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Abstract. A sensory feedback was employed for the present work to
remap brain signals into sensory information. In particular, sensorimo-
tor rhythms associated with motor imagery were measured as a mean
to interact with an extended reality (XR) environment. The aim for
such a neurofeedback was to let the user become aware of his/her abil-
ity to imagine a movement. A brain-computer interface based on motor
imagery was thus implemented by using a consumer-grade electroen-
cephalograph and by taking into account wearable and portable feedback
actuators. Visual and vibrotactile sensory feedback modalities were used
simultaneously to provide an engaging multimodal feedback in XR. Both
a non-immersive and an immersive version of the system were considered
and compared. Preliminary validation was carried out with four healthy
subjects participating in a total of four sessions on different days. Experi-
ments were conducted according to a wide-spread synchronous paradigm
in which an application provides the timing for the motor imagery tasks.
Performance was compared in terms of classification accuracy. Over-
all, subjects preferred the immersive neurofeedback because it allowed
higher concentration during experiments, but there was not enough ev-
idence to prove its actual effectiveness and mean classification accuracy
resulted about 65%. Meanwhile, classification accuracy resulted higher
with the non-immersive neurofeedback, notably it reached about 75%.
Future experiments could extend this comparison to more subjects and
more sessions, due to the relevance of possible applications in rehabili-
tation. Moreover, the immersive XR implementation could be improved
to provide a greater sense of embodiment.
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1 Introduction

In extended reality, or XR, experiences rely on creating an interactive environ-
ment and providing the perceptive consequences of these interactions. In ac-
cordance with the predictive coding theory [1], the human brain continuously
generates and updates a mental model of the surrounding environment. This
happens while receiving sensory stimuli, and, in turn, these models can predict
imminent stimuli. In the real world, the movement of the body in space pro-
duces a continuous stream of both sensory stimuli and inner stimuli, but the
XR community has currently focused on the only sensorimotor contingency as
the prominent factor for presence. However, neuroscience has demonstrated that
multi-perceptual integration of bodily signals, action, and embodiment are also
critical to generate XR experiences [2]. Therefore, to develop novel XR-based
applications, enhanced embodied XR experiences are relevant. For instance, this
may apply to clinical scenarios, such as post-traumatic stress disorders, eating
disorders, phantom limb pain, and autism, since these are related to a dysfunc-
tional bodily self-consciousness. In such a scenario, mental training protocols are
widely used.

With specific regards to neuromotor rehabilitation, conventional training pro-
tocols are used with the aim of recovering the functional damage or making an
optimal use of residual motor assets. Some examples are the “Kabat” method
[3], the “Bobath” method [4], and the “mirror therapy” [5]. In the “Kabat”
method, the aim is to recover motor functionality through external proprio-
ceptive stimuli by improving the altered movement. In the “Bobath” method,
instead, functional recovery is attempted through proprioceptive learning and
a tactile, visual and auditory sensory experience. Finally, mirror therapy rep-
resents a rehabilitation method that involves moving both injured limbs evenly
and symmetrically in front of a mirror. The patient will have to observe the
healthy limb, so that it will appear that the paretic limb is moving. This is a
way to trick the brain into thinking that the movement is taking place normally
and thus exploit the residual capacity of the injured limb by stimulating it with
the optical effect of the mirror. Physical effort is also required from the patient
in classical rehabilitation. On the contrary, these rehabilitation techniques have
been recently combined with Brain-Computer Interfaces (BCI) based on motor
imagery, i.e. a cognitive process during which the subject imagines a movement
without performing it [6].

Nowadays, innovative systems try to exploit XR in such motor training. In
particular, motor imagery is widely exploited in BCIs as a way for control and
communication between the brain and an external device [7], and motor imagery-
based BCIs are proposed in several fields because the brain activity generated
by motor imagery affects the same brain areas involved during the execution
of a movement [8]. However, although people have the ability to imagine, they



do not get a sense of how they imagine. Therefore, a neurofeedback provided
in XR can bridge this gap. Neurofeedback is a process by which the users are
provided with feedback as a result of real-time processing of their brain signal.
Moreover, neurofeedback reduces the training time required to be able to use
the interface and increases the motivation and attention level of the users [9].
In neurorehabilitation, neurofeedback aids the patients in the self-regulation of
their brain rhythms. It induces neural plasticity and promotes recovery of the
injured motor nerve pathway [8]. The patients can receive multidimensional neu-
rofeedback, i.e., visual feedback and haptic feedback simultaneously, in response
to the executed motor imagery task. In this framework, XR technology can be
exploited to create an immersive and realistic environment to provide users with
sensory feedbacks [10].

