
22 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

FASTDLO: Fast Deformable Linear Objects Instance Segmentation / Caporali, Alessio; Galassi, Kevin; Zanella,
Riccardo; Palli, Gianluca. - In: IEEE ROBOTICS AND AUTOMATION LETTERS. - ISSN 2377-3766. - 7:4(2022), pp.
9075-9082. [10.1109/LRA.2022.3189791]

Original

FASTDLO: Fast Deformable Linear Objects Instance Segmentation

Publisher:

Published
DOI:10.1109/LRA.2022.3189791

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2972184 since: 2022-10-10T11:06:04Z

IEEE



IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022 9075

FASTDLO: Fast Deformable Linear Objects
Instance Segmentation

Alessio Caporali , Kevin Galassi , Riccardo Zanella , and Gianluca Palli , Senior Member, IEEE

Abstract—In this paper, an approach for fast and accurate seg-
mentation of Deformable Linear Objects (DLOs) named FASTDLO
is presented. A deep convolutional neural network is employed for
background segmentation, generating a binary mask that isolates
DLOs in the image. Thereafter, the obtained mask is processed with
a skeletonization algorithm and the intersections between different
DLOs are solved with a similarity-based network. Apart from the
usual pixel-wise color-mapped image, FASTDLO also describes
each DLO instance with a sequence of 2D coordinates, enabling the
possibility of modeling the DLO instances with splines curves, for
example. Synthetically generated data are exploited for the train-
ing of the data-driven methods, avoiding expensive collection and
annotations of real data. FASTDLO is experimentally compared
against both a DLO-specific approach and general-purpose deep
learning instance segmentation models, achieving better overall
performances and a processing rate higher than 20 FPS.

Index Terms—Deformable Linear Objects, DLO, Instance Seg-
mentation, Industrial Manufacturing, Computer Vision.

I. INTRODUCTION

D EFORMABLE Linear Objects (DLOs) are a special sub-
group of deformable objects consisting, among the main

constituents, of cables, wires, ropes, suture threads and elastic
tubes [1]. Despite DLOs being vastly present both in domestic
and in industrial environments, very few robotics systems are
currently deployed in scenarios in which a proper perception
of DLOs is required. Indeed, the manufacturing and assembly
industries working with wires and wiring harness still largely
rely on human labor whereas the introduction of robotic solu-
tions is only discussed and studied at a research level, e.g. in
automotive [2] and aerospace industries [3]. This deployment
gap is due to the lack of a stable, efficient and accurate approach
for the perception of this class of objects.

In this paper, an algorithm named FASTDLO (FAst Segmen-
Tation of Deformable Linear Objects) for a reliable, accurate
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and fast instance segmentation of DLOs assuming no knowledge
about the background and the number of objects in the scene is
presented. FASTDLO takes as input an image and provides as
output a colored mask where each DLO instance is denoted with
a unique color. In addition, FASTDLO outputs a sequence of
key-points for each DLO instance. Thus, it is possible to model
the DLO instances by means, for example, of spline curves,
providing in this way an important and useful description
for robotic manipulation tasks. From the input image, the
background, i.e. pixels not corresponding to a DLO-like object,
is removed by means of a Deep Convolutional Neural Network
(DCNN), generating as output a binary mask. Thereafter, the
binary mask is processed with a skeletonization algorithm and
the ambiguous intersections between the DLOs are solved
with a second data-driven approach based on a shallow
similarity-based neural network. Synthetically generated data
are deployed in the learning-based methods allowing a fast
adaptability to every possible custom scenario. FASTDLO
achieves a processing rate higher than 20 Frames-Per-Second
(FPS) with an image size of 640 × 360 pixels, employing, as
hardware, a workstation with an Intel Core i9-9900 K CPU
clocked at 3.60 GHz and an NVIDIA GeForce GTX 2080
Ti. PyTorch 1.4 is used for the software implementation. To
summarize, the main contributions of this paper are:
� A reliable and efficient method for the instance segmen-

tation of DLOs in images without assumptions about the
type of background and the number of objects in the scene;

� Deployment of synthetic data for all the data-driven ap-
proaches involved in the proposed method, enabling a
faster adaptability to specific use-cases;

� Exploitation of similarity learning to discern the DLO
instances at intersection-level employing both appearance-
based and topological features;

� Better overall performances in terms of speed and accuracy
compared to existing methods available in the literature,
both DLO-specific and general-purpose ones.

