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Abstract— Recently, machine learning (ML) techniques have 

gained widespread diffusion, since they have been successfully 

applied in several research fields. This paper investigates the 

effectiveness of advanced ML regressions in two EMC 

applications. Specifically, support vector machine, least-squares 

support vector machine and Gaussian process regressions are 

adopted to construct accurate and fast-to-evaluate surrogate 

models able to predict the output variable of interest as a 

function of the system parameters. The resulting surrogates, 

built from a limited set of training samples, can be suitably 

adopted for both uncertainty quantification and optimization 

purposes. The accuracy and the key features of each of the 

considered machine learning techniques are investigated by 

comparing their predictions with the ones provided by either 

circuital simulations or measurements. 

 
Index Terms —Surrogate model, uncertainty quantification, 

Machine Learning, Support Vector Machine, Least-Square 

Support Vector Machine, Gaussian Process regression. 

 

 

I. Introduction 
 

Understanding the link between the parameters and the 

responses of complex electronic systems and devices is a key 

aspect during the design phase. A deep knowledge of the 

system functioning can be used, along with optimization and 

uncertainty quantification (UQ) tools, to optimize the product 

performance, to meet the design constraints and to assess the 

product reliability [1,2]. 

 

Unfortunately, for realistic applications, the relationship 

between the parameters and the outputs of the system is 

rather complicated and usually not explicit, so it must be 

estimated via either physical (measurements) or computer 

experiments (simulations). Physical experiments can be 

expensive and time consuming, since they required the 

construction of several prototypes. As computing power 

increases, it has become possible to model the actual behavior 

of electronic circuits via sophisticated computer codes. Hence, 

computer experiments are now heavily adopted during the 

design phase [3].  

 

Simulation experiments rely on the so-called computational 

model. The computational model must provide an accurate 

synthetic description of the actual behavior of the system 

under modeling, able to virtually compute, without the need of 

expensive prototypes, a prediction of the outputs of interest 

for any configuration of the system parameters. Such model 

can have different levels of fidelity going from a simple 

closed-form analytical solution (usually available for simple 

devices) to the more sophisticated cases of physical-based 

models (e.g., the ones based on 3D full-wave solvers). It 

goes without saying that the model complexity heavily 

impacts its computational cost. A detailed physical-based 

computational model can be complicated to be managed 

and analyzed, thus making the design process lengthy [2]-

[6]. This is due to the fact that, UQ and optimization tasks 

usually require to run a relatively large number of 

simulations, making the overall computational cost 

unaffordable. As an example, if a single simulation with the 

computational model requires 1h, the computational cost of 

a Monte Carlo (MC) simulation with 10k samples will be 1 

month!!!  

 

Surrogate models, also known as metamodels, can be seen 

as an effective solution able to reduce the computational 

cost of the full models [3]. A surrogate model is “a model of 

a model”, since it provides a closed-form and fast-to-

evaluate approximation of the computational model. Such 

model is constructed from the data generated from a 

limited set of simulations with the expensive computational 

model by means of regression or interpolation techniques 

(see the illustration in Fig. 1). The dataset used for the 

training of the surrogate model is referred to as training set.  

Usually, the samples of the training set are carefully 

selected in order to explore the space of the input 

parameters as much as possible [3],[7]. The resulting 

surrogate model can be suitably employed by statistical 

simulations or optimization schemes to provide an efficient 

alternative to the expensive computational model [3]-[5].  

 

Obviously, the accuracy of the predictions provided by the 

surrogate model strongly depends on the adopted 

regression or interpolation technique. Without loss of 

generality, the “best” or “ideal” technique for constructing 

the abovementioned surrogate models should be able to 

[3]: 

• learn complex non-linear input-output 

relationship; 

• handle a large number of input variables with 

large parameter variations; 

• converge fast in terms of accuracy w.r.t. the 

number of training samples and provide 
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information on the level of accuracy. 

Unfortunately, no methodology exists complying with all the 

aforementioned features of our “ideal” modeling approach, 

since each technique has its own advantages and drawbacks. 

