
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An Estimator for the Hardness of the MQ Problem / Bellini, Emanuele; Makarim, Rusydi H.; Sanna, Carlo; Verbel, Javier.
- 13503:(2022), pp. 323-347. (Intervento presentato al convegno 13th International conference on cryptology in Africa -
AFRICACRYPT 2022 tenutosi a Fes (Morocco) nel July 18-20, 2022) [10.1007/978-3-031-17433-9_14].

Original

An Estimator for the Hardness of the MQ Problem

Springer postprint/Author's Accepted Manuscript (book chapters)

Publisher:

Published
DOI:10.1007/978-3-031-17433-9_14

Terms of use:

Publisher copyright

This is a post-peer-review, pre-copyedit version of a book chapter published in Progress in Cryptology - AFRICACRYPT
2022. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-031-17433-9_14

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2972108 since: 2022-10-06T06:48:46Z

Springer

An Estimator for the Hardness of the MQ
Problem

Emanuele Bellini1, Rusydi H. Makarim1, Carlo Sanna2, and Javier Verbel1

1 Cryptography Research Center, Technology Innovation Institute, UAE
2 Department of Mathematical Sciences, Politecnico di Torino, Torino, IT

{emanuele.bellini, rusydi.makarim, javier.verbel}@tii.ae
carlo.sanna.dev@gmail.com

Abstract. The Multivariate Quadratic (MQ) problem consists in find-
ing the solutions of a given system of m quadratic equations in n un-
knowns over a finite field, and it is an NP-complete problem of fundamen-
tal importance in computer science. In particular, the security of some
cryptosystems against the so-called algebraic attacks is usually given by
the hardness of this problem. Many algorithms to solve the MQ problem
have been proposed and studied. Estimating precisely the complexity of
all these algorithms is crucial to set secure parameters for a cryptosystem.
This work collects and presents the most important classical algorithms
and the estimates of their computational complexities. Moreover, it de-
scribes a software that we wrote and that makes possible to estimate the
hardness of a given instance of the MQ problem.

Keywords: MQ problem, Estimator, Polynomial solving, multivariate
cryptography.

1 Introduction

The problem of solving a multivariate quadratic system over a finite field is
known as the Multivariate Quadratic (MQ) problem. This problem is known to
be NP-complete, and it seems to be hard on average for an extensive range of
parameters.

Despite of its clear hardness, there exists a considerable amount of algorithms
to solve the MQ problem [17, 18, 33, 34, 38, 39, 52, 54, 56, 66]. Their complexities
depend on several values: the ratio of the number of variables and the number of
polynomials, the size of the field, the characteristic of the field, and the number
of solutions to the underlying problem. So it is difficult to determine what is
the complexity of the best algorithm to solve a particular instance of the MQ
problem. Moreover, some of the algorithms have optimized some parameters to
provide the best asymptotic complexity. Since this does not mean that such
optimizations provide the best complexity for a particular set of parameters,
once a specific instance is provided, the parameters optimizing the complexity
should be computed.

The MQ problem has been extensively used in cryptography. In cryptanalysis,
it appears in the so-called algebraic attacks. These attacks break the security of
a cryptosystem by solving one system of polynomial equations over a finite field
(e.g., see [64]). In post-quantum cryptography, the MQ problem constitutes the
building block of the Multivariate public key cryptosystems (MPKCs). These are
promising post-quantum secure alternatives to the current public-key schemes,
which would no longer be hard in the presence of a quantum computer [11].

In general, the MPKCs used for signature schemes are divided into two cate-
gories, named trapdoor and one-way multivariate signature schemes. The trap-
door ones are built upon a trapdoor multivariate polynomial map. They have
very short signatures and fast signature verification that can be implemented in
low-cost devices [21, 30]. Some examples of this kind of schemes are UOV [51],
Rainbow [31] GeMSS [21], MAYO [16]. The one-way signature schemes are based
on an identification scheme that uses the knowledge of a solution of a random
multivariate polynomial map to authenticate a legitimate party (e.g., [62]). Then,
the multivariate identification scheme is converted into a signature scheme us-
ing a standard protocol [42]. The main advantage of this kind of multivariate
signature scheme is that their security is based (directly) on the hardness of the
MQ problem, and they enjoy a small compressed public key. Some of the these
schemes are SOFIA [22], MQDSS [23], MUDFISH [13], and the signature proposed
by Furue, Duong and Takagi in [44].

In the design of MPKCs, once the specific parameters of the scheme are se-
lected, the size of the finite field q, the number of variables n, and the number
of polynomials m of the corresponding MQ problem are fixed. Thus, a good es-
timate of the hardness of solving such an instance with given parameters q, n,
and m of the MQ problem will allow the designers to set parameters to get effi-
cient schemes while keeping high levels of security. Also, MPKCs are potentially
strong candidates for the upcoming NIST call for proposals to standardize a new
signature scheme that is not based on structural lattices [57].

Our first contribution is to gather the algorithms available in the literature
for solving the MQ problem and expressing their estimates of time and space
complexities as a function of their parameters if any. For the Crossbred algorithm,
we establish a more tightly bound that takes into account the field equations
when q ą 2. Our second contribution is to provide a software named the MQ
estimator [9], that given an instance of the MQ problem estimates the complex-
ities of each algorithm to solve it. We use our software to estimate the best
algorithm, in terms of time complexity, for different regimes of parameters, see
Figures 1a, 1c, 1b and 1d. Also, we estimate the security of the multivariate
schemes Rainbow, MAYO, MUDFISH, and MQDSS against the direct attack. We
found that all the parameter sets of MAYO, MUDFISH, MQDSS and the category
I parameters of Rainbow are under the claimed security, see table 2, 3 and 4.

Our paper is somehow analog to the work that Albrecht, Player, and Scott
did for the problem Learning with Errors [1], and the work by Bellini and Esser
for the Syndrome Decoding problem [10, 37]. Regarding the problem of solving
polynomial systems over an arbitrary field, we refer the reader to the book edited

2

by Dickenstein and Emiris [29] and to the survey of Ayad [4]. For collections of
algorithms for the case of finite fields, we point out the Ph.D. theses of Bard [6],
Mou [58], and Ullah [67]. Also, there are surveys on very specific techniques like,
for instance, signature-based algorithms for computing Gröbner bases [36].

The structure of the paper is as follows. Section 2 shows some preliminary
facts about computational complexity and the MQ problem. In Section 3 we list
the main algorithms for solving the MQ problem, and we examine their time and
space complexities. Also, we establish a generalization over Fqě2 to compute the
complexity of the Crossbred algorithm. Finally, in Section 5 the usage of the MQ
estimator is explained, and some of the estimates obtained are shown.

2 Preliminaries

2.1 General notation

We employ Landau’s notation fpnq “ Opgpnqq, with its usual meaning that
|fpnq| ď C|gpnq| for some constant C ą 0. Also, we write fpnq “ Õpgpnqq
whenever fpnq “ Opnkgpnqq for some constant k ě 0. For every real number x,
let txu be the greatest integer not exceeding x. We let log denote the logarithm
in base 2, while e “ 2.718 . . . denotes the Euler number. The Greek letter ω
denotes the exponent in the complexity of matrix multiplication. That is, we
assume that there is an algorithm that multiplies two nˆn matrices over a field
with Opnωq field operations. We have 2 ď ω ď 3, with ω “ 2.80736 given by
Strassen’s algorithm [65] (currently, the best upper bound is ω ă 2.37286, given
by the algorithm of Alman and Williams [2], but such improvements of Strassen’s
algorithm are never used in practice, due to the large hidden constants of their
asymptotic complexities). We write Fq for a finite field of q elements. Lastly, we
use nsol to denote the number of solutions of a given MQ instance.

2.2 Computational complexity

Throughout this paper, the time and space complexities of each algorithm are
given, assuming a computational model in which the operations of Fq (addition,
multiplication, and division) are performed in constant time Op1q and in which
every element of Fq is stored in constant space Op1q (Fq-complexity). A more
detailed analysis could assume a computational model in which the operations
at bit-level are performed in constant time Op1q and in which every bit is stored
in constant space Op1q (bit-complexity). However, the bit-complexities of addi-
tion, multiplication, and division in Fq are different (with the addition the least
expensive and division the most) and depend on the algorithms implementing
them, possible hardware optimizations, and eventually, q having a special form,
like q being equal to a power of 2 or a Mersenne prime (see [46] for a survey).
Therefore, there is no straightforward way to convert between Fq-time complex-
ity and bit-time complexity. Roughly, the bit-time complexity can be estimated
by plog qqθ times the Fq-time complexity, with θ P r1, 2s. On the other hand, the
bit-space complexity is simply equal to log q times the Fq-space complexity. Of
course, for q “ 2 the Fq-complexity and the bit-complexity are equivalent.

