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Implementation and Performance Evaluation of a
Consensus Protocol for Multi-UAV Formation with

Communication Delay
Fausto Francesco Lizzio1, Elisa Capello2 and Giorgio Guglieri2

Abstract—Consensus theory represents a relevant strategy for
the control of distributed multi-UAV missions, whose main fea-
ture is the local inter-agent communication. Besides the physical
characteristics of the swarm, a proper simulation environment
must take into account such communication properties. In
this paper, a formation consensus algorithm is implemented in
ROS/Gazebo through the use of docker containers, so that the
features of a real network can be included in the simulation.
Performance metrics are provided to help researchers to vali-
date the impact of communication delays on the performance
of the algorithm.

Index Terms—consensus, distributed control, UAV, communi-
cation delay, network

I. INTRODUCTION

Consensus theory represents one of the most relevant
frameworks for multi-agent control systems in many fields of
application. Due to the absence of a centralized coordination
unit and the deployment of local information exchange,
consensus is particularly suitable to be employed in multi-
Unmanned Aerial Vehicles (UAVs) missions, in which on-
board computation and inter-agent communication are crucial
features.

The basic property of consensus is the achievement of
an agreement on a given variable of interest among the
agents of a network, [13]. Depending on the chosen variable,
researchers are able to inflect consensus to achieve a wide
range of multi-UAV missions, such as formation control [18],
collision avoidance [10], or distributed target tracking [20].

One of the most relevant work in this field [19] first
employed consensus to achieve flocking, a behavior through
which UAVs are able to collectively match their velocities
and follow a moving target while avoiding collisions. The
authors introduced a command input, called consensus pro-
tocol, for a double-integrator dynamic system and showed
how it lead to the formation of an α-lattice, i.e. a geometric
configuration in which a safe predefined inter-agent distance
is maintained between neighbor vehicles.

This protocol has been adopted and reinterpreted in nu-
merous works focusing on solving several practical issues:
the time-varying nature of the network topology [21], the
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non-linearities of the dynamic systems [31], or the presence
of time delays [21].

The studies on the last subject brought forth meaningful
insights on the role of delays in consensus control. In
particular, a major distinction arose between the analysis of
communication delays, consisting of the time it takes for
information to travel between two end-points of the network,
and of input delays, which are the result of signal processing
after receipt and finite execution time of the actuators, [23].
While the first ones cause a deviation of the performance of
the algorithm from the ideal case, the latter are the ones
responsible for stability loss in first-order linear systems.
Thus, researchers concentrated on providing upper bounds
on the maximum input delay that a system can tolerate
while retaining stability, mainly focusing on linear systems.
However, also communication delays can cause instability in
more complex dynamic systems, and this represents the focus
of this works.

Moreover, while linear models are powerful tools to design
and analyze control strategies, performing simulations based
on these dynamics often fails to grasp several unmodeled
features or real-life perturbations. This could lead to severe
discrepancies between the expected theoretical behavior and
the actual performance of a flight test. Hence, it is important
to evaluate the influence of time delays considering a more
complex dynamic system.

In this work, ROS/Gazebo simulation environment was
employed to validate the performance of the flocking consen-
sus protocol introduced in [19] in the presence of commu-
nication delays. By exploiting the PX4 autopilot Software-
In-The-Loop (SITL) capability, it was possible to interface
the simulated Flight Control Units (FCUs) of the virtual
UAVs in offboard mode, as it would be done in an actual
implementation. Moreover, we ran each offboard node in
separate docker containers, in order to properly interfere
in the information transmission between the network of
simulated companion computers. The contribution of this
paper is twofold: 1) We tailor the flocking consensus protocol
of [19] to better tackle a complex dynamic model, by adding
an integral action on the velocity control of the agents. 2) We
evaluate the performance of this algorithm in the presence of
a communication delay, providing performance metrics for
acceptable performances.