 

In general, the structure of the surrogate models under 

consideration is a combination of basis functions, that can lead 

to two different categories. For the first category, we will refer 

to parametric models, if the number of parameters to be 

estimated via the regression is fixed by the number of basis 

functions. Members of this parametric category are the well-

known ordinary least squares (OLS) regression and the 

Polynomial Chaos Expansion (PCE) [8]. OLS is conceptually 

very simple and intuitive and will be illustrated and compared 

with more sophisticated ML methods in Sect. II. The 

underlying idea of PCE, instead, is to represent the non-linear 

relationship between the system output and the stochastic 

parameter as a linear combination of orthonormal polynomial 

basis with suitable statistical properties [9]. For this reason, 

PCE is considered as reference technique for the UQ in 

different fields, including EMC applications [9]-[12]. However, 

for a polynomial expansion, the number of basis functions 

grows exponentially with the number of input parameter and 

the expansion order, leading to the infamous curse-of-

dimensionality. For the above reasons, advanced sparse 

implementations of the PCE have been proposed [12]-[14]. 

Such implementations are rather complex, but when a low 

order expansion can be used, they allow to heavily reduce the 

impact of the curse of dimensionality and to deal with 

thousands of unknowns. 

 

For the second category, most of ML regressions rely on a dual 

space formulation, which allows constructing a non-parametric 

surrogate model. For a non-parametric model the number of 

regression parameters to be estimated during the model 

training is independent from the number of basis functions and 

from the dimensionality of the input space [15]. Such feature 

sets the surrogate model free of the detrimental effects of the 

curse-of-dimensionality. Machine learning-based regressions 

(e.g., (Convolutional) Neural Networks [16], Support Vector 

Machine (SVM) regression [17],[18], Least Squares Support 

Vector Machine (LS-SVM) regression [19] and Gaussian 

Process Regression [20]) provide the users with a set of 

flexible and powerful alternatives to other state-of-the-art 

techniques for the construction of surrogate models with 

tunable complexity in several engineering fields, as well as for 

EMC applications [21]-[29]. Moreover, probabilistic ML 

regression techniques such as the Gaussian Process 

Regression (GPR) [20], can be adopted to train a 

probabilistic surrogate model able not only to predict the 

output of interest for any configuration of the input 

parameters, but also to provide by itself statistical 

information on the reliability of its predictions (e.g., in terms 

of confidence intervals (CI)) [20].  

 

From the above discussion, ML approaches turn out to be 

promising candidates for metamodel construction, thus 

providing advanced tools for the UQ and the optimization of 

complex electronic systems. Without loss of generality, this 

paper investigates the performances of the SVM, LS-SVM 

regression and the GPR, comparing them with the well-

known OLS regression with the help of a 1-D illustrative 

example. Finally, the proposed approaches are applied to 

the UQ of the spectrum envelop of a switching DC-DC buck 

converter as a function of 17 uncertain parameters [30]. 

 

II. Regression Techniques and Surrogate Modeling  
 

This Section presents a quick overview of the mathematical 

background of the OLS, SVM, LS-SVM and GP regression 

techniques with specific emphasis on their application to 

surrogate model construction. Specifically, with reference to 

Fig. 1, we will address the problem of building a surrogate 

model ℳ̃, starting from a set of training pairs 𝐷 =

{(𝐱𝑖 , 𝑦𝑖 )}𝑖=1
𝐿  provided by the output of a computational model 

𝑦𝑖 = ℳ(𝐱𝑖 ) as a function of the system parameters 𝐱𝑖 ∈ 𝒳 ⊆

ℝ𝑑 . The obtained surrogate ℳ̃ should allow to accurately 

predict the output 𝑦 for any configuration of the input 

parameter 𝐱 ∈ 𝒳, which has not been used during the 

training, a.k.a., the test samples. The extension to the 

multioutput formulation is available in [14],[24]. 

 

Ordinary Least Squares Regression 
OLS regression undoubtedly represents the simplest and 

most common way to construct a metamodel. Starting from 

a set of training samples 𝐷, the OLS regression allows to 

train a generic metamodel in terms of the following linear 

expansion of basis functions [4],[31]:  

 

ℳ̃𝑂𝐿𝑆(𝐱; 𝐰) = ∑ 𝑤𝑖

𝑛

𝑖=1

𝜙𝑖 (𝐱) = ⟨𝐰, 𝛟(𝐱)⟩, (1) 

 
Fig. 1 – Illustration of the training process leading to a surrogate model. 
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where 𝛟 = [ϕ1 , … , ϕn]𝑇 is a vector collecting the basis 

functions and 𝐰 = [w1 , … , wn]𝑇 is a vector of the regression 

coefficients [4].  