3

2.3 The MQ problem

The input of the MQ problem consists of m quadratic polynomials p1, . . . , pm in
n variables x1, . . . , xn and coefficients in a finite field Fq. The output concerns
the solutions (in Fq) of the system of equations

pipx1, . . . , xnq “ 0, i “ 1, . . . ,m. (1)

There are three versions of the MQ problem:

- Decision: It asks to determine if (1) has a solution.
- Search: It asks to find a solution of (1), if there is any.

The decision version of MQ is known to be NP-complete. Moreover, the decision
and search version of MQ are strictly related. On the one hand, obviously, solving
the search version also solves the decision. On the other hand, by iteratively
testing each variable, one can solve the search version by calling a subroutine
for the decision version at most pq ´ 1qn times. In this paper, we focus only on
the search version of the problem.

2.4 General strategies for underdetermined systems

A system of equations is said to be underdetermined if it has more unknowns than
equations, that is, in our notation, n ą m. There are algorithms that transform
an underdetermined system into one with the same number of equations and
variables so that a solution to the former system can efficiently be computed from
a solution to the last system. This section describes some of these algorithms.

Fixing variables This approach consists in fixing the values of n´m unknowns.
The resulting systems Q has m unknowns and m equations and, assuming
that we started from a random MQ problem, it has a solution with probability
e´1 “ 0.367 . . . [45]. Thus, the complexity of this strategy is dominated by the
complexity of solving Q.

Thomae–Wolf and improvements Let P be an MQ problem with m equations
in n “ αm unknowns over Fq, where α ą 1 is a rational number. Based on
the ideas of Kipnis, Patarin, and Goubin [52], Thomae and Wolf [66] designed
a mechanism to reduce P to another MQ problem P 1 of m ´ tαu ` a equations
and unknowns, where a “ 0 if m{tαu is an integer, and a “ 1 otherwise. The
time complexity of the reduction is O

`

mptαumq3
˘

when q is even. For q odd, the
complexity of the reduction is dominated by the complexity of quadratic system
with tαu ´ 1 equations over Fq. Still, for the rage of parameters interesting in
practice, e.g., see Table 2, and 3 the complexity of the reduction is insignificant
compared with the complexity of solving the problem P 1.

This technique was further improved by Furue, Nakamura, and Takagi [43],
who combined Thomae and Wolf’s approach with fixing k variables. Their method
reduces a system of m quadratic equations in n unknowns over F2r to a sys-
tems of m ´ αk quadratic equations in m ´ k ´ αk unknowns, where αk :“
tpn´ kq{pm´ kqu´ 1 for r ą 1 and αk :“ tpn´ kq{pm´ k ´ 1qu´ 1 for r “ 1.

4

3 Algorithms for solving MQ

This section lists the most important classical algorithms for solving the MQ
problem and describes their computational complexities. There are also quan-
tum algorithms to solve the MQ problem, which speed up some of the classical
algorithms via quantum walks, but they are out of the scope of this paper. We re-
fer the reader to [12,40,63] for more information on quantum algorithms solving
the MQ problem.

The complexity of some of the algorithms described in this section depends
on the number of solutions nsol of the underlying instance. We remark that for
the non-underdetermined case, hard instances of the MQ problem are expected
to have a small nsol (e.g., 1, 2, or 3). In the other case, nsol is expected to be
around qm´n.

3.1 Exhaustive search

Fast exhaustive search (FES) Bouillaguet et al. [18] proposed a more efficient
way to perform exhaustive search over Fn2 by enumerating the solution space
with Gray codes. The evaluation of an element in Fn2 is used to compute the
evaluation of the next potential solution. The time complexity of finding one

solution to the MQ problem with this algorithm is given by 4 logpnq
´

2n

nsol`1

¯

.

The space complexity is given by the memory required to store the polynomial
system, so Opn2mq. This approach can be extended to any field Fq using q-ary

Gray codes [35]. In this case, the time complexity is given by O
´

logqpnq
qn

nsol`1

¯

.

3.2 Algorithms designed for underdetermined systems

In this section, we describe some of the algorithms specially designed for under-
determined systems.

Kipnis–Patarin–Goubin (KPG) Kipnis, Patarin, and Goubin [52] proposed
a polynomial-time algorithm to solve the MQ problem over a field of even char-
acteristic when n ą mpm ` 1q. We write KPG to refer to this algorithm. The
main idea in the KPG algorithm is to find a non-singular matrix S P Fnˆnq such

that the change of variables py1, . . . , ynq
J “ Spx1, . . . , xnq

J results in a system
of the form

m
ÿ

i“1

ai,1y
2
i `

m
ÿ

i“1

yiLi,1pym`1, . . . , ynq `Q1pym`1, . . . , ynq “ 0 (2)

...
m
ÿ

i“1

ai,my
2
i `

m
ÿ

i“1

yiLi,mpym`1, . . . , ynq `Qmpym`1, . . . , ynq “ 0,

5

where the Li,jp¨q are linear maps and the Qip¨q are quadratic maps. Then, they
solve (2) by solving, sequentially, two systems of linear equations in the y1is. The
overall time complexity of this algorithm is given by

O

˜

m´1
ÿ

i“1

pimqω `mω `m2ω ` 3nω

¸

“ O pmnωq .

The space complexity is dominated either by the space needed to solve a square
linear system of size pm ´ 1qm plus the space required to store the original
polynomials. It is given by Opmn2q.

Courtois et al. applied the ideas of KPG over fields of odd characteristic.
They provided an algorithm with time complexity 240p40 ` 40{ log qqm{40 for
n ě p40` 40{ log qqm{40pm` 1q, see [26, Sec. 4.2] for the details.

Miura–Hashimoto–Takagi (MHT) The algorithm of Miura, Hashimoto, and
Takagi [56] works for n ě mpm ` 3q{2 over any finite field. Its complexity is
exponential in m over fields of odd characteristic. Precisely, its time complexity
is

#

O pnωmq if q is even;

O p2mnωmq if q is odd.

The space complexity of MHT is dominated by the memory required to store
the initial set of polynomials.

Huang–Bao (HBq In [48], Huang and Bao propose an algorithm that gen-
eralizes the MHT algorithm, and it works the broader range of parameters
n ě mpm ` 1q{2. The space complexity is the same of MHT, while the time
complexity is given by

#

O
`

qplog qq2 ¨ nωm
˘

if q is even;

O
`

qplog qq2 ¨ 2mnωm
˘

if q is odd.

Courtois–Goubin–Meier–Tacier (CGMT-A) Courtois et al. [26] introduced
an algorithm, so-called Algorithm A, to solve the MQ problem in the underde-
termined case. Here we use CGMT-A to refer to this algorithm.

Let k be an integer, and let f1, . . . , fm be the input polynomials of the un-
derlying MQ problem. For each j “ 1, . . . ,m, we can write

fjpx1, . . . , xnq “ gjpx1, . . . , xkq ` hjpxk`1, . . . , xnq `
k
ÿ

i“1

Li,jpxk`1, . . . , xnqxi,

where the Li,j ’s are linear polynomials. In the CGMT-A algorithm one has to
set Li,jpxk`1, . . . , xnq “ ci,j , where each ci,j P Fq is randomly chosen. It is

also defined g1jpx1, . . . , xkq :“ gjpx1, . . . , xkq `
řk
i“1 ci,jxi for j “ 1, . . . , 2k.

6

Then, one has to compute and store (sorted) the qk vectors of the set G “

t´pg11paq, . . . , g
1
2kpaqq : a P Fkqu along with its corresponding preimage a. After,

we have to search for a vector b P Fn´kq such that

tLi,jpbq “ ci,ju
k,2k
i,j“0 and ph1pbq, . . . , h2kpbqq P G. (3)

Notice that any b be fulfilling Equation (3) yields to a vector c :“ pa, bq P Fbq
such that fjpcq “ 0 for j “ 1, . . . , 2k, and fjpcq “ 0 for j “ 2k ` 1, . . . ,m with
probability q´pm´2kq.

Courtois et al. noticed that in order to find one b satisfying Equation (3)
one has to compute on average qk evaluations of the form ph1pbq, . . . , h2kpbqq for

vectors b satisfying tLi,jpbq “ ciju
k,2k
i,j“0.

