
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

BARI: An Affordable Brain-Augmented Reality Interface to Support Human–Robot Collaboration in Assembly Tasks /
Sanna, Andrea; Manuri, Federico; Fiorenza, Jacopo; DE PACE, Francesco. - In: INFORMATION. - ISSN 2078-2489. -
ELETTRONICO. - 13:10(2022), pp. 1-14. [10.3390/info13100460]

Original

BARI: An Affordable Brain-Augmented Reality Interface to Support Human–Robot Collaboration in
Assembly Tasks

Publisher:

Published
DOI:10.3390/info13100460

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2972046 since: 2023-09-08T11:38:55Z

MDPI



Citation: Sanna, A.; Manuri, F.;

Fiorenza, J.; De Pace, F. BARI: An

Affordable Brain-Augmented Reality

Interface to Support Human–Robot

Collaboration in Assembly Tasks.

Information 2022, 13, 460. https://

doi.org/10.3390/info13100460

Academic Editors: Ramon Fabregat,

Jorge Bacca-Acosta and N.D.

Duque-Mendez

Received: 1 July 2022

Accepted: 23 September 2022

Published: 28 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

BARI: An Affordable Brain-Augmented Reality Interface to
Support Human–Robot Collaboration in Assembly Tasks
Andrea Sanna 1,∗ , Federico Manuri 1 , Jacopo Fiorenza 1 and Francesco De Pace 2

1 Dipartimento di Automatica e Informatica, Politecnico di Torino, 10129 Torino, Italy
2 Faculty of Informatics, Institute of Visual Computing & Human-Centered Technology, TU Wien University,

1040 Wien, Austria
* Correspondence: andrea.sanna@polito.it

Abstract: Human–robot collaboration (HRC) is a new and challenging discipline that plays a key
role in Industry 4.0. Digital transformation of industrial plants aims to introduce flexible production
lines able to adapt to different products quickly. In this scenario, HRC can be a booster to support
flexible manufacturing, thus introducing new interaction paradigms between humans and machines.
Augmented reality (AR) can convey much important information to users: for instance, information
related to the status and the intention of the robot/machine the user is collaborating with. On
the other hand, traditional input interfaces based on physical devices, gestures, and voice might
be precluded in industrial environments. Brain–computer interfaces (BCIs) can be profitably used
with AR devices to provide technicians solutions to effectively collaborate with robots. This paper
introduces a novel BCI–AR user interface based on the NextMind and the Microsoft Hololens 2.
Compared to traditional BCI interfaces, the NextMind provides an intuitive selection mechanism
based on visual cortex signals. This interaction paradigm is exploited to guide a collaborative robotic
arm for a pick and place selection task. Since the ergonomic design of the NextMind allows its use in
combination with the Hololens 2, users can visualize through AR the different parts composing the
artifact to be assembled, the visual elements used by the NextMind to enable the selections, and the
robot status. In this way, users’ hands are always free, and the focus can be always on the objects
to be assembled. Finally, user tests are performed to evaluate the proposed system, assessing both
its usability and the task’s workload; preliminary results are very encouraging, and the proposed
solution can be considered a starting point to design and develop affordable hybrid-augmented
interfaces to foster real-time human–robot collaboration.

Keywords: human–robot collaboration; augmented reality; brain interfaces; pick and place; assembly
task; HoloLens; NextMind

1. Introduction

Human–robot collaboration (HRC) is a branch of human–computer interaction (HCI);
HRC investigates how humans and robots can interact in different situations. Collaboration
can involve service and industrial robots: collaborative robots are usually called cobots. In
particular, the interaction between technicians and cobots in an industrial context is deeply
related to Industry 4.0, which is quickly changing the nature of factories in order to foster
more flexible and efficient manufacturing.

Different levels of “collaborative work” can be identified [1]: synchronized (human
and robot work in the same space but at different times), coexistence (human and robot are
in the same environment but do not interact), cooperation (human and robot work in the
same space at the same time), and collaboration (human and robot execute a task together).
This paper focuses on the collaborative level and considers a human–robot collaborative
assembly task (as it represents one of the more profitable HRC forms).