The source code implementing FASTDLO and the associated
data is available at https://github.com/lar-unibo/fastdlo.

II. RELATED WORKS

The importance of DLOs in a large variety of applications
results in a high interest in solutions that allows their correct
and precise identification for different tasks such as cable ma-
nipulation [4] for switchgears and harnesses manufacturing or
DLOs shape estimation [5] by means of multiple 2D images.
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Fig. 1. The FASTDLO algorithm.

In the past, the problem of DLO identification has been solved
in simple settings: in [6] the authors required the presence of a
single DLO in the scene and its segmentation was based on
a color threshold with a controlled background; in [7] a good
contrast between the background and the DLO is again assumed;
in [8] a threshold is again applied in a controlled background to
segment the cable. Indeed, the major difficulties in DLO iden-
tification rely on its simplicity, which does not offer distinctive
features to be used for an unambiguous detection. Moreover, the
approach proposed in [6] assumes to deal with just a single DLO
in the scene. These assumptions about segmentation capability
and number of expected instances limit the applicability of
the proposed solutions in real-case scenario where DLOs are
commonly involved. On the contrary, FASTDLO does not make
any assumption about the background and the number of DLOs
in the scene.

Concerning advanced DLO-specific approaches, the earliest
contribution for DLO detection, segmentation and modeling is
represented by Ariadne [9], an algorithm based on the over-
segmentation of the source image employing superpixels, devel-
oped to perform DLO segmentation in case of complex back-
grounds. Ariadne+ [10] was recently introduced as an improved
version of Ariadne concerning several aspects: better accuracy
and efficiency, ability to consider even more complex scenarios
in which the endpoints of the cable were not present in the
image. Currently, Ariadne+ represents the state of the art in
terms of DLOs instance segmentation. However, its throughput
is limited to a few FPS providing a strong limiting factor for its
applicability on real-world applications. In this regard, instead
of a paths discovery method based on the superpixelization
that requires significant processing effort and the definition
of the number of superpixels in an image, FASTDLO focuses
directly on solving the intersection areas of the image between
multiple DLOs to distinguish the instances, increasing the speed
and accuracy of the results. Indeed, these improvements can
be beneficial for DLO tracking problems that have been only
relatively solved in partially occluded environments [11], in
simulation [12] or with markers attached on the DLO [2], [13].

Regarding other data-driven approaches, the advancements
of deep learning in the last years resulted in several DCNN
tailored for the general problem of instance segmentation task,
e.g. [14]–[17]. In addition, the segmentation of wires and cables
via learning-based methods has been attempted in [18] where a
dataset consisting of electric wires obtained with a chroma-key
approach is made publicly available. A relevant problem in the
application of data-driven approaches for the instance segmen-
tation of DLOs resides in the lack of good-quality publicly

available datasets and, consequently, the difficulty in annotating
a large set of images. However, some approaches are emerged
focusing on synthetic data generation pipelines [19], [20] that
tackle this problem.

For the sake of completeness, other methods exist that rely
on different sensing approaches and instead of images use other
sensors for the detection of DLOs such as electrical cables, e.g.
sensorized tactile fingers in [21]. These methods ca be useful
in case of occlusions affecting the camera view due to tight
operating spaces.

III. THE FASTDLO ALGORITHM

The FASTDLO pipeline, schematized in Fig. 1, consists of the
following main steps:

A) Background Segmentation: A DCNN performs the
segmentation of the source image discerning back-
ground pixels from DLOs pixels, outputting a binary
mask Mb.