If k :“ mintm{2,

b

n{2´
a

n{2u satisfies that m´ 2k ă 2k2 ď n´ 2k, then
CGMT-A succeed on finding a solution, and its average time complexity is given
by

O
ˆ

2k

ˆ

n´ k

2

˙

qm´k
˙

.

The space complexity of this algorithm is dominated by the memory needed to
store the qk evaluations of the g1i polynomials, i.e., Op2kqkq.

3.3 Gröbner basis

This section shows the complexity to solve the MQ problem via the so-called
Gröbner basis algorithms. Throughout this section, we assume that the underly-
ing sequence of polynomials is either regular or semi-regular, see Definition 3.2.

A solution to the MQ problem f1 “ ¨ ¨ ¨ “ fm “ 0 can be efficiently ex-
tracted from a Gröbner basis Glex, in the lexicographic order, of the ideal
I “ xf1, . . . , fmy [28]. In practice, it is been verified that the most efficient
way to compute Glex is by first computing a Gröbner basis Ggrvlex of I in the
graded reverse lexicographic order. Then, one uses Ggrvlex as an input of the
FGLM [41] algorithm to compute Glex [38].

The complexity of the Gröbner basis algorithms in the graded reverse lexi-
cographic order is estimated via the degree of regularity of the ideal generated
by the polynomial of the underlying MQ problem.

Definition 3.1. The degree of regularity of a homogeneous ideal I Ď Fqrxs is
the minimum integer d, if any, such that dimpIdq “ dimpRdq, where Id “ RdXI,
Rd is the set of elements in R of degree d.

Definition 3.2 (Regular and semi-regular sequences). A homogeneous
sequence F P Fqrxsm is called semi-regular if

ÿ

dě0

dim pRd{Idq z
d “

„

p1´ zqqn

p1´ zqn

ˆ

1´ z2

1´ z2q

˙m

`

,

where rHpzqs` means that the series Hpzq is cut from the first non-positive
coefficient. An affine sequence G “ pg1, . . . , gmq is semi-regular if the sequence
pg̃1, . . . , g̃mq does, where g̃i is the homogeneous part of gi of highest degree.

7

The role of the field equations In the ring Fqrx1, . . . , xns, the set of elements
txq1´x1, . . . , x

q
n´xnu is called the field equations. By Lagrange’s Theorem, every

element in Fq is a root of the univariate polynomial xq ´ x. Thus, the set of
solutions of a given MQ problem (as defined in 2.3) does not change if we add
the field equations to the original set of polynomials.

In terms of computing a Gröbner basis, adding the field equations to a set
of polynomials in Fqrx1, . . . , xns is equivalent to considering the polynomials in
the quotient ring

R “ Fqrx1, . . . , xns{xxq1 ´ x1, . . . , x
q
n ´ xny.

Given a positive integer d, let Rd and Fqrx1, . . . , xnsd denote the Fq-vector spaces
of homogeneous polynomials of degree d in R and Fqrx1, . . . , xns, respectively.
Hence, dimpRdq represent the number of monomials in Fqrx1, . . . , xns of degree
d such that no variable is raised to a power greater than q ´ 1. This value is
essential in to determine the complexity of computing a Gröbner basis of an
ideal I Ă R. The following proposition shows a way to compute dimpRdq.

Proposition 3.1. Let d be a positive integer. Then, dimpRdq “ rz
dsHpzq, where

Hpzq is the series defined by

Hpzq :“

ˆ

1´ zq

1´ z

˙n

.

That is, dimpRdq is the coefficient of zd in the series Hpzq. Similarly,

dim pFqrx1, . . . , xnsdq “ rzds
ˆ

1

p1´ zqn

˙

,

or equivalently, dim pFqrx1, . . . , xnsdq “
`

n`d´1
d

˘

.

Let I Ă Fqrx1, . . . , xns be an ideal. For small values of q, the computation
of a Gröbner basis of I can be significantly easier if I is seen into the ring R.
This is because, for a given integer d ą 0, Rd could be significantly smaller than
Fqrx1, . . . , xnsd. For instance see Example 3.1.

Example 3.1. Let q “ 2 and n “ 10. Then,

ˆ

1´ zq

1´ z

˙n

“ 1` 10z ` 45z2 ` 120z3 ` 210z4 ` 252z5 ` ¨ ¨ ¨ ,

and
1

p1´ zqn
“ 1` 10z ` 55z2 ` 220z3 ` 715z4 ` 2002z5 ` ¨ ¨ ¨ .

Thus, dim pF rx1, . . . , xns5q “ 2002, while dimpR5q “ 252.

8

F4/F5 This section regards the complexity of solving the MQ problem via the
F4 and F5 algorithms. All the estimations are computed over the hypothesis that
the underlying sequences of polynomials are regular or semi-regular. The mono-
mial order in the underlying polynomial ring is the graded reverse lexicographic
(grevlex) monomial order.

The F4 and F5 are algorithms to compute a Gröbner basis of an ideal of poly-
nomial equations over an arbitrary field. They were introduced by Faugère [38,39]
and they are based on the original ideas of Lazard [53]. These two algorithms
could be seen as generalizations of the XL [27] and the Mutant-XL algorithms [20].

It might be the case that one of the algorithms outperforms the other for a
particular set of parameters, but it is slower for a different set of parameters.
For instance, F5 is expected to be faster than F4 for underdetermined systems,
but this is not the case for overdetermined systems [39]. Even though such an
improvement is estimated to be no more than a factor of two for large values of
n [32]. Asymptotically, the time and memory complexities of both algorithms are
the same. Thus, in this paper and in our estimator, we use the F5’s complexities
to refer also to the complexities of F4.

The square case Bardet, Faugère, and Salvy [7] estimated the complexity of
computing a Gröbner basis of a homogeneous ideal of polynomials in the grevlex
order. To estimate such complexity for a non-homogenous ideal I, we use the
fact that a Gröbner basis of I can be obtained by specializing to h “ 1 in every
polynomial in Gphq, where Gphq is Gröbner basis of Iphq, and Iphq denotes the
homogenization of I.

By Theorem 2 in [7] with ` “ 1, computing a Gröbner basis in the grevlex or-
der of a non-homogeneous ideal I can be done, without using the field equations,
in

O
´

pn` 1q24.29pn`1q ` n ¨ n3sol

¯

“ Õ
`

24.29n
˘

in arithmetic operations in Fq.

The overdetermined case In the overdetermined case the time complexity is
given by

O
ˆˆ

n` dreg
dreg

˙ω

` n ¨ n3sol

˙

,

while the space complexity:

O

˜

ˆ

n` dreg ´ 1

dreg

˙2
¸

,

where dreg “ degpP pzqq ` 1, and P pzq is the series given in Definition 3.2.

3.4 Hybrid algorithms

A hybrid algorithm for solving the MQ problem combines a partial exhaustive
search with another procedure. In this section, we consider the complexity esti-
mations of hybrid algorithms.

9

BooleanSolve/FXL The BooleanSolve algorithm and its generalization, the
FXL algorithm, were proposed by Bardet et al [8] and Courtois et al. [25], re-
spectively. The idea of both algorithms is to guess a number k of variables
repeatedly and then check the consistency of the resulting MQ problem.

In BooleanSolve, such a check is done by checking the consistency a linear
system of the form zMd “ p0, 0, .., 1q, where Md is the Macaulay matrix [8] of
the resulting system up to degree d, and d is a large enough integer. Once a set
of k variables being part of a solution is found, an exhaustive search algorithm
is apply on the resulting system with n´ k variables.

In this section, we consider the FXL as a näıve generalization of BooleanSolve.
That is, after guessing k variables, the consistency of the resulting system of
n´ k variables is checked by using the Macaulay matrix at large enough degree.
Notice that this is different from what Hybrid-F5 does, where the resulting system
is solved after each guess of k variables.

There are methods to check the consistency of the system of the form zMd “

p0, 0, .., 1q. One uses Gaussian elimination (known as the deterministic variant),
and the other one uses the probabilistic Wiedemann’s algorithm (known as Las
Vegas variant). For the deterministic variant, the time complexity of this algo-
rithm is dominated by the guessing and consistency checking parts. Thus, it is
given by

qk ¨ Õ
ˆˆ

n´ k ` dwit
dwit

˙ω˙

,

while the space complexity is

O

˜

ˆ

n´ k ` dwit ´ 1

dwit

˙2
¸

,

where dwit “ degpPkpzqq ` 1, and if we consider the field equations

Pkpzq “

„

p1´ zqqn´k

p1´ zqn´k`1

ˆ

1´ z2

1´ z2q

˙m

`

. (4)

While Las Vegas variant of this method has time complexity

qk ¨O

˜

3

ˆ

n´ k ` 2

2

˙ˆ

n´ k ` dwit
dwit

˙2
¸

,

and the space complexity is computed as the number of bits needed to store the
whole Macaulay matrix 3. So that one requires

m ¨ w ` T ¨ w ¨
log2N

log2 q
`N

log2m

log2 q

bits of memory, where w :“
`

n´k`2
2

˘

, T :“
`

n´k`dwit´2
dwit

˘

, and N :“
`

n´k`dwit

dwit

˘

[59, Section 4.5.3].

