
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Machine-learning-aided cognitive reconfiguration for flexible-bandwidth HPC and data center networks [Invited] / Chen,
Xl; Proietti, R; Fariborz, M; Liu, Cy; Yoo, Sjb. - In: JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING. -
ISSN 1943-0620. - 13:6(2021), pp. C10-C20. [10.1364/JOCN.412360]

Original

Machine-learning-aided cognitive reconfiguration for flexible-bandwidth HPC and data center networks
[Invited]

Optica Publishing Group (formely OSA) postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1364/JOCN.412360

Terms of use:

Publisher copyright

“© 2021 Optica Publishing Group. One print or electronic copy may be made for personal use only. Systematic
reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or
modifications of the content of this paper are prohibited.”

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2972080 since: 2022-10-05T09:28:29Z

Optica Publ. Group



To be published in Journal of Optical Communications and Networking:
 

© 2020 Optical Society of America
 

Title:   Machine-Learning-Aided Cognitive Reconfiguration for Flexible-Bandwidth HPC
and Data Center Networks

Authors:   Xiaoliang Chen,Roberto Proietti,Marjan Fariborz,Che-Yu Liu,S. J. Ben Yoo

Accepted:   15 December 20

Posted   16 December 20

DOI:   https://doi.org/10.1364/JOCN.412360



Research Article Journal of Optical Communications and Networking 1
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This paper proposes a machine learning-aided cognitive approach for effective bandwidth reconfigura-
tion in optically interconnected datacenter/high-performance computing (HPC) systems. The proposed
approach relies on a Hyper-X-like architecture augmented with flexible-bandwidth photonic interconnec-
tions at large scales using a hierarchical intra-/inter-POD photonic switching layout. We first formulate
the problem of connectivity graph and routing scheme optimization as a mixed-integer linear program-
ming model. A two-phase heuristic algorithm and a joint optimization approach are devised to solve the
problem with low time complexity. Then, we propose a machine learning-based end-to-end performance
estimator design to assist the network control plane with intelligent decision making for bandwidth re-
configuration. Numerical simulations using traffic distribution profiles extracted from HPC applications
traces as well as random traffic matrices verify the accuracy performance of the ML design estimator (< 9%
error) and demonstrate up to 5× throughput gain from the proposed approach compared with the baseline
Hyper-X network using fixed all-to-all intra-/inter-POD interconnects. © 2020 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

The rapid expansion of cloud services (e.g., web search, video
streaming) and emerging high-performance computing (HPC)
applications (e.g., deep learning workloads) entails advanced
interconnect architectures supporting high-bandwidth, low-
latency, and robust communications among tens of thousands
of servers or computing nodes. Current hyper-scale data centers
(DCs) and HPC systems are typically built on multi-hierarchy
tree-based electronic packet switching (EPS) architectures with
point-to-point optical links for inter-rack and inter-POD commu-
nications [1]. While these tree-based architectures provide rich
interconnectivity, they suffer from high power consumptions
and end-to-end latency as the systems scale to a large number
of nodes (network diameter and number of switches to be tra-
versed increases). As switch port data rates continue to increase
(from 40G to 100G and beyond [2]), sustaining the scalability
of such EPS-based hyperscale systems becomes increasingly
challenging. In particular, the energy efficiency of electronics
substantially degrades at such high data rates, and today’s data
centers and HPC systems are already consuming megawatts of
power. Overall, scalability faces difficulties in both scaling up
and scaling out due to the limitations in the bandwidth, radix,
and switching capacity of the electronic switches.In this context,

previous works have proposed a number of low-diameter di-
rectly connected topologies (e.g., Hyper-X [3], JellyFish [4], and
Xpander [5]) and demonstrated improved performance over
the tree-based architectures, with the first at-scale experimental
demonstration of an Hyper-X HPC network reported in [6].

As coarse wavelength division multiplexing (CWDM) opti-
cal transceivers are penetrating the datacom market to sustain
the ever increasing demand for compute node I/O bandwidth,
[7], and as silicon-photonic (SiPh) technologies are becoming
commercially viable, there has been a consensus in industry
and academia that disruptive optical interconnect and switching
technologies are essential for sustaining the scalability of cloud
infrastructure networks [8]. In other words, there are oppor-
tunities to re-architect the DC/HPC systems leveraging pho-
tonic technologies not just for point-to-point interconnections
but also for flattening the inter-rack networking architecture by
direct inter-rack wavelength routing and switching. Following
this consensus, the literature first reported several hybrid opti-
cal/electrical (HOE) switching architectures [9, 10], where opti-
cal circuit switching (OCS) fabrics are laid out to augment the
traditional OPS structures for enabling transparent (and there-
fore, high-capacity and energy-efficient) switching of elephant
flows. These hybrid architectures still cannot fully address the

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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Fig. 1. (a) Directly connected architecture with space-wavelength selective switches for topology/bandwidth reconfiguration. There
are N = k/4 PODs, with each PODs containing 2N servers and one k-port ToR. (b) Topological representation of the architecture

before (left) and after (right) reconfiguration. Black links are intra-pod links. Green links are inter-pod links. Red links are intra or
inter-pod links that have been reconfigured. (c) k-port ToR switch ASIC with k/4 ports for intra-POD interconnection and k/4 ports

from inter-POD interconnection. The rest of the ports (k/2) are used for connection to the hosts.

scalability issue as they still largely rely on electronic switches
and make use of microelectromechanical systems (MEMS)-based
optical switches that are subject to slow switching speeds (mil-
liseconds). Even more importantly, they require complex flow
classification algorithms and a fully centralized control plane
that need to orchestrate the switching operation across hundreds
of top-of-rack (ToR) switches.