The design of collaborative environments is one of the main goals of HRC. The
collaboration between humans and machines involves two dimensions [2]: know-how
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and know-how to cooperate. The first dimension is related to the capability of humans
and machines to control a process, whereas the second one concerns the capability to
interact with other “agents” (the term agent can denote both humans and machines/cobots).
In a collaborative environment, humans and cobots exchange information by means of
interfaces [3] that should also allow agents to recognize each other’s intentions to effectively
and safely address the common final goal [4].

Augmented reality (AR) superimposes digital assets (e.g., 3D models and animations)
into the real world. Manufacturing and repair have been immediately identified as potential
application fields for AR [5]; moreover, AR has been selected as one of the nine pillars
of Industry 4.0. With these premises, it is not surprising that AR has often been used to
convey cobot intentions and status to human operators. Interested readers can find in [6] a
systematic literature review of AR interfaces for HRC.

On the other hand, several different technologies have been considered to convey
inputs from humans to cobots. Gesture, speech, and haptic are just some of the possible in-
terfaces [7]. Each of these technologies shows some limitations; for instance, noisy environ-
ments (such as industrial ones) may adversely affect the performance of speech interfaces,
whereas gestures can be limited when human operators execute assembly/maintenance
tasks that require both hands. Further, haptic interfaces can be challenging to adapt to
human operators’ intentions.

Brain–computer interfaces (BCIs) may overcome these issues; the following five stages
implement a BCI: signal acquisition, preprocessing, feature extraction, classification, and
output/control [8]. A BCI enables humans to interact with devices/machines without the
involvement of peripheral nerves and muscles, thus “only” using control signals generated
from electroencephalographic activity. A survey of BCIs can be found in [9].

This paper presents a novel system that uses an AR interface to convey information
about the cobot’s intentions to the user and a BCI to provide the cobot (in this case, a
robotic arm) commands to pick the parts of a vise and place them close to the user, thus
allowing them to be assembled as the final object. The Microsoft HoloLens 2 [10], a
wearable see-through head-mounted display (HMD) that enables users to display and
interact with computer-generated objects, was used to implement the so-called mixed-
reality paradigm. On the other hand, the NextMind [11] device was used to implement the
BCI. The NextMind sensor uses EEG technology to detect neural activity from the visual
cortex. Machine learning algorithms translate signals into digital commands in real-time.
Since the NextMind differs from the traditional BCI in focusing on signals coming from the
visual cortex, there is room for evaluating its effectiveness for human/robot collaborative
tasks.

User tests were also performed to assess the system’s usability; ten people were
involved in tests and an average score of 75.75 was obtained by considering the System
Usability Scale (SUS) questionnaire [12]. Further, the NASA-TLX questionnaire [13] was
used to assess the global user workload and, as can be expected, the highest scores were
related to mental demand.

The paper is organized as follows: Section 2 reviews both augmented reality and brain
interfaces to support human–robot collaboration, whereas Section 3 presents the design
and implementation details of the proposed solution as well as the tasks considered for
tests. Section 4 shows preliminary usability scores; results are analyzed and discussed
in Section 5.

2. Background

The design of AR interfaces has been investigated since the first years of this cen-
tury [14]. Several design approaches have been used to support users in different AR
contexts. Industrial AR apps should be intuitive, robust, evocative, and usable, as outlined
in [15].

A recent and detailed analysis of the state-of-the-art related to AR-enhanced interaction
between humans and robots can be found in [16]. The authors categorized augmentation into
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two different categories: on robots and surroundings. The first approach adds information on
top of the robot, whereas augmentation of surroundings uses walls, floors, and other physical
objects around the robot to anchor computer-generated information. The authors outline how
visual augmentation may provide the following benefits:

1. Facilitated robot programming;
2. Real-time support for control and navigation;
3. Improved safety;
4. Communication of the robot’s intention;
5. Increased expressiveness.

Moreover, twelve main application domains have been identified: domestic and every-
day use, industrial applications, entertainment, education and training, social interaction,
design and creative tasks, medical and health, telepresence and remote collaboration, mobil-
ity and transportation, search and rescue, robots for workspaces, and data physicalization.
The proposed work ranks in the industry application domain.