3 Every row of the Macaulay matrix can be compute on the fly, but it will introduce
an overhead in the time complexity.

10

Hybrid-(F4/F5) Another way to apply a hybrid algorithm is just by guessing
a set of k variables, and then solve the resulting system by applying whether the
F4 or F5 the algorithm. In this paper, we refer to this method as the Hybrid-F5
algorithm. The complexity of this method is given by

qk ¨O
ˆˆ

n´ k ` dreg
dreg

˙ω

` nn3sol

˙

Memory complexity:

O

˜

ˆ

n´ k ` dreg ´ 1

dreg

˙2
¸

,

where dreg “ degpPkpzqq`1, and Pkpzq is the polynomial shown in Equation (4).

Crossbred The Crossbred algorithm was introduced by Joux and Vitse [50].
Its complexity was initially analyzed by Chen et al. in [23], and later Duarte
provided a more detailed complexity analysis by encoding the information in
several bivariate series to determine the complexity [35].

For q “ 2, Duarte used the field equations to derive formulas of the aforemen-
tioned bivariate series, but he not consider them in the case of q ą 2. Inspired
by the ideas of Duarte, we extend the complexity of the Crossbred algorithm by
taking into account the field equations even when q ą 2.

Let us fix three positive integers D, d, and k. The Crossbred algorithm consists
in two steps, the preprocessing and the linearization steps. In the former step, it
performs a sequence of row operations on a submatrix of the degree D Macaulay
matrix of the given set of polynomials, in such a way that every specialization of
the last n´k variables yields equations of degree d in the first k variables. In the
linearization step, the Crossbred algorithm tests the consistency of the resulting
degree d system by linearization. To derive the complexity of this algorithm we
assume that after each specialization of the last n´k variables the remain system
is semi-regular. The complexity of this approach is given by

Õ
`

n2cols
˘

`qn´k¨Õ pñωcolsq “ O
`

n2cols log2 ncols log2 log2 ncolsq
˘

`qn´k¨O pm ¨ ñωcolsq ,

where for the given the parameters pD, d, kq

ncols “
D
ÿ

dk“d`1

D´dk
ÿ

d1“0

rxdkzd
1

sHkpxqHn´kpzq, and ñcols “ rz
ds

ˆ

Hkpzq

1´ z

˙

,

where Hkpzq :“ p1´zqqk

p1´zqk
.

Given a non-negative integer k, not all pairs pD, dq, with D ą d, are expected
to configure the algorithm so that the Crossbred can solve an MQ problem S with
an underlying semi-regular sequence of polynomials. We say that pD, d, kq are
admissible parameters for S if the Crossbred algorithm with parameters pD, d, kq
is expected to solve S.

11

In [35], Duarte shows the case q “ 2 of the following fact: if the coefficient of
the monomial xDyd in the bivariate series

p1` xqn´k

p1´ xqp1´ yq

ˆ

p1` xyqk

p1` x2y2qm
´
p1` xqk

p1` x2qm

˙

´
p1` yqk

p1´ xqp1´ yqp1` y2qm
(5)

is non-negative, then pD, d, kq are admissible parameters for S.
Here we remark that for the case q ě 2, it can be generalized as

Skpx, yq :“
H̃k,mpxyq ¨Hn´kpxq ´ H̃n,mpxq ´ H̃k,mpyq

p1´ xqp1´ yq
, (6)

where H̃k,mpyq is the Hilbert series of a semi-regular sequence with m equations
in k variables, i.e.,

H̃k,mpyq :“

„

p1´ yqqk

p1´ yqk

ˆ

1´ y2

1´ y2q

˙m

`

.

Notice that the Equation (6) reduces to the Equation (5) when q “ 2.
The space complexity is dominated by the memory needed to store the matri-

ces in the preprocessing and the linearization steps. Thus, the space complexity
is given by

O
`

n2cols ` ñ
2
cols

˘

.

3.5 Probabilistic algorithms

In this section, we describe the complexity of the so-called probabilistic algo-
rithms for solving the MQ problem. A common and interesting feature of these
algorithms is that they asymptotically outperform the exhaustive search algo-
rithms in the worst case, and their complexity does not depend on any assump-
tion about the input polynomials.

Lokshtanov et al.’s Lokshtanov et al. [54] were the first to introduce a prob-
abilistic algorithm that, in the worst case, solves a square (m “ n) polynomial
system over Fq in time Õpqδnq, for some δ ă 1 depending only on q and the
degree of the system, without relying on any unproven assumption. Overall,
Lokshtanov et al.’s is an algorithm to check the consistency, i.e., determining
whether or not the system has a solution to a given MQ problem. Computing a
solution can be done by using this algorithm several times. Letting q “ pd, for a
prime number p and a positive integer d, the time complexity of Lokshtanov et
al.’s algorithm is:

– Õ
`

20.8765n
˘

for q “ 2.

– Õ
`

q0.9n
˘

for q ą 2 being a power of 2.

– Õ
`

q0.9975n
˘

, when p ą 2, log p ă 8e.

12

– For log p ě 8e, the complexity is given by

Õ

˜

qn ¨

ˆ

log q

2ed

˙´dn
¸

.

To derive a more precise time complexity estimation, let us assume that Cpn,m, qq
is the time complexity of checking the Loskshtanov et al.’s algorithm to check
the consistency of a given MQ problem. Then, the complexity of finding one
solution to the MQ problem is upper bounded by

pq ´ 1q
n´1
ÿ

i“0

Cpn´ i,m, qq.

Lokshtanov et al. [54] proved that

Cpn,m, qq “ O
´

100n log2pqq
´

qn´n
1

` qn
1

¨Mpn´ n1, 2pq ´ 1qpn1 ` 2q, qq ¨ n6q
¯¯

,

where n1 “ tδnu, and Mpn, d, qq is the number of monomials of degree at most
d on n variables in Fqrx1, . . . , xns{xxq1 ´ x1, . . . , x

q
n ´ xny, i.e., Mpn, d, qq is the

coefficient of zd in the series
p1´ zqqn

p1´ zqn`1
.

See [68, Lemma 1] for further details. The space complexity of this algorithm is
given by

O
´

Mpn´ n1, kpq ´ 1qpn1 ` 2q, qq ` log2 nq
n´n1

¯

.

Björklund et al.’s Based on the ideas from Lokshtanov et al., Björklund et
al. [17] devised an algorithm to compute the parity of the number of solutions
of a given MQ problem over F2. They showed how their algorithm could be used
to solve the MQ problem with time complexity Õ

`

20.803225n
˘

.
Let F be a sequence of polynomials over F2, and for a given integer n1, let

x “ py, zq be a partition of the variables in x, where y and z correspond to the
first n ´ n1 and the last n1 variables in x, respectively. The main idea behind
the Björklund et al.’s algorithm is to approximate the values of the polynomial
P pyq given by

P pyq “
ÿ

ẑPt0,1un1

F py, ẑq, where F py, zq “
ź

fPF
p1` fpy, zqq. (7)

This approximation is made by computing 48n` 1 times the values of P̃ pỹq for
every ŷ P t0, 1un´n1 , where P̃ is the polynomial given by

P̃ pyq “
ÿ

ẑPt0,1un1

F̃ py, ẑq, where F̃ py, zq “
ź

gPG
p1` gpy, zqq, (8)

13

and G is a sequence of polynomials formed by random F2-linear combinations
of the polynomials in F . Notice, for a fixed ŷ P t0, 1un´n1 the value P̃ pŷq is the
parity of the function F̃ pŷ, zq, i.e., the parity of the addition of all F̃ pŷ, ẑq with
ẑ P t0, 1un1 . Also, the parity of F̃ is the parity of the sum of all values P̃ pỹq, and
at the same time is an approximation to the parity of F . Since this last parity
is clearly the parity of the number of solutions of the MQ problem, we can say
the Bjöklund et al. parity counting algorithm reduces to many smaller instances
of the same problem, namely, the parity of F̃ pŷ, zq for every ŷ P t0, 1un´n1 for
each of the 48n` 1 polynomial s F̃ .