A different switching paradigm that has been considered in
the past few years is the one where optical switching fabrics
are used to dynamically adapt the inter-rack connectivity (also
referred to as optical reconfiguration for bandwidth steering)
bandwidth and topology to the traffic patterns. As the traffic
distribution among racks and PODs is often non-uniform (often
highly skewed) and evolves over time [11], optical reconfigu-
ration can steer bandwidth resources where needed and ease
link congestion due to hotspot traffic between specific source-
destination racks. In this case, the switching operation does not
need to be performed on a packet flow basis but whenever the
traffic characteristic changes (e.g. different computation and
communication phases of certain HPC applications). Never-
theless, we anticipate that even under this scenario, realizing
effective and fast scheduling of reconfiguration is never a trivial
task, which still requires a powerful control and management
plane that can actively monitor the traffic among hundreds of
ToR switches [9, 10, 12] and promptly react to traffic changes
with fast and correct cross-layer reconfiguration operations of
the optical and electronic switch layers. There have been several

research efforts on optical reconfiguration design recently [13–
17], which, will be discussed in Section 7. However, these works
either just show proof-of-concept demonstrations with small-
scale topologies [15, 16], or employ ML models [14]/simple
heuristic designs [13, 17] targeting the reconfiguration of single
OCS switches.

In this paper, we consider an Hyper-X-like optical inter-
connect architecture [3] that can provide scalable and flexible-
bandwidth interconnections, and we benchmark its performance
against a standard Hyper-X network. We propose a machine
learning (ML)-aided cognitive approach for effective bandwidth
reconfiguration under such an architecture. We first formulate
the problem of connectivity graph and routing optimization as a
mixed-integer linear programming (MILP) model. Two heuristic
algorithms that optimize the connectivity graphs and routing
schemes successively or jointly are developed for solving the
problem in a time-efficient manner. We present an ML-based
end-to-end performance (i.e., latency, packet loss rate) estimator
design to assist in intelligent decision making for reconfigura-
tion scheduling. Numerical results obtained using traces from
existing HPC applications and under random traffic matrices
verify the effectiveness of the proposed design.

The rest of the paper is organized as follows. In Section 2, we
describe the 2D-Hyper-X architecture and discuss the control
plane principle for supporting dynamic optical reconfiguration.
Section 3 gives the MILP formulation. We elaborate on the
heuristic and the ML designs in Section 4 and Section 5, respec-
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tively. In Section 6, we present the simulation results and the
related discussions. Afterward, we discuss the related works in
Section 7. Finally, Section 8 concludes the paper with remarks
on potential future research directions and challenges yet to be
resolved.

2. ARCHITECTURE

As discussed in Section 1, in this paper we consider a directly
connected network where each switch connects to a certain num-
ber of servers (or computing nodes). Fig. 1(a) shows an architec-
ture with N = k/4 clusters (often referred as portable data cen-
ters - PODs) with N ToR switches per POD. The intra-POD and
inter-POD connectivity is augmented with wavelength-space
selective optical switches [18, 19] to reconfigure the interconnect
and increase the bandwidth (number of links between specific
ToR pairs) based on the algorithms and policies discussed in
Section 4.

As shown in Fig. 1(b) on the left, the ToRs can be seen as or-
ganized in columns, where each column represents a POD. The
default connectivity inside a POD and between PODs (in each
row) is all-to-all. This configuration is known as 2D-Hyper-X
architecture [3, 6], where the ToR switches are fully connected in
each dimension. While the standard Hyper-X configuration in
Fig. 1(b) (on the left) is ideal for traffic that is evenly distributed
across the ToRs and PODs, in the case of uneven traffic distri-
butions with hotspots, it can be desirable to break the all-to-all
connectivity to temporary give more bandwidth (links) where
needed. This is shown in Fig. 1(b)-right where the red links rep-
resent the links/bandwidth that have been steered from other
ToRs.

As shown in Fig. 1(c), each ToR switch uses 2N ports for
servers (intra-rack) and 2N ports for inter-rack. This means that
the oversubscription of the network is 1 : 1. Note that, different
oversubscription ratios (e.g., 1 : 3 [20]) can be obtained within
the same architecture by allocating more or fewer ToR ports for
connections to the intra-rack servers. This is a design choice that
represents a trade-off between costs and performance [1, 21]. We
chose 1 : 1 as it allows to provide full bisection bandwidth and it
is a common design choice in other recent studies as well as [6].
Among the 2N inter-rack ports, N are used for intra-POD and
N are used for inter-POD. WDM TRXs with N wavelengths are
used for inter-rack ports. The radix of the optical switches is N.
If we assume state-of-the-art switch ASICs with k = 4N = 128
ports at 100 Gb/s, this 2D Hyper-X architecture can scale to
k3/32 = 2N3 = 65, 536 servers (more than what is required
for Exascale computing [22]) while requiring optical switches
with limited radix (N = k/4 = 32) and number of wavelengths
(N = k/4 = 32). In terms of space-wavelength selective optical
switch technology, we are not restricting this study to any spe-
cific technology implementation, but we are simply assuming to
use a space-wavelength switch that can scale to N = k/4 = 32
ports and uses N = k/4 = 32 wavelengths at each input.