The OLS regression looks for the best set of coefficients 𝐰∗ by 

minimizing the following optimization problem, usually referred 

to as empirical risk minimization: 

 

𝐰 ∗ = argmin
𝐰

1

𝐿
∑(𝑦𝑖 − 〈𝐰, 𝛟(𝐱𝑖 )〉)2

𝐿

𝑖=1

. (2) 

 

In the above optimization, we estimate the best set of 

regression coefficients 𝐰∗ by minimizing the squared of the 

model error computed on the training set. The solution of (2) 

leads to the well-known closed-form solution of the OLS 

regression based on the pseudoinverse matrix [4]: 

 

𝐰∗ = (𝚽𝑇 𝚽)−1𝚽𝑇𝐲 (3) 

 

where 𝚽 is a matrix collecting the basis functions evaluated on 

the training inputs (i.e., Φ𝑖𝑗 = 𝜙𝑗 (𝐱𝑖 )) and 𝐲 = [y1 , … , yL]T is a 

vector collecting the training outputs. 

Such regression approach has some limitations. First of all, the 

squared loss function unavoidably leads to a regression with 

low bias, but with high variance [32]. This means that the 

resulting regression is able to follow the training samples (i.e., 

the error on the training samples can be zero), but it might not 

generalize “well” on the test samples. This phenomenon is 

called overfitting. Moreover, the model constructed via the OLS 

regression is a parametric model, in which the number of 

regression coefficients (i.e., the dimensionality of the vector 𝐰) 

is fixed by the number of basis functions (i.e., the 

dimensionality of 𝛟). 

 

Least-Squares Support Vector Machine Regression 
The LS-SVM regression can be seen as an extension of the 

plain OLS regression, since it allows to construct both 

parametric and non-parametric models. Similar to the OLS, the 

primal space formulation of the LS-SVM regression can be 

written as [19]: 

 

ℳ̃𝐿𝑆−𝑆𝑉𝑀 (𝐱; 𝐰, b) = 〈𝐰, 𝛟(𝐱)〉 + 𝑏, (4) 

 

where again the vectors 𝛟 and 𝐰 collect the basis functions 

and the regression coefficients, respectively, and b is a scalar 

bias term.  

The LS-SVM regression optimizes the vector 𝐰 and the bias b 

in (4), via the solution of the following optimization problem 

[20]: 

 

min
𝐰,𝑏,𝐞

1

2
‖𝐰‖𝟐 +

𝛾

2
∑ 𝑒𝑖

2

𝐿

𝑖=1

 

subject to 𝑒𝑖 = 𝑦𝑖 − (〈𝐰, 𝛟(𝐱𝑖 )〉 + 𝑏). (5)

 

 

Different from the OLS, in the LS-SVM regression, the 

unknowns (i.e., 𝐰 and b) are estimated by minimizing at the 

same time both the squared of the model error 𝑒𝑖  on the 

training samples (see Fig. 2(a)), also known as squared 

error function, and the L2 norm of the regression 

coefficients collected in the vector 𝐰. The latter term is the 

so-called Tikhonov regularizer. It is used within the 

optimization problem in (5) to penalize the accuracy of the 

model on the training samples (i.e., we are increasing the 

model bias). In this way we reduce the model variance, thus 

preventing overfitting [32]. The parameter 𝛾, usually 

referred to as hyperparameter, helps providing a trade-off 

between the model bias and its variance. Such 

hyperparameter can be tuned either “manually” by the user 

or automatically via cross-validation (CV) algorithms (for 

those interested, please refer to [33]). The primal space 

formulation of the LS-SVM regression turns out to be 

equivalent to the Ridge regression [30].  

 

The optimization problem in (5) can be rewritten into its 

equivalent dual problem formulation. Such dual 

interpretation, along with the “kernel trick” [18],[19],[34], 

leads to the following dual space formulation of the LS-SVM 

regression: 

 

ℳ̃𝐿𝑆−𝑆𝑉𝑀(𝐱; 𝛂, b) = ∑ 𝛼𝑖 𝐾(𝐱𝑖 , 𝐱) + 𝑏

𝐿

𝑖=1

, (6) 

 

where 𝛼𝑖  are the dual parameters collected in the vectors 𝛂 

and 𝐾 is the kernel function defined as 𝐾(𝐱, 𝐱′ ) =

〈𝛟(𝐱), 𝛟(𝐱′ )〉. It is important to remark, that the dual space 

formulation in (6) provides the users with a non-parametric 

regression, in which the number of coefficients 𝛼𝑖  to be 

estimated during the model training turns out to be 

completely independent from both the number of basis 

functions (i.e., the dimensionality of the feature space) and 

the number of input parameters, but only depends on the 

number of training samples (i.e., L). Several kernel functions 

with different properties can be adopted (additional 

mathematical details are available in [18],[20], [34]). The 

most common ones are: 

• Linear: 𝑘(𝐱, 𝐱′ ) = 𝐱𝑇 𝐱′ 

• Polynomial of order q: 𝑘(𝐱, 𝐱′) = (1 + 𝐱𝑇𝐱′)𝑞 

• Radial basis function (RBF): 𝑘(𝐱, 𝐱′) =

exp (−
‖𝐱−𝐱′‖2

2𝜎2 ), where 𝜎 is a kernel hyperparameter 

to be estimated during the model training (e.g., via 

CV). 