Let T pn,mq be the time complexity of Björklund et al.’s parity-counting
algorithm. Thus, it can be transformed to solve the MQ problem in polynomial
time. More precisely, the expected number of operations is given by

O

˜

8k logpnq
n´1
ÿ

i“1

T pn´ i,m` k ` 2q

¸

,

where k “ tlogpnsol ` 1qu4.
It is proven that

T pn,mq ď s ¨ τp`q

ˆ

T p`, `` 2q `O
ˆ

¨pn` p`` 2qm

ˆ

n

Ó 2

˙

` 2n´`pn´ `q

˙˙

,

where ` “ tλnu, 0 ă λ ă 1, s “ 48n ` 1, τp`q :“
`

n´`
Ó``4

˘

, and
`

n
Ók

˘

:“
řk
j“0

`

n
j

˘

.

For the space complexity, denoted by Spn,mq, the following formula is proven

Spn,mq ď Sp`, `` 2q `O
ˆ

2n´` log s`m

ˆ

n

Ó 2

˙˙

.

Dinur’s first algorithm Inspired by the ideas from Björklund et al., Dinur [34]
proposed an algorithm to compute the parity of the number of solutions of a
given MQ problem over F2. Unlike Björklund et al.’s, Dinur’s parity-counting
algorithm does not compute one by one the 2n´n1 values of an specialization of
the polynomial P̃ given in (8). Instead, it computes all the values P̃ pŷq at once
via an algorithm to solve so-called multiple parity counting problem, such an
algorithm is named the multiparity algorithm. Like in the Björklund et al.’s the
Dinur’s parity-counting algorithm computes 48n` 1 time all the values of P̃ pŷq
to approximate the values of the polynomial P pyq given in (7). Then, it adds the
2n´n1 approximated values P̃ pŷq to get the parity of the number of solutions.

The complexity of then Dinur’s parity-counting algorithm is given by T pn1, n´
n1,mq, where 0 ď n1 ă n, and T p¨, ¨, ¨q is defined by

T pn1, w,mq :“ O pt ¨ pT pn2, 2`´ n2, `q ` n
ˆ

n´ n1
Ó w

˙

2n1´n2`

` n

ˆ

n´ n2
Ó 2`´ n2

˙˙

` `m

ˆ

n

Ó 2

˙˙

,

4 The factor 8k logn comes from the expected complexity of the Valiant–Vazirani
isolation’s algorithm with probability 1´ 1{n, see [17, Sec. 2.5] for more details.

14

with t “ 48n ` 1, n1 “ tκ0nu, n2 “ tn1 ´ λnu, ` “ mintn2 ` 2,mu, 0 ă
κ0 ď

1
3 , and 0 ă λ ă 1. In the particular case, n2 ď 0, in this case T pn,wq :“

n ¨
`

n´n1

Ów

˘

2n1 .
Similarly to the Björklund et al.’s algorithm, the complexity of solving the

MQ problem using Dinur’s parity-counting is given by

O

˜

8k logpnq
n´1
ÿ

i“1

T pn1i, n´ i´ n1i,m` k ` 2q

¸

,

where k “ tlogpnsol` 1qu, and n1i “ tκ0pn´ iqu. The Õ p¨q complexity estimated
by Dinur is Õ

`

20.6943n
˘

. The space complexity of the algorithm is dominated by
O pp48n` 1q2n´n1q.

Dinur’s second algorithm Dinur [33] proposed a more efficient algorithm to
solve the MQ problem over F2.

Let F be the sequence of polynomials of a given MQ problem. The main
difference with his previous algorithm is that the new algorithm does not ap-
proximate the parity of nsolpFq by computing the parity of 48n`1 specializations
of the polynomial F̃ from Equation 8. Instead, it computes all the solution of
few specializations (up to 4 or 5) of the probabilistic sequence G from Equation
8. All of such solutions are tested on the original sequence F until a solution is
found.

Let n1 be an integer satisfying that m ď 2pn1 ` 1q ` 2. Then, the time
complexity T pn, n1q of the Dinur’s second algorithm is tightly upper bounded
by

T pn, n1q ď 16 log n ¨ 2n1 ¨

ˆ

n´ n1
Ó n1 ` 2

˙

` n1 ¨ n ¨ 2
n´n1 ` 2n´2n1`1

ˆ

n

Ó 2

˙

.

Moreover, the fact n1 « n{5.4 yields to T pn, n1q ď n2 ¨ 2n´n1 . The space com-
plexity is given by

8 ¨ pn1 ` 1q ¨

ˆ

n´ n1
Ó n1 ` 3

˙

.

4 Algorithms not considered in our estimator

Here we collect the algorithms designed to solve the MQ that are not considered
explicitly in the software of our estimator.

Hashimoto’s algorithm Hashimoto [47] proposed two algorithms, namely
Has-1 and Has-2, to solve the MQ problem in the underdetermined case. However,
Miura, Hashimoto, and Takagi [56] showed that Has-1 does not work, and they
provided a better analysis for Has-2, see Section 3.2.

15

Linearization algorithms The linearization algorithms reduce the MQ prob-
lem to solve a, usually large, linear system of equations. The most general of this
kind of algorithms is the Xtended Linearization (XL) algorithm introduced by
Courtois et al. in [25]. Moreover, XL is essentially the same algorithm indepen-
dently devised by Lazard [53], and it can be viewed as a redundant variant of a
Gröbner basis algorithms F4 and F5 [3]. Also, in the estimator, we do include
the more general variant of XL called FXL, see Section 3.4.

Courtois et al.’s algorithms In our estimator, we do not consider the so-
called algorithm B nor algorithm C by Courtois et al. [26]. Algorithm B is a
particular case of the Crossbred algorithm where D and d are set to be 2 and 1,
respectively. While algorithm C is the same strategy described by Thomae and
Wolf in [66] over fields of characteristic 2.

5 The estimator

Here we describe the software, named the MQ estimator, to estimate the hardness
of the MQ problem. Also, we show how its estimates compare with the best-
known practical results and previous estimations for some multivariate-based
signature schemes.

5.1 Description/Usage

This section documents the overall structure of our MQ estimator. Full docu-
mentation is publicly available in [9].

Main class:

MQEstimator: This class is to compute the complexity estimates for a given
instances q, n, and m of the MQ problem. By default, for each algorithm X that
works on a problem defined by q, n, and m, it builds one method to estimate
the complexity of X.

The main parameters of this class are:

q: the size of the field

n: the number of variables

m: the number of polynomials

other optional parameters are:

w: the matrix multiplication complexity exponent (Default value: 2).

theta: the real number θ P r0, 2s such that plog qq
θ

is the ratio between field
operations complexity and bit complexity, see Section 2.2 (Default value: 0).

16

h: An integer specifying the external hybridization parameter. It assumes
that the computation is split into qh subsystem of n ´ h variables and m
equations. Hence, the time complexity of solving qh of the aforementioned
subsystems. In contrast, the space complexity is the amount of memory
needed to solve only one subsystem (Default value: 0).
excluded algorithms: list of algorithms not to be consider (Default value:
[]).
tilde o complexity: the Boolean value determining if the complexity is
estimated by just plugged in number is the Õ complexity formula, if any
(Default value: False).
nsolutions: the number of solutions of the underlying problem (Default
value: 1).

5.2 Numerical results

Table 1 compares the complexity estimates of some of the algorithms used to
break instances of the FMQ challenge [69]. The column algorithm used shows the
algorithm used to break the corresponding challenge, while the column equiva-
lent algorithm gives the algorithm in our MQ estimator tool used to estimate
the complexity of the algorithm used. The column best algorithm shows, accord-
ing to our estimator, the best theoretical algorithm to solve a given instance.
The time and memory estimates under the column practical (resp. theoretical)
are practical (resp. theoretical) estimates of the number of clock cycles (resp.
bit time complexity) and memory (resp. bit space complexity) used to solve
the corresponding MQ problem. The value h denotes the external hybridization
parameter (see Section 5.1).

All theoretical estimates are computed with our MQ estimator tool, where
we used ω “ 2.81, and θ “ 2. For the best algorithm we set h “ 0, while for the
equivalent algorithm we set h to be the same used to break the challenge.

For all the algorithms but M4GB, our estimator provides tight estimates
compared to the practical ones computed from the information provided by the
challenge’s breakers. The small gap between the time estimates of algorithm used
and the equivalent algorithm is due to the different metrics used in each case. We
use the number of clock cycles for the practical estimates and the number of bit
operations for the theoretical ones. It is well known that several bit operations
can be done in a single clock cycle. Still, the exact number depends on the device
used and the implementation of the specific task5.