A key aspect of any application of optical switching is the
control plane to orchestrate the cross-layer switching operations
in the optical and electrical domains. As shown in Fig. 1(a), each
switch has a software-defined networking (SDN) controller that
connects to a subset of N ToRs. Each controller is responsible
for running the reconfiguration algorithm (see Section 4), com-
puting the new optical switch state, and updating the routing
information in the ToRs. Fig. 2 sketches the layout of modular
control plane functions for a POD. An SDN controller communi-
cates with the ToR and optical switches using SDN protocols to

Traffic 
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Network Monitoring & 

Telemetry Services

SDN 

Controller

Interface w/ ToRs & Optical Switches

Interface w/ 

Inter-pod 

Controller

Reconfiguration 

Module

ML Module

Analytical Models / 
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Fig. 2. Layout of modular control plane functions for a POD.

Table 1. Decision variables used by the MILP model.

xu,v: number of ports configured for the direct communi-
cation from ToR u to v;

pu′ ,v′
u,v : Boolean, equals to 1 if the routing path from ToR u

to v uses link u′ to v′, and 0 otherwise;

bu,v: transmission capacity (in Gbps) allocated to the com-
munication from ToR u to v.

bu′ ,v′
u,v : transmission capacity allocated on link u′ to v′ to

the communication from ToR u to v.

collect network state data (e.g., traffic matrix [9, 10]) specified by
the network monitoring and telemetry service module and dis-
tribute flow tables or configuration commands. The controller
also interacts with the inter-POD controller for global bandwidth
steering optimization. The traffic engineering database stores
network state data related to switch state, routing scheme, and
traffic distribution. Such data are constantly accessed by the
reconfiguration module, which can employ both ML approaches
and the traditional analytical models or heuristic algorithms to
calculate reconfiguration scheduling for the controller.

3. PROBLEM FORMULATION

Let V = {Vi|i∈[1,N]} denote the set of N PODs in a bandwidth-
reconfigurable datacenter/HPC system. Each POD Vi consists
of |Vi| ToR switches and the total number of ToR is |V| = ∑i |Vi|.
Every ToR u ∈ Vi is equipped with |Vi| − 1 and N − 1 ports
working at C Gbps for intra- and inter-POD communications, re-
spectively. The traffic dynamicity of the system can be character-
ized by a demand matrix D(t) evolving over time t (depending
on the profile of the applications running), where Du,v(t) ∈ D(t)
(u, v ∈ V) represents the traffic demand in Gbps from ToR u to
v. Our goal is to determine a connectivity graph/topology G
for V (i.e., the interconnectivity of the ToR ports) and a set of
routing schemes P at each time t such that the overall system
performance (e.g., throughput, end-to-end latency) is optimized.

We formulate the optimization problem as an MILP model.
Table 1 summarizes the decision variables used by the model.
Objective:

Maximize z = α1 · z1 − α2 · z2 + α3 · z3. (1)

z1 =
1

∑
u,v

Du,v(t)
· ∑

u,v∈V
bu,v. (2)

z2 =
1

|V|(|V| − 1)
· ∑

u,v,u′ ,v′
pu′ ,v′

u,v . (3)
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z3 ≤
1
C
·
(

xu′ ,v′ · C−∑
u,v

bu′ ,v′
u,v

)
, ∀u′, v′ ∈ V. (4)

The objective is to maximize the normalized system throughput
z1 (i.e., the demand satisfaction ratio), while 1) minimizing the
average path length z2 (in terms of the number of hops) and 2)
balancing the link loads. α1, α2, and α3 are positive weighting
factors. Here, load balancing is achieved by maximizing the
minimal normalized link margin z3 constrained by Formula 4.
By optimizing z2 and z3, we aim at reducing the end-to-end
communication latency and packet loss rate.
Constraints:

xu,v ≥ 0, ∀u, v ∈ V. (5)

∑
v∈Vi\u

xu,v ≤ |Vi | − 1, ∀u ∈ Vi , Vi ∈ V. (6)

∑
v∈V\Vi

xu,v ≤ N − 1, ∀u ∈ Vi , Vi ∈ V. (7)

∑
u∈Vi\v

xu,v ≤ |Vi | − 1, ∀v ∈ Vi , Vi ∈ V. (8)

∑
u∈V\Vi

xu,v ≤ N − 1, ∀v ∈ Vi , Vi ∈ V. (9)

Formula 5 ensures that xu,v is non-negative. Formulas 6-9 restrict
the numbers of ports each ToR can use for intra- and inter-POD
communications to be |Vi| − 1 and N − 1, respectively.

pu′ ,v′
u,v ≤ xu′ ,v′ , ∀u, v, u′, v′ ∈ V. (10)

Formula 10 ensures that traffic can only be routed on valid links,
i.e., on u′ → v′, xu′ ,v′ > 0.

∑
v′∈V

pu′ ,v′
u,v − ∑

v′∈V
pv′ ,u′

u,v =


1, u′ = u,

−1, u′ = v,

0, u′ ∈ V \ {u, v},
∀u, v ∈ V. (11)

∑
v′∈V

pu′ ,v′
u,v ≤ 1, ∀u, v ∈ V. (12)

∑
v′∈V

pv′ ,u′
u,v ≤ 1, ∀u, v ∈ V. (13)

Formulas 11-13 are flow conservation constraints [23], making
sure that a single routing path is used for each ToR pair.