For a given value of the regression hyperparameters, the 

 
Fig. 2 – Graphical interpretation of the LS-SVM (panel (a)) and of the 

SVM (panel (b)) regression. 
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unknowns 𝛼𝑖  and b can be suitably estimated by solving a 

linear system [19]. The LS-SVM regression is already available 

in MATLAB via the LS-SVMLab Toolbox [35].  

 
Support Vector Machine Regression 
The SVM is a well-consolidated technique for both classification 

and regression purposes. Similar to the LS-SVM, the primal 

space formulation of the SVM regression can be written in 

terms of the following linear model [17],[18]: 

 

ℳ̃𝑆𝑉𝑀 (𝑥; 𝐰, b) = 〈𝐰, 𝛟(𝐱)〉 + 𝑏. (7) 

 

Even if the primal space formulation in (7) looks identical to the 

one of the LS-SVM regression, the “optimal” configuration of 

the vector 𝐰 and the bias b in (7) is estimated via the solution 

of a completely different optimization problem [18]: 

 

min
𝐰,𝑏

1

2
‖𝐰‖𝟐 + 𝐶 ∑|𝑦𝑖 − (〈𝐰, 𝛟(𝐱𝑖 )〉 + 𝑏)|𝜀

𝐿

𝑖=1

, (8) 

 

where the Tikhonov regularization is yet applied and C is a free 

parameter, playing the same role of 𝛾 in the SVM regression. 

However, different from the LS-SVM, the above optimization 

adopts the so-called linear 𝜀-insensitive loss function | |𝜀, 

which writes [18]: 

 

|𝑦𝑖 − ℳ̃𝑆𝑉𝑀(𝐱𝑖 )|
𝜀

=

{
0, 𝑖𝑓 |𝑦𝑖 − �̃�𝑆𝑉𝑀 (𝐱𝑖 )| ≤ 𝜀

|𝑦𝑖 − ℳ̃𝑆𝑉𝑀 (𝐱𝑖 )| − 𝜀, otherwise.
(9)

 

 

According to above loss function, if the absolute value of the 

model error is less than ε, the loss function does not add any 

penalization to the empirical risk functional. On the other hand, 

when the model error is larger than ε, the linear ε-insensitive 

loss function adds a penalization equal to the excess model ℓ1-

error w.r.t. ε (see the terms 𝜉𝑖 and 𝜉𝑙
∗ in Fig. 2(b)). The region 

[−𝜀, +𝜀] is called ε-insensitive zone. The parameter ε can be 

seen as the regression tolerance, thus making such kind of 

regression extremely useful when we need to deal with noisy 

samples. It is important to remark that the tolerance 𝜀, as well 

as the hyperparameter C, must be tuned by the user, as an 

example via CV [33]. 

Like the LS-SVM, also the SVM regression admits a dual 

formulation in the following form: 

 

ℳ̃𝑆𝑉𝑀 (𝐱; 𝛃, b) = ∑ 𝛽𝑖 𝐾(𝐱𝑖 , 𝐱) + 𝑏

𝐿

𝑖=1

, (10) 

 

where 𝛽𝑖 are the dual coefficients collected in the vector 𝛃 with 

a different origin that the 𝛼𝑖  of (6) and 𝐾 is the kernel function 

previously defined for the LS-SVM. Similar to the case of the 

LS-SVM regression, the above dual formulation provides a non-

parametric model. Moreover, it is important to point out that 

the optimization problem resulting from the dual problem 

formulation of the SVM regression cannot be solved in a closed-

form and requires a numerical solution. The SVM regression 

algorithm is already available in MATLAB [36]. 

 
Gaussian Process Regression (GPR) 
Gaussian process regression (GPR), also known as Kriging 

model, represents an interesting alternative to the 

deterministic regressions presented so far. Starting from a 

set of training samples 𝐷, the GPR allows building a 

probabilistic metamodel, which not only estimates the model 

output for any configuration of the input parameters, but it 

provides as output a Gaussian distribution. Such distribution 

can be used to provide useful statistical information on the 

reliability of the model predictions, without the need to run 

an equivalent simulation with the computational model [20]. 

