From [30] ' 2022 IEEE.

a consequent unreliable transient simulation. Thus, the DC zeros behavior
must be retained through the all modeling procedure. This includes the data
compression step, and motivates the extension of the standard SVD reduction
of [34] to more sophisticated compression approaches that are able to preserve
a suitable data structure.

2.2.2 Structured SVD compression

The proposed data compression approach is based on the idea of using a speci�c
set of basis functions that inherits the same structural properties of the original
system, in order to preserve these features while reducing the data complexity.
The aim of following procedures is to preserve the presence of DC zeros in the
system responses.
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Fig. 2.12 Preserving low-frequency features while compressing the data of a 25-port
box. Top: modal responses are clustered according to the order of DC zeros. Bottom:
all set of responses are suitably reconstructed by presented compression strategies.
From [30] ' 2022 IEEE.

Let us start with the system responses matricization as in (2.22), which
stacks the P � P transfer matrix entries following the column-based ordering
de�ned by (2.20). First, the columns of X are rearranged by de�ning a
permutation matrix P such that

X = MP =
h
M1 M2 M3

i
P ; PPT = I (2.28)

to identify group of responses M� , with P� number of columns for each set such
that

P
� P� = P 2. For the speci�c case of (modal) shielding enclosures responses,

� = f1; 2; 3g and M1 2 CK�P1 stores the entries of H(s) that saturate to a
nonzero DC value, while the other two blocks M2;3 gather all entries with DC
zero of order 1 or 2, respectively. Figure 2.12 (and later Fig. 2.14d) shows
an example of the three groups of responses on a 25-port box, automatically
identi�ed by means of a procedure similar to the one of Section 2.1.3.



2.2 Structure-preserving data compression 43

The basic SVD reduction of Section 2.2.1 on the reordered matrix M leads
to a reconstruction of each group M� of responses that relies on all basis
functions. To see this, the (full) decomposition (2.26) can be combined with
(2.28) to obtain

M =
h
M1 M2 M3

i
=
h
W1 W2 W3

i
VT = (2.29)

=
h
W1 W2 W3

i
2

664

V11 V12 V13

V21 V22 V23

V31 V32 V33

3

775 :

where the 3�3 block expansion enables to see how each group of basis functions
W� is associated to sets M� , with � = f1; 2; 3g. It is clear from (2.29) that

M1 = W1V11 + W2V21 + W3V31

M2 = W1V12 + W2V22 + W3V32

M3 = W1V13 + W2V23 + W3V33

(2.30)

which con�rms that each M� is a�ected by all sets W1;2;3 through independent
blocks of the transformation matrix VT.

The objective now is to create a direct relationship between the structure
of one data responses group and one basis functions set. To this end, it
is convenient to start assuming that the last subset W3 is built using only
responses from group M3, which collect double order zeros at DC: thus W3

will inherit the same low-frequency behavior. To preserve this property and
reconstruct M3 in (2.30), both blocks V13 and V23 must vanish. Similarly, the
requirement of having single DC zeros behavior on basis set W2 is achieved by
setting V12 = 0. This means that imposing a lower-triangular structure to VT

preserve DC zeros while reducing the data complexity in terms of number of
responses. The above condition requires building each basis subset W� from a
restricted set of responses. Two di�erent strategies can be considered

� Block-Diagonal SVD (BD-SVD): each subset M� is treated independently,
giving a block-diagonal VT;

� Hierarchical SVD (Hi-SVD): each subset M� is processed iteratively with
ordering � = 3; 2; 1; at each step, the projection of the current responses
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onto the basis functions generated at previous steps is removed, and the
resulting de�ated responses are processed by SVD; this process results in
a block-triangular VT.

Both strategies were implemented and tested. Although under the pure data
processing standpoint these two approaches are equivalent, with the hierarchical
approach potentially leading to a smaller total number of basis functions, it
turns out that the block-diagonal approach leads to better results in terms of
overall accuracy after macromodel generation (see Sec. 3.2) and is preferred.
Both approaches are summarized below for completeness.

Block-Diagonal SVD

The �rst strategy aims at obtaining a block-diagonal VT, by processing each
subset of responses M� for � = f1; 2; 3g individually and by means of disjoint
SVDs. This implies computing the low-rank approximation

2

4Re fM�g
Im fM�g

3

5 � �U� ��� �VT
� ; � = 1; 2; 3 (2.31)

such that ��� gathers the leading �� singular values, and �U� 2 R2K��� , �V� 2
RP���� , with �UT

�
�U� = I and �VT

�
�V� = I. The individual set of basis functions

can now be de�ned as

�W� =
h
IK jIK

i
�U� ��� ; �V0� = �VT

� ; � = 1; 2; 3 (2.32)

that allows to approximate (2.31) as

M� � �M� = �W� �V0� ; � = 1; 2; 3: (2.33)

The overall Block-Diagonal SVD (BD-SVD) approximation reads as

M � �M =
h

�M1 �M2 �M3

i
=
h

�W1 �W2 �W3

i
2

664

�V01 0 0
0 �V02 0
0 0 �V03

3

775 : (2.34)

The major advantages of the BD-SVD are
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� a major �exibility in the accuracy control for individual responses; this
enables to speci�cally tune the accuracy at DC when the data is expressed
in the modal domain, since the diagonal matrix entries corresponds to
the system eigenvalues when f = 0.

� a sparse transformation �V, which is re�ected in the resulting macromodel
coe�cients.

On the other hand, a compression strategy applied to the entire dataset may
result in a smaller number of overall basis functions � with respect to the
proposed BD-SVD, for which � =

P
� �� and no correlations hence redundancies

between di�erent subsets is exploited.

Hierarchical SVD

The main di�erence of the Hi-SVD strategy with respect to the BD-SVD is that
subsets of responses are not approximated independently. Indeed, processing
each set in a speci�c order � = f3; 2; 1g and removing the contribution of
already processed responses by projection, guarantees that data features are
equivalently retained in the resulting basis functions. The procedure starts with
the group M3 that collects responses with double DC zeros. Following the same
procedure reported in Sec. 2.2.2, the SVD approximation is computed (2.31)
for � = 3 as

fM3 � �U3 �V03 (2.35)

where �V03 = ��3 �VT
3 . The real-valued matrix �V03 embeds also the scaling factors

induced by the leading �3 singular values so that the columns of �U3 are
orthonormal.