B) Skeleton Pixels Classification: A skeletonMs is generated
from the mask Mb and its pixels are classified depending
of their local neighborhoods.

C) Segments Generation: The intersection areas of Ms are
filtered out and segments are generated;

D) Intersections Processing: A shallow neural network is
employed to predict connection probabilities among
endpoint-pairs;

E) Informed Merging: The segments are concatenated to
recover the full description of each DLO employing the
result of intersections processing;

F) Intersections Layout: The standard deviations of the
DLOs instances RGB colors at intersections-level are used
to asses the correct ordering at the intersection areas to
create correct instance masks.

The aforementioned steps are deeply analyzed in the
following.

A. Background Segmentation

The generic input image Is is processed by means of a DCNN
performing the semantic segmentation, i.e. the task of labeling
each pixel of an image with a given class. For the paper purposes,
just one class (the DLO) is defined, thus the output of the
segmentation is simply a binary mask Mb with the DLOs pixels
labeled in white.

Aiming toward the prediction of a reliable binary mask, and
due to the usual difficulties in data collection and labeling for
deep learning applications, a novel pipeline [19] making use
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Fig. 2. Synthetically generated images used during training.

Fig. 3. Input images with background segmentation results and generated
skeletons zoomed at the intersections area. To clarify the skeleton visualization,
the mask colors in the right column are inverted.

of Blender to render realistic images is exploited. A dataset of
synthetically generated cables is built randomizing the shapes,
radius, color and stripes of the DLOs. A random texture is
chosen as background and the scene lighting conditions are
randomized as well creating different combinations of shadows.
All these expedients are needed to enhance the generalization
capabilities of the network during training. Overall, a total of
about 32,000 images were rendered to handle the data-driven
learning methods involved throughout this paper. As an example,
in Fig. 2 some generated images are shown.

As network architecture for the background segmentation,
DeeplabV3+ [22] is selected since it provides reliable perfor-
mances in the context of DLOs especially along object bound-
aries, as demonstrated also in [10], [18].

In Fig. 3 an example of the segmentation process on real
samples is shown: the shadows present in the input image do
not affect the predicted mask and are successfully neglected;
instead, the background object in the second row is more difficult
to handle since it appears as a thin wire in the image, so few false
positives can be found in the associated mask.

B. Skeleton Pixels Classification

The segmentation mask Mb is processed with a skeletoniza-
tion algorithm consisting of a thinning iterative approach which
erodes the input mask. Thus, a new mask Ms is obtained having
the following properties: 1) same connectivity as the input mask;
2) 1-pixel width across the mask instead of the original mask
thickness; 3) equidistant skeleton to the borders of Mb. In Fig. 3
(last column) the masks Mb and Ms are combined to highlight
these properties.

From an image comprising several DLOs and exploiting the
linearity property of the latter, for each pixel of the skeleton
Ms, defining a small (3 × 3) kernel, only three types of local
neighbors can be experienced. They are depicted in Fig. 4 with
the target pixel at the center of the local region highlighted with a

Fig. 4. Local neighbors possibilities of a skeleton pixel given a 3 × 3 kernel.
To clarify the representation, the skeleton is in dark while the background is in
white.

red contour. After the skeletonization, each pixel of Ms receives
a label depending on its local neighborhood:
� endpoint: only one pixel in addition to the central one is

contained in the local neighborhood, i.e. Fig. 4(a);
� section: two more pixels are present in the neighborhood,

i.e. Fig. 4(b). The term section refers to the considered pixel
being placed along a section of a DLO and not at its end.

� intersection: the central pixel is surrounded by three more
pixels in the neighborhood forming, in general, a charac-
teristic ‘Y ’ shape [6], i.e. Fig. 4(c). This condition in case
of binary masks describing DLOs occurs when two DLOs
cross each other.