The best time complexity for the Type I and IV parameters is way better
than the one used to break the challenge. Still, the space complexities of the
former are significantly larger than the latter, which makes it difficult to solve

5 For instance, for the Type IV parameters where n “ 66, the authors used several
Spartan-6 FPGAs to break the challenge. There the authors implemented the FES
algorithm to solve a system with 48 variables and equations. Such particular imple-
mentation allowed them to test 210 potential solutions per clock cycle, which means
they are computing at least 210 bit operations per clock cycle.

17

in practice. For Type II, III, and VI parameters, both the space complexity of
the best algorithm and the algorithm used are relatively similar. Still, the time
complexity is way better in the former than in the latter. This fact suggests that
the estimated best algorithm would outperform (in practice) the one used in the
MQ challenge. Finally, for Type V, we have that the FXL algorithm is better in
terms of time and memory than the Hybrid-F5 algorithm.

Table 1: Comparison between the estimates of some of the algorithms used to
break FMQ challenges [69] and the estimates using the MQ estimator.

Parameters Complexity estimates

Type q n m

Practical Theoretical Theoretical
algorithm used equivalent algorithm best algorithm

(parameters used) (optimal parameters)
time memory time memory time memory

I 2 74 148
Crossbred [60] Crossbred Crossbred

pk “ 22, D “ 4, d “ 1, h “ 10q pk “ 35, D “ 7, d “ 1q

64.3 34.6 71.9 27.0 62.3 54.7

IV 2 99 66
FES [19] FES Dinur2

ph “ 0q pn1 “ 12q
55.9 n/a 68.6 18.1 63.2 49.8

IV 2 103 69
Crossbred6 Crossbred Dinur2
pk “ 15, D “ 4, d “ 1, h “ 17q pn1 “ 12q

67 n/a 78.1 17.7 65.8 51.1

II 28 37 74
F4-style [49] F5 Crossbred

ph “ 0q pk “ 36, D “ 7, d “ 2q
60.1 38.5 76.8 52.8 57.7 48.0

V 28 28 19
M4GB [55] Hybrid-F5 FXL

ph “ 1q pk “ 2, variant “ las vegasq
54.3 ď 37.9 78.7 47.6 75.5 32.6

III 31 38 76
XL [24] FXL Crossbred

ph “ 0q (k “ 36, D “ 7, d “ 2)
59.0 35.5 66.7 39.2 56.7 47.8

VI 31 30 20
M4GB [55] Hybrid-F5 Crossbred

ph “ 2q (k “ 10, D “ 9, d “ 1)
55.3 ď 37.9 75.1 44.2 63.1 44.3

Figures 1a, 1c, and 1b illustrate the bit complexity estimates of the MQ prob-
lem for different parameters q, n and m. Each line represents a different value of
q, while a bullet over a given line indicates the algorithm providing such a com-
plexity estimate. To generate the plots we set w “ 2.81 in our estimator, and we
left by default the rest of the inputs. In each figure, we emphasize on a different
regime of the ratio m{n. Figure 1a m{n “ 1 (the square case), Figure 1c m{n ą 1
(the overdetermined case), and Figure 1b m{n ă 1 (the underdetermined case).

In the square case we observe that, for q “ 2 the Dinur’s second algorithm
provide the best estimates given n ě 30, while the the exhaustive search strategy
is the best for n ă 30. A similar observation was noted in practice [5]. For
q “ 28 and q “ 31, the algorithm FXL provides the best time estimates for all

6 No publication describing this implementation in detail.

18

20 30 50
20

40

60

80

100

120

140

160

q “ 2

q “ 31

q “ 28

n

lo
g

2
pb
it
co
m
p
le
x
it
y
q

exh search dinur2
crossbred booleansolve fxl

(a) n “ m

20 32 46 50

20

40

60

80

100

120

q “ 2

q “ 31

q “ 28

n

lo
g

2
pb
it
co
m
p
le
x
it
y
q

exh search dinur2
crossbred booleansolve fxl

(b) n “ 1.5m

20 24 30 38 46 50
20

30

40

50

60

70

80

q “ 2

q “ 31
q “ 28

n

lo
g

2
pb
it
co
m
p
le
x
it
y
q

exh search crossbred

(c) n “ 0.5m

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.92
20

30

40

50

60

70

80

n “ 40

n “ 60

n “ 80

µ

lo
g

2
pb
it
co
m
p
le
x
it
y
q

exh search dinur2 crossbred

(d) n “ 1
µ
m and q “ 2

Fig. 1: Numerical estimates of the bit-complexity of the MQ problem.

the instances but when n ď 22 and q “ 28. In the case m “ 2n, the Crossbred
algorithm outperform the others as long as n ě 24 and the exhaustive search
algorithm is the best for n ď 24 and q “ 2. The case n “ 1.5m exhibits a similar
behavior than the square case. Here instead, for q “ 2, the Dinur’s second
algorithm starts being better than exhaustive search just until n ě 46.

Remark 5.1. In Figure 1c, the exponent of the time complexity grows a the same
rate for several consecutive values of n, but at a specific value, this rate suddenly
increases. This is because the values of D providing the best time complexity for
Crossbred increases by one after n reaches a particular value, and this causes a
considerable increase in the size of the matrix in the preprocessing step. Hence
the cost of the processing step increases considerably.

Figure 1d shows bit complexity as a function of the ratio m{n for q “ 2.
Here, each line represents a different value of n, and a bullet represents the
algorithm’s name providing the corresponding complexity. Note that, for every
q, the Crossbred algorithm gets better than the others once µ is bigger than a
threshold. For n “ 40, 60 this threshold is 1.2, while for n “ 80 the threshold
moves up to 1.3.

19

Table 2: Security estimates against the direct attack for Rainbow.

Category q n m
Claimed
security

Estimated
security

Algorithm
(parameters)

I 16 100 64 164 158.3
Crossbred

(k “ 38, D “ 26, d “ 4)

III 256 148 80 234 235.7
FXL

(k “ 5, variant “ las vegas)

V 256 196 100 285 287.7
FXL

(k “ 7, variant “ las vegasq

5.3 Security of MPKCs against the direct attack

In this section, we use our MQ estimator to estimate the security against the
direct attack of Rainbow [30], MAYO [16], MQDSS [23], and MUDFISH [14]. We
configure out estimator with ω “ 2.81, θ “ 2, and D ď 40 in the Crossbred
algorithm.

Commonly, the public key of an MPKC in a quadratic map P : Fnq Ñ Fmq over
a finite field Fq. Undermined the security of these schemes is always possible by
solving an MQ problem P pxq “ y, where y P Fmq . This attack is known as the
direct attack.

Table 3: Security estimates against the direct attack for MAYO.

Category q n m
Claimed
security

Estimated
security

Algorithm
(parameters)

I 7 962 76 145 137.4
Crossbred

(k “ 24, D “ 20, d “ 1)

I 7 1140 78 145 137.4
Crossbred

(k “ 24, D “ 20, d “ 1)

III 7 2220 117 210 204.5
Crossbred

(k “ 45, D “ 30, d “ 3)

III 7 2240 117 209 203.1
Crossbred

(k “ 45, D “ 30, d “ 3)

V 7 2960 152 273 268.7
Crossbred

(k “ 56, D “ 39, d “ 3)

V 7 3874 157 273 269.7
Crossbred

(k “ 61, D “ 39, d “ 4)

Instead of directly trying to find a preimage of P , an attacker could try to
recover the secret key by using the knowledge of P and the underlying structure
of the cryptosystem. These attacks are called structural attacks. For some cryp-
tosystems, e.g., Rainbow there is a structural attack that is more efficient than

20

the direct one [15]. Still, for some cryptosystems, the direct attack is better than
any other known structural attack, e.g., MAYO.

In [61], NIST defines five security categories, namely, category I, II, III, IV,
and V. It establishes that cryptographic schemes with classical security cate-
gories I, III, and V must provide 143, 207 and 272 bits of security, respectively.

Tables 2 and 3 show the security estimates of Rainbow and MAYO, respec-
tively. We observed that all MAYO parameters fail to achieve the target security
category. Instead, all the Rainbow parameters achieve the claimed security cate-
gory against the direct attack, but the category III and V parameters have fewer
bits of security than claimed. Finally, in Table 4 we see that all the parameters
of MUDFISH and MQDSS are far below the claimed security. Still, category I
and III parameters achieve the claimed category.