The next step is to remove from fM2 its projection onto the column space
of the orthogonal (and real) matrix �U3. The result is approximated through a
second truncated SVD via (2.31)-(2.33), obtaining

fM2 � �U3( �UT
3
fM2) � �U2 ��2 �VT

2 = �U2 �V02: (2.36)

With a simple manipulation this expression can be rewritten as

fM2 � �U2 �V02 + �U3( �UT
3
fM2) = �U2 �V02 + �U3 �V03;2 (2.37)
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where �V03;2 = �UT
3
fM2 2 R�3�P2 . Finally, the same procedure is replicated for

the last group, obtaining

fM1 � �U2 �V02;1 � �U3 �V03;1 � �U1 �V01 (2.38)

with �V02;1 = �UT
2
fM1 2 R�2�P1 and �V03;1 = �UT

3
fM1 2 R�3�P1 . All steps

from (2.35)-(2.38) can be de�ned in an iterative fashion [30] for ‘ = f3; 2; 1g as

fM‘ �
3X

j=‘+1

�Uj �V0j;‘ � �U‘ ��‘ �VT
‘ (2.39)

with �V0‘ = ��‘ �VT
‘ and �V0j;‘ = �UT

j
fM‘. Collecting all approximations in a

block-triangular structure reads

fM =
h
fM1

fM2
fM3

i
� (2.40)

�
h

�U1 �U2 �U3

i
2

664

�V01 0 0
�V02;1 �V02 0
�V03;1 �V03;2 �V03

3

775 : (2.41)

Finally, reconstructing complex-valued responses as in (2.32) leads to the
Hierarchical SVD approximation

M � �M =
h

�M1 �M2 �M3

i
= (2.42)

=
h

�W1 �W2 �W3

i
2

664

�V01 0 0
�V02;1 �V02 0
�V03;1 �V03;2 �V03

3

775 : (2.43)

With respect to the unstructured SVD [34] and to the BD-SVD, the Hi-SVD
constructs set of unitary basis functions such that the euclidean norm of all
q-th basis �w�;q is always k �w�;qk2 = 1 (and not k �w�;qk2 = ��;q). Coherently, the
rows in the superposition matrices �V0� are no longer orthonormal due to the
scaling in (2.39) by the singular value matrices ��� . This is not a problem since
such condition is not required in the following.
The Hierarchical SVD strategy retains all bene�ts of the BD-SVD approach,
while generally resulting in a smaller number of basis functions � =

P
� �� at

the same approximation level.
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Fig. 2.13 Block-Diagonal SVD (BD-SVD) basis functions (� = 151) retain low-
frequency data features, such as DC zeros. Only �rst and last basis of each �W� with
� = f1; 2; 3g are reported. From [30] ' 2022 IEEE.

2.2.3 Numerical results

This section reports numerical results that con�rm the e�ectiveness of proposed
compression strategies. All results have been obtained using a prototype
MATLAB code on a Workstation based on Core i9-7900X CPU (3.3 GHz) with
64 GB of RAM.

A 25-port enclosure example

The same 25-port enclosure in Section 2.2.1 is here used to compare proposed
compression strategies with the standard unstructured SVD approach, demon-
strating their advantages. The BD-SVD and the Hi-SVD are applied to the
full-band (modal) scattering samples by grouping system responses as in the
top panel of 2.12, according to the DC zeros order. In both cases, the same
thresholds f10�8; 10�6; 10�6g are used to approximate the corresponding group
of responses M1,M2 and M3. Since the compression is applied in the modal
domain, the truncation error bound for M1 is set to guarantee an accurate
DC response while reconstructing the diagonal elements of the transfer matrix
Sm(j!), which are nonzero at low-frequencies. Figure 2.12 demonstrates that
all data features are always retained by the proposed strategies, for all groups
of responses. This is con�rmed by the subset of basis functions obtained with
the BD-SVD reported in Fig. 2.13, which inherits the order of DC zeros for
each block. As expected, the overall number of basis functions (�BD-SVD = 151
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Fig. 2.14 Comparison of data reduction techniques on a 25-port box. Compression
accuracy on all transfer function entries via: Standard SVD(a), proposed Block-
Diagonal SVD (b) and Hierarchical SVD (c). Panel (d) indicates the grouping of
transfer matrix elements according to the DC zeros responses.

and �Hi-SVD = 108) is almost double with respect to a standard SVD (� = 73).
Yet, the compression factor is close to 50%, already considering as reference
only the upper triangular P (P + 1)=2 entries of the transfer function. All data
compression techniques provide a similar reconstruction error for all scatter-
ing elements, as reported in Fig. 2.14. Nevertheless, the proposed structured
strategies provide a drastic improvement in terms of DC accuracy, as reported
in Table 2.3.
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Scaling up to 400 ports

This section summarizes the data compression result on shielding enclosures
with increasing size in terms of ports. With reference to the p� p regular grid
covering the enclosure aperture, results are presented for boxes with P = 64,
100, 225 and 400 ports, correspondingly p = 8; 10; 15; 20 grid branches.

The data conditioning procedure provided in Section 2.1.3 was applied to
all cases as in the previous example to obtain a set of regularized parameters
de�ned in the band [0; 1] GHz. A compression of all (modal) scattering responses
was obtained by means of the proposed BD-SVD, applied with truncation
thresholds f10�8; 10�6; 10�6g to each set M� , with � = f1; 2; 3g. Table 2.2
shows a summary of the compression results. What is striking about this table
is the dramatic reduction in terms of basis functions � when the number of
response (i.e. ports) increases. Indeed, considering as reference only the upper-
triangular responses of the transfer function, the compression factor de�ned as

2�
P (P+1) reaches an impressive value of 0:3% for the largest ports count (P = 400).
On the other hand, even if the basic SVD [34] result in almost half the quantity
of basis functions to obtain an analogous accuracy level, the total elapsed time
required by the two algorithms is similar, with a minor memory requirement for
the BD-SVD while computing the approximation (2.31). To conclude, Table 2.3
compares the absolute errors on the DC matrix reconstruction for the main
system representations (scattering, admittance and impedance). As expected,
all scattering errors of the proposed compression strategy are coherent with
the accuracy threshold selected for the set M1 (10�8), which collects the DC
eigenvalues contribution. The presented BD-SVD outperforms the standard
SVD [34] of at least an order of magnitude for all cases, even if the same
threshold error is used in both SVD approximations, with a major advancement
considering the mean value of the error due to the proposed reconstruction
potentiality to guarantee that all vanishing matrix entries remains null at DC.

2.3 Conclusions

This Chapter provided a complete strategy to preprocess large-scale low-loss
frequency data of electromagnetic systems with a large ports count, with
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Table 2.2 Data compression results. The second column indicates the number of
upper-triangular responses of the transfer function, used to denote compression level.
The RMSE is computed on S(j!). Adapted from [30] ' 2022 IEEE.