C. Segments Generation

The intersection pixels with their surrounding area are dis-
carded from Ms since they correspond to a topologically mis-
leading region of Ms due to the DLOs crossing. Indeed, these
phenomena can be appreciated in Fig. 3 where the generated
skeletons nearby the intersection pixels do not describe correctly
the DLO topology, i.e. center line, as opposed to the skeleton
pixels far away from it. The discard operation is performed based
on the distance transform image of the local area considered. The
distance transform is an operation that computes the distance,
in pixel values, between a given pixel location to the nearest
boundary [23], i.e. black pixels of Mb.

Because of the removal of the intersection areas, new endpoint
pixels emerge in the updated skeleton. Thus, segments are gen-
erated between two connected endpoints. A segment is defined
as an ordered sequence of pixels where the elements inside the
sequence are sections whereas the extremities are endpoints.
The segment sequence can be effectively obtained by sliding the
skeleton with a 3× 3 kernel from one of its endpoints, collecting
the only pixel not already in the segment under construction
and updating the kernel anchor to the added pixel location. In
addition, for each segment, a common thickness is estimated
based on a distance transform previously computed. The overall
segment thickness is obtained by computing the median value
of the distances gathered for each segment’s pixel. The median
allows gaining robustness against spurious values due to noisy
boundaries in Mb. In Fig. 1 the segments generated for the
considered image are denoted with unique colors.

D. Intersections Processing

The intersections among the DLOs are solved by comparing
the feature vectors of the endpoints of two candidate segments
via a shallow neural network, i.e. similarity network, predicting
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the probability of their connection. The computation of the con-
nection probabilities is schematized in Algorithm 1 showing the
two main phases: endpoint-pairs collection; similarity network
predictions. The inputs of the algorithm are the set of all the
intersections in the image, i.e. C, and, given the updated skeleton
of Section III-C, the sets of the endpoints and of the segments,
i.e. E and S respectively.

The approach starts by collecting all the endpoint-pairs which
connection needs to be evaluated by initializing P empty (line
1). Thus, for each intersection to be solved c, the endpoints
of the segments associated to c, i.e. originally connected to c
before removing the intersection pixels from the skeleton (see
Section III-C), are extracted from E and collected into Ec, line 3.
Then, the components of Ec are organized into combinations of 2
elements, i.e. endpoint-pairs, inPc, and the set of endpoint-pairs
P is updated accordingly, lines 4 and 5.

The collected endpoints-pairs P are now processed by a
similarity network. The goal of this network is to transform
an input feature vector into an embedding space where similar
input vectors are close together and dissimilar ones are far
apart. In the setup adopted in this work, the triplet loss [24]
is deployed for the required optimization of the network. The
loss is computed between an anchor, a positive and a negative
sample. The distance in the embedding space between anchor
and positive is minimized, while the one between anchor and
negative is maximized. The input feature vectors are obtained
from the endpoints of the segments around a given intersection.
As feature elements of the input vector x ∈ Rdi , the following
values are used: RGB color of the local endpoint area; thickness
of the segment associated to the endpoint; endpoint direction
estimate.

In Algorithm 1, the feature vector for the endpoints ei and ej
are created at lines 8 and 9. Then, a forward pass in the network
layers is performed to compute the embedding vectors zi and
zj , lines 10 and 11.

As mentioned, the prediction is based on the distance of the
embedding vectors which can be computed as dij = ‖zi, zj‖2,
where ‖ · ‖2 denotes the L2-distance. To obtain a probability-
like value in the [0,1] range describing the likelihood of the

Fig. 5. Endpoint-pair probability computation. For the general endpoint ei,
from the source image Is and binary mask Mb a feature vector is created as xi.
The embedding vector zi is obtained after the propagation of xi in the similarity
network layers. A Gaussian activation function on the embeddings L2-distance
is employed for calculating the final score pij of the endpoints ei and ej .

Fig. 6. (a) segments generated; (b) example of intersection processing of the
region highlighted area in (a).

connection, the distance is transformed by means of a Gaussian
activation function as pij = e−dij . This last step in the similarity
network is provided at line 12 while an illustration schematizing
the computation flow of the similarity network from its inputs
till the predicted connection score is available in Fig. 5.