0 ≤ bu,v ≤ Du,v(t), ∀u, v ∈ V. (14)

Formula 14 ensures that the capacities allocated are bounded by
0 and the actual demands.

bu′ ,v′
u,v ≤ bu,v + (1− pu′ ,v′

u,v ) ·M, ∀u, v, u′, v′ ∈ V. (15)

bu′ ,v′
u,v ≥ bu,v − (1− pu′ ,v′

u,v ) ·M, ∀u, v, u′, v′ ∈ V. (16)

bu′ ,v′
u,v ≤ pu′ ,v′

u,v ·M, ∀u, v, u′, v′ ∈ V. (17)

bu′ ,v′
u,v ≥ −pu′ ,v′

u,v ·M, ∀u, v, u′, v′ ∈ V. (18)

With Formulas 15-18, where M is a large constant, we can derive
bu′ ,v′

u,v from pu′ ,v′
u,v and bu,v. In particular, bu′ ,v′

u,v is equal to bu,v if
pu′ ,v′

u,v = 1, i.e., the traffic is routed on u′ → v′. Otherwise, bu′ ,v′
u,v

takes 0.
∑
u,v

bu′ ,v′
u,v ≤ xu′ ,v′ · C, ∀u′v′ ∈ V. (19)

Finally, Formula 19 ensures that the amount of traffic routed on
a link does not exceed the configured capacity.

The MILP model contains 2|V|2(|V| − 1)2 + 2|V|(|V| − 1)
variables and 5|V|2(|V| − 1)2 + 8|V|(|V| − 1) + 4|V| inequality
constraints. As |V| can take a large value in practice (e.g., 256),
solving the problem exactly becomes intractable.

4. HEURISTIC ALGORITHMS

In this section, we present two time-efficient heuristic designs
for the optimization problem described in Section 3. Specifically,
we focus on the optimization of connectivity graphs and rout-
ing schemes for a set of ToRs controlled by a single controller
(i.e., either for an intra-POD or an inter-POD system), while
reconfiguration operations for an entire system can be done
by applying the proposed algorithms to intra- and inter-POD
systems successively. More comprehensive designs perform-
ing joint intra-/inter-POD optimizations will be left as a future
research task.

An intuitive idea to optimize the objective function defined
by Formulas 1-4 is that we boost the bandwidth between ToRs
with higher demands and perform balanced-load routing. Fol-
lowing the idea, we first design a two-phase optimization ap-
proach for flexible bandwidth reconfiguration (namely, Flex-TP),
which optimizes the connectivity graph and routing schemes
successively. Algorithm 1 shows the procedures of Flex-TP. Lines
1-2 are for initialization, where we i) set the numbers of viable
sending (su) and receiving ports (ru) in each ToR, ii) make all
the ports disconnected (i.e., xu,v = 0), and iii) create an empty
routing set P. Here, for the sake of clarity, we overuse the sym-
bol V to denote the set of ToRs in a POD. The for-loop covering
Lines 3-18 performs the first-phase optimization to determine
the connectivity graph. In particular, Flex-TP iterates through
the ToRs |V| − 1 times and each time attempts to configure a
communication link for each ToR. With Lines 5-12, we assign ev-
ery ToR except the current one (ToR u) a weight as a function of
the amount of unsatisfied traffic demand between the ToRs and
the number of available receiving ports. M is a large positive
constant introduced to eliminate ToRs whose ports have all been
allocated. Lines 13-16 add a link from the current ToR to the ToR
with the largest weight and update the demand satisfaction and
port utilization information accordingly. After the connectivity
graph has been determined, we initialize the link capacities with
Line 19. Next, in the second optimization phase (Lines 20-27),
Flex-TP calculates a routing path for each ToR pair and allocates
transmission capacities on the paths, giving priorities to ToR
pairs with higher demands. Specifically, Line 22 constructs a cost
matrix, where the cost of each link is equal to the reciprocal of
the link’s residual capacity. Lines 23-24 calculate the shortest
path with the cost matrix as the routing path for each ToR pair.
With Line 25, we perform best-effort transmission capacity allo-
cation on the routing path, i.e., allocating a capacity equal to the
traffic demand or the maximal available capacity, whichever is
smaller. The link capacity state is updated in Line 26, after which,
the algorithm proceeds to the provisioning for the next ToR pair.
The time complexity of Flex-TP is O(|V|4).

Flex-TP optimizes the connectivity graphs and routing
schemes separately, which can lead to compromised perfor-
mance. To address this issue, we further devise a joint opti-
mization approach (namely, Flex-JO) whose procedures are sum-
marized in Algorithm 2. Lines 1-2 initialize the related variables.
With Lines 3-14, the algorithm iterates through all the ToR pairs
in the descending order of traffic demands and attempts to ser-
vice as much demand as possible with direct communication
links. Therein, Line 5 calculates the number of links (or wave-
lengths) needed. If there are enough ports available, Lines 7-9
interconnect the related ports and record the routing and capac-
ity allocation solution for the ToR pair. Lines 10-12 update the
information of link capacity, pending demands, and port utiliza-
tion. Next, the while-loop from Lines 15-35 aims at provisioning
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Algorithm 1. Procedures of Flex-TP.