Under the assumption that the computational model 𝑦 =

ℳ(𝐱) follows a Gaussian Process (GP) prior (i.e., the 

function 𝑦 = ℳ(𝐱) has been drawn from a GP prior), the 

model obtained by the GPR writes: 

 

𝑦 ∼ �̃�𝐺𝑃𝑅(𝐱) = 𝐺𝑃(𝑚(𝐱), 𝑘(𝐱, 𝐱′)), (11) 

 

where 𝑚(𝐱) and 𝑘(𝐱, 𝐱’) are the trend function and the 

covariance function (or kernel) of the GP, respectively. It is 

important to remark that the covariance function 𝑘(. , . ) 

specified in the GP prior, has the same mathematical 

properties of kernel 𝐾(. , . ) used in the dual space 

formulation of the SVM and LS-SVM regression [20], [37], 

[38]. Indeed, it is used to explain the correlation between 

each pair of points in the input space and characterizes the 

functions that can be described by the GP [38].  

A GP process can be considered as an extension of the 

concept of Gaussian distribution from random numbers to 

random functions [20]. The trend 𝑚(𝐱) provides the average 

function among the ones drawn from the GP prior, while the 

covariance provides the correlation between the values of 

such functions at different point (i.e., 𝐱 and 𝐱′) in the 

 
 

 
 

Fig. 3 – Illustration of 10 functions drawn from the prior (panel (a)) and 

of 10 functions drawn from the posterior (panel(b)). 
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parameters space. The prior mean 𝑚(𝐱) can be any 

deterministic function (e.g., a metamodel obtained via the any 

deterministic regression technique) [30]. Several covariance 

functions are available [20],[37], e.g., for the case of smooth 

functions the most common is the squared exponential 

function, i.e., 

 

𝑘(𝐱, 𝐱′) = 𝜎𝑓
2 exp (−

‖𝐱 − 𝐱′‖2

2𝜎𝑙
2 ) . (12) 

 

The prior GP in (11) fixes the properties of the GPR model 

without using the information provided by the training samples. 

The information about the training set 𝐷 can be included within 

the GPR by restricting the infinite set of functions drawn from 

the prior to the ones which agree with the output training 

samples, leading to the so-called posterior distribution. Thanks 

to the properties of the GP, such operation can be done 

analytically and corresponds to conditioning the Gaussian prior 

distribution on the observations [20],[37],[38]. Figure 3 

provides a graphical interpretation of the above process. 

 

Given the training set 𝐷, the posterior distribution allows to 

predict the probability of the output variable 𝑦 for a generic 

test configuration of the input parameters 𝐱∗  in terms of the 

following Gaussian distribution: 

 

y∗ ∼ p(y∗|𝐱∗ , D) = 𝑁(𝜇𝐱∗
, 𝜎𝐱∗

2 ), (13) 

 

in which 𝜇𝐱∗
 and 𝜎𝐱∗

2  are the posterior mean and variance 

defined as [20],[38]: 

 

𝜇𝐱∗
= 𝑚(𝐱∗) + 𝐤∗

𝑇(𝐊 + 𝜎𝑛
2𝐈)−1𝐲 (14𝑎) 

𝜎𝐱∗
2 = 𝑘∗∗ − 𝐤∗(𝐊 + 𝜎𝑛

2𝐈)−1𝐤∗
𝑇 (14𝑏) 

 

𝑤here, 𝐲 = [𝑦1 , … , 𝑦𝐿]𝑇, 𝐊 ∈ ℝ𝐿×𝐿 is the correlation matrix 

evaluated on the input samples such as the entries 𝐾𝑖𝑗 =

𝑘(𝐱𝑖 , 𝐱𝑗 ), 𝐤∗ = [𝑘(𝐱∗ , 𝐱1), …  , 𝑘(𝐱∗ , 𝐱𝐿 )] ∈ ℝ1×L is a vector, 𝑘∗∗ =

𝑘(𝐱∗ , 𝐱∗) is a scalar and 𝜎𝑛
2 is an hyperparameter representing 

the variance of a possible additive Gaussian noise corrupting 

the training set. The latter is set to 0 for noiseless cases. The 

above formulation can be extended to account for the 

correlation among a set of 𝑛𝑡  test samples (i.e., 𝐱∗ is a 

(𝑛𝑡 ×  𝑑) matrix). In such a case, the posterior mean and 

variance in (14) become the posterior mean vector and the 

posterior covariance matrix, respectively (see [20],[38] for 

additional details). 