The rest of the paper is organized as follows: In Section



2, some preliminaries on flocking consensus control and the
role of time delays are provided. In Section 3, we describe
the adopted simulation environment and the methodologies
employed for running the tests. In Section 4, the effects of
communication delays are evaluated for a swarm tracking a
moving target. Finally, concluding remarks are provided in
Section 5.

II. PRELIMINARIES

A. Graph Theory and Consensus Control

The n agents of a network of UAVs can be regarded as
nodes V of a graph G. In this context, the edges E ⊆ V × V
of the graph represent the presence of communication among
nodes. In such a case, the UAVs are said to be connected,
or neighbors. If the information flow between any two con-
nected agents is always bidirectional, the graph is undirected;
otherwise, G is directed, [23].

The properties of G can be plugged into an adjacency
matrix A ∈ Rn×n, such that the components aij = 1 if
the nodes i and j are neighbors, while aij = 0 otherwise.
Alternatively, the value of aij can also indicate the strength
of the information flow, e.g. it can be proportional to the
inverse of the distance between agents. Starting from A, it
is possible to build the Laplacian matrix L, such that:

lii =

n∑
j=1,j ̸=i

aij , lij = −aij for i, j = 1, ..., n (1)

Since L has zero row sum [17], the multiplication of each
of its row by the vector of ones 1n is always equal to 0, i.e.
L · 1n = 0 · 1n. This implies the presence of at least one null
eigenvalue in the spectrum of L.

Considering a state-space variable xi of a node i =
1, . . . , n in G, consensus aims to obtain the convergence
of xi to a common value, only exploiting local information
exchange. Let Ni be the set of neighbors of a node i. The
standard form of consensus protocol for a first-order linear
continuous system is:

ẋi(t) = −
∑
j∈Ni

aij [xi(t)− xj(t)]. (2)

Each variable xi of a node i is ultimately driven towards
the values of the variables held by its neighbors, so that
∥xi(t) − xj(t)∥ → 0 as t → ∞ [24]. The local application
of (2) leads globally to:

ẋ(t) = −L x(t), (3)

where x(t) = [x1(t), ..., xn(t)]
T . This means that the

distributed multi-agent system takes the shape of a linear
dynamic system where x(t) is the state vector and −L is
the state matrix. Thus, its spectrum determines the stability
properties of the system.

In [23] it is shown that the opposite −L of the Laplacian
associated to a directed graph G has a simple 0 eigenvalue
and all other eigenvalues with negative real parts if and only

if G has a directed spanning tree, i.e., there exists at least a
node that can reach any other node in G through an ordered
sequence of edges.

Likewise, the opposite −L of the Laplacian associated to
an undirected graph G has a simple 0 eigenvalue and all other
eigenvalues are negative if and only if G is connected, i.e.
there exists a sequence of edges between any pair of nodes
in G.

This means that the system is internally stable, its state
variables are bounded and being ν the unit left eigenvector
of L associated to the eigenvalue 0, xi(t) converges to a
common value given by

∑n
i=1 νixi(0) for all i = 1, . . . , n .

That is, the variables converge to a weighted average of their
initial values, [23].

B. Flocking Consensus Protocol

Flocking [25] is a distributed behavior achieved by a
network of agents that are able to:

• stay close to the centroid of the swarm;
• avoid collision with other agents;
• match their velocity to the neighbors’ one.
The work of [19] firstly introduced the concept of flocking

through consensus for a network of double integrator models
such as:

q̇i = pi, ṗi = ui, for i = 1, ..., n, (4)

where qi ∈ Rm and pi ∈ Rm are respectively the m-
dimensional position and velocity of the ith agent.