1: su ← |V| − 1, ru ← |V| − 1, ∀u ∈ V
2: xu,v ← 0, ∀u, v ∈ V, W ← D(t), P← ∅
3: for each k ∈ [1, |V| − 1] do
4: for each ToR u ∈ V do

5: ωv ←

Wu,v, rv > 0

−M, rv = 0
, ∀v ∈ V \ u

6: if maxv ωv > 0 then
7: ωv = ωv × rv, ∀rv > 0
8: else if maxv ωv 6= −M then
9: ωv = ωv

rv
, ∀rv > 0

10: else
11: continue
12: end if
13: v∗ ← arg maxv ωv
14: xu,v∗ ← xu,v∗ + 1
15: su ← su − 1, rv∗ ← rv∗ − 1
16: Wu,v∗ ←Wu,v∗ − C
17: end for
18: end for
19: Uu,v ← xu,v × C, ∀u, v ∈ V
20: D̂ ← sort D(t) in the descending order
21: for each D̂u,v do
22: ωu′ ,v′ ← 1

Uu′ ,v′
, ∀u′, v′ ∈ V

23: calculate the shortest path pu,v with ω
24: store pu,v in P
25: bu,v ← min{D̂u,v, min(u′ ,v′)∈pu,v

Uu′ ,v′}
26: Uu′ ,v′ ← Uu′ ,v′ − bu,v, ∀(u′, v′) ∈ pu,v

27: end for

the pending demands with communication paths of more than
one hop. First, in Lines 16-21, we try to fully service the demand
between two ToRs with the existing bandwidth configured. Line
16 builds a cost matrix similar to those used by Flex-TP but re-
moves links that cannot support the full demand. If the shortest
path can be found with the cost matrix, Lines 19-21 record this
path as the routing paths and update the capacity allocation and
link capacity utilization information accordingly. Otherwise,
with Lines 23-33, Flex-JO seeks solutions by adding more links
into the connectivity graph. More concretely, Line 23 virtually
adds all the possible links based on the port availability. Lines
24-27 construct a cost matrix with the obtained virtual graph
and provision the demand with the best effort. Then, Lines 28-33
configure the links actually involved in the routing and capacity
allocation solution. In particular, Line 29 computes the number
of links required to fill up the gaps between the allocated and
the currently available capacities. Finally, the while-loop from
Lines 36-43 interconnects the unassigned ports. In particular,
Lines 38-39 boost the capacities of highly loaded links (i.e., links
with the minimal capacity margins) to mitigate congestion. The
time complexity of Flex-JO is also O(|V|4).

5. ML DESIGNS

While topology reconfiguration enhances the system adaptabil-
ity, frequent reconfiguration operations can add non-negligible
control-plane overheads or cause traffic disruptions. Ideally,
reconfiguration should be invoked only when valuable perfor-
mance enhancement could be anticipated. While throughput
can be estimated relatively easily given the routing schemes and

Algorithm 2. Procedures of Flex-JO.

1: su ← |V| − 1, ru ← |V| − 1, ∀u ∈ V
2: xu,v ← 0, ∀u, v ∈ V, P← ∅
3: D̂ ← sort D(t) in the descending order
4: for each D̂u,v do

5: n←
⌈

D̂u,v
C

⌉
6: if su ≥ n & rv ≥ n then
7: xu,v ← n
8: store pu,v ← (u, v) in P
9: bu,v ← D̂u,v

10: Uu,v ← n× C− bu,v
11: D̂u,v ← 0
12: su ← su − n, rv ← rv − n
13: end if
14: end for
15: for each D̂u,v > 0 do

16: ωu′ ,v′ ←


1

Uu′ ,v′
, Uu′ ,v′ ≥ D̂u,v

∞, Uu′ ,v′ < D̂u,v

, ∀u′, v′ ∈ V

17: calculate the shortest path pu,v with ω
18: if pu,v 6= ∅ then
19: store pu,v in P
20: bu,v ← D̂u,v
21: Uu′ ,v′ ← Uu′ ,v′ − bu,v, ∀(u′, v′) ∈ pu,v
22: else
23: U′u′ ,v′ ← Uu′ ,v′ + min{su′ , rv′} × C, ∀u′, v′ ∈ V
24: ωu′ ,v′ ← 1

Uu′ ,v′
, ∀u′, v′ ∈ V

25: calculate the shortest path pu,v with ω
26: store pu,v in P
27: bu,v ← min{D̂u,v, min(u′ ,v′)∈pu,v

U′u′ ,v′}
28: for each (u′, v′) ∈ pu,v do

29: n←


⌈

bu,v−Uu′ ,v′
C

⌉
, bu,v −Uu′ ,v′ > 0

0, bu,v −Uu′ ,v′ ≤ 0
30: xu′ ,v′ ← xu′ ,v′ + n
31: Uu′ ,v′ ← Uu′ ,v′ + n× C− bu,v
32: su′ ← su′ − n, rv′ ← rv′ − n
33: end for
34: end if
35: end for
36: while su′ > 0, rv′ > 0, ∃u′, v′ ∈ V do
37: u← arg maxu′ su′

38: ωv′ ←


Uu,v′
xu,v′

, rv′ > 0

M, rv′ = 0
, ∀v′ ∈ V \ u

39: v← arg minv′ ωv′

40: xu,v ← xu,v + 1
41: Uu,v ← Uu,v + C
42: su ← su − 1, rv ← rv − 1
43: end while

the link capacities, end-to-end latency and packet loss rate are
affected by multiple factors (e.g., routing path, link load, and
equipment condition) and cannot be accurately modeled by sim-
ple formulas. In this section, we present ML-based latency and
packet loss rate estimator designs to assist in intelligent decision
making for topology reconfiguration.

Latency estimator: we model the total time a packet stays in
a ToR u by a neural network Fθl

(χu,v), where v is the next-hop
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ToR of the packet, θl and χu,v are the sets of trainable weights
and input features, respectively. In particular, χu,v contains the
information of i) the total amount of traffic injected into u, ii)
the transmission capacity from u to v, and iii) the amount of
traffic routed through u to v to each destination. A detailed
implementation of Fθl

will be discussed in Section 6-B. Since
latency accumulates along a routing path, we can obtain the
estimation of end-to-end latency from u to v as,

l̃u,v = ∑
u′ ,v′
Fθl (χu′ ,v′ ) · pu′ ,v′

u,v , (20)

where pu′ ,v′
u,v represents the routing scheme (see Table 1). Finally,

we can train θl by collecting a large data set S = {(χ, p, l)} and
by minimizing the mean prediction error on S . Note that, in
the case where ToRs of different characteristics are deployed, a
proprietary set of θl can be learned for each ToR.