P P (P + 1)=2 SVD as in [34] Block-Diagonal SVD
Total � % of Total Time (s) RMSE � % of Total Time (s) RMSE

25 325 73 22.46 0.81 9:16 � 10�7 151 46.46 0.43 1:79 � 10�7

64 2080 80 3.85 13.7 9:55 � 10�7 198 9.52 4.89 3:20 � 10�7

100 5050 82 1.62 2.13 8:22 � 10�7 205 4.05 2.60 1:93 � 10�7

225 25425 79 0.31 14.5 1:07 � 10�6 212 0.83 18.51 2:38 � 10�7

400 80200 85 0.11 40.0 1:04 � 10�6 238 0.30 42.89 2:76 � 10�7

Table 2.3 DC accuracy of data compression. �H is the absolute error between
original and compressed DC matrices, with H = fS;Y;Zg indicating the scattering,
admittance or impedance representation, respectively.

�S
max �S

mean �Y
max �Y

mean �Z
max �Z

mean

P SVD as in [34]

25 6:02 � 10�8 1:50 � 10�8 1:97 � 10�5 8:34 � 10�6 4:00 � 106 1:07 � 106

64 6:83 � 10�8 1:03 � 10�8 3:73 � 10�5 1:35 � 10�5 3:74 � 106 6:90 � 105

100 1:58 � 10�8 2:56 � 10�9 1:13 � 10�5 3:34 � 10�6 1:42 � 106 1:63 � 105

225 3:87 � 10�8 2:71 � 10�9 7:42 � 10�6 2:06 � 10�6 3:89 � 106 2:30 � 105

400 5:20 � 10�8 3:02 � 10�9 2:27 � 10�5 5:00 � 10�6 4:56 � 106 1:86 � 105

P Block-Diagonal SVD

25 4:90 � 10�14 2:06 � 10�15 1:83 � 10�11 3:33 � 10�12 4:33 0:256
64 1:25 � 10�9 2:89 � 10�11 5:39 � 10�7 4:54 � 10�8 1:32 � 105 2:38 � 103

100 8:79 � 10�10 8:74 � 10�12 9:96 � 10�8 5:57 � 10�9 8:66 � 104 774
225 2:48 � 10�9 9:03 � 10�12 3:70 � 10�7 1:04 � 10�8 2:44 � 105 786
400 2:46 � 10�9 9:11 � 10�12 7:11 � 10�7 1:31 � 10�8 2:22 � 105 702

the main objective of improving numerical performance of macromodeling
algorithms in terms of processing time and memory requirements, accuracy,
and robustness. The main outcomes of the presented preprocessing phase are:

1. a procedure to de�ne a suitable physic-based DC circuit, necessary to
remove possible system degeneracy at all frequencies due to the low-loss
(or in the limit case loss-less) nature of the electromagnetic structure;
this result is particularly appealing when a static characterization of
the device is not available from other sources, as �eld measurements or
specialized solvers;
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2. a full-band dataset for macromodeling purposes, �lling unknown frequency
regions with consistent synthetic responses that smoothly merged with the
original ones; this solution is achieved by means of a robust regularization
and extrapolation procedure, designed on a suitable data projection into
an asymptotic modal domain;

3. a modal representation of the system to structurally isolate the dominant
low-frequency content in di�erent transfer matrix elements; this step
enables to take proper care of the �tting accuracy in this frequency
region, which is particularly relevant (and critical) when the �nal model
is employed for transient simulations with nonlinear components;

4. two structured data compression strategies based on a customized Singular
Value Decomposition (SVD) approximation to reduce the overall number
of responses necessary to characterize the (full) original system, while
preserving low-frequency features of the data.

The overall result is a robust preprocessing strategy for large-scale data that
guarantees a suitable starting point for any modeling algorithm, by reducing
model sensitivity to terminations as will be documented in Chapter 3. Indeed,
it will be demonstrated that the above steps enable to strongly attenuate the
e�ect of loading conditions to the full-band (compressed) representation of the
original system.

Several numerical results based on shielding enclosures of increasing size
(up to 400 ports) were presented in this Chapter. All examples support the
above observations, demonstrating the e�ectiveness of proposed algorithms.
Beyond the considered shielding enclosures modeling and simulation problem,
the proposed data conditioning approaches (regularization, extrapolation and
structured compression) are completely general and can be applied to other
applications with similar characteristics.



Chapter 3

Macromodeling of large-scale
LTI systems

This Chapter addresses the problem of constructing a low-complexity model
of a passive large scale LTI system starting from frequency tabulated data.
This goal is addressed by splitting the overall macrodeling challenges in two
sub-problems:

1. compact model extraction of a low-loss system with massive ports count,
and strong sensitivity to the loading condition, especially at low-frequency;

2. passivity characterization and enforcement of a large-scale model.

As already discussed in the introduction, shielding enclosures applications
drive the modeling complexity to a higher level with respect to state-of-the-art
solutions. On the one hand, the number of lumped ports can easily reach
hundreds or even thousands of elements, which are used to close the shield
aperture with a diode grid, see Fig. 1.4. On the other hand, the large number of
poles necessary to reach the required full-band accuracy leads to a representation
of the system that is far beyond the standard de�nition of �reduced-order�.
Hence, trough this work the term large-scale refers to both dynamic order and
number of input/output ports.

Even if formulations of standard rational identi�cation as Vector Fitting
(VF) [21] are already available in a form that is able to scale favorably with
the number of ports, as the Fast VF [24, 34], or its parallel implementation for
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multicore [25] and GPU hardware [50], various challenges remain, as discussed
below.

Error magni�cation due to the change of representation is a well-known
problem of macromodeling techniques. A reduced-order model usually provides
a high level of accuracy in the representation used for the �tting, usually
scattering with a reference resistance level R0, while loading the model with
a termination di�erent from R0 may degrade the approximation quality [51].
This situation is exacerbated in case of low-loss (and in the limit case lossless)
electromagnetic components due to the poor conditioning in the low-frequency
range. A signi�cant number of ports aggravates this situation and further
stresses the macromodeling procedure due to the increased level of (computa-
tional) complexity. It is thus fundamental to have an e�cient �tting framework
to handle the modeling complexity while at least mitigating the sensitivity to
loading condition.

Once a proper model of the multiport structure is somehow obtained,
the second major macromodeling challenge comes into play: the passivity
characterization and enforcement of a large-scale LTI system.
The addressed shielding enclosures are passive structures that by de�nition
are unable to generate energy on their own [47, 52�54]. Thus, a representative
macromodel must not only reproduce the electromagnetic behavior of the
enclosure, but also inherit the passivity property. To this end, state-of-the-art
macromodeling techniques are equipped with suitable perturbation schemes
that process the (non-passive) outcome of an identi�cation approach (as VF)
and enforce the model passivity by solving a constrained problem [55�67].
Indeed, the model passivity quali�cation (and enforcement) is a fundamental
step to guarantee the stability of any transient numerical simulation [68].