AR interfaces have been deeply investigated to support HRC effectively, as well as
the use of BCIs to control robots. An EEG-based BCI has been used to command a semi-
autonomous robotic arm by means of motor imagery (MI); in particular, a way to optimize
the on-line classification accuracy of an MI-based BCI system by choosing an optimal time
window for calculating common spatial patterns (CSP) was proposed in [17]. Functional
magnetic resonance imaging (FMRI) has been used as an input device to identify the user’s
intentions and convert them into actions performed by a humanoid robot [18]. Another
work based on the classification of the P300 waveform is proposed in [19]. The P300
waveform is affected by visual stimuli, and a six-LED-based stimulator was developed
in [19]; couples of LEDs were placed at the end of transparent sticks, which represent
directions in the Cartesian space. The user can focus on the visual stimuli and control a
Mico Kinova robotic arm according to correspondences among LEDs and commands; for
instance, LED 1 is used to convey a stimulus to move the arm forward. A survey of BCIs
for humanoid robot control can be found in [20].

Hybrid interfaces, which use both AR and BCI, are also known in the literature. The
first attempts to propose AR–BCI-based interfaces can be dated back to 2010 [21,22]. In [21],
the BCI is based on P300 waveform analysis, and visual stimuli are six cubes on which
are placed unique ARToolkit markers [23]; the AR interface recognizes these markers and
augments each cube with a number placed on it. Each number codes well-defined positions
that a Kuka robot arm uses to pick and place objects. Further, tests involving four users
were performed to evaluate system usability. In [22], integration between BCIs based on
the steady-state visual evoked potential (SSVEP) and 3D environments is evaluated. A
thorough study about BCI in augmented and virtual spaces was later presented in [24].

Commands of interest are displayed on an HMD also in [25]; commands are overlaid
in 3D with respect to the perspective view of the robot, which has to perform both a
pick and place and a gaming task. The pick and place task was also supported in [26]. Eye
tracking allows the user to select the object to pick, and the BCI is used to confirm object
selection, trigger switching of an action sequence, and control the aperture and height of
the gripper. The AR interface provides users feedback during the grasping and lifting
processes, thus efficiently avoiding obstacles. The feasibility of combining AR and BCI
technologies has been assessed in [27]; in particular, the authors focused on BCI based on
SSVEP and optical see-through augmented reality. The influence of external and internal
noise on BCI accuracy was evaluated, and an extended design space for target integration
in AR–SSVEP-based applications was also proposed.

Further, mobile robots such as automated/automatic guided vehicles AGVs, drones,
and wheelchairs can be controlled by hybrid AR–BCI interfaces; for instance, a drone is
guided in [28], and different kinds of BCIs are investigated in [29] to train users to control
wheelchairs. In this case, the authors show how the BCI can be effectively combined both
with AR and virtual reality (VR) interfaces. AR and VR interfaces provided the same results
in terms of usability and user experience.
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All the above-mentioned works detect brain activity by means of “invasive” (and
sometimes expensive) devices such as neuroheadsets, and they can be considered laboratory
experiments. On the other hand, the proposed solution is based on the NextMind [11]. This
affordable and ergonomic device can be easily and comfortably used with HMD AR devices
such as the Microsoft HoloLens. The proposed solution can be profitably employed in real
work scenarios, and the usability tests (see Section 4) clearly outline users’ appreciation.

The NextMind is a wireless device that can be paired with other devices supporting
the Bluetooth protocol. It can be attached by a headband, and it should be placed at the
back of the head, where the visual cortex is located, with its lower part over the inion. Nine
electrodes, which should always be in contact with the scalp, detect brain activity. The
NextMind core is mainly built around two components: NeuroTags and NeuroManager.
NeuroTags are identified by blinking/flickering textures (different NeuroTags are related
to textures of blinking at different frequencies) that make any object of the scene “mind-
controllable”; a NeuroTag represents a unique visual signature that generates a response in
the user’s brain. On the other hand, NeuroManager manages the communication between
the NeuroTags and the NextMind engine, which is in charge of processing signals received
from the electrodes. No more than 10 NeuroTags should be inserted in the same scene;
moreover, the NextMind automatically disables the NeuroTags outside the user’s field
of view. Figure 1 shows an example of a NeuroTag associated with a flickering texture.
The three green segments move to compose a triangle when the visual signature has been
detected; this is the standard feedback provided by the NextMind. The NextMind has been
used to compare selection performance between gestures and BCI in AR interfaces [30];
results clearly outline the potential of this device.