In order to achieve the three flocking behaviors, three terms
add together to build the consensus protocol:

ui = ud
i︸︷︷︸

distance regulator

+ uv
i︸︷︷︸

velocity matching

+ ut
i︸︷︷︸

target following

(5)

The first term ud
i is able to track the inter-agent distances

to a predefined safe value, through the use of a pairwise
repulsive-attractive potential function. Indeed, this potential
has a minimum in the desired separation distance, and its
gradient provides the first addendum of equation (5):

ud
i = −Kd

∑
j∈Ni

aij · (qi−qj) ·
ϕ(∥qi − qj∥σ − ∥d∥σ)

1 + ϵ∥qi − qj∥σ
(6)

where Kd is a positive tunable gain, aij = aij(qi,qj) is the
adjacency matrix component, d is the desired distance,

ϕ(z) =
z√

1 + z2
(7)

and ∥ · ∥σ indicates a map Rm → R+
0 differentiable every-

where (also in z = 0) given by ∥z∥σ = 1
ϵ [
√
1 + ϵ∥z∥2 − 1],

with ϵ ∈ (0, 1). Considering a pair of agents, the direction
of ud

i is along the line connecting the two nodes, while its
sign determines whether the control action is attractive or
repulsive. Denoting as rcomm the communication range of
the agents, the magnitude of ud

i can be further modulated by



a proper choice of aij = aij(qi,qj) = aij(
∥qi−qj∥σ

∥rcomm∥σ
), such

as :

aij(z) =


1, if z ∈ [0, h).
1
2 [1 + cos(π z−h

1−h )], if z ∈ [h, 1].

0, otherwise.
(8)

with tunable h ∈ (0, 1), so that the repulsive force is
stronger than the attractive one, and the contribution of far
away agents is discarded.

The second term uv
i of equation (5) is a velocity consensus

term equal to:

uv
i = −Kv

∑
j∈Ni

aij · (pi − pj) (9)

with Kv being a positive tunable gain. This term drives the
velocities of the agents of the network to a common value.

The last term of (5) is a target tracking term ut
i given by:

ut
i = −Kd

t · (qi − qt)−Kv
t · (pi − pt) (10)

where qt and pt are respectively the position and velocity
of the moving target, and Kd

t , Kv
t are positive tunable

gains. The state of the target may be known by all the
agents or may be available only to a certain number of
nodes. In the latter case, the target should be considered as
a virtual leader and the dimension of the graph G should
be augmented. Notice that the presence of a unique target
to be followed by the entire swarm is necessary to prevent
the regular fragmentation, i.e. a situation in which, due to
the finite communication range, the agents scatter in the
coordinate space and do not unify in a swarm, [19].

C. Effects of Communication Delay in Consensus Protocols

The role of time delays in consensus theory has been
widely studied in literature [11], [12], [28]. Communication
delays can be embedded in the standard consensus algorithm
(2) as in:

ẋi(t) = −
∑
j∈Ni

aij [xi(t)− xj(t− τij)] (11)

where τij is a possibly time-varying delay. Note that (11)
is a proper case of delayed information transmission, in
opposite to the delayed information processing, in which the
delay also applies to xi(t). In the former case, each agent
compares its current state to the delayed state communicated
by its neighbors. Instead, the latter case refers to relative
measurements and involves the analysis of input delay too.

As briefly mentioned in the introduction, communication
delays cause a deviation of the performance of the algorithm
with respect to the undelayed case in first order linear
systems, causing the network to reach a shifted consensus.
Indeed, in [1], the authors were able to provide the analytical
result for the shifted consensus value, stating that it depends
on the delay probability distribution, and on the initial state
history of the system over the first τ + 1 time steps, with τ

denoting the maximum delay in the distribution. This leads
to the counter intuitive consideration that, in the presence
of a zero mean state measurement noise, a relatively high
delay could help in averaging out this noise over the initial
τ + 1 time interval, inserting additional robustness for the
consensus value.

However, in second order linear systems, the presence of
communication delays can lead to instability, as shown in
[30], so that a series of Linear Matrix Inequalities (LMIs)
involving the delay have to be met to reach consensus. As in
first order dynamics, the consensus value, when reached, is
shifted with respect to the undelayed case [16]. An interesting
result was presented in [6] for such a dynamic system:

ui(t) = Kd

∑
j∈Ni

(
qj(t− τ1)

δi
− qi(t))+

+Kv

∑
j∈Ni

(
pj(t− τ2)

δi
− pi(t))

(12)

in which τ1 and τ2 are two delays affecting the position
and the velocity information communicated by the neighbors,
while δi is the cardinality of Ni. The authors provided an
analytical framework to precisely identify the combination
of (τ1, τ2) values leading to stability loss. In doing so,
they introduced a counter intuitive concept called delay
scheduling, having shown that larger values of (τ1, τ2) could
bring the system back to stability in some conditions.