Regardless of the recent developments o�ered by the literature [69], standard
passivity enforcement schemes are still not suitable to scale with the complexity
o�ered by shielding enclosures. On the one hand, modifying the macromodel
coe�cients and guaranteeing an overall passive behavior is a straightforward
task with either standard [64] or advanced perturbation approaches [70, 71], if
a suitable passivity characterization is available. On the other hand, �nding the
location of passivity violations represents the main criticality of the enforcement
procedure. A suitable perturbation scheme must provide both the model
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quali�cation (passive/non-passive) and the exact location of passivity violations,
the latter necessary for the successive perturbation step. For this reason,
the passivity characterization is the most demanding phase from both the
computational and storage perspectives. Before [45], to the best of the author’s
knowledge, robust approaches compatible with the large-scale application
of shielding enclosures and requiring limited computing resources were not
available.

These challenges motivated a novel interest in a passivity veri�cation tech-
nique based on an adaptive-sampling approach [45]. The latter strategy, re-
ported in Section 3.3, completely avoids both Hamiltonian and LMI conditions
in favor of an e�cient and reliable scheme, here validated with an extensive
regression test. This kind of framework does not allow for a theoretical assur-
ance of �nding all passivity violations but can be equipped with a number of
strategies to make the occurrence of missed violations very unlikely.

This chapter is organized as follows. Section 3.1 introduces the background
material for rational approximation and passivity veri�cation of LTI systems.
Section 3.2 focuses on the �rst macromodeling challenge by introducing a
complete framework that addresses the complexity of the system in terms of
electrical ports while preserving the low-frequency behavior [30]. This result
is obtained by integrating standard �tting techniques as Vector Fitting (VF)
with the compressed data representation presented in Chapter 2. Section 3.3
addresses the passivity characterization of a large-scale model by providing an ef-
�cient and reliable sampling-based passivity veri�cation scheme [45]. Section 3.4
provides a passivity enforcement algorithm compatible with the presented struc-
tured and compressed macromodeling framework. Section 3.5 validates the
overall procedure, both in terms of passivity veri�cation and �tting. We will
demonstrate that the outcome of this Chapter is an e�cient strategy to build
a compressed passive macromodel, with a DC-preserving reduction approach
and a reduced sensitivity to loading conditions.
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3.1 Background on model �tting and passivity

This chapter provides a complete macromodeling framework for passive Linear
Time Invariant (LTI) systems. To this end, we include the following fundamental
background material for later use. Among the several rational-approximation
�tting approaches [72, 23, 20, 22], we select and summarize the VF algorithm in
Section 3.1.1. Notice that the provided framework is nevertheless not restricted
to this identi�cation scheme, and it is generally suitable for any rational mod-
eling approach. Thus, we introduce in Sec. 3.1.2 the Compressed Macromodel
(CM) framework presented in [34] as starting �tting strategy to address the
large-scale nature of the shielding enclosure application. Section 3.1.3 addresses
the surrogate model passivity characterization to suitably retain this system
property through the modeling step and ensure stable transient simulation
results. Section 3.1.4 concludes this background introduction with a comparison
on the three main classes of passivity veri�cation approaches, motivating the
addressed problem.

3.1.1 Rational �tting: the VF algorithm

This section presents the well-known Vector Fitting (VF) algorithm [21] in
its most e�cient sequential implementation to deal with large-scale multiport
structures, namely the Fast-VF [24]. VF is one of the most popular data-driven
strategies for LTI systems identi�cation [73�75], and over the last decades it
has been already exploited for multicore parallelization [25] and optimization
for GPU architectures [50].

Starting from a set of tabulated input/output frequency responses f �H(sk) 2
CP�P ; k = 1; � � � ; Kg, with P electrical ports and sk = j!k, this algorithm
builds a rational approximation of the target system transfer matrix and solves
the �tting problem

�H(sk) � H(sk) where H(s) =
�nX

n=1

Rn

s� pn
+ R0 (3.1)

where the set of �n poles pn and residues Rn are iteratively estimated. Note
that (3.1) assumes a common set of poles for all transfer matrix elements.
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The VF algorithm performs a two-step procedure. First, a pole relocation
scheme is applied to iteratively estimate model poles pn. Then, the correspond-
ing residues Rn are evaluated. The �tting problem (3.1) is solved by improving
an initial guess of the model poles pn every iteration.
We start de�ning the rational model representation (3.1) similarly to [20] as

H(s; x) =
N(s; x)
D(s; x)

=
P�n
n=0 Cn�n(s)

P�n
n=1 dn�n(s) + 1

(3.2)

where partial fractions are collected as

�0(s) = 1 and �n(s) =
1

s� pn
; with n = 1; � � � ; �n : (3.3)

The model decision variables of (3.2) are gathered in

x = (c1; � � � ; cP 2 ;d)T (3.4)

with
c‘ = (c‘;0; � � � ; c‘;�n)T ; d = (d1; � � � ; d�n)T (3.5)

where c‘;n denotes the (i; j)-th component of matrix Cn 2 RP�P mapped
through the linear index ‘ = i+(j�1)P . With this formulation, the denominator
D(s; x) is the classic VF weight function, used to multiply both sides of (3.1)
and to obtain the linearized optimization problem

�nX

n=0
Cn�n(sk)�

 �nX

n=1
dn�n(sk) + 1

!
�H(sk) � 0 (3.6)

that must be solved for all frequencies sk = j!k in a least square sense. We
now collect the partial fraction basis evaluated in the set of available frequency
samples fsk = j!k; k = 1; � � � ; Kg to obtain matrices

�1 =

0

BBB@

�1(s1) � � � ��n(s1)
... . . . ...

�1(sK) � � � ��n(sK)

1

CCCA and �0 =
�
1K �1

�
(3.7)
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where 11 = (1; � � � ; 1)T 2 RK is a column vector of ones. Then, we cast the
‘-th entry of each transfer matrix �H‘(sk) = �Hi;j(sk) into

�H‘ = diag
n

�H‘(s1); � � � ; �H‘(sK)
o
; b‘ =

�
�H‘(s1); � � � ; �H‘(sK)

�T
: (3.8)

The �tting problem (3.6) formulated for each individual element ‘ of the transfer
matrix and for all K frequency samples reads

�
�0 � �H‘�1

�
0

@c‘
d

1

A � b‘ (3.9)

and can be stacked for all P 2 responses to obtain the complete linear system
0

BBBBBB@

�0 0 � � � 0 � �H1�1

0 �0 � � � 0 � �H2�1
...

... . . . ...
...