Packet loss rate estimator: the design of the packet loss rate
estimator is similar to that of the latency estimator but with
the following modifications. First, we model the successful
transmission rate ρ of a packet instead of estimating the packet
loss rate (1− ρ) directly. This is because end-to-end successful
transmission rate can be modeled as the product of the successful
transmission rate by each ToR along a routing path, whereas
there is not such a simple rule holding for end-to-end packet
loss rate. Second, we take loga(ρ) as the training labels, where
a is a constant. This way, we can achieve the following linear
operations,

loga(ρ̃u,v) = ∑
u′ ,v′

loga(ρ̃u′ ,v′ ) · pu′ ,v′
u,v

= ∑
u′ ,v′
Fθρ

(χu′ ,v′ ) · pu′ ,v′
u,v ,

(21)

where θρ is the set of neural network weights. In other words,
we can model the log-scale successful transmission rate by each
ToR individually with a neural network Fθρ

(χu,v). Therefore,
the scalability of the proposed design can be justified.

With the performance estimators properly trained, we can
assess the values of topology reconfiguration proactively. Specif-
ically, given a prospective traffic matrix, we can calculate a recon-
figuration scheme with the proposed algorithms and estimate
the corresponding latency and packet loss performance with
the trained ML models in a relatively short time (e.g., within
microseconds). Then, a value function taking into account the
performance metrics and the reconfiguration costs can be used to
guide the reconfiguration decision. For instance, the value func-
tion could suggest maintaining the current system configuration
if the anticipated performance gain is only marginal.

6. PERFORMANCE EVALUATION

We evaluated the performance of the proposed designs with
numerical simulations for the provisioning of aggregation traffic
at the ToR level. Each ToR port was assumed to work at C = 50
Gbps with a buffer size of 15 packets. The packet length was
set to be 296 Bytes. We assessed the end-to-end latency and
packet loss rates using a queuing model discussed in [24]. Note
that, although the queuing model adopted does not provide the
assessments of the exact latency and packet loss rate values, it
incorporates the main factors affecting the system performance
and thereby can provide useful insight for evaluating the perfor-
mance of the proposed designs.

A. Results from the Heuristic Algorithms

We first evaluated the performance of the proposed heuristic
algorithms with traffic matrices derived from different appli-
cation traces, i.e., AMG, CESAR, FFT, and LULESH [25]. We
visualize the traffic matrices with heatmaps shown in the first
column of Fig. 3, which indicates the traffic intensities among 64
switches. The proposed algorithms are compared with a baseline
that always adopts all-to-all interconnects (denoted as All2All in
Fig. 3), where each ToR pair communicates through a direct link
and is allocated the full link capacity. Figures in columns two
through four of Fig. 3 show the results of system throughput,
end-to-end latency, and packet loss rate as a function of normal-
ized traffic demand, respectively. Here, throughput is defined
as the ratio of the successfully provisioned data rate to the total
data rate given by a traffic matrix. The latency and packet loss
results are obtained as the average results of per ToR pair for
the fairness consideration. Normalized traffic demand γ is the
ratio of the total demand (i.e., ∑u,v Du,v) to the upper-bound
system capacity (i.e., C|V|(|V| − 1), which can be reached only
when Du,v = C, ∀u, v). The setup of γ for each traffic matrix was
determined separately so that the performance metrics fall in
reasonable ranges. We can see that both of the reconfiguration
designs facilitate much higher throughput under different traffic
matrices compared with the baseline. In particular, Flex-JO can
provision 100% of the demand in most of the cases, even under
the heaviest loads. The throughput gain from Flex-JO against
the baseline is as much as 5× (for CESAR and FFT under the
heaviest loads), demonstrating a clear benefit of the proposed
reconfiguration scheme. Meanwhile, by performing joint opti-
mization on connectivity graphs and routing schemes, Flex-JO
achieves higher throughput than Flex-TP, especially for LULESH
(as much as 24%). The latency results, on the other hand, show
“better” performance from the baseline. This is because with
all-to-all interconnects, all the ToRs communicate with direct
links, whereas with the proposed reconfiguration schemes, cer-
tain traffic can be routed on multi-hop paths. Moreover, the
proposed schemes enable us to accommodate much more traffic
in the systems, which can lead to high-loaded links. The latency
performance from Flex-JO is close to that of the baseline under
light loads while Flex-TP performs the worst. Considering the
fact that Flex-JO facilitates much higher throughput, the slight
cost of end-to-end latency is tolerable. A similar observation can
be drawn from the results of packet loss rate. Flex-JO achieves
packet loss rates comparable to or even lower than those from
the baseline under light loads, while the baseline performs better
with the increase of load. Again, the performance of Flex-TP is
the worst. Note that, the latency and packet loss performance of
the proposed schemes would get much better if we evaluate on
a per-packet base, because with reconfiguration, we make high-
volume traffic transmitted on direct links while using longer
routing paths merely for ToR pairs with relatively low demands.