To conclude, for each endpoint-pair a probability value pij
is computed and the set Z updated (line 13) with tuples of
three values, i.e. endpoint-pair (ei, ej) and connection probabil-
ity pij . Although Algorithm 1 describes the process for each
individual element of P , the actual implementation is based
on batch processing enabling an efficient computation of the
scores, as described in Section IV-F. In Fig. 6(b) an example of
the processing for four segments (six endpoint-pairs) extracted
from Fig. 3 (first row) is shown.

E. Informed Merging

Exploiting the endpoint-pairs connection probabilities com-
puted in Section III-D it is possible to concatenate segments
obtaining the full description of each DLO in the image. This
concatenation process is addressed as informed merging and it
is schematized in Algorithm 2, showing how Z is employed to
iteratively update S till each s ∈ S describes a whole DLO.

First, the elements of Z are sorted based on the connection
probability values in descending order (line 1), thus prioritizing
during the merging process the most probable connections. The
set of nodes already processed, i.e. Ez, is initialized to zero at
line 2. An iteration on the elements of Z is performed and,
starting from the highest score and moving toward the lowest
one, the merging of the segments, i.e. Fig. 6(a), is executed.
Indeed, if both the endpoints retrieved from one of the elements
of Z are not already processed (line 4), and their endpoint-pair



CAPORALI et al.: FASTDLO: FAST DEFORMABLE LINEAR OBJECTS INSTANCE SEGMENTATION 9079

connection probability is larger than a user-defined threshold
tc (line 5), the two corresponding segments associated to the
endpoints are collected (lines 6 and 7), merged together (line 8)
and the segments set updated (line 9). With the term informed
merging we refer to the high-level operation of performing the
union between the two segments sets taking into consideration
their ordering, e.g. head-tail, tail-tail and all the others combi-
nations.

Consequently, the endpoint-pairs having lower scores and
with one of the two endpoint elements already associated are
not considered and their merging avoided. The describes asso-
ciation continues for all the elements of Z having a connection
probability larger than the threshold tc, introduced to avoid
merging endpoints with incompatible orientations, colors or
thicknesses. This threshold is effectively used only in situations
where the mask Mb is not reliable and edge-conditions occur.
Instead, in normal settings, the merging process would result
in first high probability endpoints association thus making the
low probability ones already incompatible irrespective of the
threshold value.

The presented merging process is performed directly on the
existing segments, thus the operation is propagated by updating
the set of segments accordingly. For instance, in case of a segment
disputed by two different intersections, at the second merging
process the operation of joining the two candidates segments is
performed on the new merged segment (obtained after the first
merging process) and not on the initial one.

F. Intersections Layout

As additional information aiming at providing a complete
and accurate solution of the scene, the order of the DLOs in
a given intersection, i.e. which is the one at the top of the pile,
is provided by comparing the standard deviation of the RGB
colors along the line connecting the endpoint-pair previously
solved. For example, given an intersection made of two DLOs,
i.e. with four endpoints, and hence two endpoint-pairs predicted,
the RGB color values along the two endpoint-pairs positions are
collected and their mean standard deviation, i.e. the mean of
the standard deviations computed for each channel, compared.
The pair with the smallest standard deviation is assumed to be

Fig. 7. Example of the intersection layout estimation with DLOs having
identical colors, in (a) and (b), and different colors (c). In all examples the
DLO at the top is blue labeled.

at the top of the intersection pile, while the highest standard
deviation pair below. The difference in the value is due to the
change in the color along the line for the DLO not at the top or,
in case of DLOs with identical colors, mostly due to the shadows
projected from the above DLO onto the one below. In the case
of a cross composed of three or more DLOs, only the instance
above them all can be identified since the continuity in the colors
in the intersection region is the main deciding condition. This
continuity is only met for the top DLO. The approach is quite
simple and yet proves to be effective and inherently fast given
the intersection solution provided in Section III-D is reliable,
more in Section IV-A.