0 0 � � � �0 � �HP 2�1

1

CCCCCCA
x =

0

BBBBBB@

b1

b2
...

bP 2

1

CCCCCCA
: (3.10)

Solving (3.10) for x (3.4) gives coe�cients of the denominator (the weight
function) d and all residues c‘, which are disregarded. The initial set of poles
pn is replaced with zeros of the denominator in (3.1), denoted with zn. The
main idea is that the zeros of D(s; x) must simplify the (unknown) exact
system poles when (3.10) is solved exactly. Thus, the denominator of (3.1) is
unitary if the set pn matches the poles of the original structure. The zeros
zn are computed solving an eigenvalue problem associated to the state-space
realization fAD; BD; CD; DDg of the denominator such that

zn = eig
n
AD �BDD�1

D CD
o

(3.11)

and the (relocation) process pn  zn is iterated until convergence. When an
unstable zero appears, the real part of the corresponding pole is changed in
sign to ensure the model stability (pole �ipping step). At last, when the poles
stabilize the original �tting problem (3.1) is solved and model coe�cients Rn

are computed. Standard modi�cations of (3.1) and (3.9) ensure real-valued
residues also in the case of complex-conjugate pairs of poles. We refer to [20]
for implementation details.
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A direct solution of (3.10) is computationally expensive due to the large
dimension of the regressor matrix. Indeed, one should notice that the dimen-
sion of the left-side matrix is KP 2 � (P 2(�n + 1) + �n), which does not scale
favorably with the model complexity, both in terms of ports P and poles �n.
Nevertheless, an e�cient implementation of the VF takes advantage of a �thin�
QR factorization to speed up and optimize the relocation process. Starting
from (3.9), we can write

�
�0 � �H‘�1

�
= Q‘R‘ = Q‘

0

@R11
‘ R12

‘

0 R22
‘

1

A (3.12)

where the only matrix associated to the denominator residues is the lower
block R22

‘ 2 R�n��n. Stacking all terms R22
‘ for all ports contribution leads to a

compressed set of equations
0

BBB@

R22
1
...

R22
P 2

1

CCCAd =

0

BBB@

QT
1 b1
...

QT
P 2bP 2

1

CCCA : (3.13)

The regressor dimension is now �nP 2 � �n and the denominator coe�cients are
computed with a major saving of memory. Nevertheless, the presented Fast-VF
scheme [24] requires P 2 computations of QR factorizations in (3.12). Thus, this
operation is signi�cantly demanding when P reaches thousands of elements.

3.1.2 The Compressed Macromodeling framework

Section 2.2 introduced a SVD data compression technique based on the estab-
lished method of [34], and presented structured SVD approaches [30] that are
able to preserve particular features in groups of responses, such as single or
multiple zeros at DC. All reduction methods lead to an approximation of the
matricized system responses, which can be written as

X � �X = �W �VT ; (3.14)

where �V 2 RP 2�� is either full or block-sparse depending on whether the
standard method [34] or one of the structured approaches (BD-SVD or Hi-SVD)
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is adopted. In the latter, �VT accounts also for the permutation matrix P used
in (2.28) to reorder responses for individual group processing. The matrix
�W 2 CK�� collects in its columns the various basis functions �wq obtained by
SVD approximation, which may be further separated in groups characterized
by di�erent low-frequency behavior.

The compressed macromodeling framework of [34] applies to each basis
function �wq, building a set of rational macromodels

wq(s) = rq1 +
NwX

n=1

rqn
s� pn

; q = 1; � � � ; � (3.15)

where pn are a set of Nw common poles, rqn are the associated model coe�cients
(residues), with rq1 direct coupling term. This Compressed Macromodel (CM)
can be identi�ed by feeding to the Fast VF algorithm [24] the set of all basis
functions, concurrently, and by solving the �tting problem

wq(j!k) � ( �wq)k; q = 1; : : : ; �; k = 1; : : : ; K (3.16)

where each k-th element ( �wq)k of every basis is associated to the frequency
sample !k. The resulting CM (3.15) can be cast in a row vector form as

w(s) =
h
w1(s) w2(s) � � � w�(s)

i
; (3.17)

which is equivalent to the state-space realization

w(s)T = Cw(sI�Aw)�1bw + dw : (3.18)

where Aw 2 RNw�Nw is a diagonal matrix that retains poles pn, bw = 1Nw is
a vector of ones, Cw 2 R��Nw stores model residues rqn, and dw 2 R� collects
the direct coupling terms rq1. Classic adjustments [20] enable to modify the
above representation to deal with complex conjugate pair of model poles while
preserving the realness of all coe�cients. The original P � P system transfer
function can be retrieved as

H(s) =
�nX

n=1

Rn

s� pn
+ R0 = C(sI�A)�1B + D = mat( �Vw(s)T) (3.19)
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where mat reconstructs a matrix of proper size from a vector collecting its entries,
and fA;B;C;Dg is a set of compatible state-space matrices. For later use,
notice that the number of system states N , i.e. the dynamic order and size of
matrix A 2 RN�N , is in general N � P , and in the particular case of a minimal
representation (with full-rank Rn) can be de�ned as N = �nP [20, 76, 77].
The above compressed framework enables a dramatic reduction of model
coe�cients, to be identi�ed by enforcing (3.16) and necessary for the subsequent
passivity enforcement (discussed next). Indeed, the number of required decision
variables to retrieve the system responses is related to the overall count of
basis functions, and � � P 2 by the low-rank approximation (3.14). This
leads to a drastic reduction of the computational cost required to build a full
passive behavioral model. On the other hand, if the macromodel structure
does not inherit all features of basis functions groups, the e�ort spent in the
DC-preserving data compression is lost at this stage.

On the computational cost of the CM framework

The main bottleneck of the SVD-based compression method is the memory cost
since the overall number of frequency samples K and responses P could result in

a matrix

2

4Re fXg
Im fXg

3

5 2 R2K�P 2 of an excessive size for the available resources. In

terms of operations, this SVD requires O(4P 2K2) �ops, assuming that P 2 > K,
and leads to � basis functions that can be fed to an identi�cation algorithm
such as Fast-VF. On the other hand, the Fast-VF algorithm requires a set of
QR factorizations to speed up the pole relocation process at each iteration,
see (3.12). This operation is usually less expensive in terms of memory since
applied P 2 times on smaller matrices of size CK�(2�n+1), where �n indicates
the number of poles. An e�ective implementation would perform these QR
factorization using parallel computing threads. Notice that also the cost of the
least squares (LS) to compute the denominator coe�cients at each iteration,
see (3.13), is dominated by the number of responses. This cost is O(2P 2�n3)
�ops if all P 2 responses are processed concurrently.

Table 3.1 summarizes the overall cost in terms of operations for the proposed
CM framework and the standard Fast-VF. Notice that we reasonably assumed
that 2K � (2�n+1) for the QR, that P 2 � K for the SVD, and that �� P 2 for
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Table 3.1 Summary of the number of operations required by the standard Fast-VF
and by the proposed CM framework, the latter applied on � basis functions. Residues
computation cost is omitted.