The probabilistic interpretation in (2) allows computing for any 

configuration of the input parameters 𝐱∗ the CI, such that: 

 

𝑦∗ ∈ [𝜇𝐱∗
− 𝑧

1−
𝛼
2

𝜎𝐱∗
, 𝜇𝐱∗

+ 𝑧
1−

𝛼
2

𝜎𝐱∗
] , (15) 

 

with a probability of 100(1−𝛼)%, where 𝑧 denotes the 1 − 𝛼 2⁄  

quantile of a standard Gaussian distribution [20].  

 

Summary 
Summarizing, all the presented regressions techniques have 

their own advantages and drawbacks. The OLS regression 

provides the most straightforward approach for the 

surrogate model construction, since the surrogate model can 

be trained directly via the solution of a linear system, 

without requiring the tuning of regression hyperparameters. 

However, the OLS regression suffers from the curse of 

dimensionality and overfitting. The dual formulation of the 

LS-SVM and SVM regressions allows mitigating the above 

issues, but the improvements w.r.t. to the OLS regression do 

not come for free. Indeed, due to the tuning of the 

regression hyperparameters, the training phase for the 

generation of LS-SVM or SVM surrogate models is 

computationally more demanding than the one required by 

the OLS regression. A similar conclusion can be drawn also 

for the probabilistic model provided by the GPR. The non-

parametric model trained with the GPR is able to provide 

useful statistical information about the reliability of its 

prediction, but again the complexity of the optimization 

problem solved during the model training is higher compared 

to a standard OLS regression.  

 

III. Application Examples 
 

In this Section, the performances of the ML regressions 

presented in the previous Section and of state-of-the-art 

regression techniques, such as OLS and sparse PCE are 

investigated on two applications consisting of a real dataset 

for the wet human skin permittivity [39] and the UQ of the 

conducted emission (CE) generated by a buck converter with 

17 uncertain parameters. 

 
Skin permittivity Dataset 
As a first example, the OLS, the LS-SVM, the SVM and the 

GP regressions are applied to construct a set of surrogate 

models able to approximate an experimental dataset in [39] 

collecting the measurements of the wet human skin 

permittivity as a function of frequency. Such dataset with a 

single and deterministic parameter (d=1), i.e., the 

frequency, has been selected for graphical reason, since it 

will allow to better illustrate the main features of each of the 

considered methods. However, it is important to remark that 

despite its simplicity, the problem at hand is particularly 

relevant for the EMC field, since its study identifies the 

conditions that maximize the power density transmitted into 

the skin, according to the most recent exposure guidelines 

issued by the ICNIRP [40] and the IEEE [41]. 

The dataset consists of 171 permittivity values with a large 

variability, in a bandwidth from ~20Hz to 20GHz. A subset of 

10 measurement data - selected to highlight the features of 

each method - has been used as training samples, whilst the 

remaining 161 samples are used as test samples (i.e., 

unseen realizations used to evaluate the model accuracy). 

The selected samples have been organized in the training 

dataset 𝐷 = {(𝑥𝑖 , 𝑦𝑖 )}𝑖=1,…,10, in which 𝑥𝑖  and 𝑦𝑖  are the log 

base 10 of the frequency and permittivity values, 

respectively. However, thanks to the monotonicity of the log 

function, the original set of data can be easily reconstructed 

by means of the exponential function. 
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The training set D is then used to train five surrogate models 

based on order 3 and 9 polynomial OLS regression, LS-SVM 

and SVM regression with RBF kernel and the GPR with squared 

exponential covariance. Figure 4 (a)-(d) show the prediction 

obtained by the above surrogate models. The results highlight 

the detrimental effect of the overfitting due to the OLS 

surrogate when the order of the polynomial expansion is 

increased. Also, the plots show the capability of the SVM and 

LS-SVM to provide an accurate surrogate, since the overfitting 

issue is limited by the regularizer. Moreover, the results of the 

probabilistic GPR-based surrogate highlight its capability to 

provide a probabilistic interpretation of the uncertainty of its 

prediction calculated via the posterior mean in (14a) in terms 

of the 95% CI (see the gray area). 