The analysis of consensus for nonlinear dynamic systems
in the presence of communication delays is mainly focused
on developing appropriate methodologies to achieve con-
sensus, employing sliding mode controllers [26], adaptive
feedback controllers [33], or through the solving of LMIs
[9].

D. Related Studies

Several studies tackled the issue of multi-UAV formation
control in the presence of communication delays. For in-
stance, in [7], a leader-follower consensus with time-varying
delays was analyzed. The considered protocol is based on the
deviation error with respect to a reference trajectory, and both
input and communication delays were taken into account. The
authors provided sufficient conditions for stability through
LMIs for a kinematic UAV model, and inserted sinusoidal
delays whose maximum value was set to 400ms. Also in
[29], sinusoidal delays were considered while performing two
well-known distributed tasks: the Time-Varying Formation
Tracking (TVFT) and the obstacle avoidance. Again, through
the use of LMIs, sufficient conditions for stability were found
considering a more complex dynamic model. The TVFT was
also examined in [14], in which flight tests were performed
to validate the theoretical results. The authors employed a
fleet of 4 UAVs and a leader-follower consensus protocol.
The inter-agent communication was realized through a Wi-Fi
network, whose delay ranged from 10ms to 200ms. Finally,



in [8], an experimental validation was carried out for a forma-
tion consensus protocol designed for a second-order discrete
dynamic system. A 4G-based ad-hoc network module was
employed to realize the communication network, whose
average delay is about 50ms − 180ms. The authors also
suggested a scheme for managing communication delays in
discrete-time controllers. Note, however, that the mentioned
studies did not analyze the α-lattice formation algorithm
described in the previous subsection, since they all employed
a consensus protocol in which the relative displacements of
the agents are predefined. Instead, in (5), only the magnitude
of the relative distance is a control parameter.

III. SIMULATION ENVIRONMENT

As already discussed, the simulation of a consensus algo-
rithm must take into account the finite speed of information
transmission. Thus, the communication delays have to be
inserted in the physics simulations. Some works in the litera-
ture attempted to integrate physics and network simulators to
accurately describe the features of a wireless communication
protocol. The main goal of these studies is to develop a
middle-ware software able to synchronize the discrete-time
implementation of physics simulators to the discrete event-
based nature of network simulators. The projects developed
in [32], [2], or [5] all work in this direction. However, the
evaluation of an accurate wireless protocol’s performance
is out of the scope of this paper, which rather focuses
more strictly on the presence of uniform communication
delays. This is why we chose to employ the ROS/Gazebo
framework to develop our simulations along with the use of
docker containers, that allow us to inflect a predefined delay
between themselves. Thus, in this section, the details of this
implementation are reported.

A. ROS/Gazebo

ROS (Robot Operating System) is an open-source frame-
work for the development of robotics applications [22]. The
architecture of ROS is based on the use of multiple nodes.
The nodes are processes performing specific computations,
and they are all handled by a ROS master. This framework
allows data collection from real or simulated sensors, the
implementation of a publish/subscribe model for the commu-
nication among nodes, as well as the call of specific services.

ROS can be employed alongside Gazebo, a simulator with
accurate dynamic and kinematic physics, that also provides a
client Graphic User Interface (GUI). In Gazebo, it is possible
to plug the physical parameters of robotic platforms and
simulate accurately the response of a dynamic system to a
custom application [3]. In this work, the well-known Iris
quad-copter platform was chosen as the test-bed for our
application.

This architecture can be further extended by embedding
the functionalities of PX4 autopilot, one of the most famous
open-source autopilots in research, [15]. Through its Soft-
ware In The Loop (SITL) capability, it is possible to simulate
the actual conditions in which a flight test is performed.