Contrary to the presented state-of-the-art, the NextMind focuses only on visual cortex
signals, providing an interesting and intuitive selection mechanism that is assessed in this
paper to verify its effectiveness for human–robot collaborative tasks.

Figure 1. An example of NeuroTag and its flickering texture.

3. Material and Methods

This section presents HW and SW system architecture, the user interface (UI), and the
selected tasks for tests.

3.1. Hardware Architecture

From the hardware point of view, the proposed solution is depicted in Figure 2. The
NextMind is connected to the HoloLens 2 via Bluetooth, whereas the AR device is connected
to a LAN by Wi-Fi. The HoloLens, the COMAU e.DO manipulator [31], and a control PC
are connected to the same LAN as the HoloLens. Even if e.Do is not a real cobot, its plastic
cover and limited speed allow humans to share the same workspace without danger, thus
simulating the behavior of a cobot. A control PC (also named terminal) is introduced in
order to decouple the interface by the selected robot; in this way, the proposed solution is
robot-independent, as all selection commands are sent to a server running at the control PC
(see Section 3.2).



Information 2022, 13, 460 5 of 14

Figure 2. Hardware architecture of the proposed solution.

In the same way, robot feedback is sent back to the terminal then processed and
presented to the user by the AR interface.

3.2. Software Layers

Software layers are shown in Figure 3. An application designed by the NextMind
SDK receives and processes EEG data. This application can be fully integrated with the
Unity3D game engine [32]; in this way, the results (feedback) of EEG data processing can be
directly managed within the AR application deployed for the HoloLens 2. The AR interface
allows the user to select the vise components (see Section 3.3) by means of the associated
NeuroTags.

Figure 3. Software layers of the proposed solution.

When a component is selected, the corresponding command is sent to the control PC.
A server written in Python is running at the terminal; this server exposes a number of
functions corresponding to the number of the vise parts plus some other control functions to
move the robotic arm in some specific positions (for instance, when the robot is waiting for
a new pick and place command). Each vise component is placed in a predefined position in
the workspace (see Figure 4). Therefore, each pick function refers to a predefined position
and orientation (6DOF) of the gripper. The e.Do returns a status message to the control
PC after executing each command; this feedback is processed and forwarded to the user
interface. For instance, a warning animation is displayed and a new selection is impossible
when the arm moves.
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Figure 4. A screenshot representing the test setup. The user wears both the NextMind and the
HoloLens 2; the pick area is visible at the right of e.Do, and the place zone is between the user and
the robot.

The Unity application is organized in three scenes: main menu, calibration, and project.
The main menu appears when the application is started, and it allows the user to select
the other two scenes. A gaze-tracking constraint is activated for the main menu scene; in
this way, the selection panel can always be displayed in front of the user. The calibration
scene allows the user to calibrate the NextMind device. A graphical representation denotes
the quality of signals received from the electrodes. Moreover, the user can focus on a set
of NeuroTags for training. The project scene allows the user to perform selected tasks
(see Section 3.4).

3.3. User Interface

When the project scene starts, the user can see the vise either assembled or exploded
(the assembled view of the vise is displayed on a virtual plane the user defines at the
beginning). In particular, due to the limitation of ten NeuroTags per scene, the vise is
divided into three different sub-parts/sections (for the sake of readability, the three sections
are bounded in rectangles; see Figure 5). Supplementary material (a video) shows the
proposed UI.

Figure 5. The exploded vise is divided into three sections.