QR (�ops) LS (�ops) SVD (�ops) Total for I iterations

Fast-VF O(P 24K(2�n+ 1)2) O(2P 2�n3) - O(4IP 2(K(2�n+ 1)2) + �n3=2)
CM O(� 4K(2�n+ 1)2) O(2��n3) O(P 24K2) O(4I�(K(2�n+ 1)2 + �n3=2) + 4P 2K2)

the SVD truncation. Considering a number of VF iterations I and comparing
the overall cost of Fast-VF and CM, the latter is preferable when

O(4IP 2(K(2�n+ 1)2 + �n3=2)) > O(4I�(K(2�n+ 1)2 + �n3=2) + 4P 2K2) (3.20)

is satis�ed. Eliminating common factors and removing the terms that under
our running assumptions are negligible, this condition simpli�es to 4I�n2 > K.
The larger the number of VF iterations, the more costly is Fast-VF with respect
to the single instance of the SVD. Correspondingly, the larger is the number
of required system poles for a �xed number of frequency samples, the more
convenient is the CM approach (with quadratic scaling). For the systems that
are the subject of this work, it is always veri�ed that �� P 2, which is in any
case the dominant and key condition that supports applicability of the CM
approach.

3.1.3 Passivity of LTI systems

This section provides a background on multiport systems passivity, summa-
rizing well-known results [20] and setting notation for later sections. This
work considers only models in the scattering representation, but the extended
framework for the passivity characterization of other system representation
(immitance or hybrid) applies with minor modi�cations, as already detailed in
the literature [20].

The passivity characterization of a P-port system starts with the de�nition
of the absorbed instantaneous power as

p(t) = v(t)Ti(t) = i(t)Tv(t) = a(t)Ta(t)� b(t)Tb(t) (3.21)
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where v(t) = [v1(t); : : : ; vP (t)]T and i(t) = [i1(t); : : : ; iP (t)]T are time-varying
column vectors storing ports voltages and currents, respectively, and a(t) and
b(t) collect input/output scattering waves with reference impedance R0.

The cumulative net energy absorbed by the multiport system at a given
instant of time t is de�ned as

E(t) =
Z t

�1
p(�)d� : (3.22)

For any passive multiport system, the cumulative net energy (3.22) is non-
negative for any time t so that

E(t) � 0 ; 8t : (3.23)

The above de�nition of passivity is now made more precise for the particular
case of lumped P -ports LTI systems. For this family of Multi Input Multi
Output (MIMO) devices, the input/output behavior can be represented in
terms of a transfer function H(s) 2 CP�P , where s is the Laplace variable. We
recall that Section 3.2 provides a compressed identi�cation framework to obtain
a model of H(s) 2 CP�P , ultimately represented in a pole-residue form (3.19) or
as an equivalent state-space realization. Thus, we will assume in the following
two working conditions:

A1 the asymptotic stability of (3.1) is guaranteed by construction so that all
model poles pn have strictly negative real part, as obtained with the VF,
see Section 3.1.1;

A2 all matrices in (3.1) are real-valued, as guaranteed via standard manipu-
lations [20].

We have the following result.

Theorem 3.1 [20, 53, 54, 47] An LTI system in scattering representations
with transfer matrix H(s) is passive if and only if H(s) is Bounded Real (BR).

In the case of a rational transfer matrix H(s) the above theorem simpli�es to a
set of simple conditions.

Theorem 3.2 [20, 53, 54] A rational matrix H(s) is BR if and only if
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C1. H(s) has no poles in C+ such that the system is asymptotically stable,
with Re fpng < 0 8n;

C2. H�(j!) = H(�j!);
C3. I�H(j!)HH(j!) � 0; 8! 2 R.

Under the working conditions A1;2 of (4.8), C1;2 are guaranteed by construction
and only C3 must be veri�ed for all frequencies.
A reformulation of C3 based on the Singular Value Decomposition (SVD) of
H(j!) at each frequency denoted as

H(j!) = U(j!)�(j!)V(j!)H (3.24)

leads to the condition

�maxfH(j!)g = kH(j!)k2 � 
 = 1 8! 2 R: (3.25)

The above su�cient condition for passivity implies that the maximum singular
value of the scattering transfer matrix must be below a critical threshold 
 = 1
for all (real) frequency !. Notice that (3.25) enables to de�ne the passivity
metric function

’(!) = �maxfH(j!)g (3.26)

which has the interesting property of being continuous, since H(j!) is regular
in an open subset of the complex plane containing the imaginary axis (i.e.
there are no poles in Rj!), and is generally smooth but not di�erentiable in a
�nite number of points, due to crossing of singular values trajectories. The �rst
attribute of (3.26) is particularly appealing since enables the use of sampling
approaches for checking the system passivity, as it will be further discussed
next.

An alternative passivity characterization of a state-space system involves
the well-known Bounded Real Lemma (BRL) or Kalman-Yakubovich-Popov
(KYP) Lemma [20, 54, 78].
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Lemma 3.1 A scattering LTI system is passive (dissipative) if and only if

9P = PT > 0 :

0

@x
u

1

A
T0

@ATP + PA + CTC PB + CTD
BTP + DTC �(I�DTD)

1

A

0

@x
u

1

A � 0

(3.27)

The passivity veri�cation problem can be cast in a closed algebraic form.
Using the state-space realization of the scattering model (3.19), we de�ne the
so-called Hamiltonian matrix

M =

0

@A + BR�1DTC BR�1BT

�CTS�1C �AT �CTDR�1BT

1

A (3.28)

with R = I�DTD and S = I�DDT. It is well known [79, 64, 20] that a su�cient
passivity condition for a scattering model is that M has no purely imaginary
eigenvalues �k = j!̂k. These eigenvalues provide all frequency locations where
trajectories of singular values of H(j!) cross the passivity threshold 
 = 1, as
detailed in [64, 79]. Thus, the imaginary eigenvalues of (3.28) can be used to
localize model passivity violations on the frequency axis.

Note that the above theorem requires the asymptotic passivity of H(j!),
since the non-singularity of I�DTD implies that kDk2 < 
 = 1. The Hamil-
tonian matrix M is only de�ned when I�DTD is non-singular, equivalently
when kDk2 < 
 = 1. These conditions imply the asymptotic passivity of H(j!)
for ! !1. If the singular values of the direct coupling term D are too close
to the passivity threshold 
, the above non-singularity condition can be relaxed
by means of an extended eigenvalue problem as

Mev = j!0Kv; (3.29)

where we can de�ne the extended Hamiltonian pencil (Me;K) as in [80]

Me =

2

666664

A 0 B 0
0 �AT 0 �CT

0 BT �I DT

C 0 D �I

3

777775
K =

2

666664

I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

3

777775
(3.30)
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Its purely imaginary generalized eigenvalues �k can be computed to localize
passivity violation of the system. Since obtaining the spectrum of the extended
pencil (3.30) increases the computational e�ort with respect to (3.28), this
approach is recommended only if the standard Hamiltonian matrix (3.28)
is ill-de�ned. In this work, the extended pencil (3.30) is used only when
j�maxfDg� 1j < 10�4, as will be documented in some of the examples reported
in Section 3.5.1.