Notice that our better complexity estimates are mainly due to new com-
plexity estimates for the Crossbred algorithm, see Section 3.4. These estimates
take into account the role of the field equations over a field with few elements,
i.e., for small values of q. We believe that such more general formulas were not
used in previous complexity estimates. Thus, we provide more accurate security
estimates for the schemes considered in this section.

Table 4: Security estimates against the direct attack for MUDFISH and MQDSS

Category q n m
Claimed
security

Estimated
security

Algorithm
(parameters)

I 4 88 88 156 146.0
Crossbred

(k “ 26, D “ 19, d “ 1)

III 4 128 128 230 208.0
Crossbred

(k “ 36, D “ 27, d “ 1)

V 4 160 160 290 258.5
Crossbred

(k “ 50, D “ 33, d “ 2)

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with er-
rors. Cryptology ePrint Archive, Report 2015/046 (2015), https://eprint.iacr.
org/2015/046

2. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication.
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms pp.
522–539 (2021)

3. Ars, G., Faugère, J.C., Imai, H., Kawazoe, M., Sugita, M.: Comparison between
XL and Gröbner basis algorithms. In: Lee, P.J. (ed.) Advances in Cryptology -
ASIACRYPT 2004. pp. 338–353. Springer Berlin Heidelberg (2004)

4. Ayad, A.: A survey on the complexity of solving algebraic systems. Int. Math.
Forum 5(5-8), 333–353 (2010)

5. Barbero, S., Bellini, E., Sanna, C., Verbel, J.: Practical complexities of probabilistic
algorithms for solving Boolean polynomial systems. Discrete Appl. Math. 309, 13–
31 (2022)

21

https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2015/046

6. Bard, G.V.: Algorithms for Solving Linear and Polynomial Systems of Equations
over Finite Fields with Applications to Cryptanalysis. Theses, University of
Maryland (2007)

7. Bardet, M., Faugère, J.C., Salvy, B.: On the complexity of the F5
Gröbner basis algorithm. Journal of Symbolic Computation 70, 49–70 (2015).
https://doi.org/https://doi.org/10.1016/j.jsc.2014.09.025

8. Bardet, M., Faugère, J.C., Salvy, B., Spaenlehauer, P.J.: On the complexity of
solving quadratic Boolean systems. Journal of Complexity 29(1), 53–75 (2013).
https://doi.org/https://doi.org/10.1016/j.jco.2012.07.001

9. Bellini, E., Makarim, R., Verbel, J.: An estimator for the complexity of the MQ
problem. (2021), https://github.com/Crypto-TII/multivariate_quadratic_

estimator

10. Bellini, E., Esser, A.: Syndrome decoding estimator (2021), https://github.com/
Crypto-TII/syndrome_decoding_estimator

11. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post–Quantum Cryptography.
Springer-Verlag Berlin Heidelberg (2009)

12. Bernstein, D.J., Yang, B.Y.: Asymptotically faster quantum algorithms to solve
multivariate quadratic equations. In: Lange, T., Steinwandt, R. (eds.) Post-
Quantum Cryptography. pp. 487–506. Springer International Publishing, Cham
(2018)

13. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and fishy signature schemes.
In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology – EUROCRYPT 2020.
pp. 183–211. Springer International Publishing, Cham (2020)

14. Beullens, W.: Sigma protocols for mq, pkp and sis, and fishy signature schemes.
In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology – EUROCRYPT 2020.
pp. 183–211. Springer International Publishing, Cham (2020)

15. Beullens, W.: Improved cryptanalysis of UOV and Rainbow. In: Canteaut, A.,
Standaert, F.X. (eds.) Advances in Cryptology – EUROCRYPT 2021. pp. 348–
373. Springer International Publishing, Cham (2021)

16. Beullens, W.: Mayo: Practical post-quantum signatures from oil-and-vinegar maps.
In: Hülsing, A., AlTawy, R. (eds.) Selected Areas in Cryptography. Springer
International Publishing (2021)

17. Björklund, A., Kaski, P., Williams, R.: Solving systems of polynomial equations
over GF(2) by a parity-counting self-reduction. In: Baier, C., Chatzigiannakis,
I., Flocchini, P., Leonardi, S. (eds.) International Colloquium on Automata,
Languages and Programming – ICALP 2019. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.26

18. Bouillaguet, C., Chen, H., Cheng, C., Chou, T., Niederhagen, R., Shamir, A.,
Yang, B.: Fast exhaustive search for polynomial systems in F2. In: Cryptographic
Hardware and Embedded Systems, CHES 2010. pp. 203–218 (2010)

19. Bouillaguet, C., Cheng, C., Chou, T., Niederhagen, R., Yang, B.: Fast exhaustive
search for quadratic systems in F2 on FPGAs. In: Lange, T., Lauter, K.E., Lisonek,
P. (eds.) Selected Areas in Cryptography - SAC 2013. Lecture Notes in Computer
Science, vol. 8282. Springer (2013). https://doi.org/10.1007/978-3-662-43414-7 11

20. Buchmann, J.A., Ding, J., Mohamed, M.S.E., Mohamed, W.S.A.E.: MutantXL:
Solving multivariate polynomial equations for cryptanalysis. In: Handschuh, H.,
Lucks, S., Preneel, B., Rogaway, P. (eds.) Symmetric Cryptography. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009), http://drops.

dagstuhl.de/opus/volltexte/2009/1945

22

https://doi.org/https://doi.org/10.1016/j.jsc.2014.09.025
https://doi.org/https://doi.org/10.1016/j.jco.2012.07.001
https://github.com/Crypto-TII/multivariate_quadratic_estimator
https://github.com/Crypto-TII/multivariate_quadratic_estimator
https://github.com/Crypto-TII/syndrome_decoding_estimator
https://github.com/Crypto-TII/syndrome_decoding_estimator
https://doi.org/10.4230/LIPIcs.ICALP.2019.26
https://doi.org/10.1007/978-3-662-43414-7_11
http://drops.dagstuhl.de/opus/volltexte/2009/1945
http://drops.dagstuhl.de/opus/volltexte/2009/1945

21. Casanova, A., Faugère, J.C., Macario-Rat, G., Patarin, J., Perret, L., Ryckeghem,
J.: GeMSS: A great multivariate short signature. NIST CSRC (2017), official web-
site: https://www-polsys.lip6.fr/Links/NIST/GeMSS.html

22. Chen, M.S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: SOFIA:
MQ-based signatures in the qrom. In: Abdalla, M., Dahab, R. (eds.) Public-Key
Cryptography – PKC 2018. pp. 3–33. Springer International Publishing, Cham
(2018)

23. Chen, M.S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: MQDSS spec-
ifications (2020), http://mqdss.org/specification.html

24. Cheng, C.M., Chou, T., Niederhagen, R., Yang, B.Y.: Solving quadratic equa-
tions with XL on parallel architectures. In: Prouff, E., Schaumont, P. (eds.)
Cryptographic Hardware and Embedded Systems – CHES 2012. pp. 356–373.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

25. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. EUROCRYPT 2000,
LNCS 1807, 392–407 (2000)

26. Courtois, N., Goubin, L., Meier, W., Tacier, J.D.: Solving underdefined systems of
multivariate quadratic equations. In: Naccache, D., Paillier, P. (eds.) Public Key
Cryptography. pp. 211–227. Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

27. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
Advances in Cryptology — EUROCRYPT 2000. pp. 392–407. Springer Berlin
Heidelberg, Berlin, Heidelberg (2000)

28. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An
Introduction to Computational Algebraic Geometry and Commutative Algebra,
3/e (Undergraduate Texts in Mathematics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA (2007)

29. Dickenstein, A., Emiris, I.Z.: Solving Polynomial Equations. Foundations,
Algorithms, and Applications, Algorithms and Computation in Mathematics,
vol. 14. Springer-Verlag Berlin Heidelberg (2005)

30. Ding, J., Chen, M., Petzoldt, A., Schmidt, D., Yang, B.: Rainbow.
NIST CSRC (2017), https://csrc.nist.gov/CSRC/media/Projects/

Post-Quantum-Cryptography/documents/round-1/submissions

31. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) Applied Cryptography and
Network Security. pp. 164–175. Springer Berlin Heidelberg, Berlin, Heidelberg
(2005)

32. Ding, J., Zhang, Z., Deaton, J.: How much can F5 really do. Cryptology ePrint
Archive, Report 2021/051 (2021), https://eprint.iacr.org/2021/051

33. Dinur, I.: Cryptanalytic applications of the polynomial method for solving mul-
tivariate equation systems over GF(2). In: Canteaut, A., Standaert, F. (eds.)
Advances in Cryptology - EUROCRYPT 2021. pp. 374–403. Springer (2021).
https://doi.org/10.1007/978-3-030-77870-5 14