DLOs ordering in an intersection is particularly needed in case
this approach is integrated into a larger manipulation pipeline
with a robotic system for routing or pick and place tasks. The
information about the layout of the DLOs in an intersection is
missing both in [9] and [6]. Instead, in [10] a solution based
on a data-driven classification approach is presented requiring
specific training and constrained at precise image crop reso-
lutions. On the contrary, the approach presented in this paper
exploits the accurate DLOs center line localization obtained
from the skeleton, as opposed to the superpixels centroids used
in [10], avoiding then the introduction of additional data-driven
approaches. In Fig. 7 some example intersections are displayed
with the computed values.

IV. EXPERIMENTAL VALIDATION

A. Training

The training dataset is obtained from 90% of the synthetic
dataset described in Section III-A, while the validation from the
remaining 10%. The segmentation network of Section III-A,
i.e. [22], employed in FASTDLO is trained with a ResNet-
101 [25] backbone pre-trained on ImageNet for 250K iterations
with the final weights selected as the ones corresponding to the
lowest validation loss. As hyper-parameters, we employed a
batch size of 10, output stride of 16, separable convolutions,
Adam as optimizer and a polynomial learning rate adjustment
policy with power 0.95 starting from 10−6 to a minimum of
10−9. As augmentation scheme we deploy: channel shuffling;
hue, saturation and value randomization; flipping; perspective
distortions; random cropping; random brightness and contrast.

Concerning the similarity network of Section III-D, from the
synthetic dataset, training and validation samples are offline
sampled taking into consideration the intersections. The sim-
ilarity network is composed of three fully connected layers with
input, hidden and output dimensions of di = 7, dh = 32 and
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do = 16 neurons respectively. The similarity network is trained
starting from randomly initialized weights for 50 epochs, with
batch size 128, learning rate 5 · 10−4, using Adam as optimizer
and with the final weights selected based on the validation loss.
As connection probability threshold tc, the value of 0.2 is used
throughout the experiments. As highlighted in Section III-E, this
threshold comes into play only in case of not reliable masks Mb,
i.e. false negatives and positives.

B. Baseline Methods

The DLO-specific approach named Ariadne+ [10] is used
as comparison. It employs the same segmentation network ar-
chitecture of the one introduced in Section III-A to distinguish
the DLOs from the scene. Thus, comparisons with FASTDLO
can be established both at segmentation level, i.e. utilizing the
weights of the original work [10] and the ones obtained from
the synthetic dataset, and at the instance segmentation level, i.e.
comparing the final result fixing the segmentation network and
weights for both Ariadne+ and FASTDLO. As described in [10],
a number of superpixels equal to 50 is employed in Ariadne+
for the comparisons.

The other baselines employed are general purpose
DCNN performing the instance segmentation: YOLACT [14],
YOLACT++ [15], BlendMask [16] and CondInst [17]. Networks
backbones with different depths can be applied in these DCNN
models, thus comparisons are established for each configura-
tion. The already introduced synthetic dataset of Section III-A,
labeled in this case for the instance segmentation task, and with
the mentioned train-val split 90− 10 is used in the training stage
of each model. The hyper-parameters of each method have been
tuned trying to maximize the performances. A general training
strategy consisting of a maximum of 250K iterations with the
selection of the final weights based on the minimum valida-
tion loss has been followed for all the DCNN baselines. The
augmentation schema resembles the one used for the semantic
segmentation network. YOLACT and YOLACT++ have been
trained starting from the ImageNet weights with a batch size of
6, an initial learning rate of 10−3 reduced by a factor of 10 at
iterations 100K and 150K. Stochastic gradient descent (SGD)
with momentum 0.9 and weight decay 5 · 10−4 is employed
as optimizer. BlendMask and CondInst have also been trained
starting from pre-trained weights on ImageNet with a batch
size of 6 and with an initial learning rate of 0.01 reduced by
a factor of 10 at iterations 100K and 150K. As optimizer SGD
is employed with weights decay and momentum set to 10−4 and
0.9 respectively.