Information 2022, 13, 460 7 of 14

Each section of the model is associated with a NeuroTag. When a section is selected, all
the corresponding parts are displayed; two NeuroTags are associated with each part: Explore
and Select (see Figure 6). The Explore mode allows the user to: achieve more information
about the selected component, change the representation from solid to wireframe, rotate
the object, select the object (e.Do will pick the real object), see a video about the object, and
skip back to the visualization of all the section components (see Figure 7). The Explore
mode is needed to complete Task 1 (see Section 3.4). On the other hand, the Select mode
directly activates the robot to pick the selected objects, and it is mainly used to complete
Task 2.

Figure 6. All parts of the first section are displayed; each part is associated with two NeuroTags.

Figure 7. In Explore mode, the user can achieve more information about the selected component.
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In order to provide more efficient feedback than the standard three green lines forming
a triangle when the user is focusing on a NeuroTag, a growing circle is associated with
the selection mechanism. When the green circle grows up to the size of the white circle
(this means that the user focused on the NeuroTag for a given time, e.g., two seconds), the
NeuroTag triggers the selection (see Figure 8). It is worthwhile to note that this mechanism
prevents unwanted selections.

Figure 8. The green circle grows; the selection is activated when the green circle radius is the same as
that of the white circle.

3.4. Tasks

Two tasks related to a vise were identified; the vise project was downloaded from [33],
and all parts were 3D printed. The two tasks were:

1. Research of information: Users had to visually identify and select a specified compo-
nent of the vise in the AR interface (in particular, in the exploded view of the vise)
and select its info panel. Users had to identify the weight and size of the component;

2. Assembly of the vise: Users had to select all the components in a well-defined sequence
using the corresponding NeuroTags. After selections, e.DO was in charge of picking
components and placing them in a pre-set position, thus allowing the users to assemble
the vise.

Elements were placed in fixed positions within the robot workspace, as shown in
Figure 4; a foam support contained the vise parts in order to keep them steady when the
gripper closed to pick. Figure 4 also shows the area where components were released.

4. System Evaluation

To the best of the authors’ knowledge, this is the only work that uses the NextMind to
design and develop a BCI–AR interface to foster human–robot collaboration. The NextMind
is an affordable and ergonomic device designed to be easily and comfortably used together
with AR headsets, such as the Microsoft HoloLens. Moreover, the NextMind does not
require any kind of waveform analysis since it provides an intuitive selection mechanism
based on visual cortex signals that are automatically detected by the device APIs. Therefore,
other BCI interfaces were not considered for comparison. Instead, we focused on evaluating
the usability of the proposed system in order to assess limitations and users’ appreciation
for an industrial assembly task.

4.1. User Test

Preliminary tests involved 10 users aged between 22 and 29. Most of them had
previous knowledge of AR technologies, but none had tried a BCI before. All users
were volunteers and did not receive any reward. Tests were performed according to the
following steps:

1. Welcome and device sanitization;
2. Device setup (users first wore the NextMind and then the HoloLens 2);
3. Calibration (the NextMind has to be calibrated in order to obtain the best performance;

this step is also needed to check the contact point between the electrodes and the scalp);
4. Training (a simple tutorial application was developed in order to familiarize users

with the BCI);
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5. Virtual plane definition (users had to define, by gestures, a virtual plane where the
vise is represented when assembled);

6. Operative tasks (users performed the two tasks described in Section 3.4);
7. Compilation of two questionnaires (the SUS questionnaire was used to assess usability,

whereas the NASA-TLX evaluated the global workload).

4.2. Results

Table 1 shows the results obtained from the SUS questionnaire in terms of SUS score,
grade, and adjective rating for each user; mean values and standard deviation are depicted
at the bottom of the table.

Table 1. SUS scores.

User SUS Score Grade Adjective Rating

1 62.5 D Okay
2 67.5 D Okay
3 92.5 A+ Best Imaginable
4 77.5 B+ Good
5 72.5 C+ Good
6 75.0 B Good
7 82.5 A Excellent
8 70.0 C Good
9 77.5 B+ Good
10 80.0 A− Good

Mean 75.75 B Good
Standard Deviation 7.98

Pertaining to the NASA-TLX questionnaire, Tables 2 and 3 display for the two pro-
posed tasks, respectively, the individual weighted score for each parameter provided by
the users, as well as the mean value, which represents the task load index scored by each
user. At the bottom of the table, the weighted group score results (GPR) are provided as
well, both in terms of individual diagnostic subscores for each parameter and overall task
load index.