Indeed, through the Mavlink communication protocol, it is
possible to send to the simulated autopilot sensor information
from Gazebo and to receive control commands based on the
specific mission to be accomplished.

Since our work focuses on distributed control of multiple
UAVs, we take advantage of the offboard mode provided
by the PX4 stack, which allows us to send to the autopilot
control commands computed in a simulated companion com-
puter. This is possible by performing the required computa-
tions in a ROS node, and by later sending the results to the
autopilot through MAVROS, a ROS package that provides a
communication driver for PX4 with the MAVlink protocol.

B. Docker Containers

A docker container is a software able to package a code
and its required dependencies so that a specific application
can run easily and reliably on different computing environ-
ments, [4]. The template of an application can be written in
a container image, which becomes a container at runtime,
allowing to launch uniformly a multiple number of instances
of the same image.

The communication among containers is realized through
a bridge network, allowing containers connected to the same
bridge to communicate. In this work, we employ the default
bridge functionalities. Each docker container is assigned to
a specific IP address, and can only access other containers
through it.

Hence, exploiting the linux traffic control tools, it is possi-
ble to modify the packet scheduler by adding a constant delay
between the desired IP addresses. In our case, we chose to run
the offboard nodes corresponding to each UAV in separate
docker containers. A constant delay is inflected between
each container, so that we simulate an operational condition
in which a communication delay among the companion
computers of the agents in the swarm is present.

C. Test Methodology

The details about the methodology through which algo-
rithm (5) has been implemented in the described architecture
are provided here. From the communication point of view,
each offboard node:

1) Subscribes to the undelayed information about its own
global position and local velocity;

2) Subscribes to the undelayed information about the
target’s global position and local velocity provided by
the target node;

3) Subscribes to the delayed information about its neigh-
bors’ global positions and local velocities provided by
the other offboard nodes;

The global positions of the neighbors and the target are
employed by each agent i to calculate the relative distance
dij(t) between its current position and its neighbors’ (de-
layed) and the target’s (undelayed) positions through the use
of the Haversine formula (13) as in [3]:



d = 2R arcsin (sin2
ϕi − ϕj

2
+

+cosϕi cosϕj sin
2 λi − λj

2
)

1
2

(13)

with ϕk, λk representing the values of latitude and longi-
tude of a generic agent k, and R denoting the radius of the
Earth. It is possible to compute the distance along the xi and
yi axes in the local coordinate system of agent i by imposing
respectively ϕi = ϕj and λi = λj in equation (13).

In such a way, choosing the above-mentioned quantities
as the state information to be shared among the network is
coherent with the consensus control being a displacement-
based protocol, in which each vehicle is required to possess
a local reference frame aligned to a global one, [18].

Now, it is possible to calculate the desired input command
through protocol (5). Assuming for each agent i a discrete
double integrator dynamics from the control point of view,
i.e.: {

qi[(k + 1)T ] = qi[kT ] + pi[kT ]T

pi[(k + 1)T ] = pi[kT ] + ui[kT ]T
(14)

where kT is the current time step and T is the sampling pe-
riod, each offboard node applies the computed input ui[kT ]
to system (14) and publishes through mavros the desired
setpoint that the PX4 autopilot will attempt to track.

IV. RESULTS

In order to evaluate the effects of the communication delay
on the described formation consensus protocol, we performed
several simulations distinguishing two operational conditions.
The first one refers to the undelayed problem, so that the
performance of the consensus protocol can be evaluated in the
case of ideal communication among drones. However, due to
unmodeled dynamics and perturbations, some modifications
to the standard consensus protocol have to be implemented to
obtain satisfactory results. In the second round of simulations,
both the standard protocol and our tailored version are
tested in the presence of increasing communication delays
among agents. Performance indicators will be introduced to
analytically evaluate the behaviour of the vehicles.