Patient comfort is another priority. For this reason, BCIs are often based on
electroencephalography (EEG) due to non-invasiveness, wearability, portability,
and good temporal resolution [11]. To further enhance wearability and ease of
use, the number of EEG channels should be minimized. Three channels is usually
considered as a minimum number for motor imagery [12]. A wearable motor
imagery-based BCI integrated with the XR aims to be a novel and emerging
methodology for motor rehabilitation [13]. Indeed, letting the user become aware
of his/her ability to imagine a movement can improve a rehabilitation protocol
by engaging the patient during long and exhausting sessions.

In this contribution, both non-immersive and immersive neurofeedback in
XR were explored as a means to remap motor imagery into sensory feedback.
Notably, visual and vibrotactile sensory stimulation were proposed as a way to
“feel” how they imagine movements. The final aim was to improve mental tasks,
which are often unperceived and go beyond the five senses. The proposed systems
aim to be wearable and portable and they could be suitable for neuromotor
rehabilitation even outside a clinical setting. However, as a preliminary study,
the systems were tested with healthy subjects. The paper is organized as follows:
Section 2 presents the BCI system with XR neurofeedback and details both
the non-immersive and the immersive version, Section 3 reports the results of
preliminary tests carried out with these system versions, and Section 4 draws
some conclusions as well as future steps for further research.

2 Materials and methods

The present study focuses on wearable and portable BCI integrated with XR as
a means to provide multimodal feedback related to motor imagery. This aims
to allow the user to become aware of his/her ability to imagine a movement. As
a consequence, it promotes the voluntary modulation of sensorimotor rhythms.
The system prototypes were implemented with consumer-grade hardware and
they are addressed to neuromotor rehabilitation, e.g. post-stroke. In particular,
a limited number of differential channels were exploited during signal acqui-
sition. A dedicated virtual environment was developed to provide either visual
and haptic feedback to the user. These were modulated according to the ongoing



brain activity related to motor imagery. Hence, brain signals were acquired and
processed online in order to modulate the feedback in terms of direction and in-
tensity. Two versions of the same system were proposed. In them, the differences
were only related to the feedback actuators. In the first version, visual feedback
was non-immersive because it was provided through a PC’s monitor. Instead,
haptic feedback was provided by a vibrotactile suit. In the second version, in-
stead, visual feedback was ported to a virtual reality visor, while the haptic
feedback was provided via the visor’s controllers. Experiments were carried out
according to a standard synchronous paradigm, as detailed hereafter.

2.1 System implementation

Virtual environment. The virtual environment for both versions was devel-
oped with the Unity Development Platform 7. Regarding the visual feedback, the
scene is represented in Fig. 1. In there, the visual feedback consisted of a virtual
ball, which could horizontally roll to the left or to the right side of the scene. Its
actual movement was modulated in terms of direction and speed in accordance
with the measured brain activity. The edges for the ball movement were marked
in the environment with two white lines on the two sides of the scene. Regarding
the haptic feedback, the vibration was modulated in terms of direction and in-
tensity according to the measured brain activity. For this modality, the feedback
actuators are described below in distinguishing the non-immersive version from
the immersive ones. Details about the feedback actuation are thus given along
with such a discussion.

Fig. 1: Scene for the visual feedback within the virtual environment.

Non-immersive version. Feedback actuators for the non-immersive version
were first considered. The visual feedback consisted of a virtual rolling ball on

7 https://unity.com/



a PC’s monitor. This had an LCD 15.6” display (resolution 1920 x 1080 pixels)
with a 60Hz refresh rate. Meanwhile the haptic feedback was provided by the
vibrotactile suit from bHaptics Inc 8 (Fig. 2). This consists of a double 5 × 4
matrix with vibration motors on the front and back of the torso capable of
actuating a chest vibrotactile stimulation. The vibration can be modulated in
terms of duration, frequency and intensity. The suit communicates via Bluetooth
and it was particularly controlled through the Unity application.