Completion times for the two tasks were also measured (see Table 4).

Table 2. NASA-TLX results for Task 1.

Users Individual Scores (Weighted)
Mental Physical Temporal Performance Effort Frustration Mean

1 70 40 150 120 210 60 43.33
2 135 135 300 25 150 0 49.67
3 105 10 180 20 45 0 24.00
4 0 60 60 45 45 45 17.00
5 45 70 60 135 30 50 26.00
6 50 0 260 200 120 60 46.00
7 350 0 240 45 180 5 54.67
8 325 0 90 80 225 35 50.33
9 260 150 45 125 130 0 47.33

10 110 10 105 175 150 20 38.00
Diagnostic Subscores Overall

GSR 161.11 67.86 149.00 97.00 128.50 39,29 39.63
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Table 3. NASA-TLX results for Task 2.

Users Individual Scores (Weighted)
Mental Physical Temporal Performance Effort Frustration Mean

1 130 20 120 120 130 130 43.33
2 90 300 320 50 225 0 65.67
3 105 5 140 25 40 0 21.00
4 40 140 120 100 100 0 33.33
5 195 0 340 320 135 30 68.00
6 80 0 40 250 60 30 30.67
7 285 0 380 15 500 70 83.33
8 375 0 120 100 195 40 55.33
9 350 0 40 120 260 110 58.67

10 0 5 180 120 255 240 53.33
Diagnostic Subscores Overall

GSR 183.33 94.00 180.00 122.00 190.00 92.86 51.27

Table 4. Completion times, in minutes, for the two tasks (T1 and T2, respectively).

User 1 2 3 4 5 6 7 8 9 10 Mean

T1 04:05 00:57 00:55 00:45 01:39 00:30 01:03 00:43 00:23 00:37 01:10
T2 17:36 14:02 12:57 13:02 13:04 12:08 11:56 12:21 11:14 12:02 13:02

5. Discussion

This section presents the results analysis along with the current limitations and possible
future works.

5.1. Results Analysis

The SUS questionnaire score displayed in Table 1 shows that the average SUS score
is 75.75, which means good usability according to the adjective rating scale proposed
by Bangor et al. in [34] and more recently updated by Sauro [35]. Only one user (# 1)
provided an evaluation of 62.5 (still considered OK on the corresponding adjective scale),
below the average SUS score, which is 68; on the other hand, three users (# 3, 7, and 10)
provided a score equal or over 80, which correspond to an A on the school-grade scale; more
specifically, user # 7 provided a score of 82.5, which correspond to an excellent usability,
whereas user # 3 provided a score of 92.5, which corresponds to best imaginable.

Concerning the NASA-TLX questionnaire, the overall weighted Global Workload
Score provides a value which represents the Task Load Index of a given task on a scale
from 0 to 100. Based on [36], a score of 39.63 for Task 1 is below the average value of 48.74,
whereas a score of 51.27 for Task 2 is slightly above the average value. Referring to the
diagnostic sub-scores, the highest scores are related to temporal and mental demand for
Task 1; on the other hand, the lowest scores refer to physical demand. Further, frustration
received low ratings, thus confirming the good usability of the proposed solution. The
high mental demand score is strictly related to the nature of the interface, which requires
focus and time to activate the NeuroTags associated with each action. Similar results were
obtained for Task 2, as effort, mental, and temporal demand are the highest scores. Overall,
the temporal demand is slightly higher for Task 2 compared to Task 1, but it does not
increase very much compared to the actual average completion time, which increases from
70 s to more than 13 min. Mental demand is slightly higher for Task 2 than for Task 1,
whereas the task is clearly more demanding (research of information vs. assembling a vise).
According to the differences between the two tasks, the perceived effort for Task 2 is more
significant than for Task 1.