A. Undelayed Communication

As already stated, the undelayed problem is the first one
we tackle. Three UAVs take off from a specific initial location
and will attempt to track a moving target while simultane-
ously attaining the desired separation distance. The target
broadcasts its global position and local velocity information
to all the agents, and travels 50m with a constant velocity
along the horizontal axis equal to vtx = 0.5m

s . The initial
inter-agent distances are greater than the communication
range, so that, at first, the drones are not aware of the
presence of any other vehicle, and start chasing the target
on their own. The parameters of protocol (5) used in the

p0(0) [3,4]
p1(0) [2,-2]
p2(0) [-2,1]
pt(0) [0,0]
d 4

rcomm 4.8
h 0.2

TABLE I
COEFFICIENT USED IN THE SIMULATIONS.

simulation as well as the initial spatial configuration of the
swarm are listed in table I.

From table I, it is possible to notice that each drone only
accounts for the presence of the agents closer than 4.8m, and
tries to arrange itself 4m apart from them. The value of h =
0.2 indicates a repulsive action stronger than the attractive
one and is a common choice while applying protocol (5).

As it is possible to notice from Fig. 1, the input command
(5) is not able to track the desired inter-agent distance d, and
a steady-state offset is present.
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Fig. 1. Standard consensus protocol: offset on the inter-agent distances.

This result was already pointed out in [27], and can be
addressed by the use of an integral action on the collective
error distance:

einti =
∑
j∈Ni

(qj − qi) ·
ϕ(∥qi − qj∥σ − ∥d∥σ)

1 + ϵ∥qi − qj∥σ
(15)

so that a new term must be added to the standard consensus
protocol:

uint
i = Kint

∫
einti dt (16)

In the discrete time implementation, the integral becomes
a summation over successive iterations, and the value of einti

must be initialized to zero. As is it possible to see in figure
(3), the agents are now able to reach the desired inter-agent
distance. As expected, the integral action is able to remove
the distance offset. However, this comes with the price of the
emergence of oscillations during the transient and of a much
larger settling time.

It is possible to adjust the performance of the algorithm
and significantly reduce the settling time of the inter-distance
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Fig. 2. Consensus protocol with integral action: offset removed.

tracking by tuning the gains of the control command, as
suggested in [27]. Indeed, by increasing the weight of the
terms related to the position errors Kd and Kd

t and to the
integral action Kint, the settling time is now comparable to
the case with no integral action, with no significant increase
in the amplitude of the oscillations, as shown in Fig. 3.
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Fig. 3. Consensus protocol with integral action and properly tuned gains.

Nevertheless, it is possible to notice that, during the initial
part of the transient, the repulsive action of the distance
regulator (6) contrasts the action of the first part of the target
tracking term (10), that attempts to drive each agent towards
the position of the target. Due to the increased control gains,
this causes an undesired considerable jitter in the position of
the drones. Also, the value reached by the inter-agent distance
during this phase is quite low (less than 2m), and could be
dangerous in real life applications.

This is why it is convenient to further tailor the protocol
by adding an integral action on the error between the velocity
of each agent i and the one of the target:

uv int
i = Kv

int

∫
(pt − pi)dt (17)

that further dampens the response of the target position
controller by driving the velocity of agent i to the value of
the target one. The discrete implementation of this term is
similar to the one performed for equation (16).

Also, the gain of the target position controller Kd
t can

be adjusted dynamically based on the current operational

condition by multiplying its value by a custom function.
Indeed, when the agents are far from the target, a higher
Kd

t leads them quickly closer to it. However, once reached
the proximity of the target, a lower Kd

t is desirable to attain
weaker oscillations. Thus, a possible choice of such custom
function is:

fd
t (qi,qt) = arctan(

∥qi − qt∥
Dd

t

) (18)

where Dd
t is a distance parameter that modulates the

degree of the adjustment.
The performance of the tailored algorithm is shown in

figure (4). The agents are able to arrange themselves in the
desired spatial configuration with reduced oscillations and in
a settling time comparable to the one in figure (3).
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Fig. 4. Tailored Consensus protocol.