C. Test Dataset and Metrics

To evaluate the FASTDLO performances on real data, a test
set of 135 manually labeled real images of electrical wires
with varying diameters and collected in different real scenarios
is used. The test dataset is organized into 3 categories, each
containing 45 images:

C1: scenes with the target wires laying on a surface and no
other disturbing objects. The difficulties in these scenes are the

Fig. 8. Networks performances in terms of IoU score and mask threshold in
(a) for the semantic segmentation model, and receiver operating characteristic
curve in (b) for the similarity-based neural network.

high contrast shadows, possible chroma similarities with the
background, the light settings and the perspective distortions.

C2: scenes with the target wires on a highly featured and
complex background and no other disturbing objects. Here,
the challenge for the algorithm is to extract the wires correctly
in a cluttered scene.

C3: scenes with the target wires in a realistic setting as an
industrial one (e.g. an electric panel). The difficulties are given
by the metallic surface reflecting the wires and other disturb-
ing objects like commercial electromechanical components,
typical of these products.

Each category is further divided in sub-classes based on the
number of intersections present in the images, i.e. the subcate-
gories 1 (one), 2 (two) and 3 (three) are created with 15 samples
each. Compared to the test set employed in [10], here 45 new
images have been added to evaluate the different diameters
condition, 15 images for each category with 5 images in each
subcategory. In the remainder of this section, the group of images
corresponding to the test set of [10] is referenced as base while
the new group of images as ext.

As a metric for the evaluation, the Intersection over Union
(IoU =

|M∩Mgt|
|M |+|Mgt| , where M is the mask under evaluation and

Mgt is the ground truth) is employed. For the semantic seg-
mentation network, the mask M corresponds to the binary mask
Mb, while for the instance segmentation results the mask M
corresponds to the colored mask Mc where each DLO instance
is denoted by a unique color and the IoU score is just the average
score across the instances of the image.

D. Evaluation

In Fig. 8 the plots related to the segmentation and similarity
network performances on the test set are provided. For the first,
i.e. Fig. 8(a), an almost constant IoU score is obtained for a wide
range of masks’ threshold values. Based on this plot, a value
of 0.3 is selected as mask threshold. Concerning Fig. 8(b), the
evaluation on each intersection in the test set images is performed
by denoting a positive result if the predicted probability score
between the correct endpoints is the largest among the complete
set of scores obtained from the intersection under test. Thus, the
Receiver Operating Characteristic (ROC) curve is built.

The baseline methods are evaluated in Table I by means of
the IoU score computed starting from the color masks provided
as output by each method. In addition, the table also provides
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TABLE I
COMPARISON OF FASTDLO WITH BASELINES: ARIADNE+ [10], YOLACT [14],

YOLACT++ [15], BLENDMASK [16] AND CONDINST [17]. RESNET-50 AND

RESNET-101 ARE FROM [25]

Fig. 9. Qualitative evaluation of FASTDLO and the best performing baseline
using a sample for each category.

details about the average inference time and FPS of each method
when applied to the test set plus a flag indicating if each ap-
proach provides as output an additional representation of the
DLO instances in terms of key-points or splines, allowing for
a broader comparison. FASTDLO achieves better overall scores
showing a large advantage over the general purpose approaches
and performing slightly better compared to Ariadne+, where
both methods employ the same weights in the segmentation
network. From the processing time perspective, FASTDLO is
competitive with respect to the general purpose methods while
being almost one order of magnitude faster than Ariande+. In
Fig. 9 some samples for each test set category are shown with
the corresponding output predictions obtained with FASTDLO
and with Ariande+.

The prediction performances of the intersections layouts, i.e.
Section III-F, are also evaluated on the test set. Considering only
the correct endpoint-pairs predictions, the approach discussed
in Section III-F is able to provide a correct result in 226 of
the totals of 232 intersections achieving an overall accuracy of
97.4% compared to 78.3% (177/226) of Ariadne+. Thus, it is
clear the validity of the proposed method that is executed without
noticeable overhead in terms of processing time.