The SDK provided by bHaptics was exploited to modulate the suit haptic
feedback. Vibration patterns were provided on the front of the torso starting
from the center. They moved toward the left or toward the right according to
the brain activity. The goal for the user was to maximally activate the haptic
feedback on the back of the respective side.

Fig. 2: Wearable haptic suit with a double matrix of vibrating motors for vibro-
tactile feedback.

Immersive version. The immersive feedback was provided through the HTC
VIVE PRO EYE by HTC Corporation Inc 9. This consists of a virtual reality
headset with dual-OLED 3.5” diagonal displays (resolution 2880 x 1600 pix-
els), a 90Hz refresh rate, and a 110° field of view. The wireless controllers with
SteamVR Tracking 2.0 sensors provide high definition haptic feedback and they
should be held by hands (Fig. 3). In this version, the controllers were employed to
provide vibrotactile feedback during the experiments, while participants did not
actively interact with the environment through them. Like the suit, the vibration
could be modulated in terms of duration, frequency and intensity.

8 https://www.bhaptics.com/tactsuit/tactsuit-x40
9 https://www.vive.com/us/product/vive-pro-eye/overview/



The SteamVR Unity Plugin 10 was exploited to provide an immersive inter-
action with the environment in the HTC system. The visual feedback was simply
ported on the visor in this immersive version. Meanwhile, for the haptic feedback
provided through the controllers, the vibration at the hand corresponding to the
motor imagery task was modulated in terms of intensity. Notably, this intensity
changed according to the measured brain signals.

Fig. 3: HTC VIVE PRO EYE virtual reality headset with hands-held controllers.

EEG acquisition. EEG data were acquired by means of a FlexEEG headset
by Neuro-CONCISE Ltd 11 with 3 differential channels over the motor cortex
(Fig. 4). In this acquisition system, electrodes are located at FC3-CP3, FCZ-
CPZ, and FC4-CP4 by following the standard 10–20 system for EEG recordings
[14]. The ground electrode is placed at AFz. Despite the possibility to use dry
electrodes, wet ones are generally preferred to ensure good signal-to-noise ratio
and high signal reliability. Therefore, conductive gel was used in these experi-
ments. Thanks to its wearable design, FlexEEG was properly embedded with
the XR visor. EEG signals were sent to a custom Simulink model by using Blue-
tooth 2.0 wireless signal transmission and available Simulink APIs. Such a model
involved online signal processing and responded to the application’s timing.

2.2 Experimental paradigm

The XR neurofeedback was implemented within a synchronous motor imagery-
based BCI. The experiments consisted of two sessions per system version carried
out on different days (four sessions in total). Each session involved three runs for
calibrating the system and three runs for providing online neurofeedback. About
10min-break was given to the participant between these two phases. A single
session lasted about 30min. Each experimental task consisted of imagining left

10 http://steamvr.com
11 https://www.neuroconcise.co.uk/



Fig. 4: Wearable and portable electroencephalograph with electrodes over the
motor cortex.

or right hand movement depending on the indication and in accordance with an
external timing. The motor imagery task to be imaged was randomized in order
to avoid any bias. A total of 30 trials per run were performed, so that 270 trials
were carried out as a whole in both the non-immersive and immersive case. With
reference to the standard paradigms of BCI competitions [15], Fig. 5 shows the
timing diagrams of a single trial during the calibration phase and online feedback
phase, respectively.

During the calibration phase (Fig. 5(a)), the participants performed the pure
motor imagery. Each trial started with a relax period during which the partici-
pant had to stare at a fixation cross. Then, a cue indicated the trial to be carried
out during the following “motor imagery period”, lasting 3.00 s. Finally, a break
with random duration concluded the trial. These indications always appeared on
the PC’s monitor. Hence, the calibration phase was non-immersive in both sys-
tem versions. At the end of all the trials associated with this phase, the recorded
EEG signals were exploited in order to train the algorithm for the online phase.
In particular, the cross-validation technique was employed to find the 2.00 s time
window within the 3.00 s of motor imagery in which the maximum overall classi-
fication accuracy and the minimum per-class accuracy difference were achieved.
Thus, the algorithm was trained by considering this optimal window.