As a further validation, the output samples in the training set 𝐷 

are corrupted by an additive Gaussian noise mimicking 

measurement error, such that: 𝑦𝑖 = 𝑦𝑖 × (1 + 𝜀), where 𝜀 ∼

𝒩(0, 𝜎𝜀
2) is a Gaussian variable with zero mean and standard 

deviation 𝜎𝜀 = 0.05. Again, five surrogate models have been 

trained and their predictions are shown in Fig. 4 (e)-(h). The 

plots show again the loss of accuracy of the surrogate model 

based on OLS with order 9. Indeed, due to the overfitting, the 

model fits perfectly the noisy training samples, but it does not 

generalize well on the test samples. Also, the plots highlight 

that thanks to the 𝜀-insensitive loss function (light red area in 

Fig. 4(g)), the SVM regression tuns out to be very effective and 

accurate with noisy samples. On the other hand, the 

predictions computed via the LS-SVM and the noisy GPR are 

almost equivalent (see [4] for additional details). 

 
Conducted Emission and Switching Converter 
As a second example, we will consider the UQ of the output 

current spectral envelope of the 12V:5V switching buck 

converter depicted in Fig. 5 [42]. Similar to [30], all the 

circuital elements specified in the schematic have been 

considered as Gaussian stochastic variables centered at their 

nominal value with a standard deviation of 20% around their 

mean value, leading to 17 uncorrelated Gaussian parameters 

(i.e., 𝑥 ∈ ℝ17).  

 

The full-computational model adopted in this application is 

based on a parametric transient simulation in LTspice. For 

any configuration of the input parameters, a transient 

simulation has been run in the time window [0,3]ms with a 

time-step of 10ns. In order to ensure that all the waveforms 

have reached the steady-state, the FFT has been applied 

only to the last 3 switching periods of the current waveform. 

The resulting discrete spectral envelope 𝐼𝑜𝑢𝑡,𝐸 (𝑓𝑘 ; 𝐱) with 𝑘 =

1, … , 𝑁𝑓  covering a frequency bandwidth from DC to 30MHz 

via a set of 𝑁𝑓 = 91 linearly spaced frequency samples. 

 

For any discrete frequency 𝑓𝑘 , the computational model is 

used to generate a set of L training samples 

{(𝐱𝑖 , 𝑦𝑖 (𝑓𝑘 ))}
𝑖=1,…𝐿

 in which each configuration of input 

 
Fig. 5 – Schematic of the considered buck converter [42]. Nominal values 

of each component are indicated  

 
                             (a)          (b)    (c)           (d) 

 
                             (e)          (f)    (g)           (h) 

 

Fig. 4 – Permittivity of the wet human skin predicted by the four surrogate models presented in Sec. II. Panel (a)-(d) show the prediction obtained by the surrogate 

models trained with noiseless samples. Panel (e)-(h) show the prediction obtained by the surrogate models trained with noisy samples. 
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parameters 𝐱𝑖  have been drawn according to their distribution 

based on a Latin Hypercube Sampling scheme [7] and 𝑦𝑖 (𝑓𝑘 ) =

𝐼𝑜𝑢𝑡,𝐸(𝑓𝑘 ; 𝐱𝑖 ). The training samples have been used to train two 

surrogate models based on the LS-SVM regression with RBF 

kernel, a noiseless GPR with a squared exponential function 

and a second order sparse PCE built via the UQLab toolbox 

[43]. A second order PCE is considered since for the testcase at 

hand, the input-output relationship turns out to be slightly 

nonlinear. More complicated and advanced scenarios are 

available in [21], [22], [24]. 

The resulting surrogates will be then used to efficiently predict 

the effect of the uncertain parameters of the converter on the 

spectral envelope of the output current. In order to do this, the 

above regression techniques are used to build a set of 𝑁𝑓  

metamodels ℳ̃𝑘, one for each of the considered frequency 

points 𝑓𝑘 .  

 

The plots in Fig. 6 provide a comparison among the accuracy 

provided by each of the considered surrogate models in terms 

of the average absolute error spectrum Δ𝑑𝐵 (𝑓𝑘 ) defined for 𝑘 =

1, … , 𝑁𝑓 , as follows 

 

Δ𝑑𝐵 (𝑓𝑘 ) = ∑
|𝐼𝑜𝑢𝑡,𝐸(𝑓𝑘 ; 𝐱𝑡 ) − 𝐼𝑜𝑢𝑡,𝐸(𝑓𝑘 ; 𝐱𝑡 )|

𝑁𝑀𝐶

𝑁𝑀𝐶

𝑡=1

, (16) 

 

where 𝐼𝑜𝑢𝑡,𝐸(𝑓𝑘 ; 𝐱𝑖 ) corresponds to the envelope amplitude in 

dB obtained via the LTspice simulations for the configurations 

of the uncertain parameters 𝐱𝑡  considered in a MC simulation 

with 𝑁𝑀𝐶=10,000 samples, whilst 𝐼𝑜𝑢𝑡,𝐸 (𝑓𝑘 ; 𝐱𝑡 ) is the 

corresponding value estimated by the considered surrogates. 