E. Comparison Studies

The semantic segmentation performances on the test set are
compared in Table II when deploying the synthetic dataset of

TABLE II
COMPARISON OF THE SEMANTIC SEGMENTATION PERFORMANCES WHEN

EMPLOYING THE SYNTHETIC DATASET OF SECTION III-A AND THE

CHROMA-KEY DATASET [18]

ResNet-101 is used as backbone. The values denote the IoU scores in percentage.

TABLE III
COMPARISON BETWEEN FASTDLO, ARIADNE+ [10] AND THE HYBRID MODEL.

THE VALUES DENOTE THE IOU SCORES IN PERCENTAGE

TABLE IV
CHARACTERIZATION OF THE AVERAGE EXECUTION TIMES FOR THE MAIN

STAGES OF FASTDLO WITH RESPECT TO THE NUMBER OF INTERSECTIONS IN

THE IMAGE, I.E. 1, 2, AND 3, AND THE BACKBONE

The values in the table are in milliseconds.

Section III-A or the chroma-key dataset of [18] for the training.
From the table it is observable that the average scores are very
similar, with the synthetic dataset handling better the category
C1, mostly due to the shadows, and the ext group of images
consisting of cables with varying diameters. On the contrary,
the dataset of [18] shows stronger performances on the complex
industrial background category C3.

For a better evaluation of the FASTDLO performances with
respect to Ariadne+, an Hybrid model is built starting from
FASTDLO and replacing its intersection processing method
(Section III-D) with the curvature and colors predictors of
Ariadne+. The utility of the Hybrid model is thus twofold,
since it allows to evaluate the benefits of: 1) the skeleton-
based processing of the mask (Sections III-B and III-C); 2) the
similarity-network (Section III-D). The results of the compar-
isons are shown in Table III. The skeleton-based processing of
the masks allows to gain on average 0.50 in IoU score between
Ariadne+ and Hybrid. On the contrary, the similarity-network
based processing of the intersections introduces an average gain
of 0.35 in the IoU scores. The gains are mostly present in the ext
group of the test set images, showing the limitation of Ariadne+
in handling scenes with DLOs of different diameters.

F. Timings

In Table IV a characterization of the average timing for the
different stages of the method is provided by analyzing the ef-
fects of the ResNet backbones and the number of intersections in
the image. The values are obtained by averaging the processing
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Fig. 10. FASTDLO applied to medical hoses.

time experienced on the test set. As the number of intersections
increases, both the segmentation and endpoint-pairs predictions
times stay relatively constant. The inference performed by the
similarity network is indeed very fast and does not suffer signifi-
cantly from the increase in the number of intersections to process
thanks to the batch-inference. Instead, the skeleton generation
time increases of about 15% from 1 to 3 intersections. Also,
the additional processing time, mostly due to the informed
merging approach, increases with the number of intersections,
as expected. Overall, the total processing time is in the range of
40 to 50 ms in all the conditions.

G. Extensions to Other DLOs

FASTDLO can be easily extended to work with a large variety
of DLOs. Fig. 10 displays the results of medical hoses segmen-
tation where FASTDLO is applied directly without modifica-
tions. For other types of DLOs, like ropes and strings, where
the texture characteristic of the surface of the objects can be
different compared to the one of cables and wires, the semantic
segmentation stage should be re-trained or fine-tuned. This can
be accomplished easily by leveraging synthetic data, as shown
in this paper. Apart from that, FASTDLO can also be directly
applied to these objects.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a DLOs instance segmentation algorithm is
presented featuring a processing rate higher than 20 FPS while
preserving reliable and accurate predictions. The experimental
results demonstrate the validity of FASTDLO when compared to
several baselines available in the literature.

In future works, FASTDLO will be integrated into a robotic
system for switchgears cabling. Moreover, the use of multiple
camera frames will be investigated to improve the semantic
segmentation of the scene. Finally, further refinements and
optimization in the approach will be performed aiming towards
real-time capabilities and, most importantly, a real-time tracking
system for DLOs.
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