During the online feedback phase (Fig. 5(b)), EEG signals were classified
during motor imagery execution in order to provide simultaneous feedback. Af-
ter the fixation cross period and the cue, the signals were processed during each
motor imagery window using a 2.00 s sliding window with a shift of 0.25 s until
the end of the task. It is worth noting that, despite the previous case, the cue
indication is here persistent during the whole motor imagery/feedback period. In
terms of feedback, the goal for the user was to push the ball over the white line
on the respective side of the virtual floor. At the same time, maximum vibration
intensity was provided. In order to avoid user frustration and disengagement,
the user received the feedback only when the class associated with the measured
brain signal corresponds to the indicated task (biased feedback). If instead the
assigned class did not match with the task, the ball did not move and the con-
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Fig. 5: Timing diagrams for a single experimental trial.

trollers did not vibrate. In any case, the intensity of the feedback was modulated
according to the classification score.

2.3 Signal Processing

The EEG signals were processed to modulate the neurofeedback during exper-
iments, but also to assess the motor imagery capability of a subject after the
experiments (offline analysis). In both cases, features were extracted from raw
EEG data by means of the filter-bank common spatial pattern (FBCSP) algo-
rithm [16] and then classified with a Naive Bayesian Parzen Window (NBPW)
classifier. During online neurofeedback, the assigned class with its associated
score were used in order to modulate the feedback direction and speed/intensity,
respectively. The online operation of the system, including signal acquisition
and processing, was implemented by means of a Simulink model communicat-
ing with the Unity application. Meanwhile, Matlab scripts were implemented to
train the algorithm for online processing by relying on acquired EEG signals and
to analyse these signals after the experiments.

In offline analyses, baseline removal was first applied by considering the
100ms before the cue. Then, the FBCSP was used. In particular, (i) EEG data
were digitally filtered using an array of bandpass filters from 4Hz to 40Hz,
(ii) the common spatial patterns (CSP) algorithm was exploited for feature ex-
traction, (iii) the mutual information-based best individual features (MIBIF)



algorithm was used to select the most important features, and (iv) finally the
NBPW was exploited to classify the features related to a specific task and to
assign them the most probable class. Note that the CSP uses spatial filters to
maximize the discriminability of two classes. Hence, binary classification was
considered, but multi-class extensions would be possible as well. As a result of
the NBPW, the most probable class and its probability were used to modulate
the feedback in the online phase, as already mentioned above. The block diagram
of the algorithm is recalled in Fig. 6.

Label

Calibration phase
FBCSP

FBCSP

Filter
Bank CSP MIBIF NBPW

Filter
Bank CSP NBPW

Class

EEG

Online phase

Task

Score

MIBIFEEG

Fig. 6: FBCSP algorithm. EEG: electroencephalography, CSP: common spatial
pattern, MIBIF: mutual information-based best individual features, NBPW:
naive bayesian parzen window.

3 Results

3.1 Subjects

With the aim of evaluating the effectiveness of the proposed system, four right-
handed healthy volunteers participated in the two experimental sessions per
each system version (non-immersive and immersive). One subject was male and
three were females (mean age 27). The subjects signed an informed consent
before participating in the experiments. These were conducted at the Augmented
Reality for Health Monitoring Laboratory (ARHeMLab, University of Naples
Federico II) in Italy.

3.2 Classification results

Data from each experimental phase were analysed as described before by ap-
plying a 5-folds cross validation with 10 repetitions. For both the calibration



and the online phase, an optimal 2.00 s-wide time window was selected per each
subject. With particular reference to the results of the calibration phase, the
criterion for an optimal choice of the time window was to maximize the classifi-
cation accuracy while trying to also minimize the difference between accuracies
per class. Therefore, the same criterion was adopted in also reporting the ac-
curacy associated with the online feedback. These classification accuracies are
reported in Tab. 1 and Tab.2 for the non-immersive version and the immersive
version, respectively. Each session and phase are considered separately.