B. Delayed Communication

Now, it is possible to evaluate the performance of the
standard protocol with integral action on the inter-distance
and of our tailored version in the presence of communication
delays. Both algorithms are tested in different conditions:
first, we refer to the ideal undelayed case, already shown in
figures 3 and 4. Then, we insert an uniform communication
delay, whose value increases by 100ms over successive
rounds of simulations from 0ms to 500ms. Each condition
is simulated 5 times.

As expected, the presence of communication delays de-
grades the performance of the algorithm. Since the agents
receive a delayed information about the state of the other
drones, the agent i’s understanding of the relative distance
between itself and drone j is different from agent j’s un-
derstanding of the same quantity. As shown in Fig. 5, the
true distance between agents 1 and 2 is not equal to the
distance computed on-board by the agents. From now on, dij
denotes the distance between i and j as computed by drone
i. The higher the communication delay, the higher is the shift
between the two measurements. Moreover, a high frequency
noise emerges in the computation of the inter-agent distance
values.

Thus, the first performance metrics that we chose to
evaluate the behaviour of the systems are the mean values d̂ij
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Fig. 5. Shift in the computed inter-agent distances with a 300ms commu-
nication delay, tailored algorithm.

τij [ms] 0 100 200 300 400 500

σ̂std[cm] 0.64 1.36 3.07 2.80 2.25 2.72
σ̂tail[cm] 0.69 1.50 2.70 3.29 2.87 3.18

TABLE II
MEAN OF THE STANDARD DEVIATION OF THE HIGH-FREQUENCY NOISE

AFFECTING THE COMPUTED DISTANCES.

over the 5 rounds of simulations of the inter-agent distances
computed on-board by each agent. Also, the mean σ̂ of the
standard deviations of the high-frequency noise experienced
by the UAVs in the standard (σ̂std) and tailored (σ̂tail)
algorithms are reported in table II. All of the metrics are
computed at steady-state, once the transient phase is over.

From figures 6 to 11, it is possible to notice how the inter-
agent distances computed by the UAVs shift from the desired
value 4m, reached in the undelayed case, to progressively
far values. Moreover, the amplitude of the high-frequency
oscillations tend to increase as the value of τij goes up, as
shown in table II.
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Fig. 6. Computed and actual distance between agents 0 and 1 for increasing
τij , standard algorithm.

The shift in each agent’s understanding of the relative
distance with respect to the neighbors causes also the actual
distance to settle to a shifted value. The results also show
that the two consensus protocols react in a similar fashion
to the presence of communication delays, with a comparable
shift in the computed distance values, and similar standard
deviation of the noise.
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Fig. 7. Computed and actual distance between agents 0 and 2 for increasing
τij , standard algorithm.
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Fig. 8. Computed and actual distance between agents 1 and 2 for increasing
τij , standard algorithm.

For delays greater than 500ms, the values of the inter-
agent distances fall beyond the communication range of the
drones before the end of the task, so that the standard
behaviour of the consensus protocol gets disrupted. This
is a limitation of such protocols, since it creates severe
discontinuities in the command input, and will be subject
of future work.

V. CONCLUSIONS

In this paper, the presence of communication delays in a
multi-UAV formation consensus protocol is tackled. First, a
brief theoretical overview on the effects of delay in consensus
control is provided, and a well-known formation algorithm
is presented. Then, an environment able to simulate these
delays has been proposed, addressing several implementation
details. Afterwards, the standard consensus protocol is tai-
lored to better cope with the features of a complex simulation
model. Finally, the performances of both the versions of the
algorithm are provided, showing how the behaviour of the
consensus protocols is affected by the presence of increasing
uniform communication delays. Future works will be focused
on the simulation of non uniform delays, and on methods to
counteract their impact on the analyzed protocols.
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Fig. 9. Computed and actual distance between agents 0 and 1 for increasing
τij , tailored algorithm.
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Fig. 10. Computed and actual distance between agents 0 and 2 for increasing
τij , tailored algorithm.
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