We further evaluated the performance of the proposed de-
signs using random traffic matrices of different scales. Fig. 4
shows the results of throughput, end-to-end latency, and packet
loss rate, with |V| equal to 16 or 64. We generated 1, 000 random
traffic matrices and averaged the results to obtain each data point
in the figures. For each traffic matrix, we randomly picked 20%
of the ToR pairs to generate high demands (Du,v ∈ [0.8, 1]) while
the rest were assigned with low demands (Du,v ∈ [0, 0.4]). Then,
the traffic matrix was derived as D = γC|V|(|V| − 1) D

∑u,v Du,v
.

The results show that Flex-JO achieves the highest throughput,
with a slightly worse latency performance under heavy loads
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Fig. 3. Results of system throughput (second column), end-to-end latency (third column) and packet loss rate (fourth column)
evaluated under four traffic matrices: AMG ((a)-(d)), CESAR ((e)-(h)), FFT ((i)-(l)), and LULESH ((m)-(p)). The latency and packet loss

results are obtained as the average results of per ToR pair.

compared with the baseline. The throughput gain from Flex-
JO is 21% when the normalized traffic demand is 0.6. Besides,
we can see that under such a random traffic setting, Flex-JO
can achieve even better latency performance under light loads
and much lower packet loss rates than the baseline. This is be-
cause Flex-JO can effectively balance the link capacity utilization,
which can facilitate better latency and packet loss performance
when the total amount of traffic accommodated in a system is
not significantly larger compared with the case of the baseline.
Meanwhile, the results show similar trends for |V| = 16 and
|V| = 64, verifying the robustness of the proposed reconfigura-
tion designs.

The results in Figs. 3 and 4 have suggested that the skew-
ness of traffic matrices can dramatically influence the benefit of
topology reconfiguration. In particular, we can observe up to 5×
throughput gains from Flex-JO for CESAR and FFT, where only

small portions of ToRs have communication demands. Whereas
under the aforementioned random traffic matrices, where all
ToRs communicate with each other, the largest throughput gain
from Flex-JO is only 21%. To confirm this inference, we per-
formed simulations with random traffic matrices of different
skewness. Three cases were evaluated: Case 1, Du,v ∈ [0, 1] for
every ToR pair; Case 2, Du,v ∈ [0, 0.4] for 80% of the ToR pairs,
and Du,v ∈ [0.8, 1] for the rest; Case 3, Du,v ∈ [0, 1] for 40% of
the ToR pairs, and Du,v = 0 for the rest. The skewness of traffic
increases from Case 1 to Case 3. Fig. 5 shows the comparison
between the three cases, where each data point is the average
of the evaluations under 1, 000 traffic matrices. The normalized
traffic demand was set to be 0.6. We can see that the through-
put gain from Flex-JO under Case 3 is 10× to that under Case
1, which coincides with the previous inference. The latency
and packet loss results also show trends consistent with those
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Fig. 4. Results of system throughput (first column), end-to-end latency (second column) and packet loss rate (third column) evaluated
under random traffic matrices. (a)-(c): number of ToRs equal to 16. (d)-(f): number of ToRs equal to 64.
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Fig. 5. Performance comparison between different algorithms under random traffic of different skewness.

seen from Figs. 3 and 4. Overall, the results confirm that the
more skewed traffic matrices are, the larger is the advantage of
topology reconfiguration over the all-to-all interconnects.

B. Results from the ML Designs

Next, we evaluated the performance of the proposed ML-aided
estimator designs. We implemented Fθl

(·) and Fθρ
(·) with a

fully-connected neural network architecture of two hidden lay-
ers (16 neurons each layer). Based on the evaluation of different
activation functions (e.g., ReLU and ELU) for the hidden layers,
we selected ReLU as it provided lower prediction errors. For
each normalized traffic demand, we generated 3, 000 random
traffic matrices according to Case 2 (with |V| = 16) and applied
Flex-JO to obtain the connectivity graphs, routing schemes, and
the evaluations of end-to-end latency and packet loss rate. The
obtained data were divided into training and testing sets follow-
ing a ratio of 9 : 1. For the packet loss rate estimator, we set the
base of the log operations to be a = 0.99. Figs. 6(a) and (c) show
the evolution of training and validation losses during the train-
ing of Fθl

(·) and Fθρ
(·), with the normalized traffic demand

set to be 0.6. In both cases, the training and validation losses
converge to very close values after training of∼ 150 epochs, indi-

cating successful training processes without evident overfitting.
Figs. 6(b) and (d) show the results of average prediction error on
the testing sets. The errors from both estimator designs increase
with the traffic demand because the absolute values of the labels
increase (refer to the results in Fig. 4). The largest prediction
errors on latency and packet loss rate are 2.25 ns and 3.7× 10−4

when the normalized traffic demand is 0.6. Such errors are rela-
tively small considering that the average latency and packet loss
rate in this case are 183 ns and 4.3× 10−3, respectively.

After verifying the accuracy performance of the proposed
estimator designs, we evaluated their application in assisting
cognitive reconfiguration decision making. In particular, we
generated random traffic matrices according to Case 2 defined
in Section 6-A and added random but zero-sum perturbations
to each of the obtained matrices. The ML-aided cognitive ap-
proach triggers a reconfiguration operation when the prediction
results indicate at least a 20% reduction in average end-to-end
latency or packet loss rate can be achieved by reconfiguration.
We compare the cognitive approach with a traffic-driven one,
where reconfiguration is invoked whenever changes in traffic
matrices are observed (in practical and more complicated sce-
narios, a proper threshold of change should be applied). Table 2
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Table 2. Performance comparison between the ML-aided and the traffic-driven approaches under different perturbation intensities.