34. Dinur, I.: Improved algorithms for solving polynomial systems over GF(2) by mul-
tiple parity-counting. In: ACM-SIAM Symposium on Discrete Algorithms (SODA).
pp. 2550–2564 (2021). https://doi.org/10.1137/1.9781611976465.151

35. Duarte, J.D.: On the complexity of the crossbred algorithm. Cryptology ePrint
Archive, Report 2020/1058 (2020), https://eprint.iacr.org/2020/1058

36. Eder, C., Faugère, J.C.: A survey on signature-based algorithms for computing
Gröbner bases. Journal of Symbolic Computation 80, 719–784 (2017)

23

https://www-polsys.lip6.fr/Links/NIST/GeMSS.html
http://mqdss.org/specification.html
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions
https://eprint.iacr.org/2021/051
https://doi.org/10.1007/978-3-030-77870-5_14
https://doi.org/10.1137/1.9781611976465.151
https://eprint.iacr.org/2020/1058

37. Esser, A., Bellini, E.: Syndrome decoding estimator. Cryptology ePrint Archive,
Report 2021/1243 (2021), https://ia.cr/2021/1243

38. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139(1), 61–88 (1999)

39. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of the 2002 International Symposium
on Symbolic and Algebraic Computation. p. 75–83. ISSAC ’02, Association for
Computing Machinery, New York, NY, USA (2002)

40. Faugère, J., Horan, K., Kahrobaei, D., Kaplan, M., Kashefi, E., Perret, L.:
Fast quantum algorithm for solving multivariate quadratic equations. CoRR
abs/1712.07211 (2017)

41. Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of
zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic
Computation 16(4), 329 – 344 (1993)

42. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. pp. 186–194.
Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

43. Furue, H., Nakamura, S., Takagi, T.: Improving Thomae-Wolf algorithm for
solving underdetermined multivariate quadratic polynomial problem. In: Cheon,
J.H., Tillich, J.P. (eds.) PQcrypto 2021. LNCS. pp. 65–78. Springer International
Publishing, Cham (2021)

44. Furue, H., Duong, D., Takagi, T.: An efficient MQ-based signature with tight se-
curity proof. International Journal of Networking and Computing 10(2), 308–324
(2020), http://www.ijnc.org/index.php/ijnc/article/view/238

45. Fusco, G., Bach, E.: Phase transition of multivariate polynomial systems. In:
Cai, J.Y., Cooper, S.B., Zhu, H. (eds.) Theory and Applications of Models of
Computation. pp. 632–645. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

46. Gashkov, S.B., Sergeev, I.S.: Complexity of computations in finite fields. Fundam.
Prikl. Mat. 17(4), 95–131 (2011/12)

47. Hashimoto, Y.: Algorithms to solve massively under-defined systems of
multivariate quadratic equations. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences E94.A(6), 1257–1262
(2011). https://doi.org/10.1587/transfun.E94.A.1257

48. Huang, H., Bao, W.: Algorithm for solving massively underdefined systems of mul-
tivariate quadratic equations over finite fields (2015)

49. Ito, T., Shinohara, N., Uchiyama, S.: An efficient F4-style based algorithm to solve
MQ problems. In: Attrapadung, N., Yagi, T. (eds.) Advances in Information and
Computer Security. pp. 37–52. Springer International Publishing, Cham (2019)

50. Joux, A., Vitse, V.: A crossbred algorithm for solving Boolean polynomial systems.
In: Kaczorowski, J., Pieprzyk, J., Pomyka la, J. (eds.) Number-Theoretic Methods
in Cryptology. pp. 3–21. Springer International Publishing, Cham (2018)

51. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
EUROCRYPT 1999. LNCS 1592, 206–222 (1999)

52. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) Advances in Cryptology — EUROCRYPT ’99. pp. 206–222.
Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

53. Lazard, D.: Gröbner-bases, Gaussian elimination and resolution of systems of al-
gebraic equations. In: Computer Algebra, EUROCAL ’83, European Computer
Algebra Conference, London, England, March 28-30, 1983, Proceedings. pp. 146–
156 (1983)

24

https://ia.cr/2021/1243
http://www.ijnc.org/index.php/ijnc/article/view/238
https://doi.org/10.1587/transfun.E94.A.1257

54. Lokshtanov, D., Paturi, R., Tamaki, S., Williams, R., Yu, H.: Beating brute
force for systems of polynomial equations over finite fields. In: Symposium on
Discrete Algorithms. p. 2190–2202. SODA ’17, Society for Industrial and Applied
Mathematics, USA (2017)

55. Makarim, R.H., Stevens, M.: M4GB: an efficient Gröbner-basis algorithm. In: Burr,
M.A., Yap, C.K., Din, M.S.E. (eds.) Proceedings of the 2017 ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC 2017, Kaiserslautern,
Germany, 2017. pp. 293–300. ACM (2017), https://doi.org/10.1145/3087604.
3087638

56. Miura, H., Hashimoto, Y., Takagi, T.: Extended algorithm for solving under-
defined multivariate quadratic equations. In: Gaborit, P. (ed.) Post-Quantum
Cryptography. pp. 118–135. Springer Berlin Heidelberg (2013)

57. Moody, D.: The homestretch: the beginning of the end of the NIST PQC 3rd round.
In: International Conference on Post-Quantum Cryptography (2021), https://

pqcrypto2021.kr/download/program/2.2_PQCrypto2021.pdf
58. Mou, C.: Solving Polynomial Systems over Finite Fields: Algorithms,

Implementation and Applications. Theses, Université Pierre et Marie Curie (May
2013)

59. Niederhagen, R.: Parallel Cryptanalysis. Ph.D. thesis, Eindhoven University of
Technology (2012), http://polycephaly.org/thesis/index.shtml

60. Ning, K.C.: An adaption of the crossbred algorithm for solving multivari-
ate quadratic systems over F2 on GPUs (2017), https://pure.tue.nl/ws/

portalfiles/portal/91105984/NING.K_parallel_cb_v103.pdf
61. NIST: Submission requirements and evaluation criteria for the post-

quantum cryptography standardization process (2017), https://csrc.

nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/

call-for-proposals-final-dec-2016.pdf
62. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based on

multivariate quadratic polynomials. In: Rogaway, P. (ed.) Advances in Cryptology
– CRYPTO 2011. pp. 706–723. Springer Berlin Heidelberg (2011)

63. Schwabe, P., Westerbaan, B.: Solving binary MQ with Grover’s algorithm. In:
Carlet, C., Hasan, M.A., Saraswat, V. (eds.) Security, Privacy, and Applied
Cryptography Engineering. pp. 303–322. Springer International Publishing, Cham
(2016)

64. Seres, I.A., Horváth, M., Burcsi, P.: The Legendre pseudorandom function as a
multivariate quadratic cryptosystem: Security and applications. Cryptology ePrint
Archive, Report 2021/182 (2021), https://ia.cr/2021/182

65. Strassen, V.: Gaussian elimination is not optimal. Numerische mathematik 13(4),
354–356 (1969)

66. Thomae, E., Wolf, C.: Solving underdetermined systems of multivariate quadratic
equations revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) Public Key
Cryptography – PKC 2012. pp. 156–171. Springer Berlin Heidelberg (2012)

67. Ullah, E.: New Techniques for Polynomial System Solving. Theses, Universität
Passau (Feb 2012)

68. Yang, B.Y., Chen, J.M.: Theoretical analysis of XL over small fields. In: Wang,
H., Pieprzyk, J., Varadharajan, V. (eds.) Information Security and Privacy. pp.
277–288. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

69. Yasuda, T., Dahan, X., Huang, Y.J., Takagi, T., Sakurai, K.: MQ chal-
lenge: Hardness evaluation of solving multivariate quadratic problems. In: NIST
Workshop on Cybersecurity in a Post-Quantum World (2015), washington, D.C.
https://www.mqchallenge.org

25

https://doi.org/10.1145/3087604.3087638
https://doi.org/10.1145/3087604.3087638
https://pqcrypto2021.kr/download/program/2.2_PQCrypto2021.pdf
https://pqcrypto2021.kr/download/program/2.2_PQCrypto2021.pdf
http://polycephaly.org/thesis/index.shtml
https://pure.tue.nl/ws/portalfiles/portal/91105984/NING.K_parallel_cb_v103.pdf
https://pure.tue.nl/ws/portalfiles/portal/91105984/NING.K_parallel_cb_v103.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://ia.cr/2021/182
https://www.mqchallenge.org

	An Estimator for the Hardness of the MQ Problem