It can be thus interesting to compare the two system versions. Referring to
mean accuracies associated with the non-immersive case, it can be noted that the
one associated with the calibration phases of both sessions resulted from 62%
to 64%. The effectiveness of the feedback is here evident and it consists of an
accuracy improvement of about 10%. Notably, the non-immersive neurofeedback
resulted more effective for the subjects S01 and S02.

accuracy (%)

Session 1 Session 2

calibration feedback calibration feedback

S01 57 84 67 75
S02 70 82 62 82
S03 63 68 65 64
S04 57 65 61 76

mean 62 75 64 74

Table 1: Classification results obtained with a 10-repeated 5-folds cross validation
in the non-immersive neurofeedback case.

Instead, for the immersive case, it can be noted that mean accuracies remain
between 61% and 66% for both the calibration and online feedback phases.
Only in the Session 2, the improvement in mean accuracy is associated with
neurofeedback, but due to a lowered accuracy in the calibration phase. Despite
the previous case, subjects S01 and S02 are not improving with the immersive
neurofeedback. Meanwhile, the improvements associated with S03 and S04 are
compatible with the previous case.

3.3 Discussion

As a whole, the results reported above were not capable of proving the effective-
ness of the immersive feedback while a substantial improvement was highlighted
for the non-immersive case. Despite that, all subjects agreed that the immersive
system was helping them to keep higher concentration throughout the experi-
ment. A possible issue related to the immersive version of the system could be
that participants were not familiar with using visor before the experiments. In



accuracy (%)

Session 1 Session 2

calibration feedback calibration feedback

S01 69 67 62 63
S02 74 60 63 63
S03 53 63 65 68
S04 63 68 56 69

mean 65 65 61 66

Table 2: Classification results obtained with a 10-repeated 5-folds cross validation
in the immersive neurofeedback case.

addition, since the calibration phase was always delivered in a non-immersive
modality, participants could have been confused when the modality changed
during the session. Therefore, an immersive calibration phase could be explored
in the future.

A more immersive visual feedback could be also explored. Indeed, the cur-
rent one simply consisted of a simple porting to the visor of the non-immersive
visual feedback, while an updated version could be realised. For instance, in mo-
tor imagery-assisted neurological rehabilitation, an embodied feedback could be
implemented to perform mirror therapy. Finally, regarding data analysis, more
insights could be done by going beyond classification accuracy. For instance,
band power could be evaluated to understand if the neurofeedback enhances
neurological phenomena associated with movement while keeping the mental
workload low.

4 Conclusion

Extended reality has been recently considered in motor training and rehabil-
itation. Notably, motor imagery can be exploited in brain-computer interface
systems integrated with extended reality as a novel way for communication and
control of an external device. In doing that, people do not get a sense of their
motor imagery capability and a neurofeedback could be exploited to that aim.
Thanks to a real-time processing of brain signal, this aims to improve user en-
gagement and hence performance, while reducing the training time.

The current study focused on the design, implementation, and preliminary
testing of a wearable and portable brain-computer interface exploiting extended
reality for neurofeedback associated with motor imagery. The system was imple-
mented with consumer-grade hardware involving only three differential channels
for EEG acquisition. The virtual environment was developed in Unity to pro-
vide visual and haptic feedbacks modulated according to the online processing
of EEG signals. Both a non-immersive and an immersive system implementation
were explored. The feedback was modulated in terms of direction and intensity



by means of class and score, respectively. This processing relied on the filter bank
common spatial pattern and a Bayesian classifier, which are widely employed in
the field of brain-computer interfaces.

Preliminary experiments were carried out according to a standard paradigm
for synchronous brain-computer interfaces by involving four subjects in two ses-
sions per each system version. The classification results were thus compared to
highlight the better neurofeedback modality. Overall, these preliminary results
indicated a greater effectiveness of the non-immersive feedback in comparison
with the immersive one, though the immersive environment favored concentra-
tion. The reason could be due to a lack of confidence with the visor usage.
Therefore, further experiments could explore an even more immersive virtual
scene and a greater number of experimental sessions should be performed with
a larger number of subjects as well.
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