3.1.4 Discussion on passivity veri�cation

To summarize, the three approaches for passivity veri�cation of a (scattering)
system are:

1. Sampling of local passivity conditions, by verifying whether the passivity
metric exceeds the allowed limit ’(!) > 
 = 1 over a �nite number of
frequency samples f!k; k = 1; : : : ; Kg. This is the computationally less
expensive veri�cation in terms of both memory and number of elementary
operations, since each frequency !k can be processed individually. Indeed,
the complexity in computing the maximum singular value �max at a given
frequency point is O(P 3), while only considering the overall number of
operations for K samples the complexity grows to O(KP 3). On the other
hand, the main disadvantage of this approach is that by checking passivity
over a �nite number of points some narrow violation may be missed by
the checking algorithm, since very close to the passivity threshold 
 = 1
or spread over a small frequency region. Nevertheless, another advantage
of this approach is that, in view of passivity enforcement, all frequency
bands where passivity violations are located and the corresponding local
singular value maxima �max are available for postprocessing.

2. Linear Matrix Inequalities, provide a fully algebraic approach, thanks to
the BRL presented in Lemma 3.1, thus is very robust and does not require
any sort of sampling. Unfortunately, checking the feasibility of (3.27) is
a very expensive procedure that requires O(N6) operations. Even if a
particular formulation [81] reduces its cost to O(N4), this approach is
not suitable for a massive number of ports P . On the other, a passivity
check based on (3.27) provides only a boolean result, and it is of no
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Characterization method Operations Storage
Linear Matrix Inequalities [81] O(N4) (N + P )2

Hamiltonian (full) O((2N)3) 4N2

Sampling O(K(P 3 + P 2�n)) P 2

N : model order (states) K: frequency samples
P : input-output ports �n: (common) poles

Table 3.2 CPU cost and required storage for di�erent passivity characterization
strategies. Adapted from [45] ' 2021 IEEE.

use for localizing passivity violations in view of a passivity enforcement
loop. Those enforcement schemes that embed (3.27) as constraint [55, 82]
provide the same scalability of the corresponding check [67], hence are
not suitable for a large-scale system.

3. Spectral properties of Hamiltonian Matrices, are the state-of-the-art
method for low/medium size models since provide an algebraic approach
to pinpoint passivity violations. As already mentioned, the solution of
eigenproblem (3.28) enables to retrieve passivity violations location along
the frequency axis, at the price of �nding purely imaginary eigenval-
ues of M with O((2N)3) operations. Even if some improvement has
been demonstrated [65, 66] for medium size models, taking advantage of
spare-representations and an Arnoldi process attempting to compute only
purely imaginary eigenvalues (instead of the all spectrum of M), the
extension to a large-scale system is still limited. Indeed, these approaches
require the inversion of a P � P matrix while computing the Krylov
subspace iteration, leading to an approach that alleviates only partially
the computational e�ort of a large-scale model. When the number of
ports P reaches thousands of elements, this strategy is not appropriate.

A comparison of these strategies in terms of both number of required �oating
points operations, up to a constant factor associated to the selected implemen-
tation/algorithm, and of required storage memory is reported in Table 3.2.

To motivate the proposed approach, we recall here the same example
presented while introducing Chapter 2. Supposing that we want to build a
rational passive macromodel of a shielding enclosure with P = 1024 lumped
ports and �n = 71 poles, for a total of N = 72704 states, as the one illustrated
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in Section 3.5.2. In the following, we will try to provide some estimate in terms
of performances for the three classes of passivity characterization approaches.
While for both the LMI and the Hamiltonian strategy is possible to know
in advance the overall required memory, approximately 43GB and 160GB
respectively, for the adaptive sampling scheme we can provide only the single-
point evaluation that requires storing 16MB. We recall that for the latter it is
not possible to anticipate the total number of required samples K, since the
(scalar) investigated function, the passivity metric (3.26), changes accordingly
to singular values trajectories. Nevertheless, even considering a very large
number K = 105 of frequency samples, the relative CPU cost for both LMI
and Hamiltonian approaches is 2 � 105� and 26� higher with respect to the
sampling approach.

We conclude that the only approach that is able to manage the large-scale
nature of the investigated models is the passivity characterization framework
based on sampling strategies. This motivates the focus of the Section 3.3, which
will provide a passivity veri�cation scheme [45] aimed at reducing the chances
of missing violations via sampling, hence at providing a wrong classi�cation of
a passive/non-passive model.

3.2 Structured Compressed macromodeling

This section provides fundamental steps for the construction of a large-scale
macromodel, where the term large-scale is mostly related with the electri-
cal ports count. The �nal goal is to provide a �exible compressed modeling
procedure, equipped with a full-band error control strategy, to reduce the
induced approximation error while changing system representation, and ul-
timately attenuate the sensitivity of the model to loading conditions. Thus,
the compressed structured macromodeling framework [30] is introduced by
integrating the DC-preserving data reduction techniques of Chapter 2.2 with
an ad hoc procedure to ensure an accurate model extraction. The procedure
is reported enriching the same steps of [30]. Numerical results on shielding
enclosures with increasing ports count are presented later in Section 3.5.2, after
the introduction of a reliable passivity veri�cation and enforcement scheme in
Sections 3.3 and 3.4, respectively.
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3.2.1 Fitting structured basis functions

The goal now is to integrate the proposed data-compression techniques of
Chapter 2.2 into a suitable identi�cation framework, which generalizes pre-
vious approaches by providing full control on the system DC behavior at all
macromodeling phases.

The novel contribution of [30] is the realization of a compressed structured
macromodel

cw(s) =
h
bw1(s) bw2(s) � � � bw�(s)

i
(3.31)

where each model bwq(s) preserves the feature of each basis �wq of �W. In
essence, DC zeros of any order are imposed by construction in the macromodel
generation. This condition is obtained by imposing

cw(s)T = �(s) �w(s)T (3.32)

where �(s) is the block-diagonal matrix

�(s) = diagfm1(s)I�1 ; � � � ;m�(s)I�� ; � � � ;m��(s)I���g (3.33)

with frequency-dependent weighting factors m�(s) de�ned for each �-th group
of �� bases as the high-pass �lter

m�(s) =
�Y

i=1

s
s� p1i

; � = 1; : : : ; ��: (3.34)

The particular case of shielding enclosures (to be identi�ed in the modal domain)
requires of imposing DC zeros with multiplicity from 0 to 2 for � = f1; 2; 3g,
respectively. This can be achieved de�ning

�(s) =

2

664

m1(s) � I�1 0 0
0 m2(s) � I�2 0
0 0 m3(s) � I�3

3

775 : (3.35)

with �� = 3 and

m1(s) = 1; m2(s) =
s

s� p12
; m3(s) =

s
s� p12

�
s

s� p13
: (3.36)



3.2 Structured Compressed macromodeling 69

These weighting functions enable to reproduce the required DC behavior,
preserving both the rational model form and the unitary bounding condition
of scattering systems, since the high-pass �lter structure (3.34) guarantees that
jm�(j!)j � 1 for � = 1; : : : ; �� and all frequencies. On the other hand, the e�ect
of �(s) in the modeling band is minimized by selecting all poles p1� after the
maximum �tting frequency, such that

!max < jp1� j ; 8� (3.37)

where !max is the maximum frequency used for the model identi�cation. Fur-
thermore, the behavior for s = 1 of the two compressed representations,
structured (3.32) and standard (3.17), can be identically tuned by the direct
coupling coe�cients rq;1. Indeed, being

lim
s!1

�(s) = I� (3.38)

the two asymptotic responses of w(s) and cw(s) are the same.