Perturbation 
Intensity

Reconfiguration 
Frequency

0.1

Packet Loss 
Rate (%)

Traffic-
Driven

ML-Aided

End-to-End 
Latency (ns) Throughput (%)

0.2 0.3

1.00 1.00 1.00 183.1 185.9 193.2

0.16 0.70 0.90 184.9 186.5 192.8

0.1 0.2 0.3 0.1 0.2 0.3

0.44 0.48 0.55 99.77 99.73 99.74

0.47 0.51 0.56 99.71 99.62 99.67
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Fig. 6. Results of training and validation losses and average prediction error for: (a)-(b) the end-to-end latency estimator, and (c)-(d)
the packet loss rate estimator. The training and validation losses were evaluated with the normalized traffic demand set as 0.6.

summarizes the results of the key performance metrics from the
two approaches under different perturbation intensities. Here,
perturbation intensity is defined as the maximum proportion of
the total demand being moved around. Each value in the table is
the average of the results from simulations with 1, 000 traffic ma-
trices. We can see the cognitive approach achieves performance
of end-to-end latency, packet loss rate, and throughput very
close to that of the traffic-driven approach in all the cases but
requires lower reconfiguration frequencies. Under low traffic
perturbations (e.g., 0.1), only a small portion of reconfiguration
operations (16%) can bring notable performance gains. On the
other hand, when the changes in traffic distribution become
more significant, the cognitive approach advocates reconfigu-
ration most of the time. Note that, the cognitive approach we
evaluated only adopts a simple threshold-based policy while
more comprehensive designs will be left as one of our future
research tasks. In the meantime, while the absolute values of
the reconfiguration frequencies (in terms of time scale) would
depend on how fast and frequently the traffic matrix varies,
in practice, the proposed technology is aiming at performing
reconfiguration over time scales larger than milliseconds. In
fact, the reconfiguration procedure can take from hundreds of
microseconds to few milliseconds (depending on the specific
hardware implementations) as it involves the reconfiguration
of the optical switch fabric and the ToR switches connected to it
(ToRs flow tables needs to be updated).

7. RELATED WORK

There has been a significant amount of architectural and experi-
mental works in the context of optical switching and intercon-
nects for DC and HPC systems [26–28]. The common goal of
these solutions is to improve the scalability and performance of
large-scale cloud computing systems while reducing their cost
and power consumption. Most of the proposed solutions aim at

replacing either partially or completely the electronic switches
(in the aggregation and core layers) of legacy fat-tree and spine-
leaf architectures, with various optical switching and intercon-
nect solutions. Hybrid approaches [9, 10] assume the use of OCS
to supplement a legacy EPS network and offload certain type
of traffic (either based on traffic-driven or application-driven
approaches) to the high-bandwidth optical circuits with recon-
figuration times ranging from hundreds of microseconds [29] to
tens of milliseconds [9]. Other approaches like in [13, 30–32] as-
sume that the EPS is performed only at the edge or aggregation
switches which are optically interconnected through either opti-
cal circuits based on spatial and wavelength-domain switches
[13, 30] or fast optical packet switches based on wavelength
and/or spatial routing [31, 32].

In particular, the works in [13, 30] introduced the concept of
topology reconfiguration and bandwidth steering to match the
interconnects with specific applications and traffic patterns. In
[30], the authors proposed an architecture and demonstrated in
a hardware testbed how to interconnect aggregation switches
optically in a hierarchical all-to-all topology (like in a dragonfly
topology [33]) by using AWGs. By using transceivers with tun-
able lasers, the bandwidth of some links could be temporarily
augmented to solve congestion due to hotspots in the network.
More recent works have demonstrated inter-POD bandwidth re-
configuration in a dragonfly topology [33] using SiPh integrated
circuits (PICs) switches based on MRRs [34], MZI devices [35],
or Flex-LIONS [18]. However, all these works are demonstrated
only for small-scale systems and do not tackle or demonstrate
scheduling of optical reconfiguration.

Finally, there have been a few works investigating optical re-
configuration for HOE switching architectures, leveraging either
heuristic [13, 17] or ML-based [14–16, 36] approaches. In [13, 17],
the authors modeled the problems of determining the optimal
configuration of an OCS switch as matching problems and de-
veloped heuristic algorithms based on existing algorithms in
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graph theory. In [14], the authors explored a supervised learning
approach and trained deep neural networks to predict the most
appropriate OCS configuration for each observed traffic distri-
bution. Other ML-based approaches apply deep reinforcement
learning to learn reconfiguration policies autonomically from
a large amount of trial and error, either for gradual topology
augmentation [15] or for selecting the connectivity graphs to use
[16, 36]. However, the effectiveness of these cognitive designs
were only demonstrated with oversimplified examples.

8. CONCLUSIONS

In this paper, we proposed an ML-aided cognitive approach
for effective bandwidth reconfiguration under a 2D-Hyper-X
optical interconnect architecture. We formulated the related opti-
mization problem as an MILP model and devised time-efficient
heuristic algorithms assisted by an ML-based end-to-end per-
formance estimator design. Simulation results demonstrate up
to 5× throughput gain from the proposed approach compared
with the baseline. Future research directions include: 1) investi-
gating more comprehensive designs that perform joint optimiza-
tion of reconfiguration scheduling for intra-/inter-POD systems
while providing additional flexibility in routing selection, for
instance, incorporating multipathing; 2) studying low-cost or
hitless migration schemes for bandwidth steering; 3) develop-
ing ML approaches that can learn the optimal reconfiguration
policies directly, eliminating the use of heuristic algorithms.
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