Such error is computed by considering an increasing number of 

training samples, i.e., L=50 and 300. The curves of Fig. 6 show 

that the accuracy achieved by three models is quite similar, 

even if the LS-SVM regression (green lines) seems to provide 

the most accurate surrogate models for L=50 and 300, since 

their curves are usually below the ones related to GPR (red 

lines) and sparse PCE (blue lines) surrogates.  

 

As a further validation, Fig. 7 and 8 show the scatter plots 

and the probability density functions (pdfs) comparing the 

results of a 10,000 samples MC simulation for all the 𝑁𝑓 =

91 frequency points, with the corresponding prediction 

provided by the deterministic LS-SVM surrogate, the mean 

values of the GPR (red dots) and a second order sparse PCE 

(dashed blue) built with L=300 samples. The plots highlight 

the capability of the proposed models to accurately predict, 

both in deterministic and statistical sense, the actual values 

calculated during the MC simulation. 

 

As a final comparison between the two models, Fig. 9 shows 

one realization of the spectral envelope randomly selected 

 
Fig. 8 – Comparison between the pdfs of the amplitude of the spectral 

envelope calculated from the results of 10,000 samples MC simulation 

(black bins) with the corresponding values estimated by the LS-SVM 

regression (solid green line) and a second order PCE (dashed blue line) 

and the mean values of the probabilistic model based on the GPR (solid 

red line) for L=300. 

 
Fig. 7 – Scatter plot (10,000 samples) showing the correlation between 

the current spectral envelope predicted by the surrogate based on the LS-

SVM regression (green dots), a second order sparse PCE (blue dots) and 

the mean value of the GPR model (red dots) with 10,000 MC samples 

computed via the computational model. 

 
Fig. 6 – Average absolute error 𝚫𝒅𝑩(𝒇) defined in (16) calculated by 

comparing the predictions of the surrogates based on the LS-SVM 

regression (green lines), a second order PCE (blue lines) and the GPR 

(red lines) with the corresponding ones obtained via a MC simulation 

with 10,000 samples for an increasing number of training samples 

L=50 and 300. 
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among the results of the MC simulation (black curve) along 

with the corresponding predictions provided by the surrogated 

models based on the LS-SVM regression (dashed green curve), 

the second order sparse PCE (dashed blue) and the 

probabilistic GPR (red vertical bars and dots) in terms of the 

mean values and the 95% CIs. Again, the surrogates have 

been trained with L=300 samples. The results show the 

capability of the probabilistic GPR model to provide useful 

statistical information on the model reliability in terms of the 

95% CIs (red error bars), since the actual spectral envelope 

provided by the full-computational model (black curve) lays 

between the CIs estimated by the proposed models. Indeed, 

the CIs estimated by the GPR provide a conservative estimation 

for 85.5% of the 10k current spectra used in the train dataset.  

Concerning the computational cost required by each of the 

considered techniques for 𝐿 = 300 training samples, the 

training cost is 200s for the LS-SVM regression, 11s for the GPR 

and 20s for the PCE of order 2. The latter grows to 100s for an 

order 4 expansion. After the training, the model evaluation is 

extremely fast, and for each of the three methods, requires 

less than 5s to evaluate the surrogate model for 10,000 

configurations of the input parameters. On the other hand, the 

average cost of a simulation with the full-computational model 

is 11.7s and the cost of a MC simulation with 10,000 samples is 

4h 43min. All the simulations have been performed on a 

MacBook Pro with an Intel Core i5 CPU running at 3.1GHz and 

16GB of RAM. A more exhaustive and detailed comparison of 

the efficiency and the accuracy of the above modeling 

techniques for highly non-linear test cases is available in [21], 

[22] and [24]. 

 

IV. Conclusions 
This paper presented a quick overview of three ML regression 

techniques, which can be suitably adopted for the construction 

of fast-to-evaluate and accurate surrogate models. Specifically, 

the main features and the mathematical background of the 

SVM, LS-SVM and GP regressions have been presented and 

compared with a state-of-the-art technique such as the OLS 

regression and sparse PCE. The performances of the proposed 

techniques have been investigated by considering two 

illustrative examples. 
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