User # 1 obtained the worst performance both from a subjective point of view and in
terms of completion time. The most relevant problem observed while performing the tests
was that user # 1 had great difficulty selecting NeuroTags; this can be due to poor calibration
or to some distracting elements in the user’s field of view. For instance, a monitor was used
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to indicate to users the exact selection sequence; displayed images might interfere with the
AR interface, thus reducing the user’s capability to focus on the NeuroTags. Similarly, user
# 10 reported high mental load and low levels of frustration for Task 1 but null mental load
and considerably high levels of frustration for Task 2. It is possible that the NextMind was
not fixed properly, and the electrodes could not detect the visual stimuli.

5.2. Limitations

The development and assessment of the proposed system were crucial steps to under-
stand the existing limitations. Some limitations were related to the NextMind device and
are depicted in the device user’s guide, whereas others were assessed through the usability
test. First of all, the suggested maximum number of NeuroTags to be used simultaneously
is 10: the NextMind is not able to handle more than 10 different NeuroTags; otherwise,
multiple actions will be mapped to the same NeuroTag, and the number of false positive
activations will drastically increase. Moreover, the interaction paradigm is limited to a
button approach. Activating a command on each activation of the corresponding NeuroTag
leads to two options: a NeuroTag can either directly control a specific action/command if
the application has a limited set of actions available at the time (fewer than 10); otherwise,
a NeuroTag is used to navigate and select actions among a scrollable menu or other similar
solutions. Another limitation related to the wearability of the device is that people with
long hair may have difficulty obtaining a good calibration score. Moreover, the surrounding
environment may affect system usability, since visual distracting elements may undermine
the user’s capability to focus on the NeuroTags and effectively activate the available actions.
Finally, the user interface design plays a key role, and parameters such as the number of
visible NeuroTags and NeuroTag dimension and positions deeply affect system usability,
as further investigated in [37].

5.3. Improvements and Future Work

Further tests should clarify how much poor calibration and distracting elements
in the real environment impact system usability and provide best practices to improve
user interface design. Moreover, other selection methods have to be compared with the
NeuroTag-based one: since the HoloLens 2 also supports selections by gestures and gaze
tracking, future research will extend the proposed interface considering these selection
methods and comparing them with inputs by brain activity.

Although the interface was evaluated in an industrial scenario, alternative robotic
domains could benefit from it. As shown by the corresponding scientific literature, service
robotics would be the ideal candidate for the proposed AR–BCI interface [38,39]. Specifi-
cally, people with disabilities could control a robotic arm by using the NextMind device.
NeuroTags might be projected into the real world, thus eliminating the need for the user
to wear any device. Depending on the specific disability, the AR–BCI interface could be
compared with different input interfaces (e.g., gaze, gestures, etc.) to assess and verify
its effectiveness.

6. Conclusions

This paper presents BARI, a novel hybrid brain and AR interface to foster human–
robot collaboration in assembly tasks. AR is used to convey to the user both information
related to the robot status and graphical representations of the parts to be assembled; on
the other hand, a BCI is used to give the robot commands to pick selected objects. Since
the NextMind differs from traditional BCI interfaces by focusing only on signals coming
from the visual cortex, it provides an interesting and intuitive selection mechanism that has
been assessed to verify its effectiveness for human–robot collaborative tasks. An evaluation
involving ten users confirmed the potential of these hybrid interfaces to support HRC.

Although obtained results can only be considered as preliminary, and more tests are
necessary to validate the system, good levels of usability are the essential prerequisite for
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further investigation. Overall, the users evaluated the experience positively, and the system
could be effectively deployed in industrial assembly scenarios.

The usability evaluation proved that poor calibration or distracting elements in the
real environment might interfere with the proposed system. Further tests should clarify
how much these factors impact system usability and may suggest best practices for the user
interface design. Alternative selection methods such as gestures and gaze tracking will
also be compared with inputs by brain activity. Finally, it is possible to apply the proposed
interface to other robotic domains, such as service robotics.

Supplementary Materials: A supporting video is available at https://youtu.be/1poUbaBLjJo.
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