The identi�cation of a macromodel with the proposed structure (3.32) is
a task that can be achieved with standard algorithms, such as the Fast VF.
Two possible approaches are available. On the one hand, we can adapt the
core of VF itself de�ning modi�ed frequency-dependent basis functions that
include the low-frequency structure, i.e. the zero at DC and an additional high
frequency pole p1� . A simpler approach is presented here, following [30]. Indeed,
the identi�cation problem can be modi�ed rescaling each basis at all frequencies
by the inverse of the corresponding weighting matrix ��1

k = �(j!)�1. With
this second approach, a standard rational representation (3.15) is suitable to
the modi�ed �tting problem rewritten as

wq(j!k) � (fwq)k = (�k)�1
qq ( �wq)k; q = 1; : : : ; �; k = 1; : : : ; K (3.39)

which can be solved with a standard modeling engine, as the Fast VF. Indeed, all
rescaled basis vectors fwq show a non-vanishing value at DC, since all DC zeros
are canceled out when rescaling for the inverse high-pass �lter of (3.34). The
�nal structured compressed model is obtained as in (3.32) by multiplication of
the rational model with the �ltering term �(s), and by enforcing the prescribed
low-frequency behavior by construction.
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The result of rescaling procedure (3.39) on a 25-port shielding enclosure
is reported in Fig. 3.1. The proposed strategy enables to further improve the
�tting process accuracy by including standard weighting schemes [20] directly
in the �ltering term. For example, all bases can be normalized to a common
magnitude level by including an additional weight, in terms of the 2-norm or
RMS value of each q-th basis, to each diagonal entry of the �ltering term �qq(s)
in (3.32) and (3.39).

Fig. 3.1 Subset of BD-SVD basis functions rescaled via (3.39). Original bases are
reported in Fig. 2.13. From [30] ' 2022 IEEE.

To guarantee an exact model behavior at DC also for non-vanishing re-
sponses, the standard least square problem (3.39) is enriched with a constraint
at s1 = j!1 = 0 (the �rst available frequency point with index k = 1), de�ned
as

(fwq)1 = rq1 +
NwX

n=1

rqn
�pn

q = 1; : : : ; �; (3.40)

and suitably embedded in the identi�cation step, i.e. in the VF iteration.

3.2.2 Compressed Model representations

In view of passivity enforcement, it is shown here how the compressed structured
macromodel (3.31) can be mapped to the original P � P multiport scattering
representation H(s) through a constant algebraic transformation. First, matrix
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	 2 RP��P is de�ned as in [34]

�V =

2

6664

�V1
...

�VP

3

7775 ; 	 =
h
�V1 �V2 � � � �VP

i
(3.41)

where each �Vj 2 RP�� is obtained rearranging the blocks of rows in �V in-
dexed by fj(P � 1) + 1; : : : ; jPg. It can be demonstrated that the equivalent
representations hold

H(s) =
�nX

n=1

Rn

s� pn
+ R0 = mat(�Vcw(s)T) = 	(IP 
cw(s)T) =

�X

q=1
Kq bwq(s)

(3.42)
where the mat operator reshapes a vector of P 2 elements into a P � P matrix,
and where Kq 2 RP�P is a set of matrices de�ned as

Kq =
h
�v1
q �v2

q � � � �vPq
i

(3.43)

with vector �vjq selecting the q-th column of �Vj. It is important to notice that
each Kq inherits the same sparsity pattern of �V in (2.34). Finally, the model
response at a given frequency can be denoted as Hk = H(j!k), and let hk be a
column vector of length P 2 stacking its columns. This vectorized macromodel
response can be written as

hk = vec(Hk) = �Vcw(j!k)T = �V�kw(j!k)T = �V�k(I�
’T
k ) vec(Rw) (3.44)

where Rw 2 R(Nw+1)�� stores all model coe�cients rqn, rq1 in (3.15), and
’k = ’(j!k) 2 CNw+1 stacks the partial fraction basis functions ’0(sk) = 1,
’n(j!k) = (j!k � pn)�1. The last step exploited the known properties of the
Kronecker product.1

1The Kronecker product can be used to rewrite a matrix equation like AXB = C in a
vectorized form as (BT 
A)vec(X) = vec(AXB) = vec(C).
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3.3 Passivity check via adaptive sampling

This Chapter aims at providing a complete framework for the generation of
passive large-scale macromodels. In this context, the model passivity charac-
terization plays a crucial role as a prerequisite for each iteration of a passivity
enforcement loop. As the passive structure that is intended to replicate, the
compact black-box model must not be able to generate energy. This simple idea
is veri�ed in this section through a multi-stage adaptive sampling scheme [45].

This section illustrates the passivity veri�cation scheme originally reported
in [45], providing an e�cient tool for checking passivity of large-scale macro-
models with a large ports count.
The �rst step of the proposed methodology requires to further re-formulate
the passivity condition of a scattering system (3.25) in terms of the passivity
metric (3.26) observations, by stating the passivity veri�cation problem as

Find all local maxima larger than a given threshold 
 of a continuous uni-
variate function of frequency ’(!) over the entire frequency axis.

The solution of this (classic) optimization problem seems straightforward,
however:

1. It is necessary to detect all local maxima of ’(!), to verify whether ones
of them exceed the passivity threshold 
. Unfortunately, ’(!) commonly
shows multiple maxima.

2. The passivity metric variation is characterized by sharp peaks, narrowed
in a very small frequency band, usually close to the critical threshold.
Hence, the exact location of all local maxima is hard to be detected
via sampling, and it is equally di�cult to verify with a �nite number of
samples whether a given point or its neighbors correspond to a passivity
violation.

An example of these behaviors is reported in both Fig. 3.2 and Fig. 3.3, the
latter depicting a detailed view in a zoomed frequency region.

These challenges motivate the main passivity-driven features of the pre-
sented multi-stage adaptive sampling scheme [45], which tunes its resolution


























































































































































































